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Introduction 

A mammalian histidine decarboxylase was first de¬ 

scribed in 1936 by Werle (64). Since then, enzymes that 

catalyze the decarboxylation of histidine have been demon¬ 

strated in many mammalian species and tissues. It has 

become clear that all of these enzymes are not identical, 

that they have different properties in different tissues, 

and that species differences do exist. A broad classifi¬ 

cation can be made, however, on the basis of substrate 

specificity, the pH at which the enzyme exhibits maximal 

activity, and the effects of various enzyme inhibitors and 

activators. Two main types emerges (i) an aromatic 

L-amino acid decarboxylase (29) which decarboxylates a 

wide variety of natural and synthetic aromatic amino acids 

including histidine (29, 62); this enzyme exhibits maximum 

activity in an alkaline medium (pH >8), is strongly in¬ 

hibited by alpha-methyl DOPA (a strong inhibitor of 

3,4-dihydroxyphenylalanlne (DOPA) decarboxylase), and is 

activated in vitro by the addition of a small amount of 

benzene (6l). It is probably identical to the DOPA 

decarboxylase and 5-hydroxytryptophan (5-HTP) decarboxyl¬ 

ase of rabbit and guinea pig kidney (29, 45, 62). (li) a 

specific L-histidine decarboxylase which seems to decar- 

boxylate only histidine, is most active at slightly acid 
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or neutral pH, is inhibited only slightly or not at all 

by alpha-methyl DOPA, and is either unaffected or 

inhibited in vitro by the addition of a small amount of 

benzene. These properties of histidine decarboxylase from 

many mammalian sources are summarized in Table 1. In 

addition, the affinity for the substrate, L-histidine, 

differs greatly between these two types, specific histidine 

decarboxylase having a much lower Michaelis-Menten constant 

(Km) than aromatic L-amino acid decarboxylase (33, 63). 

Both types of enzymes share a requirement for the 

coenzyme pyridoxal-5-phosphate, and consequently both are 

Inhibited by compounds such as hydroxylamine and semi- 

carbazlde which react with pyridoxal phosphate (3, 8, 9, 

10, 31, 38, 41, 46, 48, 54). The specific enzyme appears 

to bind this cofactor more loosely than aromatic amino 

acid decarboxylase, the former enzyme losing activity much 

more rapidly with dialysis (46, 48). Although a metal ion 

requirement has been demonstrated for bacterial histidine 

decarboxylase (6), this has not been shown for the mam¬ 

malian enzyme. The addition of EDTA (lO-^ M) has no 

effect on the mammalian enzyme activity (63). 

In addition to the classification discussed above, 

which considers only the jUn vitro biochemical behavior of 

the enzymes, groupings have been made which include 

functional considerations as well. In all the tissues of 
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the mouse and rat except blood, Schayer has found histidine 

decarboxylase activity which has been "induced" in the 

animals by exposure to stress, such as cold, bacterial 

endotoxin, catechol amines, trauma and delayed hyper¬ 

sensitivity reactions (49, 50, 51, 52, 55, 59). This 

"induced" enzyme, according to Schayer, is Intimately 

involved in the local production of unbound histamine 

which, acting as an antagonist of epinephrine, helps 

maintain homeostasis of the microcirculation (50). Schayer 

(49, 51, 52) and others (59) have made extensive inves¬ 

tigations concerning the effects of glucocorticoids on the 

inducible enzyme. The in vitro properties of this enzyme 

have not been well characterized however. It has a pH 

optimum ranging from pH 7.4 to 8 (52) but the effects of 

inhibitors and benzene have not been carefully investigated. 

Schayer suggests that the Inducible enzyme is located in 

the capillary endothelial cells (51). 

Another point of view has been championed by Kahlson, 

who has found histidine decarboxylase activity with the 

characteristics of the specific enzyme in tissues 

characterized by rapid growth, such as fetal rat liver 

(14, 18, 19, 20, 21), regenerating rat liver (14), rat 

hepatoma (25), rat bone marrow (15), ascites tumor (16), 

and healing wounds (13). He suggests that this enzyme 

activity is related to the general process of growth (12). 
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However, this view has been challenged by many inves¬ 

tigators who have failed to find high enzyme levels in the 

tissues of other mammalian fetuses (22, 24, 58) and in 

other rapidly growing tissues (32, 41, 56). 

A strong stimulus for the continued Investigation of 

histidine decarboxylase has been the search for a specific 

inhibitor of the enzyme. The availability of a "histamine- 

free" animal to investigations of the physiological role(s) 

of histamine, and the possible therapeutic uses of such an 

inhibitor are of obvious interest. 

That the specific enzyme is the primary mediator of 

endogenously produced histamine is suggested by its greater 

affinity for histidine and by the observation that alpha- 

methyl DOPA, a strong inhibitor of the aromatic amino acid 

decarboxylase, does not significantly alter urinary histamine 

excretion or whole mouse histamine levels (63). Studies In 

the rat also suggest that the specific enzyme is responsible 

for histamine synthesis in vivo (17, 25). Thus, if 

inhibition of histamine production is of interest, it is 

reasonable to consider first the properties of the specific 

histidine decarboxylase. 

An active source of this enzyme is the transplantable 

mouse mastocytoma (8, 39, 40, 63). Some of the character¬ 

istics of this enzyme are included in Table 1. DOPA de¬ 

carboxylase and 5-HTP decarboxylase activities have also 
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been described in this tissue (7, 8, 39, 40), but It has 

not been determined If these activities are the property 

of one or of several enzymes. Although mastocytoma 

histidine decarboxylase has been partially purified (2) 

it's substrate specificity has not been definitely estab¬ 

lished. The enzyme has been tested with a number of 

inhibitors (1, 63). 

Experiments will be discussed in this paper which 

suggest that mouse mastocytoma histidine decarboxylase is 

specific for histidine and that the observed DOPA and 

5-HTP decarboxylase activities are the property of another 

enzyme present in the tissue. In addition, the observed 

change in pH optimum of the mastocytoma enzyme at different 

substrate concentrations will be discussed with reference 

to similar finding previously reported by Hakanson for 

fetal rat histidine decarboxylase (10). 
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Materialp 

14 
Radioactive chemicals: DL-hlstidine-l-C •2HC1 was 

obtained from Merck, Sharp and Dohme of Canada, Ltd.; 

DL-3,4-dlhydroxyphenylalanine-l-C1^ was purchased from 

the New England Nuclear Corp., Boston; DL-5-hydroxy- 

tryptophan-l-C^ was supplied by the ChemTrac Corp., 

Cambridge. 

DL-histidine*HC1.1^0, DL*-3»4~dihydroxyphenylalanine, 

DL-5-hydroxytryptophan*H20 and pyridoxal-5-phosphate were 

obtained from California Foundation for Biochemical Research. 
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Methods 

Preparation of Enzymes 

Mastocytoma,, All procedures Involving enzymes were 

carried out at 0 to 3°C. A water extract of the trans¬ 

plantable mouse mastocytoma of Furth, et al. (4) was used 

as the starting material. It was lyophlllzed, powdered 

and stored at ~70°C. This powder was suspended in 40 

volumes of water, stirred for three hours to redissolve 

most of it, and then centrifuged at 35,000 x g for 30 

minutes. To the supernatant solution 0.05 N HC1 was added 

slowly (>1 hour) to bring the pH to 4.7 and precipitate 

the bulk of the proteins. The solution was stirred an 

additional one hour and then centrifuged. The supernatant 

fluid was discarded and the precipitate was homogenized 

with sufficient Teorell-Stenhagen universal buffer^ 

(diluted 1:1 with water), pH 7, to regain the original 

volume. The pH pf the resulting solution-suspension was 

6.2, so a small amount of 0.05 N NaOH was added slowly to 

bring the pH to 6.8 and allow the precipitate to completely 

redissolve. To this solution 0.05 N HC1 was again added 

slowly to bring the pH to 5.3. The precipitate which 

formed was removed by centrifugation and discarded, and the 

1. Teorell-Stenhagen universal buffer (60) contains 
0.0100 M phosphate, 0.0114 M borate and 0.0067 M citrate. 
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pH of the supernatant solution was lowered further to 

pH 4.8. The precipitate which formed was recovered by 

centrifugation, dissolved in Teorell-Stenhagen buffer 

(diluted 1:1 with water) and the solution was adjusted 

to pH 6.8 with 0.05 N NaOH. This solution, which con¬ 

tained the protein fraction which precipitated between 

pH 5.3 and 4.8, constituted the semipurifled histidine 

decarboxylase used In further studies. It represented a 

3 to 4 fold purification of histidine decarboxylase and 

contained 21$ of the initial enzyme activity. The activity 

of this preparation was stable for several weeks when 

frozen. 

Rat Fetus. Histidine decarboxylase from fetal rats 

was purified by selective heat denaturation and ammonium 

sulfate fractionation according to Hakanson (10). However, 

the protein fraction which precipitated between 25-40$ 

saturation was used as the final preparation and was not 

fractionated further. It is referred to as purified fetal 

histidine decarboxylase in this paper. 

Assay of Enzyme Activity 

Histidine decarboxylase. The enzyme preparation, 

pyrldoxal phosphate and Teorell-Stenhagen buffer, pH 6.8, 

were mixed together, Incubated at 37° for 20 minutes to 

allow interaction between apo- and coenzyme, and cooled 
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again to 0°. Substrate was then added and the pH care¬ 

fully adjusted to 6.8 with a small amount of 0.05 N HC1 or 

NaOH. Three 0.5 ml aliquots of this mixture were then 

taken and incubated in rubber-stoppered 5-ml Erlenmeyer 

flasks for 30 minutes at 37° in a shaking incubator. Unless 

otherwise stated, each aliquot contained 0.1 ml of the 

enzyme preparation, 2.0 x 10”3 m pyrldoxal phosphate, 

1.0 x KT3 M DL-histldine-l-Cl2f (100,000 count s/minute), 

and enough buffer to bring the volume to 0.5 ml. When 

incubations were carried out at other than pH 6.8, Teorell- 

Stenhagen buffer was used at a pH which required as little 

final adjustment as possible after addition of the substrate. 

Following incubation the samples were cooled to 0° and made 

alkaline by the injection of 0.1 ml of 0.1 N NaOH through 

14 
the rubber stopper. This prevented loss of C 02 when the 

stoppers were removed. Ampoules containing 2.0 ml of 

phenylethylamlne-POPOP-PPO solution were attached as 

described by Aures and Clark (l). The subsequent absorption 

14 
and liquid scintillation counting of C 02 was performed 

as described by these authors. Blanks were identical except 

that enzyme was either omitted or denatured by boiling for 

ten minutes. 

DOPA decarboxylase. An attempt was made to measure 

DOPA decarboxylase activity in an Identical manner to that 

used for histidine decarboxylase, using DL-DOPA-1-C1^ as 
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substrate. However, It was found that under these con- 

14 
dltions a non-enzymatic breakdown of the C -labeled 

substrate occurred, often yielding very high and un- 

reproduclble blank values. This non-enzymatic breakdown 

was accelerated in an oxygen atmosphere, depressed slightly 

by incubation in a nitrogen atmosphere, and unaffected by 

the addition of EDTA (10~^ M) or serum protein (2 mg/ml). 

The addition, however, of certain fetal rat tissue extracts, 

glutathione (10"^ M) or ascorbic acid (10”^ M) completely 

suppressed the non-enzymatic breakdown. To show that the 

blank was due to the decomposition of DOPA-l-C1^ and not 

of a radioactive contaminant, the radiopurity of the com¬ 

pound was confirmed by paper chromatography. DOPA was 

eluted from the paper and shown to undergo the same non- 

enzymatic decomposition as the unchromatographed compound. 

Because of these findings the DOPA decarboxylase assays 

were performed with the addition of glutathione to the 

incubation mixture. Unless otherwise stated,,each incubate 

contained 0.1 ml of the enzyme preparation, 2.0 x 10 ^ M 

pyrldoxal phosphate, 4.4 x 10 M DL-D0PA-1-Clif (40,000 

counts/mlnute), 1 x lO-^ m glutathione and enough Toorell- 

Stenhagen buffer to bring the volume to 0.5 ml. The pH 

was adjusted to 6.8 following addition of the substrate and 

Incubation time was 10 minutes at 37° • A 20 minute 

incubation before the addition of substrate and all other 
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aspects of the assay were identical with the histidine 

decarboxylase assay. Figure 1 illustrates that the addition 

of 10-3 ^ glutathione did not significantly affect the DOPA 

decarboxylase activity of mastocytoma extract, Indicating 

that this inhibitor of the non-enzymatic decomposition of 

DOPA had no effect on the enzymatic decarboxylation of the 

compound. 

5-HTP decarboxylase. This assay was identical to the 

histidine decarboxylase assay except that Incubations were 

done at pH 8.0 with a substrate concentration of 4.4 x 10"^ M 

DL-5-HTP-l-C1^ (110,000 counts/minute). 

Protein 

Protein concentration was determined by the method of 

Lowry, et al. (30). 
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Figure 1. Lack of effect of Glutathione 
on the DOPA decarboxylase activity of Mastocytoma extract 

O-O Glutathione, 10~^ M 

O—O No Glutathione 





Results 

Mastocytoma 

Table 2 shows the activity of mastocytoma extract and 

of the semipurified enzyme preparation with different 

substrates. While purification Increased the specific 

activity of histidine decarboxylase 3.5 fold, the DOPA 

decarboxylase and 5-HTP decarboxylase activities decreased 

markedly. This suggests that (l) the histidine decarboxylase 

is a different enzyme from DOPA and 5-HTP decarboxylase, 

(ii) a single enzyme responsible for decarboxylation of all 

three amino acids had undergone alteration, or (lii) the 

fractionation procedure had removed or altered some other 

substance(s) present in the original tissue extract that 

variously affected the three decarboxylase activities of 

a single enzyme. That the first possibility is probably 

correct is supported by the findings demonstrated in 

Figure 2. This shows that when carboxyl-labeled histidine 

and carboxyl-labeled DOPA were incubated together with 

crude mastocytoma extract, the amount of 0*^02 formed was 

far greater than when either substrate was present alone and 

approached the sum of the amounts of 0^^02 formed when each 

substrate was present alone. This finding is characteristic 

of two independent sites of decarboxylation rather than of a 

single site where competition of the two substrates would 
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Table 2. Changes In absolute and relative decarboxylase 
activities of Mastocytoma extract after purification 

Substrate - ny<Moles OO2/3O min./mg protein - 
Crude extract - Semipurlfied 

Purification 
factor 

Histidine 9.6 34 3.5 

DOPA 23.71 4,21 0.18 

5-HTP 5.82 0.22 0.04 

1. Extrapolated from values obtained at 10 min. incubation. 
2. Data obtained from another enzyme preparation in which 

the histidine decarboxylase purification factor was 2.3. 

Table 3. Lack of Inhibition 
of Mastocytoma Histidine decarboxylase by DOPA 

Molar cone. Per cent Activity 
DL-DOPA Crude extract Semipurlfied 

None 100 100 

1 x 10"5 

-4 
96 98 

1 x 10 103 100 

1 x 10-3 98 96 

1 x 10~2 89 85 

DL-Histidine, 1 x 10"3 M, was used as substrate. 
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Figure 2. Histidine decarboxylase and DOPA 

decarboxylase activities of mastocytoma extract 

Molar cone. DL-Histidine 

Incubation time was 30 minutes. No glutathione was added. 

o- —o Curve 1. DOPA alone. 

0- ' 0 Curve 2. Histidine alone. 

0- —0 Curve 3. DOPA plus Histidine. 
— — Curve 4. Sum of Curves 1 and 2. 
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Figure 3. Change in pH optimum 
with different substrate concentrations 

O-G 1.0 x 10“2 M DL-Histidine 

0-0 1.0 x 10"3 M 

O--€) 1.0 x 10"4 M 

Q-W 1.0 x 10“5 M 
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take place. Additional evidence is provided in Table 3 

which shows that the histidine decarboxylase activity of 

both the mastocytoma extract and semipurified preparation 

was not inhibited to a significant degree by the addition 

of unlabeled DOPA. 

With the semipurified preparation, the pH at which the 

histidine decarboxylase exhibited maximal activity was found 

to vary with substrate concentration (Figure 3). This is 

in agreement with Hakanson’s findings with the fetal rat (10) 

and rat bone marrow (11) enzymes. 

Fetal rat 

The purified enzyme preparation had a histidine decar¬ 

boxylase activity of 11 m^Moles C02/mg proteln/30 min. This 

compares with an activity of 22 nvqMoles C02/mg protein/30 min. 

reported by Hakanson (calculated from figures in his text) 

with a more purified preparation. 

No DOPA decarboxylase activity could be demonstrated in the 

purified preparation. There was abundant DOPA decarboxylase 

activity in the tissue homogenate, but this was totally lost 

during the heat denaturation step of the purification procedure. 

Comparison of histidine decarboxylase activities of 

homogenates of fetal liver and the remaining fetal carcass 

showed the liver to have 20 times the activity of the remaining 

tissue. This is in agreement with the findings of Burkhalter (3). 
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Dlscusslon 

The semipurlfied mastocytoma histidine decarboxylase 

preparation investigated in this paper was not specific 

for histidine as it still contained some DOPA decarboxylase 

and 5-HTP decarboxylase activity. The evidence presented 

suggests strongly that this was due to contamination of a 

specific histidine decarboxylase by small amounts of another 

enzyme, possibly aromatic L-amino acid decarboxylase, rather 

than a property of the histidine decarboxylase itself. The 

report by Aures and Clark (l) that histidine decarboxylase 

prepared from this same tissue was inhibited 50^ by 

4.0 x 10“3 m l-DOPA and by 1,0 x 10“^ m D-DOPA is not con¬ 

firmed by the data presented here. It is well known that 

DOPA and pyridoxal-5-phosphate react rapidly to form a 

cyclic compound (35, 55). Furthermore, it has been shown 

that high concentrations of DOPA will inhibit DOPA decar¬ 

boxylase and that the Inhibition can be reversed by the 

addition of more pyrldoxal phosphate (55). It is highly 

likely, therefore, that the Inhibition observed by these 

authors was due to sequestration of the coenzyme away from 

the apoenzyme by the added DOPA. In the studies reported 

here the apo- and coenzyme were allowed to react together 

for 20 minutes before substrate or Inhibitor was added, 

thereby minimizing the possibility of coenzyme deficiency 
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due to Interaction with the inhibitor. The otherwise 

curious result of these authors that D-DOPA should be as 

good an inhibitor as L-DOPA is explained if the inhibition 

is considered as due to interaction with the coenzyme, since 

both isomers react equally well with pyridoxal phosphate. 

Unfortunately it was not possible to separate the 

histidine decarboxylase and DOPA decarboxylase activities 

by the simple fractionation procedures employed. All 

fractions were tested for both enzyme activities and none 

convincingly showed an increase of DOPA decarboxylase activity 

relative to the histidine decarboxylase present. It is 

possible that all the fractionation served to do was to 

progressively denature the aromatic L-amlno acid decar¬ 

boxylase present in the initial extract. 

The pH optimum of the mastocytoma histidine decar¬ 

boxylase varied with the substrate concentration (Figure 3). 

Hakanson has reported similar results with purified 

histidine decarboxylase from rat fetus (10) and rat bone 

marrow (ll). He has also shown that the K of fetal rat m 

histidine - decarboxylase decreases as the pH increases. He 

analyzed this phenomenon by considering which ionic species 

of histidine is the actual substrate of the enzyme. Thus, 

when the Km values were recalculated using the concentration 

of the anionic form of histidine (see Table 4 for further 

explanation) as the substrate concentration, the values 
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were almost the same at all hydrogen Ion concentrations, 

~7 -7 
averaging 6 x 10 M (range 4.3-6.9 x 10" M). When the 

other ionic forms of histidine were considered as the 

substrate, the values at different hydrogen ion concen¬ 

trations did not agree nearly so well. He concluded that 

the anionic form of histidine was the actual substrate of 

the enzyme. When this analysis is applied to the findings 

reported in this paper for mastocytoma histidine decarboxyl¬ 

ase, the result is as shown in Table 4. It can be seen that 

whereas the Km values calculated to total histidine con¬ 

centration vary by a factor of 37, those obtained by 

considering the anionic form of histidine as the substrate 

vary only by a factor of 2. Mackay, Riley and Shepherd (33), 

working with the specific histidine decarboxylase of the 

transplantable rat hepatoma have also reported a wide range 

in the Km at different pH values (1.4 x 10“^ M at pH 7.8; 

6.8 x 10"5 ^ pH 5.8), suggesting that this may be a 

general property of the specific histidine decarboxylase of 

many tissues and that the anionic form of histidine Is the 

true substrate of these enzymes. This would be an Important 

consideration In the search for a specific inhibitor of 

histidine decarboxylase. 

» 
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Table 4. The Influence of pH on Kffi 

pH Km(total Hd)1 Per cent of K_(anlonlc form)^ 
Histidine in2 
anionic fornr 

6.0 7.1 X 10~4 0.035 2.5 X O
 1 —
J 

6.4 2.7 X 10~4 0.13 3.5 X 10”7 

6.8 1.2 X 

1 0
 

1—
1 0.37 4.4 X 10"7 

7.2 0.44 X 10”4 1,1 4.8 X 

Cs-
 

1 0
 

1—1 

7.6 0.19 X 10"4 2.8 V
Jl

 
• ro

 

X 10-7 

1. K^(total Hd) was estimated from the data presented in 
Figure 3 by use of Llneweaver-Burk plots (27) and was 
calculated using total L-Hi3tldine concentration. 

2. Per cent of Histidine in anionic form represents that 
fraction of L-Histldine present in the following form: 

This fraction was calculated using published (26) 
dissociation constants of histidine. 

3. Km(anionic Hd) is obtained when K is calculated 
using the anionic form of histidine as substrate. 
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Summary 

Mouse mastocytoma histidine decarboxylase was 

partially purified by fractional precipitation of protein 

with increasing hydrogen ion concentration. Studies 

suggested that the semlpurified preparation contained a 

specific histidine decarboxylase; the small amount of 

DOPA and 5-HTP decarboxylase activity which remained was 

probably due to another enzyme(s). The pH optimum of the 

mastocytoma histidine decarboxylase was found to vary 

inversely with the substrate concentration. The possible 

significance of this observation is discussed with 

reference to the nature of the ionic species of histidine 

utilized as substrate by the enzyme. 

In addition, it was confirmed that fetal rat histidine 

decarboxylase had no DOPA decarboxylase activity. 
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