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Abstract 

DIFFERENTIAL HORMONAL REGULATION OF ACIDIC EPIDIDYMAL 

GLYCOPROTEIN IN THE EPIDIDYMIS AND PAROTID GLAND OF THE 

RAT. Beverly E. Naiman and Nancy J. Charest. Section of Endocrinology, 

Department of Pediatrics, Yale University, School of Medicine, New Haven, 

CT. 

Acidic Epididymal Glycoprotein (AEG) is a 31,000 molecular weight, well 

characterized major secretory protein of the rat epididymis whose gene 

expression is regulated by androgens. Our laboratory has recently discovered 

that AEG is a major secretory product of the parotid gland as well. The 

purpose of this study was to investigate the hormonal regulation of gene 

expression of AEG in the parotid gland and compare it to the regulation of 

AEG in the epididymis. This was accomplished by various manipulations of 

hormonal status of rats, and removing the parotid gland and epididymis after 

treatment. Total RNA was isolated from each tissue and specific levels of 

AEG mRNA were followed by Northern blot analysis with a radiolabeled 

AEG cDNA probe. 

A developmental profile of AEG mRNA expression in the parotid gland 

was constructed and compared to that of the epididymis. Significant amounts 

of AEG mRNA were detectable by 20 days of age, with the most rapid increase 

occurring between day 25 and 30. Adult levels were reached by day 45 and 

remained constant through day 90. A very similar developmental pattern 

was seen in the epididymis. Adult female rats treated with daily injections of 

testosterone for 24 or 48 hrs had unchanged parotid AEG mRNA levels 

compared with untreated controls. Androgen resistant males had similar 
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parotid AEG mRNA levels in the parotid gland compared to their normal 

male siblings. Castration of adult male rats reduced epididymal AEG mRNA 

levels but revealed no change in parotid AEG mRNA taken from those same 

animals. Administration of testosterone two weeks post castration restored 

epididymal AEG mRNA but had no effect on parotid levels. The effects of the 

fi-adrenergic agonist isoproterenol (IPR), an agent known to regulate the 

expression of many parotid proteins, on parotid and epididymal AEG mRNA 

levels were examined. Parotid AEG mRNA levels were reduced to 12% of 

controls but epididymal levels were unchanged. 

These results indicate that androgens are necessary for epididymal 

expression of AEG mRNA but not for parotid gland expression. IPR decreases 

parotid AEG mRNA levels but has no effect on epididymal levels. There is a 

tissue-specific nature to AEG regulation. 
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1.0 Introduction 

While almost all cells contain the full complement of genomic DNA, 

individual tissues express only a specific subset of those genes. This selective 

control of expression is the basic mechanism by which multicellular 

organisms specialize into tissues with distinct functions. Differentiated cells 

possess a remarkable capacity for selective expression of different genes. 

Control of the expression of those genes is mediated by a wide range of 

compounds and varies from cell to cell interaction, local chemical factors, to 

hormonal control. When a single gene is expressed by a limited number of 

tissues, exploring the regulation of the gene in each tissue provides some 

insights into tissue-specific hormonal regulation of gene expression. This 

introduction provides a contextual backdrop for understanding the 

differential hormonal regulation of the gene for acidic epididymal 

glycoprotein (AEG), a 31,000 molecular weight protein synthesized by both the 

rat epididymis and the parotid gland. It discusses the mechanisms of 

hormonal regulation at the cellular and molecular level, provides general 

background information on both tissues in which the AEG gene is expressed 

and reviews previous studies of AEG from the literature. 

1.1 Hormonal Regulation of Gene Expression 

1.1.1 Hormonal Regulation 

The ability to respond to extracellular signals is essential for the 

development and survival of all living organisms. Multicellular organisms 

have developed the capacity to generate many different internal signals, in 

the form of hormones and other compounds, and use them for the control 

and regulation of individual cells. The cellular actions of hormones are 

coupled to the subcellular functions of the cell. While hormones may exert 
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The Molecular Mechanism of Steroid Hormone Activation 

Figure 1: The proposed steps which a steroid hormone ligand takes 
that lead to activation of gene transcription. (S) steroid hormone 
ligand, (R) steroid hormone receptor See text for details. [Figure 
derived from (Clark, 1992)] 
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referred to as the TATA box, which is required for accurate initiation of 

transcription at the first nucleotide of the first exon of the structural gene. 

This binding leads to the production of pre RNA, processing to mRNA, and 

eventual translation to protein. Other SREs can serve as inhibitors to 

transcription by several mechanisms, such as when dimer binding physically 

blocks the promoter site and prevents RNA polymerase from binding (Clark, 

1992). 

This superfamily of hormone receptors can be divided into two groups: one 

which includes the glucocorticoid, progesterone, androgen, and 

mineralocorticoid receptors, and the other which includes the estrogen, 

thyroid hormone, retinoic acid and vitamin D3 receptors. The primary 

amino acid sequence of the DNA binding domain displays stricter 

conservation within these two subgroups; in particular, the amino acids 

between the two cysteines closest to the C-terminus side on the first "zinc 

finger" are always Gly-Ser in the first subgroup and always Glu-Gly in the 

second (Beato, 1989). A better understanding of steroid hormone action can 

be obtained by examining the steroid effects of androgen on target cells. 

1.1.3 Androgen as a model of steroid hormone regulation 

Like other steroid hormones, the molecular basis of androgen action 

appears to be transcriptional regulation (Rundlett, 1990). The androgen 

testosterone is largely bound to albumin and to steroid-binding globulins in 

serum. Only the free fraction of testosterone is able to diffuse across the 

membrane. In tissues which express 5cx-reductase, a membrane-bound 

enzyme associated with both nuclear and microsomal fractions, testosterone 

may be irreversibly converted to its more active metabolite. 
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dihydroxytestosterone (DHT) (Robaire, 1988). Androgen receptors have been 

localized to the cytoplasm in a perinuclear distribution in the absence of 

hormone ligand, (Simental, 1991) or in the presence of antiandrogens 

(Kemppainen, 1992). However, other studies have found that even in the 

absence of steroids there is still a significant nuclear fraction of AR (Jenster, 

1991). Testosterone or DHT now binds to the steroid-binding domain 

encoded by approximately 250 amino acid residues in C-terminus of the 

androgen receptor (Jenster, 1991) and forms an activated hormone-receptor 

complex. The receptor contains the amino acid sequence Arg-Lys-Leu-Lys- 

Lys-Leu-Gly-Asn , starting with amino acid number 628, allowing 

localization of the AR-DHT complex to the nucleus (Lanford, 1986). In the 

nucleus, this complex forms a dimer, which is dependent on both the 

presence of the DHT and an intact NH2-terminal domain (Wong, 1993). This 

dimer binds to the androgen responsive element (ARE) sequence of 

androgen-regulated genes. Unlike some other SREs, such as for 

glucocorticoid and estrogen, a consensus sequence has not yet been defined. 

Putative AREs such as AGAACAnnnAGTGCT ("n" represents nucleotide 

spacing between palindromic sequences) of the prostatic specific antigen, 

(Riegman, 1991) or GGAACAnnnAGTGCT of human kallikrein (Murtha, 

1993) have been described. Once bound to the ARE , the NH2-terminal of the 

AR is essential to stimulate the transcription of the gene; deletion of the first 

338 amino acids terminates this activity (Simental, 1991). 

1.1.4 Surface hormone-receptor regulation 

In contrast to steroid hormones, peptide hormone receptors, as well as 

catecholamine receptors are located on the plasma membrane. The first 

evidence for this came from the fact that, unlike steroid hormones, antibodies 
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to peptide hormones can reverse hormone action after it has already begun 

(Kahn, 1993). Also unlike steroid hormones, the interaction between the 

hormone and receptor is rapid and reversible; hormone binding to the 

receptor triggers aggregation and internalization into the cell to allow for 

rapid turnover and recycling of receptor. Surface receptors ultimately exert 

their effect through a variety of common pathways to effect cellular transport, 

membrane channels, enzymatic activation, protein phosphorylation, or gene 

expression. A general model for peptide hormone or catecholamine 

regulation involves the interaction of a hormone, a receptor, and an effector 

which transduces the hormone's signal at the cell surface into a second 

intracellular message which mediates the hormone's effect inside the cell. 

There are three general classes of membrane receptors. The first are self- 

contained systems where ligand-binding directly influences ion channel 

gating. This receptor type is seen in the nicotinic cholinergic receptor, which 

operates as a sodium/potassium channel (Changeux, 1989). Another class of 

membrane bound receptors activates phosphorylation of proteins via 

tyrosine kinase in response to ligand binding. The best characterized 

tyrosine-kinase receptor is the insulin receptor (Kasuga, 1982). Finally, ligand 

binding to surface receptors may be coupled to a G-protein. Second 

messengers for G-proteins include a wide range of compounds, such as cyclic 

AMP (cAMP), Ca+2, inositol 1,4,5-trisphosphate (IP3), etc. These molecules 

may activate cytoplasmic kinases, which in turn can phosphorylate 

transcription factors. These modified TFs (P04-TFs) form dimers and bind to 

hormone response elements (HRE), which serve as enhancers. These bind to 

nuclear transcription factors and alter the rates of gene transcription, which, 

like steroid hormones, may either be in a positive or negative direction 
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(Kahn, 1992). Describing in detail a single hormone-receptor interaction 

serves to illustrate these principals. 

1.1.5 fi-adrenergic System as a Model of Surface-Receptor Hormone Regulation 

The S-adrenergic catecholamines act as both a hormone and a 

neurotransmitter to cells. The catecholamine ligand interacts with the fi- 

adrenergic receptor to produce its second message. See figure 2. The signal 

transduction pathway associated with fi-adrenergic receptor activation is 

linked to a G protein, which is a heterotrimer of three subunits, a, 6, y. In the 

absence of ligand, the a subunit is bound to GDP. The binding of the ligand 

promotes the GTPase activity of the G protein; GTP replaces the GDP on the a 

subunit. The now activated a subunit dissociates from the By subunits and 

stimulates the activity of adenylate cyclase, a membrane bound glycoprotein 

which now converts ATP to cAMP (Casey, 1988). Each new molecule of cAMP 

can bind to the regulatory subunit of protein kinase A (PKA) and cause the 

dissociation of the tetrameric kinase into its four catalytic and regulatory 

subunits. The catalytic (C) subunit then translocates into the nucleus where it 

is believed to phosphorylate a cAMP response element-binding protein 

(CREB). Direct evidence that the C subunit of PKA regulates gene 

transcription comes from experiments showing that in vitro , this purified 

subunit can stimulate transcription of the gene for urokinase-type 

plasminogen activator (Roesler, 1988). CREB is a 43 kilodalton (kd) 

transcription factor protein which is a member of a larger superfamily of 

DNA-binding proteins known as bZIP proteins because they all contain a 

leucine "zipper", a coiled structure responsible for dimerization (Meyer, 1993). 

The PKA phosphorylation site resides within the CREB activation domain. 

Phosphorylation may induce a conformational change resulting in a 
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A Model for S-Adrenergic Hormone Regulation of Gene 
Transcription 

CD 

Figure 2: The steps required for a adrenergic peptide hormone to regulate 
gene transcription. (A) adrenergic hormone ligand, (P04-CREB) 
phosphorylated CREB, (CRE) c AMP response element, (R) ribosome See text 
for other abbreviations and details. [Figure derived from (Kahn, 1992)] 





modification of CREB at the site of the transcriptional activation domain. 

CREB forms a dimer and binds to the cAMP response element (CRE) (Karin, 

1991). The CRE is an 8 base palindromic sequence T(G/T)ACGTCA, a highly 

conserved sequence associated with known CRE-regulated genes, and serves as 

an enhancer sequence to modulate transcription in a similar manner to the 

SREs (Roesler, 1988). 

1.2 Epididymis 

This is one of the tissues which expresses AEG. 

1.2.1 Anatomy-Histology 

The epididymis consists of a continuous convoluted duct which extends 

from the upper pole of the testis and ductuli efferentes, to its lower end where 

it becomes the ductus (vas) deferens. It is encased in the epididymal fat pad. 

The epididymis is divided into many different segments by connective tissue 

septa. On a gross anatomical level, three major parts of the epididymis can be 

defined: the caput (head), corpus (body), and cauda (tail), which are composed 

of these segments. The segment into which the ductuli efferetes empties is 

the initial segment, part of the caput, but often considered separately. (See 

Figure 3) 

Histologically, the epididymis is a tube of smooth muscle which ranges 

from only two or three layers thick in the initial segment to numerous layers 

more distally, lined by a pseudostratified epithelium. The epithelial cells 

lining the rat epididymis comprise several types: principal, narrow, clear, and 

basal cells , which vary in their segment to segment distribution. Narrow 

cells are found only in the initial segment. Principal cells, the predominant 

cell type throughout the epididymis, range from a high of 80% of epithelial 





Anatomy of the Rat Epididymis 

epididymis 

TESTIS 

j if Vas 
1 n"deferens 
I i\ 

Distal 

Figure 3: Diagramatic representation of the testes showing a 
seminiferous tubule and the rete testis, the ductuli efferentes, the 
epididymis, and vas deferens. The shaded regions indicate areas of 
the different segments of the epididymis, i.e., the initial segment, 
caput, corpus, and proximal and distal cauda. (From Robaire, 1988) 





cells in the initial segment to 69% in the cauda. The principal cells have tufts 

of long microvilli, which are thought to be involved in the absorption of the 

fluid accompanying the sperm. The most striking features of principal cells 

are large Golgi apparatus and significant amounts of rough and smooth 

endoplasmic reticulum, which suggests they may also have a significant 

secretory function. Basal cells are flat cells which lie in contact with the 

basement membrane, and increase from 12% in the initial segment to 21% in 

the cauda. Both principal cells and basal cells differentiate from the same 

precursor, the columnar cell, at around day 28. Clear cells , found mostly in 

the cauda, are identified by their highly vacuoled apical region and numerous 

dense granules and are thought to be endocytic (Robaire, 1988). 

1.2.2 Innervation 

The epididymis is supplied by the middle spermatic and inferior 

spermatic nerves. These contain both sympathetic and parasympathetic 

fibers so that throughout the human epididymis there are rich adrenergic and 

cholinergic plexuses. In the rat, however, there is a only a sparse distribution 

of nerves in the caput and corpus, but the cauda is well innervated. The 

fibers of the nerve plexus in the cauda are associated not only with the 

smooth muscle cells but also appear to approach the basement membrane of 

the epithelial cells (El-Badawi, 1967). 

1.2.3 Embryology and Development 

The epididymis is derived from the upper segment of the mesonephric 

(Wolffian) duct, which is of mesodermal origin. After birth, in the rat, the 

epididymis goes through a phase of slow growth (weight gain), followed by a 

rapid growth phase associated with the appearance of sperm in the lumen of 
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the epididymis (Robaire, 1988). The development of the blood-testis barrier 

and the seminiferous cord lumen which allows direct passage of sperm and 

testicular fluid and androgens to the epididymis occurs around 18 days of life 

in the rat (Setchell, 1988). However, androgens are detectable at significant 

levels well before this time, suggesting that the bloodstream may be an 

important prepubertal source (Charest, 1989). 

The development of the epididymis requires androgens. One line of 

evidence for this control comes from investigations using androgen resistant 

animals, called the testicular feminized or Tfm, originally described in 1970 

(Lyon, 1970). In the rat, a single base substitution which changes an arginine to 

glutamine in the androgen receptor gene results in the expression of an 

androgen receptor which is unable to bind androgens and has greatly reduced 

transcriptional activation (Yarbrough, 1990). In the Tfm mouse, androgen 

receptors are not present. This mutation has been linked to a single base 

deletion in the N-terminal domain of the androgen receptor (AR) genomic 

DNA, and is thought to result in the expression of an unstable AR mRNA 

(Charest, 1991). Genetic males which possess the Tfm mutation are resistant to 

pharmacological doses of testosterone and lack all Wolffian duct structures, 

including the epididymis (Orgebin-Crist, 1975). Castration of male fetuses 

preclude the development of the epididymis, but castrated fetuses treated with 

crystalized testosterone before sexual differentiation occurs permitts normal 

epididymal development (Dauzier, 1956). Androgen dependency of the 

epididymis continues throughout development, as changes in epithelial 

height, tubular diameter, and staining characteristics occur after castration, and 

may be restored by administration of exogenous testosterone (Orgebin-Crist, 

1975). 





1.2.4 Function 

A number of different functions have been ascribed to the epididymis. The 

first is its ability to absorb a large amount of fluid which enters from the testis, 

resulting in a multifold concentration of spermatozoa, or an increase in the 

spermatocrit. Another is the storage of sperm, which occurs in the tail of 

the epididymis in both rats and humans. But perhaps the most important is 

the secretion of proteins, glycoproteins, and other substances in to the lumen 

of the epididymis, thought to be involved in sperm maturation (Orgebin- 

Crist, 1975). 

Spermatozoa undergo a series of changes during their transit through the 

epididymis. This functional maturation results in progressive improvements 

in their ability to swim, bind to the zona pellucida of the oocyte, and effect 

fertilization. This functional maturation is not an intrinsic property of the 

sperm but is androgen dependent and brought about by interaction with 

epididymal proteins secreted from the epithelium which become associated 

with the sperm surface (Orgebin-Crist, 1975). On release from testicular 

Sertoli cells, sperm are not mobile but acquire this capability during transit 

through the epididymis. Rat spermatozoa from the caput swim in a circular 

fashion, while those form the cauda will swim in a persistent direction 

(Bedford, 1975). 

There is evidence that changes in sperm membrane proteins play an 

important role in the acquisition of motility. One characteristic change is the 

increase in negative charge on the acrosomal membrane which is felt to 

result from accumulating negatively charged proteins (Orgebin-Crist, 1975). 

Numerous studies have demonstrated that the mammalian sperm surface 

undergoes extensive alteration during maturation due to the addition of 

components secreted by the epididymal epithelium. Sperm recovered from 





the corpus of the epididymis have a low fertilizing capacity, but when 

incubated with epithelium from the cauda, show a significant increase in 

their ability to bind to the zona pellucida of oocytes (Moore, 1987). 

1.2.5 Androgen Regulation 

Androgens are known to be the important regulators of epididymal 

function. Control of the biosynthetic activity of the epididymis is dependent 

on gonadal androgens. Castration causes a decline in protein synthesis in the 

epididymis which can be almost completely restored by the administration of 

testosterone. Total tissue weight declines after castration to 25% of 

precastration levels in a week, while administration of testosterone promotes 

an increase in tissue weight. Similar findings have been reported with total 

mRNA levels (Brooks, 1987). 

The regulation of gene expression of many different epididymal proteins by 

androgens have been well characterized. Several studies have demonstrated 

that epididymal proteins, such as GP-83 and GP-49, (Liu, 1992) and protein B/C 

(Brooks, 1987) are regulated by testosterone through castration/replacement 

experiments. Androgen-regulated synthesis of other epididymal 

glycoproteins and activation of enzymatic activity have been well described 

and characterized in the literature (Robaire, 1988). 

1.2.6 Androgen Receptors 

The androgen receptor has been isolated from cDNA clones isolated from 

a rat epididymal library and sequenced (Tan, 1988). This sequencing has 

allowed the development of polyclonal antibodies from synthetic peptides. 

Immunostaining for androgen receptors in the epididymis localizes to 

principal epithelial cells as well as to stromal cells. The highest levels of AR 
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was in the caput epithelial cells, with lower levels towards the corpus and 

cauda (Sar, 1990). Previous studies have demonstrated a similar receptor 

distribution pattern using autoradiography following treatment with tritiated 

DHT (Stumpf, 1976). 

1.3 Parotid Gland 

This tissue also expresses AEG. 

1.3.1 Anatomy-Histology 

The major salivary glands consist of three pairs of glands: the parotid, 

submandibular and sublingual glands. The location of the parotid gland in the rat 

differs from that of the human. See Figure 4 for details (Hebei, 1986). The salivary 

glands are classified as compound exocrine tubular-acinar glands characterized by 

the bunching of numerous secretory units. With the exception of a few mucin 

producing units, the parotid gland is a serous salivary gland. Each unit consists of 

an acini which produces secretion and a duct system which regulates the 

concentration of water and electrolytes and carries the secretion to the oral cavity . 

The acini are composed of pear-shaped groups of epithelial cells surrounded by a 

distinct basement membrane. These epithelial cells have ultrastructure consistent 

with secretory cells: large Golgi bodies, numerous zymogen granules which 

contain amylase as their primary protein. The intercalated duct is in direct contact 

with the acinus and is lined with cuboidal epithelial cells whose major secretory 

product is lysozyme (Martinez-Madrigal, 1989). 

1.3.2 Innervation 

The parotid gland is innervated by both sympathetic and parasympathetic 

postganglionic fibers. The sympathetic fibers arise from the superior cervical 





Anatomy of the Ventral Head Region of the Rat Including Parotid Gland 

Figure 4: Ventral Head Region (figure taken from Hebei, 1986) 

The parotid gland in the rat is 
attached to the base of the 
auricle laterally, and runs along 
the caudal border of the 
mandible towards the ventral 
aspect of the larynx. It extends 
caudally towards the clavicle 
and rostrally to the extraorbital 
lacrimal glands. Ventrally, it is 
covered by the submandibular 
and sublingual glands. (Hebei, 
1986) 

The parotid gland (B) is shown 
only on the left in this figure 
but it is a bilateral organ. 

A Submandibular gland 
B Parotid gland 
C Sublingual gland, major 
D Sublingual gland, minor 
E Lingual gland, serous part 
F Lingual gland, mucous part 
G Sebaceous gland in the oral 

commissure 
H Lacrimal gland, extraorbital 
a Mandibular duct 
b Sublingual duct 
c Enlarged portion of the 

mandibular duct 
d Sublingual caruncula 
e Parotid duct 
1 Mandible 
2 Lower incisors 
3 Masseter muscle 
4 Pterygoid muscle 
5 Mylohyoid muscle 
6 Intrinsic muscles of the 

tongue 
7 Lc. mandibulare 





ganglion. The parasympathetic innervation to the parotid gland in the rat is 

supplied by a branch of the auriculotemporal nerve (Schneyer, 1966). 

1.3.3 Embryology and Development 

The parotid gland derives from the ectoderm as an epithelial bud from the 

primitive oral epithelium. It is the first of the major salivary glands to 

appear, around the sixth week in human embryos (Martinez-Madrigal, 1989). 

This differs from rat embryos, where it is the last of the major salivary glands 

to appear, around day 14 in utero. Lumenization of the parotid ductal system 

is not complete until day 20 in utero., three days later than the other salivary 

glands. At birth, the terminal clusters of the parotid gland are still relatively 

undifferentiated; it is the least advanced developmentally of all the salivary 

glands (Redman, 1970). Although the rat parotid gland is deficient in acini at 

birth, acinar cells proliferate rapidly during the early post-natal period, 

reaching a peak in the parotid gland at day 16 after birth (Klein, 1982). 

Amylase, the major enzyme in the parotid gland, is detectable prenatally, and 

its activity increases 2-3 days after birth. It is believed that this represents 

neither a suckling stimulus, nor effect of innervation, but is rather due to the 

general increase in protein synthesis seen at this time (Lawson, 1970). 

1.3.4 Function and Composition of Parotid Saliva 

The primary function of the salivary glands is to produce saliva to moisten 

the mucous membranes of the upper aerodigestive tract. Saliva also helps in 

the formation and swallowing of the food bolus. In addition, the first stages 

in digestion of certain compounds, such as starch, is provided by the 

enzymatic components of saliva. 





The rat parotid gland has a high rate of protein synthesis, most of which is 

of secretory proteins. Amylase represents the principal protein in rat parotid 

saliva, accounting for almost 30% of the secretory protein and 15-20% of the 

total protein synthesized by the gland. Anionic and cationic electrophoresis 

of rat parotid saliva has revealed 21-22 distinct bands of protein, 4 of which 

are isoenzymes of amylase. The protein composition of parotid secretory 

granules is identical to that of saliva, and is believed to be secreted via 

exocytosis (Spearman, 1989). 

1.3.5 Regulation 

Protein secretion in the rat parotid gland is regulated by a variety of 

compounds, mainly neurotransmitters, including norepinephrine, 

acetycholine, substance P, and vasoactive intestinal peptide. These agonists 

primarily exert their effect through two different signalling pathways. The 

sympathetic path results in the activation of adenylate cyclase, elevating 

cAMP and stimulation of cyclic AMP-dependent protein kinase. 

Parasympathetic stimulation is coupled to the activation of phosphoinositide- 

specific phospholipase C, resulting in elevation of Ca and protein kinase C 

activity. It is generally accepted that cyclic AMP-dependent pathway 

represents the principal method for stimulating protein secretion by 

exocytosis while the other pathway is more important in controlling water 

and electrolyte secretion (Spearman, 1989). Acute stimulation of parotid 

glands with isoproterenol, a fi-adrenergic agonist, results in a rapid depletion 

of 99% of stored secretory proteins within 2 hrs followed by a more prolonged 

period of resynthesis, reaching its peak at 6 hrs post injection. While 

exocytosis has long been known to be mediated through fi-adrenergic 

receptors, it was not known if the increased rate of protein synthesis 
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involved the same pathway, since the elevation of cAMP is only transient 

(Kim, 1989). One recent study investigated the role of G-adrenergic receptors 

in regulating gene transcription in the parotid acinar cell using a wide 

combination of methods. Within 1 hour of G-adrenergic stimulation, 

tritiated uridine was incorporated into RNA, showing that induction of gene 

transcription does occur after the activation of G-adrenergic receptors in the 

parotid gland (Woon, 1993). 

1.3.6 Chronic stimulation of Parotid Gland 

The effects of chronic stimulation over a period of 7 to 10 days of parotid G- 

receptors with isoproterenol have been well documented in the rat. The 

study of parotid glands treated with isoproterenol was originally undertaken 

in the early 60's as a possible model system for studying the 

pathobiochemistry of cystic fibrosis (CF), since CF was classified earlier as a 

"generalized exocrinopathy" and often involved enlargement of the salivary 

glands (Mehanso, 1987). Repeated administration of isoproterenol to rats 

causes marked and rapid hyperplasia and hypertrophy of both the parotid and 

submandibular glands. It has also been shown to increase the rate of DNA, 

RNA, and protein synthesis. Morphological observations have also shown 

changes in the contents of acinar secretory granules, including a band of 

protein on electrophoresis not seen in untreated saliva (Robinovitch, 1977). 

This band represents a series of unusual proteins containing 25-45% proline, 

called the proline-rich proteins (PRPs) which appear to be induced in 

response to chronic isoproterenol stimulation and have been isolated from 

both human and parotid parotid glands and saliva. The changes resulting 

from chronic treatment with isoproterenol, an agonist which is non-specific 

for G-receptor subtype, have been shown to be mediated through G* receptors. 
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While a regiment of very high doses of the £>2 agonist terbutaline were able to 

produce the characteristic changes, only the use of 61 antagonist atenolol 

could prevent these changes, while the 62 antagonist butoxamine could not 

(Schneyer, 1985). 

1.4 Acidic Epididymal Glycoprotein (AEG) 

1.4.1 History and Characterization 

Acidic Epididymal Glycoprotein (AEG) is a 31,700 molecular weight 

protein that was originally purified from rats in 1978 (Lea, 1978). It is the first 

epididymal glycoprotein to be isolated and characterized. It is a major 

secretory protein of the epididymis which accounts for 2-3% of the total 

soluble protein. AEG qualifies as a glycoprotein because it binds specifically to 

Concanavalin-A, a conclusive test for carbohydrate moieties (Lea, 1978). The 

carbohydrate content of AEG is 7.5%, mainly hexoses (73%). It contains a high 

content of acidic amino acids, aspartic and glutamic acid, (27.5%), with a low 

isoelectric point, indicating that it is an acidic protein (Lea, 1981). 

AEG is also known by several other names in the literature. There is 

satisfactory evidence to indicate that these are, indeed, the same protein. A 

series of epididymal proteins B,C, D, and E, named based on their migration 

position ahead of albumin were among the earliest proteins described in the 

epididymis. D and E appear to be identical to AEG (Brooks, 1980). Other 

names for this glycoprotein which appear in the literature include 32 K 

protein (Wong, 1982), protein IV (Jones, 1980), and sialoprotein (Faye, 1980). 
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1.4.2 Epididymal Localization 

Precise localization of the protein within the epididymis has been 

determined by several different methods. In one study, the epididymis was 

divided into five segments from caput to cauda, homogenized, and 

quantified for AEG using immunoelectrophoresis (Lea, 1978). This showed 

that AEG increased in concentration from caput to cauda, the direction of 

sperm flow. Immunoperoxidase localization, performed on a single 

longitudinal section cut through the entire epididymis, allowed for more 

precise localization of AEG. Between the initial segment and the main 

portion of the caput, there is a sudden increase in the number of positive 

staining epithelial cells as well as a sudden appearance of AEG in the lumen. 

Higher magnification of the caput indicates that AEG appears in the 

supranuclear region of principal cells and is found coating the microvilli as 

well as sperm in the lumen. Nearing the end of the cauda however, the 

principal cells are free of AEG-staining except for the microvilli, while the 

clear cells are stained heavily (Lea, 1978). Using in situ hybridization of 

epididymal sections to a cRNA probe, weakly positive cells were observed in 

the proximal caput, then became strongly positive throughout the rest of the 

caput and through the cauda. Every principal cell appears to express AEG/DE 

transcript in the strongly positive regions (Douglass, 1991). Using a cDNA 

radiolabeled probe, Charest et. al. demonstrated similar levels within the 

caput, corda, and cauda epididymis by northern blot analysis (Charest, 1988). 

Recently our laboratory, in collaboration with Dr. Arthur Hand of the 

University of Connecticut, has localized AEG in the epididymis by 

electronmicroscopy. (See Figure 5.) AEG is visualized in the secretory 

vesicles of the principal cells of the epididymis, but not in the other epithelial 

cells, connective tissue cells, or smooth muscle cells. 
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An Electronmicrograph of AEG in the Epididymis 

Figure 5: Immunoglobulin-labeled gold particles demonstrate AEG 
staining in the Golgi body and secretory vessels of principal cells of 
the epithelium of the epididymis and associated with the microvilli in 
the lumen. Magnification x56,000. 
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1.4.3 Sequence and sequence homology 

Two different mRNA species of 1100 bases (b) and 1600 b were detected in 

the epididymis by northern blot hybridization. The distribution of these 

mRNA species among animals suggests that these represent two alleles for 

AEG (Charest, 1988). Two full length AEG cDNA clones have been isolated 

from a rat epididymal cDNA library , sequenced, and characterized. (See 

Appendix 1) The cDNA's correspond in size to the two RNA species seen by 

Northern blot hybridization. These clones have identical 5' untranslated and 

coding regions, but differ in their 3'-untranslated region (Charest, 1988). The 

cDNA sequence of the epididymal protein D/ E has an identical sequence to 

this smaller clone (Brooks, 1986). 

The predicted amino acid sequence of 246 amino acids matches that of the 

known AEG sequence. The first nineteen amino acids of the N-terminal 

region are hydrophobic, which suggests the presence of a signal peptide. The 

carboxyterminal region is cysteine-rich (Charest, 1988). A computer search of 

protein libraries has revealed homology of the carboxyterminal region of AEG 

with ferredoxin, a metal binding protein (Charest, 1988). Several 

investigators have noted homology between the sequence of AEG and that of 

certain proteins of known function. Using protein sequence data bases. 

Brooks observed homology between a region of AEG's amino acid 

composition and the protein carboxypeptidase Y (Brooks, 1986). AEG also 

shares sequence homology of the carboxyterminus with the metalloproteins 

rubredoxin and aspartate transcarbamoylase. It is possible that the AEG might 

function in sperm maturation by its ability to bind metal (Charest, 1988). A 

testis-specific gene, Tpx, which codes for a protein of unknown function and 

is expressed by both mice and humans, shares 64.2% nucleotide and 55.1% 

amino acid sequence homology with AEG (Kasahara, 1989). 
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1.4.4 Function 

Only a few investigations have focused on possible functions of AEG. 

Immunoperoxidase staining has shown that AEG binds to sperm in the caput 

and remains bound to sperm throughout the epididymis (Lea, 1978). 

Immunofluoresence microscopy using a double-antibody procedure was used 

to localize AEG on the sperm surface. A restricted pattern of strong 

fluoresence was seen on the post-acrosomal sperm head (Brooks, 1983). 

Another study looked at a similar mouse epididymal protein; a 29kD protein 

which has 69% homology with AEG and to which antibodies cross react with 

AEG in epididymal fluid. A technique of in vivo injection of 35S- 

methionine was used to study the interaction of epididymal secretory 

proteins with spermatozoa. The 29kD protein was found bound to the sperm 

membrane both immediately and after seven days (Vreeburg, 1991). Its 

presence attached to the sperm membrane throughout much of its transit 

through the epididymis has led several investigators to suggest that AEG may 

be involved in the maturation of spermatozoa. 

Only one study examined the possible role AEG has on fertility of sperm 

from the cauda epididymis. The presence of anti-AEG serum, but not normal 

rabbit serum, resulted in an 85% loss of the fertilizing ability of sperm by in 

vivo insemination. However, this approach could not rule out the 

possibility of steric hindrance to gamete recognition caused by the presence of 

immunoglobulins on the cell surface (Cuasnicu, 1984). 
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1.4.5 Regulation 

The role of androgens in the regulation of AEG has been examined by 

monitoring AEG levels in the epididymis of castrated rats. Several studies 

have demonstrated that AEG mRNA levels declined steadily after castration 

over one week. Testosterone replacement returns AEG mRNA levels to 

baseline with 72 hours after injection (Charest, 1988); (Brooks, 1987). 

Another study used an agent which causes transient depletion of sperm to 

test the hypothesis that spermatozoa or a sperm-associated testicular factor 

may be involved in the regulation of AEG gene expression. Busulfan is an 

alkylating agent which causes the depletion of sperm from the epididymis 

approximately 7 to 12 weeks following administration. While another 

protein in this study, proenkephalin, showed a dramatic decrease in mRNA 

levels, AEG mRNA levels were unaffected by the loss of spermatozoa 

(Douglass, 1987). 

1.4.6 Development 

The question of regulation of gene expression of AEG has also been 

approached by examining the developmental time course and comparing it to 

the presence of epididymal androgens and androgen receptors. In a study by 

Charest et al., AEG mRNA was detectable at 1 day of life, but significant 

concentrations were not seen until day 20. Concentrations increased 

steadily, with the most rapid rise from day 20 to 35; adult levels were reached 

at day 45. High levels of androgens within the epididymis were detected as 

early as day 10. Androgen receptor mRNA is present at all ages. Since AEG 

does not reach significant levels until day 20, despite the presence of 

androgens and AR before this age, androgens appears not to be sufficient to 

activate AEG transcription (Charest, 1989). This developmental pattern has 
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also been seen by other investigators working with AEG; although they were 

unable to detect mRNA's before day 20, most likely secondary to technique 

differences (Brooks, 1987); (Douglass, 1991). 

1.4.7 Tissue Distribution 

One study examined various rat tissues by Northern blot analysis with 

AEG cDNA. Liver, spleen, testis, seminal vesicle, dorsal prostate, epididymis, 

and ductus deferens were analyzed, but only the latter two were positive. 

However, the levels of AEG in the ductus deferens were one tenth the level 

in the epididymis (Charest, 1988). Another study, done by Western blot, was 

unable to detect a signal from skin, brain, liver, heart, skeletal muscle and 

testis. A cross-species study of the epididymis found smaller but cross-reactive 

proteins in mouse and guinea pig but not from rabbit or bull (Brooks, 1986). 

A year later, the same investigators used slot-blot cDNA hybridization to 

examine the above tissues plus uterus, mammary gland, and salivary gland 

in the rat. A weak hybridization signal was detected from the salivary gland 

preparation (Brooks, 1987). 

The discovery of a weak signal from mRNA from a mixed salivary gland 

preparation led to a more specific study of the individual salivary glands in 

our laboratory. Northern blot hybridization of AEG mRNA in the salivary 

glands revealed that AEG was present in the parotid but not the 

submandibular or sublingual glands (Charest, 1991). When a polyclonal 

antiserum to epididymal AEG was incubated with a Western blot of saliva 

derived from the parotid gland of rats, a major band of 31,000 Mw was 

revealed. Electron microscope immunogold labeling of the parotid gland 

with AEG antiserum demonstrated strong reactivity with acinar secretory 

granules, but no labeling of duct cells or any other cell type. (See Figure 6.) 



< 
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An Electronmicrograph of AEG in the Parotid Gland 

Figure 6: Immunogold labeling of polyclonal antibody to AEG in the 
acinar cells of the rat parotid gland showing extensive secretory 
gramule labeling. Magnification xl8,000. 



I 
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Northern blot hybridization with the epididymal AEG cDNA probe have 

revealed two parotid transcripts of 1.4 and 0.9kb, compared to epididymal 

transcripts of 1.6 and l.lkb (Charest, 1991). Sequence of the parotid AEG 

cDNA has revealed that the coding region is 100% homologous to the coding 

region of epididymal AEG cDNA. Preliminary experiments suggest that 

differences in the 5’ untranslated region accounts for the differences in 

length. (Charest, Beck, Naiman, and Hand; manuscript in preparation) In 

addition, we have shown that both male and female rats express AEG in the 

parotid gland. (See Figure 7) The findings of equivalent levels in male and 

female animals led us to speculate whether the regulation of AEG mRNA in 

each tissue is different. 

1.5 Statement of purpose 

The expression of AEG in the epididymis and the parotid gland, which 

differ in embryological origin (mesodermal vs. ectodermal) and function 

creates a unique situation in which to study tissue-specific gene expression. 

The purpose of this study is to test the hypothesis that the hormonal control 

of AEG gene expression in the epididymis differs from that in the parotid 

gland. 
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Comparison of AEG mRNA Levels in the Parotid Gland and the Epdidymis 

Parotid Gland Epididymis 
Male Female 

11— 

1.1- • • • • 

0.6- 

AEG 

A 

kb 

Actin 

Figure 7: Parotid gland AEG mRNA levels from male and female 
rats are compared to the levels in the epididymis. The rats 
shown are either heterozygous or homozygous for the smaller 
message. (A) AEG mRNA (B) Actin mRNA (shown as control for 
amount of RNA present in each lane) Note that the amount of 
RNA from the epididymis is greater than from the parotid gland, 
yet the signal is much less intense. This suggests that AEG 
mRNA is a greater portion of the total RNA pool in the parotid 
gland than in the epididymis. 
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2.0 Materials and Methods 

2.1 Tissue Isolation 

Sprague-Dawley rats (Simonsen Laboratories, Gilroy, California) were used in 

all experiments (except for studies requiring TFM rats) as they have been 

shown in previous studies to be homozygous for the smaller mRNA species 

of both the epididymis and parotid species (Charest, personal 

communication). King Holtzman TFM rats and their normal male siblings 

were kindly provided by Dr. Kathie Olsen (The National Science Foundation). 

Rats were kept under routine conditions of temperature and light with ad lib 

access to pelleted food and water. For certain experiments (detailed in 

Results, Section 3.0), rats received injections of hormones prior to collection 

of tissues. Animals were anesthetized with ether, and killed by cardiac 

puncture. The parotid gland and epididymis were dissected from 

surrounding tissue, rapidly frozen in liquid nitrogen, and stored at -70°C. All 

protocols involving animals were performed within the guidelines set by the 

Yale Animal Care and Use Committee. 

2.2 Castration 

For experiments where castration was required, animals were anesthetised 

prior to surgery by intramuscular Ketamine, injected at a dose of lml/kg body 

weight. A midline abdominal incision was made and the contents of the 

scrotal sac were elevated into the abdomen. The testicular artery was tied 

shut with a suture before removal of the testes. The epididymides were 

returned to the scrotal cavity and the abdominal incision closed with staples. 
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2.3 Isolation of Total RNA 

Frozen epididymis or parotid gland was pulverized under liquid nitrogen 

and homogenized in 4M guanidine thiocyanate using a Brinkman polytron 

probe sonicator. The homogenate was centrifuged for 20 min at 10,000 rpm. 

The supernatant was layered over a cesium chloride gradient in a Ti 50 Rotor 

in a Beckman Ultracentrifuge for 16 hrs at 35,000 rpm. The pellet was 

resuspended in H2O and Na acetate and ethanol precipitated at -20°C. 

(Chirgwin, 1979). This precipitate was redissolved in water and purity and 

concentration were measured by UV absorbance at 260A, and 280A,. 40 pg /pi 

RNA is equal to 1 unit A260. The quality of the RNA was checked for 

accuracy by loading a 2 pi aliquot onto a 1% agarose gel with ethidium 

bromide and running with 0.5 x TBE; the gel was examined under UV light 

to look for degredation. 

2.4 Use of cDNA Probes 

The 5' EcoRl fragment of the 1500 base pair cDNA for AEG, which recognizes 

both the 1100 and 1600 base mRNA species of the epididymis and the 1400 and 

900 base mRNA species of the parotid, were used for the Northern blot 

analysis (Charest, 1991). The AEG cDNA was labelled by random priming 

(Feinberg, 1983) with 32P dCTP to a specific activity of 108-109 cpm/pg. 

Incorporated 32P dCTP was separated from free by running the reaction 

mixture through a 5ml column of Sephadex beads and removing aliquots. 

The radioactivity of the aliquots was assessed in Ecoscint scintillation solution 

(National Diagnostics) in a Packard Tri-Carb 1600CA Liquid Scinitillation 

Analyzer. Chicken actin cDNA was also prepared in this same manner. 
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2.5 Northern Blot Analysis 

Northern blot was performed with modifications from Sambrook's 

Laboratory Manual (Sambrook, 1989). An aliquot of total RNA (lOpg) was 

denatured with glyoxal and dimethylsulfoxide for 1 hr at 50°C. RNA samples 

were loaded onto a 1.2% agarose gel and electrophoresed in circulating lOmM 

Na Phosphate (pH 6.8) buffer. Denatured 32P-labeled DNA markers, ())X174 

Hae III and X Hind III (New England Biolabs, Beverly, Massachussets) were 

loaded onto each gel for later estimation of RNA size. The RNA was then 

transferred overnight onto Biotrans membrane (ICN, Irvine California) and 

subsequently fixed by baking at 80°C for 1 hour and exposure to UV light. The 

membrane was prehybridized in 50% formamide, 50mM NaPo4 , pH 6.5, 

5xSSC (SSC = 0.15M NaCl, 0.015 M Na citrate), 5x Denhart's solution, 250 

pg/ml boiled sonicated salmon sperm DNA (BSSS), 0.5% sodium dodecyl 

sulfate (SDS) and 1% glycine at 42°C for 2hrs. The prehybridization solution 

was removed and the membrane was hybridized overnight in 50% 

formamide, 20mM NaPo4 , pH 6.5, 5xSSC, lx Denhart's solution, lOOpg/ml 

BSSS DNA, 0.5% SDS, and 10% dextran sulfate with the labeled AEG cDNA 

probe (1 x 105 cpm/ml hybridization fluid) at 42°C. The membrane was 

subsequently washed three times in 2xSSC , 0.1% SDS at room temperature 

and twice in .lx SSC, 0.1% SDS at 50°C and exposed to x-ray film at -70°C. 

To check for variation due to RNA loading and/or transferring differences, 

the radioactive probe was later removed from the membrane by incubating at 

65°C for 1 hr in Stripping Buffer (50% formamide, lOmM Na phosphate, pH 

6.8). The filter was then prehybridized and rehybridized as described above 

with radiolabeled actin cDNA. In some cases, band intensity on 

autoradiographs was quantified by densitometry using a LKB Ultroscan XL. 
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2.6 DNA isolation 

Frozen tissue was pulverized under liquid nitrogen and mixed with DNA 

lysis buffer (50mM Tris, lOmM EDTA, lOOmM NaCl, 0.5% SDS, lOOpg/pl 

Proteinase K) for 3 hrs at 50°C. The DNA was extracted with 

phenol/chloroform and precipitated in ETOH. The DNA strands were 

dissolved in TE (lOmM Tris, pH 8, ImM EDTA) and placed in dialysis tubing. 

They were then dialysed against TE to a 10*5 dilution. The dialysate was 

collected and the DNA concentration determined by UV spectrometry at 260A,; 

50 pg/pl DNA is equivalent to 1 A260 unit (Sambrook, 1989). 

2.7 Acknowledgement of Participation of Others 

In keeping with the new Yale University School of Medicine policy, this 

section within the method portion of this thesis briefly outlines the extent of 

my direct involvement and that of others in the procedures, methods, 

experiments, and generation of data. In close collaboration with Dr. Charest, I 

arrived at the hypothesis to be examined and the experimental protocols to be 

implemented. For the castration experiments, I closely observed Dr. Charest 

and Mr. Ralph Garcia (research assistant in the pediatric respiratory division) 

as they performed the first two surgeries and then I castrated all the 

remaining animals under Mr. Garcia's immediate supervision. Dr. Arthur 

Hand (University of Connecticut Health Center Dept, of Orthodontics and 

Pediatric Dentistry) assisted with the parotid gland dissections. He dissected 

all of parotid glands of the immature animals and during the isoproterenol 

study, and taught me the techniques so that I was able to dissect the parotid 

glands from the other adult rats. I performed all of the epididymal 

dissections. 
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I prepared all of my own reagents used in these experiments. I performed 

on my own all RNA and DNA isolations, cDNA probe labeling. Northern 

blot hybridizations, film developing, and densitometry as outlined above. 
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3.0 Results 

3.1 Developmental Profile of AEG in Parotid and Epididymis 

During the course of development, tissue-specific proteins progressively 

change in amount and number. Eventually, the pattern of protein 

synthesized by a developing tissue comes to resemble that of adult tissue. The 

mechanisms underlying the differentiation of tissues must produce changing 

patterns of individual gene activation and deactivation (Darnell, 1986). Thus 

the developmental profile of a tissue-specific protein is important in 

understanding its regulation. The developmental profile of AEG mRNA in 

the epididymis has already been well characterized, (see section 1.4.6) To 

examine the developmental profile of AEG in the parotid, normal male rats 

were sacrificed at 15,20,30,40, 50, 60, and 95 days of age. Because of the small 

sizes of the glands at the earlier ages, multiple glands were pooled to reach the 

target starting frozen weight of 0.5g. Northern blot analysis is shown in 

Figure 8 A and B. With prolonged exposure, a faint signal is seen at day 20, 

which is evident in figure 8 C. The greatest increase is shown between day 20 

and day 30. Between days 30 - 60, no change is seen in AEGmRNA levels. 

The Actin cDNA hybridization demonstrates that the 15 day age lane has 

twice the mRNA of the other lanes yet still does not show any hybridization 

to AEG cDNA. 

To more closely compare the regulation of AEG in both tissues, the 

parotid gland and epididymal AEG mRNA levels were compared from the 

same animals at ages 15, 20, 25, and 30. Figure 8 C shows that the initiation of 

expression occurs within a few days developmentally in the two tissues. In 

general, the developmental pattern of expression of AEG in these two tissues 

is similar. 
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Developmental Profile of AEG in the Parotid Gland and in 

Comparison to the Epididymis 

Figure 8: Autoradiograph of Northern blots from Developmental 
Studies. (A) Hybridization of AEG 32P-cDNA probe shows Parotid 
AEG mRNA levels at 15,20,30,40,50, 60, and 90 days of age. 
(B) Hybridization of Actin 32P-cDNA probe shows Actin mRNA levels 
The first lane (age 15) is loaded with 20 jug of RNA instead of lOjig. 
(C) Comparison of early developmental profile of AEG in the 
parotid gland and epididymis at 15,20,25, and 30 days of age. A 
signal is detectable in the parotid at 20 days of age. However, the 30 
day lane is overexposed (compare the signal intensity to the 
equivalent lane in 8 A) in order to visualize the signal from the 
younger animals. 
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3.2 Effects of Androgens on AEG in the Parotid Gland 

As the hormonal regulation of epididymal AEG by androgens has been well 

established, (see section 1.4.5) the initial phase of investigation was to 

determine whether there was a similar control of gene expression of parotid 

AEG mRNA expression. To examine this possibility, adult female rats were 

treated with daily injections of testosterone propionate for 24 or 48 hrs and 

compared with untreated controls. Figure 9 shows the results of this 

experiment, analyzed by Northern blot technique. No difference was seen in 

AEG mRNA levels of the testosterone-treated females compared to the 

untreated female controls. 

Another approach to the question of androgen regulation of AEG in the 

parotid gland is presented in Figure 10, where the levels of parotid AEG 

mRNA in androgen resistant (Tfm) rats are compared to that of their normal 

male siblings. Once again, no difference in parotid AEG levels is seen, 

suggesting that androgen receptors are not required for AEG gene expresion 

in the parotid gland. 

The results of the castration experiment are presented in Figure 11. 

Northern blot analysis of RNA isolated from the parotid glands and 

epididymis of rats two weeks after castration and intact controls show no 

change in parotid AEG mRNA levels while an approximate 50% decrease was 

seen in the epididymis. Administration of 2mg IM testosterone proprionate 

to the two remaining castrated rats restored AEG mRNA epididymal levels to 

control levels but again had no effect on AEG mRNA in the parotid gland. 

Taken together, these three experiments strongly indicate that androgen is 

not required for AEG expression in the parotid gland. 
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Parotid AEG mRNA Levels in Testosterone-Treated Females 

M Control 24h T 48h T 
i i i-1 i- 

kb 

tf • # • ill 
0.9- 

Htn 
ACTIN 

Figure 9: Autoradiograph of the Northern blot for testosterone- 
treated females. Six adult female rats were injected intramuscularly 
with 2mg testosterone propionate. Animals were killed 24 or 48 hr 
after hormone treatment. Three control animals received no 
treatment. (A) Hybridization of AEG 32P-cDNA probe showing AEG 
mRNA levels (B) Hybridization of Actin 32P-cDNA probe showing 
Actin mRNA levels 
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Parotid AEG mRNA Levels in Tfm Rats 
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Figure 10: Autoradiograph of Northern blot showing a comparison 
of AEG mRNA levels in the parotid glands between Tfm rats and 
their non-affected brothers. (A) Hybridization of AEG 32P-cDNA 
probe showing AEG mRNA levels (B)Hybridization of 32P-cDNA 
probe showing Actin mRNA levels 
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Effects of Castration and Testosterone Replacement on AEG mRNA 
levels in the Parotid Gland and Epididymis 

A 
PAROTID GLAND EPIDIDYMIS 

Castrate Castrate 
Control Castrate +T I-1 i-1 i-1 Control Castrate +T 

i-1 i-1 i- 

kb 

ACTIN 

Figure 11: Autoradiograph of Northern blot from the castration 
study. Four adult male rats were castrated by an abdominal 
approach. Two animals were killed 7 days after castration. The 
other 2 animals received a single injection of 2mg testosterone 
propionate 7 days post-castration and were killed 72 hours later. 
Two control animals received no treatment. Each lane contains RNA 
isolated from two animals. (A) Hybridization of AEG 32P-cDNA 
probe showing AEG mRNA levels in parotid and epididymis (B) 
Hybridization of Actin 32P-cDNA probe showing Actin mRNA levels 
in parotid and epididymis. Actin is known to be a more abundant 
mRNA species in epididymal RNA pools compared to parotid. 
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3.3 Effects of Isoproterenol on AEG in the Parotid Gland and Epididymis 

The effects of chronic isoproterenol administration on AEG in both tissues 

was investigated because fi-adrenergic agonists are known to be major 

regulators of parotid gland gene expression. Six adult male rats were given 

daily intraperitoneal injections of 5mg of isoproterenol for 7 days. Tissue for 

analysis was either taken immediately, or after a recovery period of five days 

during which time the animals received no treatment. Figure 12 shows the 

Northern blot analysis of this experiment. Parotid AEG mRNA levels were 

reduced to approximately 10% of untreated control animals while no change 

was observed on epididymal AEG levels. No significant change was noted in 

AEG mRNA levels following a five day recovery period. 

3.4 Biochemical effects of Isoproterenol in the parotid gland and the effects on 

measured levels of AEG mRNA 

Because chronic isoproterenol treatment is known to effect many 

biochemical parameters within the parotid gland, including increasing RNA 

and DNA synthesis (see section 1.3.6), the interpretation of Northern blots 

from rats given IPR treatment is not straightforward. Since Northern blot 

analysis uses a fixed amount of RNA regardless of the total volume of the 

RNA preparation, it is a relative, not an absolute, technique. To address the 

possible factors influencing the Northern blot results, changes in parotid 

gland weight, DNA, and RNA, were examined in control and IPR treated rats. 

These results are presented in Table 1. Of note, both gland weight and total 

DNA increase 3 fold with IPR-treatment. There was a more pronounced 

effect on total RNA levels, with treated animals having a 7.4 fold increase 
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Effects of Isoproterenol on AEG mRNA Levels in the Parotid Gland 
and Epididymis 

EPIDIDYMIS 

A IPR x 7d 
M Control IPR x 7d + 5d 
1-1 1-1 1 1 

kb 

0.9- 

AEG 

PAROTID GLAND 

P IPR x 7d 
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1-1 1-1 1 
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Figure 12: Autoradiograph of Northern blot from the Isoproterenol 
(IPR) study. Three adult male rats were given daily intraperitoneal 
injections of 5mg of isoproterenol in 1 ml physiologic saline for 7 
days. Another group of 3 animals received 7 days of treatment and 
then were allowed to recover for 5 days. A control group of three 
animals received no treatment. (A) Hybridization of AEG 32P-cDNA 
probe shows AEG mRNA levels in parotid (B) Hybridization of AEG 
32P-cDNA showing AEG mRNA levels in epididymis (C) 
Hybridization of Actin 32P-cDNA shows Actin mRNA levels in the 
parotid (D)Hybridization of Actin 32P-cDNA shows Actin mRNA 
levels in the epididymis 
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Table 1 

Biochemical Assays on Parotid Glands of Control and 
Isoproterenol-treated Rats1 

Control IPR-treated P Fraction 

Gland Weight (mg) 342 ± 23 1073 ± 71 <.001 3.1 

Total DNA (mg/gland) 0.54 ±0.1 1.73 ±0.6 <.05 3.2 

Total RNA (mg/gland) 1.94 ±0.3 14.29 ±1.06 <.001 7.4 

RNA:DNA Ratio 3.6 8.3 2.3 

1 N = 3 rats in each group, except for gland weight were N = 9 

2 Fraction that IPR represents of the control. Value <1.0 represents a decrease from the control 
levels. 

Table 2 

AEG mRNA levels by Densitometry1 in Parotid Glands of Control 
and Isoproterenol-treated Rats 

Animal Control Animal IPR Fraction 

AEG mRNA/ 1 4.979 2 4 0.749 

lOpg RNA 2 8.253 5 0.606 

3 6.313 6 1.034 

Average3 6.52 ±1.7 0.79 ± 0.22 .12 

Total AEG4 1263.9 1137.0 .90 
TotalAEG/mg DNA 2340.6 657.2 .28 

1 AEG mRNA levels measured by densitometry area are in absorbance units (AU) x mm 

2Each value reported is the average of measurements made from duplicate loading of samples 
on the gel. 

3P < 0.01 

4Total AEG mRNA levels determined by mRNA in AU x mm/lOpg RNA x Total mRNA (as 
determined in Table 1 for control and IPR-treated parotid glands) 





45 

over controls. Table 1 also shows that there is a 2.3 fold increase in the total 

RNAper mg DNA in the IPR-treated group. The three-fold increase in both 

gland weight and DNA suggests that DNA is a reasonably good estimate of 

cell number. Results were found to be statistically significant using the 

Student's T-test (Freedman, 1980). 

Because there is a 2.3 fold increase in RNA with respect to DNA, with 

IPR-treatment, the decrease in AEG mRNA levels do not necessarily reflect a 

decrease in transcription rate. From the total RNA isolated from the control 

and IPR-treated animals, another Northern blot analysis was performed for 

the purpose of quantifying the AEG mRNA levels by densitometry. (See 

figure 13) Table 2 shows the results of the AEG mRNA levels as determined 

by densitometry. AEG mRNA levels were reduced to 12% of controls. Total 

AEG mRNA levels are decreased in the treatment group in spite of the seven¬ 

fold increase in total RNA. When total AEG mRNA levels are taken in 

terms of cell number, as estimated by changes in total amount of DNA, IPR- 

treated AEG mRNA/cell is reduced to 28% of control per cell, an estimated 3.5 

fold decrease. If the reduction was due soley to the dilution of AEG mRNA in 

a larger pool of total RNA, the expected reduction would be 43%. The 

difference between the expected and observed values strongly suggest that 

AEG transcription is directly inhibited by IPR. 
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Effects of Isoproterenol on AEG and Actin mRNA Levels in the 
Parotid Gland 

Control IPR x 7 days 

AEG 

B 

4 
Actin 

Figure 13: Autoradiograph of Northern blot from the repeat 
Isoproterenol study used to quantify changes by densitometry. 
Three adult male rats were given daily intraperitoneal injections of 
5mg of isoproterenol in 1 ml physiologic saline for 7 days. A control 
group of three animals received no treatment. Duplicates were run 
of eachlOpg mRNA sample on the gel. (A) Hybridization of AEG 32P- 
cDNA probe for shows AEG mRNA levels B) Hybridization of Actin 
32P-cDNA shows Actin mRNA levels. Densitometry results are 
presented in Table 2. 
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4.0 Discussion 

Several conclusions can be drawn from these experimental results. First, 

the developmental profile of AEG in the parotid gland and the epididymis is 

similar; the initiation of significant expression of AEG in the two tissues is 

occurs around the same time, suggesting that a common circulating factor 

may be involved. Secondly, while AEG mRNA has been previously known 

to be regulated by androgens, which was again demonstrated during the 

castration study (see figure 11), androgens have no effect on the regulation of 

AEG in the parotid gland. Finally, isoproterenol decreases the expression of 

AEG in the parotid gland but not in the epididymis, which is a true effect, not 

a dilution of AEG mRNA in a more abundant pool of mRNA's. 

4.1 Developmental Expression 

Both parotid and epididymal AEG show the greatest increase in overall AEG 

mRNA transcription between day 20 and 30, although the pattern is not 

identical. Developmental expression of AEG mRNA expression in the mouse 

submandibular gland also shows the sharpest increase between day 25 and 30 

(Mizuki, 1992). This suggests that there may be a circulating factor which 

becomes available around day 20, which can account for the developmental 

increase in transcription. In the parotid gland, tissue-specific changes in 

protein and glycoprotein synthesis occur shortly after birth and again at the 

time of weaning. Incorporation of [3H]thymidine, a measure of DNA 

synthesis, reaches its highest after birth in the parotid gland and then declines. 

However, incorporation of [14C] leucine, a measure of protein synthesis, 

increases dramatically between days 21 and 28. The a-amylase first reaches 

significant levels during this developmental period and a new protein band of 

25,000 molecular weight is first detected (Humphreys-Baher, 1982). It is 
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possible that the increase in AEG mRNA represents an overall tissue-wide 

increase in transcriptional activity in the parotid gland which is occurring at 

the developmentally significant time of weaning. In the epididymis, this is a 

similarly developmentally significant time period with the formation of the 

blood-testis barrier and the appearance of sperm and sperm-associated fluid in 

the lumen of the epididymis. (See section 1.2.3) AEG has a similar timetable 

for expression to that of other androgen-dependent epididymal proteins, but 

the precise mechanism is still unknown. It is presently not known how the 

induction of androgen-dependent genes is controlled during development. 

Expression of these genes usually occurs before puberty but long after the 

establishment of significant circulating levels of androgens. Possibly a tissue 

specific factor, perhaps produced by the fully differentiated epididymis, or a 

testicular factor, is necessary for the initiation of high levels of AEG. 

4.2 Androgen is not involved in the regulation of parotid AEG mRNA 

Several experiments (shown in Figures 9-11) addressed the question of the 

role androgens have in the regulation of AEG in the parotid gland by 

manipulating circulating androgen levels through different methods. Female 

rats with normally low levels of circulating androgens were given doses well 

above their physiological levels. Rats which lack a functional androgen 

receptor and therefore are resistant to the effects of androgens were compared 

to males with normal androgen receptors. Male rats were deprived of their 

major site of synthesis of androgens by castration and had levels restored by 

replacement doses of testosterone. None of these measures influenced parotid 

AEG mRNA levels. However, androgen-regulated gene expression does occur 

outside of the male reproductive tract. For instance, the transcription of the 

major urinary proteins of the mouse in the liver, and ornithine decarboxylase 
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and alcohol dehydrogenase in the kidney are known to be androgen regulated 

(Berger, 1989). But even more interesting is the existence of an acidic 

epididymal glycoprotein molecule in the epididymis and salivary gland of the 

mouse which appears to be androgen-regulated in both tissues. 

4.2.1 Expression of AEG in the Salivary Gland in the Mouse is Androgen 

Regulated 

Mouse epididymal AEG has been isolated, found to have amino acid 

sequence 68% homologous to rat AEG, is associated with sperm in transit, and 

has the same intraepididymal distribution pattern (Rankin, 1992). Mizuki et 

al. isolated AEG cDNA clones from both mouse epididymal and 

submandibular gland cDNA libraries (Mizuki, 1992). A cDNA clone, 

designated AEG-1, was found in the mouse epididymis, while two clones, 

AEG-1 (identical to the epididymis) and AEG-2, were found in the 

submandibular gland. The deduced amino acid sequences of the mouse AEG- 

1 and AEG-2 were 70% and 62% identical to the rat AEG sequence, respectively. 

Unlike in the rat (see figure 7), male mice had hybridization signals 5 times 

stronger than and female mice by Northern blot analysis in the 

submandibular gland. Administration of testosterone to female mice increase 

AEG mRNA approximately to male levels by 7 days. Cellular localization by 

in situ hybridization revealed that AEG was expressed in the granular 

convoluted tubule cells of the submandibular gland, but not the acinar or 

intercalated duct cells (Mizuki, 1992). Another investigator confirmed the 

androgen regulation of submandibular AEG expression through Northern 

blot analysis of castration study of AEG mRNA levels in male mice 

(Haendler, 1993). 
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4.2.2 Androgen Receptor Distribution 

The question remains as to why androgen regulates AEG in the 

submandibular gland of the mouse, but has no effect on AEG in the parotid 

gland in the rat. One answer may lie in the tissue distribution of androgen 

receptors. As stated in the introduction, one of the most important factors in 

determining the response of a tissue to a hormone is the presence of a receptor 

for that hormone in the tissue. All cells are exposed to androgens in vivo . 

But the selective action on target tissues depends on the presence of 

intracellular receptor proteins which can bind the hormone or its metabolites. 

In humans, the submandibular and parotid glands of both sexes metabolized 

androgens. Androgen receptors (AR) have been demonstrated by 

immunohistochemistry using polyclonal antibodies in the nuclei of human 

acinar cells of both glands (Laine, 1992). In the rat, immunohistochemical 

localization of AR has been used to confirm their existence in the epithelial 

cells of the submandibular gland (Sar, 1990). Audioradiographic localization 

of AR in rat parotid gland showed a heavy nuclear concentration of 

radioactivity in most of the serous acinar cells, but not in ductal cells or 

connective tissue (Stumpf, 1976). In fact, androgen receptors have an almost 

ubiquitous tissue distribution and are found in select cell types of the prostate, 

seminal vesicle, epididymis, vagina, uterus, cervix, testis, ovary, kidney, liver, 

adrenal gland, skeletal and cardiac muscle, pituitary gland, and various 

regions of the brain in the rat (Takeda, 1989). Androgen receptors are found in 

the rat parotid gland. An alternate explanation is required to explain the lack 

of androgen regulation of AEG in the rat parotid gland. One possibility is that 

androgen receptor complexes plus a tissue-specific factor may be required for 

activation of AEG transcriptions, and these factors are found in epidiymis and 

mouse submandibular gland but not in rat parotid gland. 
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4.3 Isoproterenol Decreases Parotid, but not Epididymal AEG mRNA Levels 

The first IPR experiment (shown in figure 12) demonstates a marked decrease 

in AEG mRNA levels. To address the possibility that this decrease is actually 

the result of a change in transcription rate, the RNA and DNA levels before 

and after IPR-treatement were quantified. The biochemical analysis of the 

change in mRNA levels in isoproterenol-treated parotid glands showed a 

seven fold increase in total mRNA and a three fold increase in weight and 

DNA. This agrees favorably with changes in parotid parameters resulting 

form chronic isoproterenol administration seen by a previous investigator, 

who found a four fold increase in weight (although this was wet weight, not 

N2 frozen weight), a three fold increase in protein and total DNA, and a five 

fold increase in total RNA (Robinovitch, 1977). However, there is an 8.3-fold 

drop in the level of AEG mRNA by Northern blot analysis in isoproterenol- 

treated rats, which is more than could be accounted for by the overall increase 

in mRNA transcription. The rate of transcription of Actin mRNA in parotid 

glands stimulated with isoproterenol have been shown to be unchanged 

(Roberts, 1991). Actin thus serves as a good control for Northern blot analysis, 

and the slight three-fold decrease seen in the actin hybridization signal in 

figure 13 probably represents the true order of magnitude for the dilutional 

effect. Therefore isoproterenol does appear to decrease parotid AEG gene 

transcription. 

4.2.1 Isoproterenol as a Known Inhibitor of Gene Expression 

Isoproterenol is a well-known enhancer of expression of several different 

proteins. (See section 1.3.6) However, few studies have addressed the 

possibility that fi-adrenergic stimulation can have an inhibitory effect on the 

expression of genes for secretory proteins of the salivary glands. Several 
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investigators followed levels of secretory proteins in acinar cell secretory 

granules of the submandibular gland (SMG) under chronic isoproterenol 

stimulation conditions by immunogold labeling. Unlike any other protein in 

this study, the labeling intensities for glutamine/glutamic acid rich proteins 

(GRP), major secretory proteins of the rat, decreased 74% (relative to controls) 

after stimulation began (Matsura, 1991). These results have been supported by 

other investigators who followed GRP mRNA levels in SMG treated with 

isoproterenol. They found a four and a half fold decrease in mRNA levels of 

GRP, leading them to conclude that isoproterenol appears to modulate GRP 

expression by alteration in the steady-state GRP transcript level (Cooper, 1991). 

In the rat parotid gland, statin gene control was found to be down-regulated 

by isoproterenol both at the mRNA level through Northern analysis and at 

the protein level by immunofluorescence microscopy (Ann, 1991). 

There is considerably less knowledge about the way in which hormones 

repress transcription through DNA binding proteins. There is, however, 

every reason to believe that selective repression is an important mechanism 

of transcriptional control. There are several proposed mechanisms of 

repression. In the "prokaryotic competition" model, a repressor protein binds 

near or at the transcription start site and blocks the interaction of transcription 

factors, like RNA polymerase, with the promoter. In the "eukaryotic 

competition" model, transcription is dependent on an upstream promoter, 

and enhancer and inhibitor proteins compete to bind to overlapping or closely 

linked sequences in the upstream promoter region. The "quenching " model 

proposes that the activating (A) and repressing (R) proteins bind to adjacent, 

non-overlapping DNA sequences and protein-protein interactions between A 

and R prevents A from contacting the transcription complex. Finally, "direct 

repression" suggests that the negative control factor directly blocks the activity 
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of a basal transcription complex (Levine, 1989). These models suggest possible 

ways isoproterenol could influence AEG expression at the transcriptional 

level. 

Fine tuning of transcription of active genes appears to be achieved in many 

cases by competition between activators and repressors (Jackson, 1991). 

Isoproterenol, which leads to cAMP elevations and activation of PKA and 

stimulation of gene transcription, can also activate a specific repressor protein, 

phosphorylated by PKA's catalytic subunit and which can also bind to the 

cyclic AMP response element (CRE). This repressor protein has been well 

characterized and named cAMP response element modulator (CREM). CREM 

can form dimers with itself or the enhancer CREB; both dimers will bind to 

the identical CRE sequence, which is part of the upstream promoter, but they 

are incapable of activating transcription (the "eukaryotic competition" model). 

The formation of certain dimer compounds provides a means to inhibit, 

rather than activate, transcription. Subtle differences in the nucleotide 

sequences of CREs change recognition and binding affinities by different homo 

and heterodimers (Meyer, 1993). A specific DNA binding sequence in AEG's 

promoter may promote the binding of CREM and therefore decrease the 

transcription rate during chronic isoproterenol stimulation. 

4.3.2 Epididymal AEG is not Affected by Isoproterenol 

AEG expression in the epididymis is not regulated by fi-adrenergic agonists. 

Again, neurohormonal responsiveness is dependent to some extent on the 

presence of receptors. Only a few studies have examined the presence of fi- 

receptors in the epididymis. The innervation of the rat epididymis includes 

noradrenergic fibers, especially in the cauda. (see section 1.2.2) Transepithelial 

chloride secretion in the epididymis has been shown to be stimulated by ai, fii 
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and $2 adrenoreceptor agonists, which provides evidence for the existence of 

fii receptors (the subtype in parotid acinar cells) in the epididymal epithelium 

(Leung, 1992). In fact, stimulation of B-adrenoreceptors in the epididymal 

epithelium has been shown to lead to an increase in intracellular cAMP 

concentrations (Wong, 1990). But the presence of B-adrenergic receptors and 

cAMP does not necessarily lead to the ability to regulate gene transcription. 

The only known effect of increasing cAMP concentration in the epididymis is 

the opening of various ion exchangers and channels. The control of gene 

expression depends, in part, on the presence of the appropriate cAMP- 

dependent kinase and transcription factors in a particular cell type. No 

experimental investigations to date have demonstrated that these are indeed 

synthesized in the epididymis, which could account for the failure to effect 

transcription. 

An alternate explanation may lie in the specific distribution of adrenergic 

receptors within the rat epididymis, specifically the cauda. (see section 1.2.2) 

The epididymal immunostaining pattern for AEG, which has shown a 

predominance of staining in the supranuclear region principal cells of the 

distal caput and corpus, the lumen distal to corpus, and in the clear cells of the 

cauda is consistent with AEG being synthesized in the principal cells, secreted 

in the lumen, and being partly reabsorbed by clear cells, (see section 1.4.2) 

Many secretory tissues divide the protein secretion and electrolyte/water 

concentration functions amoung different epithelial cell types. For example, 

in the parotid gland, the acinar cells synthesize the majority of the secretory 

proteins, while the ductal cells are responsible for water/electrolyte balance, 

(see section 1.3.1) It is possible that the B-adrenergic receptors are distributed in 

the clear cells but not the principal cells where they could influence 

epididymal AEG expression. Finally, the relative concentration of each 



■ 



55 

receptor type, interaction between transcriptional factors and of DNA binding 

sites may give one hormone primacy over another. Isoproterenol may be 

unable to decrease epididymal AEG in the presence of androgens. 

4.4 Integration-Tissue specific Gene Regulation 

It has become increasingly apparent that eukaryotic transcription is subject to 

a highly complex interaction between many different factors which can exert 

either a positive or negative influence. The ultimate aim of understanding 

differential hormonal regulation of expression must be to understand how 

multiple positive and negative control circuits operate together to determine 

the level of gene expression during development and in response to the 

environment (Jackson, 1991). The regulation of a single gene in a tissue is 

achieved through the appropriate combination of HREs, silencers, tissue- 

specific promoter elements, and the basal promoter elements. Transcriptional 

response to hormones in different tissues and cells may be controlled by 

limiting the tissue-specific expression and concentration of various hormone 

receptors (Clark, 1992). Genes which are regulated through more than one 

hormone have been described. Neurotransmitters released by 

neuroendocrine cells and nerve endings have been shown to be involved 

along with androgen in the regulation of gene expression in the prostate gland 

of the rat. Rat Prostatic binding protein (PBP) expression in vivo is partially 

regulated by both fi-adrenergic and androgen receptor-mediated pathways, 

(Guthrie, 1990) which suggests that a single gene can posses both an ARE and 

CRE sequence in the promoter region. 

There are many examples of single genes which are expressed in several 

different tissues at different levels. The mouse major urinary protein II (MUP 

II) gene is expressed in both the liver and the mammary gland, where it make 
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up 1 and 0.02% of the total RNA respectively. The other 5 MUP genes are also 

expressed at different levels in an assortment of tissues. The tissue-specific 

regulation of each MUP gene is hypothesized to be brought about by the 

presence of distinct tissue-specific regulatory factors (Shahan, 1987). 

Transferrin (Tf), an iron-binding glycoprotein, is synthesized in the liver, but 

is also expressed in the testis of humans and rats. In rat liver, expression of Tf 

in hepatocytes is constitutive, and is not influenced by steroids or iron levels. 

In the testis, Tf is produced by Sertoli cells in response to FSH, insulin, and 

retinol. These tissues arise from different embryologic origin: the hepatocytes 

from the endoderm, the Sertoli cells from mesoderm. In vitro binding assays 

have revealed the existance of 5 protein binding sites in the 5' promoter 

region of the gene. The binding of transcriptional factors to two of these sites, 

named proximal region (PR) I and II, are tissue-specific. In hepatocytes, the 

liver-enriched transcriptional factors C/EBPa and HNF-4 may interact with 

the PRII and PRI regions of the transferrin gene promoter, respectively. In 

Sertoli cells, the transcriptional factors interacting with the promoter are 

different, and do not cross react with antibodies to C/EBPa or HNF-4. These 

findings support the idea that the Tf gene requires different combinations of 

factors in different subsets of cells to achieve tissue-specific expression (Zakin, 

1992). 

Like Tf, AEG is expressed in tissues of different embryologic origin, the 

parotid and the epididymis, and is regulated differently at the level of 

transcription. The next stage of investigation will involve the sequencing of 

the promoter regions of the AEG gene to better understand the molecular 

mechanisms for tissue-specific regulation. 
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5.0 Appendix 

AACTCCTCAGGAAGACCAGCAGAGTCAACTAACCTGGACCCTTGGTAGCTCCCGGCGACTGAATCATTAAGCAAA 7 5 
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★ 75 

GGGACAATATCTCATTCTGCTC TGAAATAGAAC C ATG GCA TTA ATG TTA GTG CTG TTG TTC CTG 140 
********************************** *** *** *** *** *** *** *** *** *** *** ]_4o 

Met Ala Leu Met Leu Val Leu Leu Phe Leu 10 

GCT 
★ ★ ★ 

GCT 
* * * 

GTA 
★ ★ ★ 

TTG 
* * * 

CCA 
* * * 

CCA 
* * * 

TCT 
★ ★ ★ 

CTT 
★ ★ ★ 

CTT 
* * * 

CAA 
★ ★ ★ 

Ala Ala Val Leu Pro Pro Ser Leu Leu Gin 

CTT 
★ ★ ★ 

GAG 
* ★ * 

AAT 
* * * 

TTG 
* * * 

TCA 
* * * 

ACC 
★ * ★ 

ACT 
★ ★ ★ 

AAA 
k k k 

CTG 
★ * * 

TCA 
* * * 

Leu Glu Asn Leu Ser Thr Thr Lys Leu Ser 

AAC 
kkk 

CAA 
★ ★ 

TTG 
kkk 

AGA 
★ ★ ★ 

CGA 
★ ★ ★ 

ACG 
★ ★ ★ 

GTT 
★ ★ ★ 

TCT 
* * * 

CCG 
★ * ★ 

TCT 
* * * 

Asn Gin Leu Arg Arg Thr Val Ser Pro Ser 

GAC 
* * * 

CAT 
* * * 

GAT 
★ * * 

GCT 
k k k 

TAT 
* * * 

GTG 
k k k 

AAC 
k k k 

GCT 
★ ★ * 

CAG 
★ ★ ★ 

AAA 
* * * 

Asp His Asp Ala Tyr Val Asn Ala Gin Lys 

AGT 
★ * * 

CCT 
★ ★ k 

CTA 
k k k 

CAA 
k k k 

CAC 
k k k 

AGG 
k k k 

ACA 
* * * 

ACC 
* * * 

ACA 
k k k 

TTA 
★ * ★ 

Ser Pro Leu Gin His Arg Thr Thr Thr Leu 

AAT 
★ ★ ★ 

TAC 
★ ★ ★ 

CCT 
★ ★ ★ 

GCA 
k k k 

TCG 
★ ★ ★ 

TGG 
★ ★ ★ 

TCT 
k k k 

TCT 
k k k 

GTA 
k k k 

ATC 
kkk 

Asn Tyr Pro Ala Ser Trp Ser Ser Val He 

TTT 
kkk 

GTC 
★ ★ ★ 

TTT 
★ ★ ★ 

GGT 
★ ★ ★ 

TTC 
★ ★ ★ 

GGC 
★ ★ 

CCA 
* * * 

AAA 
k k k 

AAA 
* * * 

GTT 
★ ★ ★ 

Phe Val Phe Gly Phe Gly Pro Lys Lys Val 

GTT 
★ ★ * 

GTT 
★ ★ ★ 

TGG 
k k k 

AAT 
★ ★ ★ 

TCA 
★ ★ ★ 

ACT 
k k k 

TTC 
★ ★ ★ 

CTG 
* * * 

GTT 
* * * 

GCA 
★ ★ ★ 

Val Val Trp Asn Ser Thr Phe Leu Val Ala 

CCA 
* * * 

TTG 
kkk 

AAA 
★ ★ ★ 

TAC 
★ ★ ★ 

TTT 
k k k 

TAT 
★ ★ ★ 

GTT 
★ ★ ★ 

TGT 
* * * 

CAC 
* * * 

TAT 
* * * 

Pro Leu Lys Tyr Phe Tyr Val Cys His Tyr 

CTA 
* * * 

TAC 
★ ★ ★ 

TCA 
k k k 

CCT 
★ * ★ 

TAC 
★ ★ ★ 

ACA 
* * * 

GAA 
* * * 

GGA 
★ ★ ★ 

GAA 
kkk 

CCT 
kkk 

Leu Tyr Ser Pro Tyr Thr Glu Gly Glu Pro 

GAT ACC ACT GAT GAA TGG GAT AGA GAT 197 
* * * kkk ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ * * * ★ ★ ★ 197 

Asp Thr Thr Asp Glu Trp Asp Arg Asp 29 

GTC CAA GAA GAG ATC ATA AAC AAG CAC 254 
kkk kkk ★ ★ ★ kkk ★ ★ ★ ★ ★ ★ ★ ★ * ★ ★ * ★ ★ ★ 254 

Val Gin Glu Glu lie lie Asn Lys His 48 

GGT AGT GAC TTA CTA AGA GTG GAA TGG 311 
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ kkk ★ ★ ★ ★ ★ ★ ★ ★ ★ kkk 311 

Gly Ser Asp Leu Leu Arg Val Glu Trp 67 

TGG GCA AAC AGG TGC ATT TAC AAT CAC 368 
* * * kkk * * * * ★ ★ kkk kkk * * * ★ ★ ★ * * * 368 

Trp Ala Asn Arg Cys lie Tyr Asn His 67 

AAA TGT GGT GAG AAT TTG TTC ATG GCA 425 
* * * * * * ★ ★ ★ kkk kkk kkk * * * ★ * ★ ★ ★ ★ 425 

Lys Cys Gly Glu Asn Leu Phe Met Ala 105 

CAA GAT TGG TAT GAT GAA TCC CTT GAT 482 
kkk kkk ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ kkk kkk * * * 482 

Gin Asp Trp Tyr Asp Glu Ser Leu Asp 124 

GGT GTT AAA GTC GGA CAC TAT ACT CAG 539 
★ ★ ★ kkk kkk kkk kkk ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ * * 539 

Gly Val Lys Val Gly His Tyr Thr Gin 143 

TGT GGA GTT GCT GAA TGC CCT GAC CAA 596 
* * * * * * * * * * * * ★ ★ ★ kkk ★ ★ ★ * * * ★ ★ ★ 596 

Cys Gly Val Ala Glu Cys Pro Asp Gin 162 

TGT CCT GGT GGC AAT TAT GTA GGA AGA 653 
kkk * * * * * * ★ ★ ★ kkk ★ ★ ★ kkk ★ ★ ★ ★ * ★ 653 

Cys Pro Gly Gly Asn Tyr Val Gly Arg 181 

TGT GAC AGT TGT CCT GGT AAT TGT GAA 710 
★ ★ ★ kkk kkk kkk ★ ★ ★ kkk * * * ★ ★ ★ kkk 710 

Cys Asp Ser Cys Pro Gly Asn Cys Glu 200 
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GAT GGG CTG TGC ACC AAT AGT TGT GAA TAT GAA GAT AAT TAT TCT AAC TGT GGC GAT 767 
★ ★ ★ * * * k k k * * * ★ ★ ★ * * * ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ * * * k k k * * * ★ ★ ★ * * * ★ ★ ★ ★ ★ ★ ★ ★ ★ k k k 767 
Asp Gly Leu Cys Thr Asn Ser Cys Glu Tyr Glu Asp Asn Tyr Ser Asn Cys Gly Asp 219 

CTG AAG AAG ATG GTG AGC TGC GAC GAT CCA CTT CTT AAA GAA GCT TGC AGA GCT TCA 824 
* * ★ k k k ★ ★ ★ * * * ★ k k * * * ★ * * ★ ★ * * * * * * ★ ★ ★ * k k k * * * * * * ★ ★ ★ k k k k k k * * * k k k 824 
Leu Lys Lys Met Val Ser Cys Asp Asp Pro Leu Leu Lys Glu Gly Cys Arg Ala Ser 238 

TGC TTC TGT GAA GAC AAA ATT CAT TAA ATTTCCAGTCCACATAATCAGGACCATGTAGAAAAGGAA 890 
* * * k k k k k ★ * * * k k k * * * * * * * * * * * * kkkkkkkkkkkkkkkkkkkkkk(J\ k k k k kkkkkkkkkkkk 890 
Cys Phe Cys Glu Asp Lys He His End 

AATACCCTCTACTTAGTCTTATCATGTCCCACCAAAAATATGTAGGTTTAGTC ACTGAAATAATTCCAAATGGT 965 
*******************q***** - 

AAAG ATTC TGTTTC TTC TC C T ATTTC TCTC T ATTTTGC ATAAGTC ATTTAC C C C AAAAT ATTTT AAAAT AAC AAA 1040 

ATCAATACC ACCTTTGGAACTGGCCATATGAAATCTGTGACACATTTATGGAATCAAATCTATCCCACGATTATA 1115 

TATTATTTGTCTGTATGACTTAAGTCACTAAATCTCTGGCTTGAAAATATGAATCATGTTCCCAGAGC ACAATGA 1190 

AATAAGAGAACAGATAGCATATAGTCCCTCTGTATTGGCCAATCACTTTTTTTTTAGTTCTACCACTATTTTTAG 1265 

CTAATTATCTCCGGAGAAAAC ATTC AC ATTAATTGTCTTCTATTTCTTCTC ACC ATTC ATTATTCTTC AC ATTC A 1340 

TC AGAATTAGTGGTTTAAATTCTAAACTACC ATTTATGTTTTGTTGTCGGGTCTTTAAGAATGATATTAAAATGT 1415 

AAC TT AAT AAAC AG AATTTGC TTGTTC AGGGGT AATG AC CTTGGTTGC TTC AG AAAAAAAA - T AAATC TT AATCT 1489 
-************************* 952 

TAGCATATTAAAAAAAAAAAAAAA- 
c****-★**************AAAAAA 

DNA And Deduced Amino Acid Sequence of AEG cDNA 

The top line is the nucleotide sequence of the 1500-bp cDNA; the middle line is 
the nucleotide sequence of the 950-bp cDNA; and the bottom line is the predicted 
amino acid sequence of both clones. Identical bases are represented by (*), while 
bases not present in a clone are indicated by (-). The consensus initiation 
sequence, ACCATGG, and the polyadenylation signal, AAT AAA, are underlined. 
(From Charest, 1988) 
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