
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

1994

Natural killer lymphocyte membrane antigens
involved in allorecognition
Kevin Elisabeth Bishoff
Yale University

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Bishoff, Kevin Elisabeth, "Natural killer lymphocyte membrane antigens involved in allorecognition" (1994). Yale Medicine Thesis
Digital Library. 2404.
http://elischolar.library.yale.edu/ymtdl/2404

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/2404?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2404&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu




HARVEY CUSHING / JOHN HAY WHITNEY 
MEDICAL LIBRARY 

MANUSCRIPT THESES 

Unpublished theses submitted for the Master's and Doctor's degrees and 
deposited in the Medical Library are to be used only with due regard to the 
rights of the authors. Bibliographical references may be noted, but passages 
must not be copied without permission of the authors, and without proper credit 
being given in subsequent written or published work. 

This thesis by has been 
used by the following persons, whose signatures attest their acceptance of the 
above restrictions. 

NAME AND ADDRESS DATE 



Digitized by the Internet Archive 
in 2017 with funding from 

The National Endowment for the Humanities and the Arcadia Fund 

https://archive.org/details/naturalkillerlymOObish 









Natural Killer Lymphocyte Membrane Antigens 

Involved in Allorecognition 

A Thesis Submitted to the Yale University School of Medicine in Partial 

Fulfillment of the Requirements for the Degree of Doctor of Medicine 

by 

Kevin Elisabeth Bishoff 

1994 



AW l 

’< ■ e ;i ' 

r 113 
3^ YlZ 

un^ 



ACKNOWLEDGEMENTS 

At the outset I must acknowledge and thank Dr. Jeffrey Bender for 

his undeterred optimism and patience. I can safely say that if it 

were not for him this thesis would not exist. 

I would like to thank Mrs. Jean Wilson for being there from the 

beginning to answer my thousands of technical questions and save 

me from disaster every day. 

To Drs. Teri Caulin-Glaser and Steve Pfau, and Ms. Lynn O’Donnell, 

thank you for sharing the wisdom you've gained during your years 

of experience, for teaching me the importance of lunch, for putting 

up with my whining, for making the lab a fun place to be, and 

especially, for being my friends. 

To Dr. Cornelius Watson and Jinyao Zhou, thank you for never losing 

faith in the project (even on the days when I had). 

To Dr. Josh Korzenik, thanks for what only he knows. 

And, most of all, I wish to thank my parents, Mark and Barbara 

Bishoff, and sister, Alix McDonough, for their unconditional love and 

support throughout this and all other of my endeavors. 





NATURAL KIL LER LYMPHOCYTE MEMBRANE ANTIGENS INVOLVED IN 

ALLORECOGNITION TARGETING. Kevin E. Bishoff, Jeffrey R. Bender. 

Section of Cardiovascular Medicine, Department of Internal Medicine, 

and the Molecular Cardiobiology Program, Boyer Center for Molecular 

Medicine, Yale University, School of Medicine, New Haven, CT. 

It has been recently established that natural killer (NK) 

lymphocytes have alloantigen recognition capabilities, although the 

membrane receptor(s) involved is unknown. In the current study, I 

attempt to characterize such receptors, utilizing an immortal B cell 

line (RPMI8866) which drives the clonal expansion of antigen- 

specific NK cells. My hypothesis is that NK cells have a receptor 

structure that enables them to recognize and specifically lyse these 

targets. 

Murine monoclonal antibodies (mAbs) specific for NK cells were 

generated and screened by flow cytometry for NK cell specificity and 

effect on NK cell function. Utilizing RPMI8866-stimulated NK cells as 

effectors, 2 mAbs (1F7 and 1F8) were defined which partially inhibit 

lysis (54% and 36% inhibition, respectively, at a 33:1 effector to 

target ratio) of the stimulating RPMI8866 cell line but not the 

classical NK-sensitive target K562 at any effector to target ratio. 

These results support the hypothesis that NK cells have surface 

receptors involved in specific target recognition and describe two 

mAbs which appear to recognize such structures. 
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INTRODUCTION 

Natural killer (NK) cells are a bone marrow derived subset of 

lymphocytes found in blood and lymphoid tissues (1). NK cells 

comprise 1% to 25% of cells in the peripheral blood of humans (2). 

Because they appear morphologically as large cells with numerous 

cytoplasmic granules, NK cells are also called large granular 

lymphocytes (LGLs) in the literature. In a manner analogous to 

cytotoxic T lymphocytes (CTLs), NK cells kill their targets by granule 

exocytosis and secretion of a cell toxin. However, unlike CTLs, NK 

cells do not require prior contact with target antigens to develop 

cytolytic capacities or cytokine responsiveness (1). The name 

'natural killer' refers to this ability to lyse certain cells without prior 

sensitization or restriction by major histocompatibility complex 

(MHC) class I or II gene products (2-4). That is, they mediate 

cytolytic reactions that do not require expression of class I or class II 

MHC molecules on the target cells (3). 

Although there is a subset of T cells which can also lyse their 

targets in an MHC-unrestricted fashion, NK cells are distinct from this 

subset in that they lack the surface molecule CD3 and the T cell 

receptor (TCR) for antigen recognition. Unlike B and T cells, 

respectively, NK cells do not undergo Ig or TCR rearrangement, 

which, via the creation of a variety of surface receptors, enables 

them to specifically recognize antigens. Lymphocytes without slg or 

TCR perform "nonspecific" lethal action on various susceptible cell 

types but, in general, were previously considered unable to recognize 

antigen(s). 

From its discovery in 1974 until very recently, identification of 

the NK cell based solely on its morphologic characteristics, and on 

certain of its known functions, some which are shared with other cell 

types, such as monocytes, macrophages and activated T cells, posed a 

major limitation to NK cell analysis. Monoclonal antibodies (mAbs) to 

cell surface molecules can phenotype NK cells, differentiating them 

from other lymphoid cells with common cytotoxic activity or 

morphology. Surface antigens expressed on human NK cells include 

class I, CD2, CD7, CD8, CDlla, b, c/CD18 (LFA-1, Mac-1, pl50,95), 
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CD16 (the NK cell Fc receptor for IgG), CD56, and CD57 (5). Although 

none of these antigens is unique to NK cells, the combination of CD 16 

and CD56 on a cell lacking the T cell-associated CD3 molecule, is 

thought to be definitive of the NK cell. 

The clinical relevance of the NK cell is still a matter of debate 

as its function and purpose in normal immunity is not completely 

understood. Given the lag period between exposure to foreign 

materials and the development of specific immunity, NK cells were 

initially thought to be a part of a primary broader-range defense 

system that can act almost immediately until specific immunity 

develops (4). However, from in vitro experiments, it has been 

inferred that NK cells produce lymphokines including interleukin 2 

(IL-2) and interferon alpha, and serve in a regulatory capacity to the 

adaptive immune system and to hematopoiesis, in addition to 

confering 'natural' resistance against tumors, microbes, fungal, and 

parasitic agents (6,7). Moreover, it is not known whether all these 

functions can be mediated by the same cells or whether distinct 

functional subsets within the NK cell population have different 

activities (7). Since NK cells have been shown to secrete a variety of 

lymphokines, it is also not known which of these functions is 

mediated by direct cytotoxicity and which is mediated through 

lymphokine secretion (7). 

NK cells are able to kill virally infected cells and malignant 

transformed cells in vitro, however they have not been found in 

inflammatory infiltrates associated with viral infection or tumor (1). 

The great potential of clinical benefit from understanding NK cell 

function stems from the wide range of possible targets of NK cell 

killing, and perhaps that there exist functions beyond cytolysis, 

including target cell activation and amplification of immune 

responses. 

Early work with NK cells completed in animals revealed their 

significance in the immune surveillance against the establishment of 

primary tumors, as well as in controlling the spread of distant 

metastases (8). IL-2 in vivo and in vitro enhance NK cell cytolytic 

activity, enabling them to lyse tumor-cell targets that are resistant to 

unstimulated NK cells (8). Not only the range of tumor cell 
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recognition, but also the intensity of killing, was shown to highly 

increase after culture of NK cells in IL-2 containing media (9). In 

addition, NK cells can be induced to proliferate by high 

concentrations of IL-2 (1). The effectiveness of these lymphokine- 

activated killer (LAK) cells has been evaluated in a series of clinical 

trials in which patients received recombinant IL-2 alone or in 

conjunction with LAK cells generated in vitro. The metastatic 

tumors, most often metastatic renal-cell carcinoma or melanoma, 

regressed in some of the patients who were treated with LAK cells or 

IL-2 (8). 

A number of studies in animals have identified a potentially 

important role for NK cells in the immune response to certain viral 

infections (8). In these experiments, NK cells responded rapidly to a 

viral challenge and mounted both a proliferative and a cytolytic 

response 4-6 days before a T cell response could be mobilized. There 

is a little evidence of such a role in humans. Partial deficiencies of 

NK cells have been documented in a variety of clinical circumstances, 

including Chediak-Higashi syndrome, leukocyte-adhesion-molecule 

(CD11/CD18) deficiency, X-linked lymphoproliferative disorder (X- 

LPD), and the chronic fatigue syndrome. Unlike patients with X-LPD, 

in whom the NK cell defect is subsequent to EBV infection and might 

be induced by the virus, the NK cell-deficient patients had a history 

of repeated viral infection before EBV (6). 

In the few patients who have a selective absolute deficiency of 

NK cells, there is a prevalence of viral pathology. Biron et ai 

described one 17-year-old woman with a total deficiency of NK cells, 

but normal T and B cell function, who had life-threatening infections 

with three common herpesviruses: varicella, cytomegalovirus, and 

herpes simplex virus (8). Eventually specific T and B cell responses 

could be mobilized, but only after the one to two week time period 

required for recognition and amplification of these responses. From 

these data, it appears that NK cells, together with interferon and 

other natural resistance mechanisms, represent the first line of 

defense against infection by certain viruses. 

Their most impressive, and histologically supported, clinical 

function may be in the initiation of graft-versus-host disease (GVHD) 
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in the recipients of allotransplants. Postulated as central to the 

phenomenon of allograft rejection are the interactions between 

lymphocytes and microvascular EC, the initial allogenic barrier with 

which circulating host lymphocytes contact donor tissue in 

vascularized allografts (10). NK cells bind avidly to (10), induce the 

appearance of class II MHC antigens on (11), and promote striking 

morphologic alterations in microvascular EC (12) in vitro. Integral 

membrane protein lymphocyte function-associated antigen-1 (LFA- 

1) plays a major role in lymphocyte binding to microvascular EC (10), 

and consequently, induction of EC surface class II expression (11), 

which is viewed as a sign and a major stimulus of the rejection 

process (10). The surface density of LFA-1 on NK cells is 

approximately five times greater than that on CD4+ cells (13). 

In vivo data obtained mainly in the mouse suggests that NK 

cells are involved in the rejection of bone marrow transplants (14). 

NK cells are the effectors of the genetically restricted hybrid 

resistance to parental grafts (12). In humans Lopez et al. found an 

association between high pretransplantation NK cell activity in the 

recipient against HSV-1 infected target cells and incidence of GVHD 

after bone marrow transplantation (6). LGLs have been found in 

fine-needle aspirates from kidney transplant patients in the 

beginning and early stages of rejection, where their corresponding 

peripheral blood levels were much lower (15). However, the 

expression of CD 16 and CD56 on these LGLs was not reported. 

NK cells are found inside rat renal allografts during rejection. 

They appear, with strong cytotoxic activity, and disappear in situ, 

prior to the arrival of cytotoxic T lymphocytes (14). From these data, 

the authors hypothesized that NK cells may have a role in the 

maturation of the CTL, possibly acting as primary cells for CTL. 

Furthermore, the presence of NK cells in the renal allograft was 

simultaneous with their depletion from the spleen, suggesting that 

they are spleen-derived and not synthesized in situ. However, the 

surface markers on these cells were not characterized. 

Allogeneic lymphocyte cytotoxicity, the rapid destruction of i.v. 

injected allogeneic lymphocytes upon entering the host's lymphoid 

tissue, may be another nonadaptive immune response in which NK 
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cells play a role (16). Fossum and Rolstad reported that 

pretreatment with anti-NK cell antibodies (anti-asialo GMf and MRC 

OX-8) profoundly reduced the proportion of allogeneic cells 

phagocytozed by interdigitating cells (IDC). Additionally, the rate of 

killing of allogeneic lymphocytes differed substantially between 

cervical and axillary lymph nodes and this difference correlated with 

the densities of anti-asialo GMi+ cells in these nodes. In vitro 

studies with cell suspensions rich in IDC from peripheral lymph, but 

poor in NK activity, could not demonstrate allogeneic lymphocyte 

cytotoxicity (16). 

There is more than one mechanism by which NK cells 

recognize and kill their target. First, and most clearly understood, NK 

cell killing can be directed by opsonization of target cells with 

antibody. These IgG molecules are bound to CD 16, the FcR receptor 

for IgG, on the NK cell surface, triggering granule exocytosis and toxin 

secretion. NK cells are the principal mediator of this form of 

cytolysis, known as antibody-dependent cell-mediated cytotoxicity 

(ADCC) (1). The interaction with the FcR of NK cells may also evoke 

pleiotropic effects under permissive conditions, and is not restricted 

solely to the function of ADCC (17). NK cells can also lyse susceptible 

targets spontaneously by a second mechanism, which, although 

poorly understood, has generally been thought to occur without 

specificity and without MHC. Anti-IgG or anti-CD 16 FcR antibodies 

which inhibit ADCC do not prevent NK killing (6), indicating that in 

this type of killing, target recognition is not mediated via the Fc 

receptor that functions in ADCC killing (18). 

With the exception of the CD 16 FcR used in ADCC, there is no 

definitive information yet on any type of receptor used by NK cells 

for target cell recognition and killing (6). Despite the fact that NK 

cells have a limited target cell range, no specific NK-associated 

surface receptor or target ligand has yet been defined (19). 

Although a molecular structure recognized by NK cells has not been 

defined, there is evidence that NK cells are capable of killing with 

specificity in a non-ADCC, non-MHC restricted manner. 

The existence of NK specificity has been most simply 

demonstrated by the phenomenon of "cold target inhibition". In this 
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experimental situation one NK target cell type (unlabeled) can inhibit 

lysis of a different NK target type (labeled) by competing for effector 

cells (1), Cells that are not NK targets do not compete. Ciccone et at 

first reported specific lysis of allogeneic cells by CD3‘, CD2+, CD56+ 

lymphocytes after their activation in a mixed lymphocyte culture in 

the presence of exogenous IL-2 (20). After a ten day coculture, these 

cells displayed cytolytic activity against PHA-induced blast cells 

bearing the stimulating alloantigens but not against autologous or 

unrelated allogeneic blast cells (20). Coculture with an autologous 

stimulator, or without IL-2, did not result in cytolytic activity 

directed at autologous or allogeneic cells, although cytolytic activity 

against K562 erythroleukemia cells (a classical NK target) was 

preserved in these controls. From these MLC-stimulated CD3" cells, 

clones were derived that lysed allogeneic lymphoid cells with 

apparent specificity, although the expression of CD 16 and CD56 on 

these clones was not reported (19). 

CD3", TCR-, CD 16+ and/or CD56+ NK lines and clones with 

apparent antigen specificity have been described (19). In addition to 

displaying potent cytolytic activity against K562 cells, these clones 

lysed their specific stimulator lymphoblastoid cell line (LCL) to a 

significantly to a greater extent than irrelevant LCL. This selective 

killing was inhibited by the addition of cold simulator LCL or K562 

cells, or anti-LFA-1 mAbs, but not by irrelevant LCL or mAbs to CD3, 

class I or II MHC antigens (19). 

The presence of a novel "antigen receptor" that may recognize a 

set of polymorphic endothelial cell antigens distinct from human 

leukocyte antigens was suggested by a study by Bender et al. They 

used cytotoxicity assays to demonstrate the ability of NK cells to lyse 

preferentially the line of microvascular endothelial cells to which 

they were previously bound for only 90-min (21). CD3", CD16+ 

lymphocytes preferentially killed endothelial cells (ECs) with which 

they were cocultured over endothelial cells of unrelated donors (21). 

Antibodies blocking CD3, CD4, CD8, class I and II did not block killing, 

whereas anti-LFA-1 antibody consistently inhibited cytotoxicity, 

likely because of its role in leukocyte binding to ECs (21). Their 

results suggest that cytotoxic NK lines bind to their stimulating ECs 
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via both nonspecific and specific ligand interactions, and further 

suggest that the basis for their specific cytotoxicity may lie, at least 

in part, with specific binding (21). 

As the membrane target structures have not been identified, it 

is not known whether different NK cells react with the same or with 

different target antigens (7). In fact, many studies have indicated 

that NK cells are not a homogeneous population in regard to 

expression of surface markers and cytotoxicity (22) but rather that 

subsets of NK cells recognize one or a limited number of target cells. 

Allavena and Ortaldo studied the heterogeneity among many clones 

of human NK cells with regard to phenotype and their patterns of 

cytotoxic reactivity towards a variety of tumor target cells (22). To 

determine whether the tumor specificity and surface antigenic 

profiles of NK cells are clonally distributed or whether individual 

clones of NK cells display the heterogeneity associated with the 

entire NK cell population, they tested the cytotoxicity of 196 clones of 

cultured LGL from three donors against a panel of tumor target cell 

lines, and found that the receptors recognized on NK-susceptible 

targets are clonally distributed among the LGL population. 

Interestingly, they also found that although most clones 

demonstrated both NK and ADCC killing, some other clones, which 

had NK activity, did not have ADCC, or vice versa. However, the cell 

surface phenotype of many of the LGL-derived clones included T cell 

markers, and the heterogeneity may represent different cell 

populations and not subsets of a single NK cell population. 

NK cells isolated from individuals exhibit different 

allospecificities expressed by normal allogeneic target cells (23). 

Allavena and Ortaldo used their data from clones derived from 

purified preparations of LGL to support the hypothesis that the 

heterogeneity of the entire NK population is attributable to a mixture 

of clones that vary substantially in their target specificities and 

phenotypes (22). Regardless, while antigen-specific receptors have 

not been defined, and the molecular basis for such activity unknown, 

these studies indicate that NK cells do kill allogeneic cells selectively. 

Furthermore, this ability appears to be clonally distributed. In 

addition, the experimental data hint at the possibility of an NK cell 
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repertoire for the recognition of allogeneic cells, albeit a limited one 

in comparison to the T or B cell repertoire. 

Now that it has been established that at least a subset of NK 

cells recognize allogeneic cells, the question posed is how is this 

specificity is achieved? Some research indicates that specific NK 

killing is MHC restricted. An inverse relationship between the 

expression of class I MHC antigens on target cells and sensitivity to 

NK reactions has been reported by several groups (3). Dawson et al. 

described studies in which infection of NK sensitive cells by strains of 

adenovirus known to decrease MHC class I molecule expression 

greatly enhances cytotoxicity (3). In general, target cell MHC class I 

antigen expression correlates with resistance to NK cell-mediated 

lysis (24). Thus, the potential role of MHC gene products as signal 

structures altering recognition by NK cells remains controversial (3). 

Two models originally proposed to explain recognition of MHC 

class I deficient cells in murine hybrid resistance are applicable to 

the human alloreactive NK cell clones discussed above (25). They are 

called 'effector inhibition' and “target interference? In the effector 

inhibition' model, NK cell-surface molecules engage MHC class I 

antigens which consequently deliver inhibitory signals, requiring NK 

cell receptors that distinguish between different MHC class I alleles. 

In target interference, the NK cell receptors for specific antigens 

would not bind to target structures as they are masked by 

autologous MHC class I alleles. 'Target interference’ requires that NK 

cell receptors recognize different non-MHC target structures, and that 

MHC class I alleles can distinguish and interact with different target 

structures. 

Supporting the effector inhibition' model is the hybrid 

resistance phenomenon, the MHC-linked, NK cell mediated rejection 

of homozygous parental bone marrow grafts by heterozygous Fj 

irradiated mice. Studying scid/scid mice challenged with H-2 

homozygous bone marrow cells that are either Hh-1+ or Hh-1", 

Murphy et al. presented evidence that these noncodommantly 

inherited histocompatibility determinants may be specifically 

recognized by NK cells, leading to graft rejection (3). 
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These models are not mutually exclusive and the 'masked' 

nonself determinant in the target interference model might be a 

polymorphic, MHC-encoded Hh antigen (25). In both models, a 

somatic, MHC-controlled determination of the NK cell receptor 

repertoire would be necessary for self-tolerance. This is supported 

by studies on human alloreactive NK cell clones, and by studies of 

hybrid resistance, H-2 transgenic and beta2-m knockout mice (25). 

The studies on human alloreactive NK clones, as well as mouse 

hybrid resistance and transgenic studies, stress the non¬ 

responsiveness to self and the reactivity to qualitatively MHC- 

mismatched targets (25). Studies of transgenic mice provided 

evidence that MHC class I genes regulate the NK repertoire of 

transplant recipients as well as the NK susceptibility of grafted cells 

(25). Bone marrow cells from gene "knockout" mice indicate that loss 

of MHC class I expression leads to NK sensitivity (25). 

Karlhofer et al. reported that NK cells with a surface molecule 

(LY-49) that specifically interacts with the peptide-binding domains 

of the MHC class I alloantigen do not lyse cells with the MHC domain, 

despite efficient spontaneous lysis by Ly-49‘ effector cells (24). In 

order to characterize NK cell-mediated specificity, Ciccone et al. 

studied the target cells to determine that susceptibility to lysis is 

inherited in an autosomal recessive fashion (26). They found that 

lysis of normal allogeneic cells by NK cells can be clearly 

distinguished from conventional non-MHC restricted lysis of tumor 

cells (26). While cloned NK cells specifically lysed appropriate 

normal allogeneic cells, the lysis of tumor target cells was clearly 

unrelated to this phenomenon (26). 

Even so, most research supports that hypothesis that specific 

NK killing is non-MHC restricted. Regarding antigens seen by NK 

cells, it is agreed that the expression of either class I or class II MHC 

gene products on target cells is not required for the development of 

cytotoxicity. Suzuki et al. showed that antibodies to HLA class I, or 

HLA-DR had no effect on the lysis of target by either NK killing (of 

K562) or specific NK killing (of stimulator lymphoblastoid cell line) 

(19). 





What then, could be the nature of the structures expressed on 

non-MHC restricted NK cells conferring upon those cells the capacity 

to recognize their targets? Little is known about the molecules 

involved in non-MHC-restricted killing. Several theories have been 

postulated. First, non-MHC-restricted killing may be mediated by 

multiple cell interaction/adhesion molecules present on the cell 

surface interacting with their natural ligands on the target cell. 

Selectivity of NK cells might be determined by the relative 

expression of several cell surface molecules and receptors, with no 

single molecule playing a unique and essential role (6). Such 

molecules include CD11/CD18, CD2, and CD45 present on NK cells. 

Sufficient engagement of one or more of these molecules could result 

in NK cell activation and target cell death (27). 

The surface molecules of the CD! 1/CD 18 family appear to play 

important functional roles in NK cell killing. Patients with selective 

deficiency of either are deficient in NK cell activity, which is 

probably a consequence of inability to bind target (6). CD56 may 

play an accessory role as a mediator of nonspecific adhesion between 

allospecific NK effectors and their targets. However, given the 

existence of multiple isoforms, the variable expression of these 

isoforms on allospecific NK lines, and the failure of any of anti-CD56 

mAbs to affect the lysis by NK cells of "nonspecific" targets, such as 

K562, the likelihood that CD56 plays an accessory role as a mediator 

of nonspecific adhesion is poor (2). 

Laminin, which increases on the NK cell surface upon 

stimulation with IL-2, may act in prolonging lysis (6). Schwarz and 

Hiserodt demontrated that IL-2 activated NK cells which generate 

broadly reactive non-MHC restricted cytotoxicity express laminin¬ 

like molecules on their surface while cells not expressing these 

activities do not appear to express such structures (28). 

Furthermore, anti-laminin antibodies block cytotoxicity at a 

postbinding stage, without inhibiting NK-target cell interaction (6). 

Another theory is that non-MHC restricted specificity may be 

conferred by NK cell-specific 'Teceptor(s)" that interact with specific 

moieties expressed on NK-sensitive target cells. Non-MHC-restricted 

killing of K562 leukemia cells by CTLs could be inhibited by 





antibodies to CD3/TCR, suggesting that these cells may recognize 

target via the CD3/TCR receptor (5). Although an NK target 

recognition structure has not been identified, several molecules have 

been described that are NK cell-specific and appear to modulate NK 

cell-mediated killing, including two on human NK cells (27). 

Moretta et al. identified functional surface molecules which are 

expressed variably within NK cell clones and presence of one 

combination of these markers correlated with NK cell ability to 

mediate specific lysis of normal allogeneic cells (29). This study 

implicated the involvement of one molecule, EB6, in specific NK cell 

recognition. However, other NK clones possessing the EB6 molecule 

did not lyse the specific target, further complicating the 

interpretation of the molecule's significance. 

Moretta et al. also described GL183, a cell surface molecule 

present on a phenotypically stable subset of NK cells whose cytolytic 

behavior is modulated by anti-GL183 mAb (9). However, GL183 

probably acts more as an regulator of function and is less likely to be 

involved in alloantigen-specific recognition as it is invariant in 

structure (2) and is not associated exclusively with NK activity (18). 

CD2 and CD 16, which have been shown to mediate signal 

transduction and activation of cytoxic mechanisms, are unlikely 

candidates for the same reasons (2) and that mAbs directed against 

them fail to inhibit recognition and lysis of NK-susceptible target 

cells (30). 

Monoclonal antibodies specific for CD45 have been reported to 

inhibit NK cell lysis of selected tumor cells, suggesting a possible role 

in conferring NK specificity, however CD45 is not NK cell-specific, as 

it is expressed on the majority of hematopoietic cells (30). 

CD56, of which at least four distinct isoforms have been found, 

exist variably on allospecific NK lines (2). Two mAbs, which by 

immunoprecipitation analysis revealed they recognized distinct 

molecular isoforms of CD56, were generated that bound selectively to 

the majority of CD3", CD16+, CD56+ lymphocytes. They inhibited the 

lysis of specific allogeneic target cells by a panel of alloreaetive NK 

lines, without affecting the ability of these cells to kill the classical 

NK target K562 (2). The role of CD56 in NK killing is incompletely 





understood, however, the finding of multiple CD56 isoforms on NK 

cells is consistent with the hypothesis that these isoforms constitute 

an allorecognition apparatus with limited heterogeneity. In studies 

by Nitta et aL, however, the contribution of CD56 to NK cell 

cytotoxicity and binding could be demonstrated only when the target 

cells also express CD56 (31). This would limit the target cell 

population of CD56 mediated toxicity to neural and muscle cells, 

which contain the N-CAM isoform, and other CD56 containing tissues. 

In the current study, I attempted to further characterize 

membrane antigens on the surface of NK cells which are involved in 

alloantigen target recognition. Previously this lab created NK cell 

lines and clones against RPMI8866, an immortalized B cell line, which 

preferentially lysed the stimulating B cell line and were minimally 

cytotoxic for a third party of autologous B cell targets (Bender, 

unpublished data). A monoclonal antibody called C8, also created in 

this lab, was specific for a surface molecule on RPMI8866 and, when 

incubated in cytotoxicity assays, blocked killing of the RPMI8866 

target cell but not of K562. In fact, there were CDS', CD3", CD16+, 

CD56+ RPMI8866-stimulated NK clones whose lysis of RPMI8866 

cells was 100% inhibited by monoclonal C8. From these data, it was 

concluded that RPMI8866 cells are specifically recognizable NK 

targets, and that the molecule recognized by C8 is a target ligand on 

the B cell which binds to a putative NK receptor. 

My project was directed at proving the hypothesis that the NK 

cells generated by stimulation with these B cells do have a receptor 

structure that enables them to recognize and specifically lyse these 

targets. Murine monoclonal antibodies specific for CD3", CDS', CDS' 

NK cells were generated and screened for specificity to the activated 

NK cell and effect on NK cell behavior in cytotoxicity assays. 

Antibody binding was measured on fresh NK cells versus NK cells 

activated by co-culture with RPMI8866. Cytotoxicity assays 

compared the effect of antibody on NK killing of the specific target, 

RPMI8866 B cells, with general cytotoxicity of K562. The results 

support the hypothesis that NK cells have surface molecules which do 

confer specificity and, when blocked by antibody, inhibit alloantigen 

target recognition. 





METHODS 

Isolation of CDS', CDS', CD8~, CD16+, CD56+ Lymphocytes. Peripheral 

blood mononuclear cells were isolated by Ficoll-Hypaque (Sigma, St. 

Louis, MO) gradient centrifugation and were monocyte and B cell 

depleted by plastic adherence followed by passage over nylon wool 

columns. To obtain CD3", CD5', CD8" cells, cells devoid of monocytes 

and B cells were incubated with anti-CD3 (7D6) mAb for 20 min. at 

4°C, washed twice, and applied to plastic petri dishes (Becton- 

Dickenson #1005) (which were precoated for at least twenty min. 

with 10 pg/ml goat anti-mouse IgG in Tris-HCl, pH 9.5, and washed 

with PBS) for 70 min. at 4<>C. (panning). Nonadherent cells were 

retrieved by gently washing the plates with cold PBS 1% FBS. They 

were then incubated with anti-CD5 (SI.6) mAb and panned on anti¬ 

mouse IgG to remove any residual CD5+ cells. Nonadherent cells 

were retrieved and incubated with anti-CD8 (3B5) mAb and panned 

on anti-mouse IgG to remove any residual CD8+ cells. The resultant 

lymphocyte population contained >90% CD56+ and <1% CD3+ cells by 

flow cytofluorometric analysis. 

Production of 1F7 and 1F8 mAbs. A 6-wk-old female BALB/c mouse 

was immunized with CD3-, CD5-, CD8-, CD16+, CD56+ NK cells. 

Immunizations were performed using Ribi adjuvant (Ribi 

Immunochem Research, Inc., Hamilton, MT) according to the 

manufacturer's protocol. The immunization schedule consisted of 3 

intraperitoneal injections of 10^ of the relevant cells in 0.5 ml. PBS. 

After the third immunization, the mouse was sacrificed humanely by 

cervical dislocation and splenectomized. The sensitized splenocytes 

were fused with SP2/0 murine myeloma cells (non-Ig producer), 

thus creating hybrid cells which produce antibodies directed against 

the immunizing NK cells. The hybridomas were placed in a limiting 

dilution, and 1 cell/well was placed in 96-well round-bottom plates 

(Becton-Dickinson, Lincoln Park, NJ). 
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Culture medium. Standard culture medium consisted of RPMI 1640 

(Biofluids, Inc., Rockville, MD or Gibco, Grand Island, NY) 

supplemented with 10% heat-inactivated fetal bovine serum 

(Biofluids), 1% (2mM) L-glutamine, and 1% streptomycin (100 pg/ 

ml)/penicillin (100 U/ml). Medium for NK cell cocultures included 

0,1% 2-Methionine (2-ME). Hybridomas were in HAT medium 

(standard plus 1% hypoxanthine-thymidine, 0.1% aminopterin) for 

first 2 weeks before being switched to HT (without aminopterin) and 

then standard. Hybridomas were grown in standard culture medium 

and split every 2 to 3 days. 

RPMI8866 Coculture. Peripheral blood lymphocytes were isolated on 

Ficoll-Hypaque gradients, and spun once at each 2000, 900, and 700 

rpms for 5, 10, and 15 min., respectively. The fast spin removed 

residual Ficoll, and the two slow spins removed platelets. Cells were 

brought up to a volume of 10^ cells/ml in standard medium plus 2- 

ME. 1 ml was placed in wells of 24-well flat-bottomed multi-well 

plates (Becton-Dickinson, Lincoln Park, NJ). RPMI8866 stimulator 

cells at 4 x 10^ cells/ml were Cs-irradiated at 6000 rads., and 0.5 ml 

was placed into each well. Cocultures were refed on days 7 and 10, 

and harvested on day 14, with about 70% CD3', CD16+, CD56+ cells by 

flow cytofluorometric analysis. Thereafter, the cocultures could be 

prolonged either in their wells or in bulk by refeeding with 

irradiated RPMI8866 stimulator cells at a ratio of 2 x 10^ feeders: 

106 NK cells on a weekly basis. 

Screening of Hybridoma Supernatants. 166 hybridoma supernatants 

were screened on the basis of their ability to bind to activated CD3", 

CD5", CD8‘, CD16+, CD56+ lymphocytes by flow cytofluormetric 

analysis. 123 hybridoma supernatants were also screened for 

staining on RPMI8866 B cells and 99 were tested for antibody 

binding to CD3+ T lymphocytes. 19 predominantly NK cell specific 

antibody secreting hybridomas were then evaluated in cytotoxicity 

assays with RPMI8866 targets. Of these, 2 antibodies were also 

tested in cytotoxicity assays with K562 as targets. When screening 

the hybridomas for antibody recognizing NK cells, the negative 





control antibodies used were HPCG14 (murine irrelevant IgGl) and 

OKT3 (anti-CD3), and the positive control antibodies were W6/32 

(anti-HLA class I) and 3G8 (anti-CD 16). When screening the 

hybridomas for antibody recognizing B cells, the negative control 

antibody used was HPCG14 and the positive control was C8 (anti- 

RPMI8866 cells). When screening the hybridomas for antibody 

recognizing T cells, the negative control antibody used was 3G8 and 

the positive control antibodies were OKT3 and 7D6 (anti-CD3). 

One and Two-color Flow Cytofluorometric Analysis. For surface 

marker analysis, 2 x 10^ cells were stained with the saturating 

amounts of appropriate mAb, and if unconjugated, washed and 

stained with fluoresceinated goat anti-mouse IgG+IgA+IgM(H+L) 

Double Staining Grade (Zymed). Each incubation was for 25 min. on 

ice to prevent cell-surface modulation of Ag. All samples were 

placed in 0.35 ml of staining buffer (PBS 1% BSA 0.1% sodium azide). 

Events were collected on a flow cytometer (FACSort, Becton- 

Dickinson, Mountain View, CA), gated to exclude nonviable cells, and 

analyzed with FACScan Research Software (LYSYS II, Becton- 

Dickinson). Results are expressed as arbitrary normalized 

fluorescence histograms, i.e., number of cells vs. fluorescence 

intensity. 

For two color staining, cells were stained with a FITC- 

conjugated antibody for 10 min. and then a PE-conjugated antibody 

for 15 additional min. before the cells were washed and placed in 

staining buffer. Controls for phenotyping the cells included cells 

stained with an irrelevant antibody bound to FITC and to PE. 

The mAbs used in these and other studies were anti-Leu-4- 

FITC (anti-CD3, AMAC, Inc.), anti-Leu 11-FITC (anti-CD 16, AMAC, 

Inc.), anti-CD56-PE (AMAC, Inc.), Irrel-FITC (Sigma), Irrel~PE 

(Sigma), HPCG14 (murine irrelevant IgGl), OKT3 and 7D6 (anti-CD3), 

SI.6 (anti-CD5), 3B5 (anti-CD8), W6/32 (anti-class I), 3G8 (anti- 

CD16), TS1.22 (anti-CDlla, anti-alpha subunit of LFA-1), C8 (anti- 

RPMI8866), anti-CD56. 

In order to determine whether mAbs 1F7 or 1F8 block binding 

of anti-CD56 antibody, CD3", CD16+, CD56+ lymphocytes were treated 





with 1F7 or 1F8 or anti-CD56 or 3G8 mAbs at 4°C for 30 min., 

washed and then stained with irrelevant PE second step to assess 

background blocking which was zero. The two test mAbs and anti- 

CD56 were incubated on separate NK cells, washed and stained with 

anti-CD56-conjugated PE second step and analyzed as above. 

(FITC=fluorescein isothiocyanate conjugated, PE=phycoerythrin- 

conjugated) 

Supernatant Concentration. Selected supernatants were concentrated 

to 25x with Centriprep-30 Concentrators (Amicon, Inc., Beverly, MA). 

After prerinsing concentrator with deionized water, supernatant was 

placed in concentrator and centrifuged at 2800 rpm for 15 min. 

Filtered supernatant was removed and the concentrator was re-spun 

twice at 2800 rpm for 5 min. each. Retentate was removed with 

syringe and syringe-filtered into aliquots for storage. 

Isotyping and Enzyme-Linked Immunosorbent Assay. Plastic ELISA 

plates were precoated with 1 pg/ml each of goat anti-mouse IgG and 

IgM in a coating buffer and incubated overnight at 4°C. Plates were 

washed twice with PBS 1% BSA 0.1% sodium azide and incubated 

overnight with PBS 3% BSA 0.1% sodium azide filling the wells. 

Plates were washed three times with .05%Tween-20. Test 

supernatants were added and incubated at 4°C 2 hours-overnight. 

Plates were washed three times with .05%Tween-20„ Goat anti¬ 

mouse conjugated alkaline phosphatase second step was added and 

the plate incubated at least 2 hours at room temp. Plates were 

washed three times with .05%Tween-20 and twice with PBS 1% BSA 

0.1% sodium azide. Disodium p-nitrophenyl phosphate (Sigma) 

substrate solution was added. Plates were read at 15 min. intervals 

by an ELISA-plate reader (Dynatech). 

Isotyping of selected antibodies was done using an ELISA- 

based isotyping kit (Southern Biotechnology Assoc., Birmingham, AL). 

Cytotoxicity assay. The most commonly used test of NK cell activity 

in vitro (assay for NK cell cytotoxicity) is the 51(> (sodium 

chromate)-release cytotoxicity assay, in which NK cell-containing cell 





preparations are mixed with a constant number of 51 Cr-labeled 

K562 or other target cells at one or more effector-to-target cell 

ratios, and cell lysis is evaluated, after 3-4 hours of incubation at 

37°C, by measuring the amount of ^Iq- released in the supernatant 

fluid (32). 

Cytotoxicity of NK cells against RPMI8866 cells and K562 cells 

was measured in a 4 h 51cr-release microcytoxicity assay using 96- 

well U-bottomed microplates (Becton Dickinson, Lincoln Park, NJ). 

The target cells were labeled with 75 pCi of Na2*^Cr04 per 1.5 x 10^ 

cells, washed, and seeded into 96-well culture dishes at 5 x 10^ 

cells/well in suspension. Test and irrelevant isotype-matched 

control antibodies at the same approximate concentrations were 

placed in appropriate wells in order to explore the role of cell surface 

molecules in cytotoxicity. Suspensions of effector cells were added to 

quadruplicate wells to give various E/T ratios, ranging from 100:1 to 

0.5:1, in a final volume of 200 jul. After an incubation at 37°C for 4 h, 

150 pi of supernatant was removed from each well and counted in a 

gamma counter to determine experimental release (ER). Spontaneous 

release (SR) was obtained from wells receiving target cells and 

medium only, and maximum release (MR) was obtained from wells 

receiving 1% Triton X-100. The percent cytotoxicity was calculated 

by the following formula: 

cytotoxicity = (ER)-(SR) x 100 

(MR)-(SR) 

SR was 20% of max when RPMI8866 cells were used as a target. SR 

was 7.5% of max when K562 cells were used as a target. 

Experimental replicates consistently varied by <10%. 

All work was performed by the author. Dr. Bender taught all 

experimental protocols and use of equipment, as well as assisting in 

early cytotoxicity assays and the running of FACSort samples in large 

experiments. Jean Wilson and Leslie Tacket instructed me on tissue 

culture technique and preparation of reagents. 





RESULTS 

Activation and proliferation of NK cells. Cell populations enriched in 

activated CD16+, CD56+ lymphocytes were obtained by coculture of 

PBLs with RPMI8866 cells for 2 wk. As shown in Figure 1A for a 

representative coculture, the resulting lymphocyte population was 

70% NK cells and 30% T cells by flow cytometry. Purification of CD3", 

CD8"’ CD16+, CD56+ NK cells was achieved by panning for removal of 

CD3+ T cells as described in Methods. Figure IB shows a phenotype 

representative of the nonadherent cells from a panning after 

incubation with mAb 7D6 (anti-CD3), >99% CD16+, CD56+ NK and 

<0.5% CD3+ T cells. Cells purified in this way were used in 

experiments requiring pure NK cell populations. 

A 

Figure 1. Two-color flow cytometric analysis of stimulated 

lymphocyte phenotype (A) after coculture of PBLs with RPMI8866 

cells; (B) of nonadherent coculture cells following panning with anti- 

CD3 mAb. FL1, recorded in log scale on the x-axis, indicates the 

intensity of FITC staining. FL2, recorded in log scale on the y-axis, 

indicates the intensity of PE staining. 





Evaluation of NK Cytotoxicity. To determine whether these CD3“, 

CD16+, CD56+ NK cells had cytolytic activity, they were tested as 

effectors in 4 h ^lcr-release assays against the original stimulator 

lymphoblastoid cell line, RPMI8866 as well as NK sensitive K562 

cells. As shown in Figure 2, these cells exhibited potent lysis of both 

RPMI8866 and K562 cells which titers with the E : T ratio. 

Effector: Target Ratio 

Figure 2. Cytotoxic activity of RPMI8866-stimulated CD3", CD16+, 

CD56+ NK cells was tested against the original stimulator RPMI8866 

cells and K562 cells. 

Expression of molecules on activated NK cells generated from 

peripheral blood. Among the 166 hybridoma supernatants tested 

against activated CD3", CD8", CD16+, CD56+ lymphocytes and analyzed 

by flow cytometry, 54 had antibody that bound to the NK cells. Of 

those antibodies, 37 also bound to molecules on the surface of B cells, 

and 19 also bound to molecules on the surface of activated CD3+ T 

cells. Of the 54 NK-positive antibody secreting hybridomas, 1 

produced antibody specific for NK cells with no staining of B or T 

cells (Figure 3), 3 which were negative on B cells but were slightly 

positive on T cells (Figure 4), 2 which were negative on B cells but 

very positive on T cells (Figure 5), 1 which was slightly positive on B 
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cells but negative on T cells (Figure 6), 3 which were slightly positive 

on both B and T cells (Figure 7), and 2 which were slightly positive 

on B and very positive on T cells (Figure 8). The rest were moderate 

to very positive on B cells, T cells, or both (data not shown). 
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Figure 3. Staining of mAb 3B8 on NK, B, and T cells. mAb 3B8 

recognizes a surface molecule unique to NK cells. 
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Figure 4. Staining of mAb 2G7 on NK, B, and T cells. This staining is 

representative of the three mAbs which recognize molecules which 

are present on NK cells and slightly on T cells, but absent on B cells. 
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Figure 5. Staining of mAb 4B9 on NK, B, and T cells, which is 

representative of the two mAbs which recognize molecules on NK 

and T cells, and not on B cells. 
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Figure 6. Staining of mAb 3F6 on NK, B, and T cells. The molecule 

recognized by mAb 3F6 is present on NK cells and a subset of B cells. 
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Figure 7. Staining of mAb 3E6 on NK, B, and T cells, which is 

representative of the mAbs which recognize a surface molecule on all 

three cell types. 
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Figure 8. Staining of mAb 3D5 on NK, B, and T cells, which is 

representative of the two mAbs which recognize a surface molecule 

expressed highly on NK cells, moderately on T cells, and in low 

density on B cells. 
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Figure 9. Staining of mAbs A) 1F7 and B) 1F8, which, from data 

obtained by following experiments, were found to be of interest. 

Initially, it was concluded that mAb 1F7 recognized a surface 

molecule on NK, B, and T cells. However, it was later determined that 

mAb 1F7 was of IgM isotype (data to follow). This makes its staining 

pattern somewhat difficult to interpret, because an irrelevent 

antibody of IgM isotype was not used in the early screening 

experiments. Thus, the small amount of reactivity with B and T cells 

may be a consequence of nonspecific binding. This requires further 

evaluation. Monoclonal 1F8 recognizes a surface molecule which is 

on NK cells and less on T cells, but not on B cells. 
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Figure 10A, B, and C shows the controls for the staining of 

CD3-, CD8", CD16+, CD56+ NK cells, RPMI8866 B cells, and CD3+, CD16' 

T cells, respectively as described in Methods. 

A 

B 

C 

NK 

i HPCC14 0KT3 3B5 i 
i 

3G3 

Figure 10. One-color flow cytometric analysis of cell surface 

antigens on three cell types. Positive and negative controls used for 

staining (A) NK cells; (B) B cells; and (C) T cells. In experiments 

using CD3", CD8~, CD16+, CD56+ NK cells obtained as described in 

Methods, HPCG14, OKT3, and 3B5 were negative controls, while 3G8 

was the positive control. For RPMI8866 B cells, HPCG14 was 

negative, while C8 was positive. For CD3+, CD 16' T cells, 3G8 was 

negative, while OKT3 and 7D6 were positive. 





Isotyping of mAbs. Using an ELISA-based isotyping kit, mAh 1F7 

and 1F9 were determined to be IgM, while mAbs 1E8, 1F8, 2G7, 3B8, 

and 3E6 were found to be of IgGl isotype. The negative controls 

were standard medium and PBS 1% BSA 0.1% sodium azide. Positive 

control for IgGl was mAb 3G8 (anti-CD 16). Positive control for IgG2a 

was OKT3 (anti-CD3). Positive control for IgM isotype was mAb 

1H12, an endothelial cell specific antibody. The results are shown in 

Table 1. 

Table 1. Isotype of mAbs 

media 

IgGl 

-0.006 

1% BSA -0.006 

3G8 +0.083 

OKT3 +0.004 

1H12 -0.002 

1E8 +0.090 

1F7 +0.005 

1F8 +0.069 

1F9 +0.006 

2G7 +0.160 

3E6 +0.069 

IgG2 IgM 

-0.005 -0.006 

-0.005 -0.006 

-0.004 -0.003 

+0.118 -0.005 

+0.032 +0.111 

-0.001 -0.001 

-0.001 +0.121 

-0.002 +0.001 

-0.002 +0.165 

+0.011 -0.004 

-0.002 +0.004 

In experiments requiring isotype-specific controls for mAbs 1F7 and 

1F8, mAbs 1H12 and 2G7 were used, respectively. 

Functional role of molecules bound by mAb in cytotoxicity by 

activated NK cells. The functional involvement of molecules bound 

by these mAbs was tested. CD3', CD16+, CD56+ NK cells were tested 

for cytotoxic activity against RPMI8866 cells in the presence and 

absence of mAbs. The results of these experiments are shown in 

Figure 11, A and B. Although cytotoxic activity was high against the 

target tested, killing of the RPMI8866 target was inhibited in the 

presence of mAbs 1F7 and 1F8 at the 100:1 and 33:1 E:T ratios. 

mAb 1F7 blocked 14% of killing at the 100:1 ratio and 54% of killing 
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at the 33:1 ratio. mAh 1F8 blocked 13% of killing at the 100:1 ratio 

and 36% of killing at the 33:1 ratio. 

No significant effects on RPMI8866 target cell killing were 

noted when using the other antibodies also reactive with CD3", 

CD16+, CD56+ NK effector cells (mAbs 3D7, 1F9, 4B9, 3F6, 3E6, 4D10, 

3D5, 3E2) or in the presence of the isotype matched controls (shown 

in figures). Anti-LFA-1 antibody was used as a positve control which 

blocks killing by interfering with target cell adhesion. This screening 

procedure led to the identification of two hybridomas which secrete 

antibodies (mAbs 1F7 and 1F8) which inhibit the cytolytic activity of 

the NK cells against their original stimulator RPMI8866. 

A 

1F7 

-O" 

RPMI8866 + 1F7 mAb 

RPMI8866 + IgM mAb Control 

RPMI8866 + anti-LFA-1 mAb 

B 
1F8 

i*-1 i i i i 
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Effector: Target Ratio 

O- 

RFMI8866+ 1F8 mAb 

RPMI8866 + IgGl mAb Control 

RPMI8866 + anti-LFA-1 mAb 

Figure 11. Partial inhibition of NK cell cytotoxicity of RPMI8866 

stimulator cells by mAbs (A) 1F7 and (B) 1F8. 
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Demonstration of Allogeneic target recognition. In order to 

determine whether these mAbs were blocking NK killing in general, 

as opposed to allospecific killing, cytotoxicity assays were carried out 

with both RPMI8866 cells and K562 cells as targets in the presence 

of the mAbs and appropriate control mAbs. Although significant 

inhibition was achieved against killing of the RPMI8866 target as 

shown in Figure 11, the same antibodies at the same concentration 

did not significantly block killing of K562 at any of the effector : 

target ratios (Figure 12, A and B). This led to the identification of 

two hybridomas which secrete antibodies (mAbs 1F7 and 1F8) which 

inhibit the cytolytic activity of the NK cells against their original 

stimulator RPMI8866 but not of K562. That is, there appears to be a 

specificity to the antibody inhibitory effects. 

A 
1F7 

Effector: Target Ratio 

B 
1F8 

■O— 

K562 + 1F7 mAb 

K562 + IgM mAb Control 

K562 + anfl-LFA-1 mAb —O—- 

K562 + 1F8 mAb 

K562 + IgGl mAb Control 

K562 + anti-LFA-1 mAb 

Figure 12. No effect on NK cytotoxicity of classical NK target K562 

by mAbs (A) 1F7 and (B) 1F8. 
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Are mAbs 1F7 and 1F8 recognizing CD56? Once functional 

significance was established for the surface molecules recognized by 

mAbs 1F7 and 1F8, more information regarding what they may be 

was desired. A flow cytometric experiment was completed in an 

attempt to rule out the possibility that mAbs 1F7 and 1F8 are 

recognizing isoforms of CD56, as anti-CD56 mAbs have failed to affect 

the lysis by NK cells of "nonspecific" targets, such as K562, while 

inhibiting the lysis of specific allogeneic target cells by a panel of 

alloreactive NK lines (2). 

In this experiment, mAbs 1F7 and 1F8, if not recognizing CD56, 

should have no effect on the staining of anti-CD56 PE or irrelevant 

PE. As a positive control, CD56 should block the staining of anti-CD56 

PE without blocking irrelevant PE. As seen in Figure 13, anti-CD56 

did not block the binding of anti-CD56 PE. Three possibilities explain 

this. First, the titer of the anti-CD56 was not known, and the amount 

used may have been too low to saturate cell surface molecules. 

Second, as previously discussed, there are multiple isoforms of CD56. 

These mAbs came from different hybridomas and may be 

recognizing different isoforms. Third, within isoforms, there are 

multiple non-crossblocking epitopes that these different mAbs could 

be recognizing. 

Monoclonal antibody 1F8 did not affect the binding of anti- 

CD56 PE. Monoclonal antibody 1F7, however, appears to have 

decreased the binding of anti-CD56 PE, lowering its mean 

fluorescence from >100 to <50. This may be due to nonspecific 

blocking of the anti-CD56 PE, and may be a result of the bulky 

pentameric structure of the 1F7 IgM antibody. Since CD56 is present 

only on NK cells and a minor subset of cytotoxic T cells, it is unlikely 

that mAb 1F8 recognizes CD56 on these cells as the molecule it 

recognizes are present at low densities on T cells (Figure 5). 

Furthermore, neither the RPMI8866 or K562 target cells express 

CD56, a requisite if CD56 mediated cytotoxicity is assumed to be the 

cause, according to the previously mentioned studies by Nitta et al. 

(32). This requirement, however, is disputed by Suzuki et al. (2). 
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Figure 13. Monoclonal antibody blocking experiment. NK cells 

were treated with mAbs 1F7, 1F8, or CD56, before treatment with, in 

one sample, irrelevent PE and, in another sample, CD56 PE. 
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DISCUSSION 

NK lymphocytes have the ability to lyse target cells without 

apparent prior sensitization or MHC gene restriction (1-4). Despite 

the fact that NK cells have a limited target cell range, no specific NK- 

associated surface receptor or target ligand has yet been defined. 

Traditionally, it has been concluded that these cells, in contrast to T 

or B cells, lack a highly refined antigen recognition system, and are 

only nonspecific effectors. However, scrutiny of NK cytotoxic activity 

reveals heterogeneity of both NK recognition and target structrures 

(33). In addition, murine NK cells have been shown to mediate the 

genetically restricted hybrid resistance to parental bone marrow 

allografts (3), a phenomenon that appears directed at the products of 

noncodominant hematopoietic histocompatibility genes. More 

recently, evidence has been provided that human NK cells are 

capable of alloantigen recognition (19,20). Therefore, on the basis of 

these observations it would appear that, contrary to previous 

opinion, at least a subset of NK cells have the ability to distinguish 

target cells. 

The identification of surface structures involved in target cell 

recognition by NK cells has become an area of active investigation. 

Candidate markers must display a distribution restricted to 

functionally relevant effector cells, and antibodies directed against 

such putative receptors must alter the cytotoxic activity of such cells 

(3). In the present study, using NK cells stimulated with the NK- 

sensitive RPMI8866 B cell line as an immunogen, two mAbs (1F7 and 

1F8) were generated which inhibit lysis of RPMI8866 cells by CD3-, 

CD16+, CD56+ NK cells without affecting the ability of these cells to 

kill the classical NK target cell K562. 

Double fluorescence and FACS analysis showed that 1F7+ and 

1F8+ cells were consistently included in the CD3", CD16+, CD56+ cell 

populations. 1F7 mAb recognizes a surface molecule on these NK 

cells, and only questionably on B or T cells. The molecule recognized 

by mAb 1F8 is on NK and a percentage of T cells, while absent on B 

cells. It is not known if the 1F8+ T cells detected in activated 

cultures arise from expansion of a small number of positive cells 
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present in the peripheral blood, and/or if the molecule(s) is induced 

by activation of previously negative T cells. 

What do these mAbs recognize, and are they truly novel? 

Given that mAbs 1F7 and 1F8 inhibit target cell lysis, it is unlikely 

that they recognize CD2 or CD 16, since both anti-CD2 and anti-CD 16 

mAbs enhance NK-cell mediated killing (9,30). Studies using mAb 

against CD8, a surface structure shared by some NK cells and T cells, 

have failed to alter the cytotoxic activity of NK cells or the activity of 

these cells after activation by IL-2 (28). Unlike the molecules 

recognized by mAbs 1F7 and 1F8, CD2 is present on all T cells. 

Additionally, the patterns of antibody staining by anti-CD 16 and 

anti-CD8 differ from that of both anti-lF7 and anti-lF8 (Figures 9 

and 10). Monoclonal antibodies specific for CD45 have been reported 

to inhibit NK cell lysis of selected tumor cells, however, as it is 

expressed on virtually all hematopoietic cells except mature 

erythrocytes and their immediate precursors (30), it is unlikely to be 

recognized by mAbs 1F7 or 1F8. Monoclonal antibodies 1F7 and 1F8 

clearly do not recognize CD11/CD18 (LFA-1), because they do not 

block killing of K562 and, again, are subset-restricted. 

Immunofluorescence analysis of the NK cells could not refute 

the possibility that the antigenic epitopes recognized by these two 

mAbs are closely associated with, if not identical to CD56. Although 

mAb 1F8 does not block the staining pattern of anti-CD56 mAb, it is 

possible that it recognizes a non cross-blocking epitope. This may 

also be the case for mAb 1F7. It does affect the anti-CD56 mAb 

staining, but it is unclear that this effect is specific and not the result 

of non-specific blocking by a large IgM antibody. Using an irrelevent 

IgM antibody in this experiment would resolve this issue. The 

question of whether these mAbs recognize and block an epitope on 

NK CD56 is interesting because of the controversy regarding the 

function of CD56, and its significance with respect to the NK-target 

cell interaction. 

In the study by Nitta et ah, CD56 was reported to be involved 

in cytotoxic activity and only homotypic adhesion between NK cells 

and CD56+ malignant neural cells, because targets without CD56 were 

not susceptible to lysis by NK cells (31). In contrast, results obtained 





by Suzuki et al. suggests that CD56, of which they have detected at 

least four isoforms, is directly involved in NK cell lysis of alloantigen- 

specific targets (2). In their study, the lymphoblastoid cell line 

targets lacked any detectable expression of CD56, indicating that the 

CD56 isoforms on the NK cell effectors mediate a heterotypic rather 

than a homotypic interaction between NK cells and their targets. 

They used the finding of multiple CD56 isoforms on NK cells, the 

variable expression of these isoforms on allospecific NK lines, and the 

failure of any of their anti-CD56 mAbs to affect the lysis of NK cell of 

“nonspecific” targets such as K562 cells, to conclude that the CD56 

isoforms constitute an allorecognition apparatus. 

There is considerable information still to be obtained regarding 

these molecules. Plans for the future include: 1) Testing absolute 

specificity for the stimulator cells. Cold target inhibition studies 

could be done to confirm the specificity of the NK cells for the 

RPMI8866 stimulators. To prove that they truly block allospecific 

killing would require that they be tested with NK cells against a 

panel of target cells. 2) Phenotyping of additional cells for surface 

antigens recognized by mAbs 1F7 and 1F8. For example, staining 

freshly isolated T cells would answer the question of whether the 

1F8+ T cells detected in activated cultures arise from expansion of a 

small number of positive cells present in the peripheral blood, 

and/or if the molecule(s) is induced by activation of previously 

negative T cells. Generating NK clones and screening them for 

recognition by these mAbs would provide more information 

regarding heterogeneity of expression of the molecules they 

recognize. 3) Evaluating the possible role of molecules recognized by 

mAbs 1F7 and 1F8 in signal transduction. This can be accomplished 

by measuring Ca^+ fluxes resulting from mAb crosslinking. 

Assessing the ability of NK cells to specifically lyse the hybridoma 

cells that produce antibodies (mAbs 1F7 and 1F8) against a candidate 

triggering molecule on the effector cells, known as reverse ADCC, can 

also be used as a sensitive test for the ability of the molecule to 

transduce signals into the cell. For example, cytotoxic T cells 

specifically lyse anti-CD3 mAb-producing hybridomas, and human 

NK cells lyse anti-CD 16 mAb-producing hybridomas (27) and anti- 





CD56 mAb producing hybridomas (2). 4) Biochemistry. Immuno- 

precipitation and/or western blotting would be necessary to assess 

the molecular mass and extent of giycosylation of the surface 

antigens recognized by these mAbs. In order to conclude with 

certainty that mAbs 1F7 and 1F8 do or do not recognize CD56, their 

target ligand(s) would need to be immunoprecipitated and further 

characterized. And ultimately, 5) expression cloning from an 

RPMI8866-stimulated NK cell cDNA library, 6) sequencing, 7) 

transfection of cDNA into cells lacking NK activity, and 8) abrogation 

of expression of proposed cDNA in NK cells with antisense cDNA 

vectors. 

With this information in hand, it would be clarified whether 

the molecules recognized by mAbs 1F7 and 1F8 play a primary 

(receptor) or a secondary (accessory) role in antigen-specific killing. 

One would predict, if a molecule is a receptor involved in recognition 

and mediation of cell death by NK cells, that: 1) it would be present 

only on those cells that mediate this function; 2) absence of the 

molecule would be associated with lack of function; 3) the 

engagement of the molecule by its antibody would modulate its 

function; 4) affinity purified antibodies which block target killing 

could do so without disrupting primary target cell adhesion; 5) 

transfection of specific cytotoxic cells with the gene or cDNA of the 

molecule would enable them to mediate non-MHC-restricted killing; 

and 6) the ligand for the receptor would be expressed on appropriate 

target cells (27,28). 

At present it is only known that the molecules recognized by 

mAbs 1F7 and 1F8 fulfills two of these criteria. They are present 

only on those cells that lyse NK-sensitive targets and this killing is 

partially inhibited, when engaged by their respective antibodies. 

Taken together, these data suggest that 1F7 and 1F8 surface 

molecules may exert a role in the activation or regulation of the 

cytolytic function of human NK cells. The antigenic determinant 

recognized by 1F7 or 1F8 mAb could represent a "receptor" molecule 

uniquely expressed on NK cells. Determining whether either 

molecule is a true NK recognition receptor will require additional 

confirmation either by expression cloning, sequencing, and 
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transfection of a full-length cDNA into cells lacking NK activity or by 

abrogation of expression of the proposed receptor in NK cell lines or 

clones with antisense cDNA vectors. 





34 

ENDNOTES 

1. Abbas, A. K., A. H. Lichtman, and Pober, J. S. 1991. Cellular and 
Molecular Immunology. W.B. Saunders Co., Philadelphia. 256-58. 

2. Suzuki, N., T. Suzuki, and E. G. Engleman. 1991. Evidence for the 

involvement of CD56 molecules in alloantigen-specific 
recognition by human natural killer cells. The Journal of 
Experimental Medicine. 173:1451-1461. 

3. Hercend, T., and R. E. Schmidt. 1988. Characteristics and uses of 
natural killer cells. Immunology Today. 9:291-293. 

4. Herberman, R. B., and J. R. Ortaldo. 1981. Natural killer cells: 
their role in defenses against disease. Science (Wash. DCj. 
214:24-30. 

5. Lanier, L. L., J. H. Phillips, J. Hackett, Jr., M. Tutt, and V. Kumar. 
1986. Natural killer cells: definition of a cell type rather than a 
function. The Journal of Immunology. 137:2735-2739. 

6. Trinchieri, G. 1989. Biology of natural killer cells. Advances in 
Immunology. 47:187-376. 

7. Ritz, J., R. E. Schmidt, J. Michon, T. Hercend, and S. F. Schlossman. 

1988. Characterization of functional surface structures on human 
natural killer cells. Advances in Immunology. 42:181-201. 

8. Ritz, J. 1989. The role of natural killer cells in immune 
surveillance. The New England Journal of Medicine. 320:1748. 

9. Moretta, A., G. Tambussi, C. Bottino, G. Tripodi, A. Merli, E. 
Ciccone, G. Pantaleo, and L. Moretta. 1990. A novel surface 

antigen expressed by a subset of human CD3"CD16+ natural 
killer cells: role in cell activation and regulation of cytolytic 
function. The Journal of Experimental Medicine. 171:695-714. 

10. Bender, I. R., L. Tackett, and R. Pardi. 1991. Endothelial cell class 
II HLA expression induced by cytotoxic lymphocytes is 
regulated by genetically determined differences in CD 11 A/CD 18. 
Transplantation Proceedings. 23:99-101. 

11. Pardi, R., J. R. Bender, and E. G. Engleman. 1987. The Journal of 

Immunology. 139:2585. 
12. Bender, J. R., R. Pardi, J. Kosek, and E. G. Engleman. 1989. 

Evidence that cytotoxic lymphocytes alter and traverse 
allogeneic endothelial cell monolayers. Transplantation. 
47:1047-1053. 





13. Pardi, R., J. R. Bender, C Dettori, E. Giannazza, and E. G. Engleman. 
1989. Heterogeneous distribution and transmembrane signaling 
properties of lyphocyte function-associated antigen (LFA-1) in 
human lymphocyte subsets. The Journal of Immunology. 
143:3157-3166. 

14. Nemlander, A., E. Saksela, and P. Hayry. 1983. Are "natural 
killer" cells involved in allograft rejection? European Journal of 

Immunology. 13:348-350. 
15. Weber, B., M. Welte, C. Hammer, I. Stadler, C. Roller, C. Caspo, W. 

Land, G. Hillebrand, and M. Castro. 1984. Increase of natural 
killer cells in rejecting kidney grafts. Transplantation 
Proceedings. 16:1177. 

16. Fossum, S., and B. Rolstad. 1986. The roles of interdigitating cells 
and natural killer cells in the rapid rejection of allogeneic 
lymphocytes. European Journal of Immunology. 16:440-450. 

17. Harris, D. T., W. W. Travis, and H. S. Koren. 1989. Induction of 
activation antigens on human natural killer cells mediated 
through the Fc-gamma receptor. The Journal of Immunology. 
143:2401. 

18. Frey, J. L., T. Bino, R. R. S. Kantor, D. M. Segal, S. L. Giardina, J. 
Roder, S. Anderson, and J. R. Ortaldo. 1991. Mechanism of target 
cell recognition by natural killer cells: characterization of a novel 

triggering molecule restricted to CD3- large granular 
lymphocytes. The Journal of Experimental Medicine. 172:1527. 

19. Suzuki, N., E. Bianchi, H. Bass, T. Suzuki, J. Bender, R. Pardi, C. A. 
Brenner, J. W. Larrick, and E. G. Engleman. 1990. Natural killer 
lines and clones with apparent antigen specificity. The Journal of 
Experimental Medicine. 172:457-462. 

20. Ciccone, E., O. Viale, D. Pende, M. Malnati, R. Biassoni, G. Melioli, 
A. Moretta, E. O. Long, and L. Moretta. 1988. Specific lysis of 

allogeneic cells after activation of CD3' lymphocytes in mixed 
lymphocyte culture. The Journal of Experimental Medicine. 
168:2403-2408. 

21. Bender, J. R., R. Pardi, and E. Engleman. 1990. T-cell receptor 

negative natural killer cells display antigen-specific cytotoxicity 
for microvascular endothelial cells. Proceedings of the National 
Academy of Science USA. 87:6949-6953. 

22. Allavena, P., and J. R. Ortaldo. 1984. Characteristics of human NK 

clones: target specificty and phenotype. The Journal of 
Immunology. 132:2363-2369. 





36 

23. Ciccone,, E., D. Pende, O. Viale, C. DiDonato, G. Tripodi, A. M. 
Orengo, J. Guardiola, A. Moretta, and L. Moretta. 1992. Evidence 
of natural killer (NK) cell repertoire for (alio) antigen 
recognition: definition of five distinct NK-determined 
allospecificities in humans. The Journal of Experimental 
Medicine. 175:709-718. 

24. Karlhofer, F. M., R. K. Ribaudo, and W. M. Yokoyama. 1992. MHC 

class I alloantigen specificity of Ly-49+ IL-2-activated natural 
killer cells. Nature. 358:66-70. 

25. Moretta, L., E. Ciccone, A. Moretta, P. Hoglund, C. Ohlen, and K. 
Karre. 1992. Allorecognition by NK cells: nonself or no self? 

Immunology Today. 13:300-306. 
26. Ciccone, E., D. Pende, O. Viale, G. Tambussi, S. Ferrini, R. Biassoni, 

A. Longo, J. Guardiola, A. Moretta., and L. Moretta. 1990. Specific 

recognition of human CD3'CD16+ natural killer cells requires the 
expression of an autosomic recessive gene on target cells. The 
Journal of Experimental Medicine. 172:47-52. 

27. Garni-Wagner, B. A., A. Purohit, P. A. Mathew, M. Bennett, and V. 
Kumar. 1993. A novel function-associated molecule related to 
non-MHC-restricted cytotoxicity mediated by activated natural 

killer cells and T cells. The Journal of Immunology. 151:60-70. 
28. Schwarz, R. E., and J. C. Hiserodt. 1988. The expression and 

functional invovement of laminin-like molecules in non-MHC 

restricted cytotoxicity by human leu-19+/CD3" natural killer 
lymphocytes. The Journal of Immunology. 141:3318-3323. 

29. Moretta, A., C. Bottino, D. Pende, G. Tripodi, G. Tambussi, O. Viale, 
A. Orengo, M. Barbaresi, A. Merli, E. Ciccone, and L. Moretta. 

1990. Identification of four subsets of human CD3'CD16 + natural 
killer (NK) cells by the expression of clonally distributed 
functional surface molecules: correlation between subset 
assignment of NK clones and ability to mediate specific 
alloantigen recognition. The Journal of Experimental Medicine. 
172:1589-1598. 

30. Giorda, R., W. A. Rudert, C. Vavassori, W. H. Chambers, J. C. 
Hiserodt, and M. Trucco. 1990. NKR-P1, a signal transduction 

molecule on natural killer cells. Science. 249:1298-1300. 
31. Nitta, T., H. Yagita, K. Sato, and K. Okumura. 1989. Involvement 

of CD56 (NKH-l/Leu-19 antigen) as an adhesion molecule in 
natural killer-target cell interaction. The Journal of Experimental 
Medicine. 170:1757-1761. 





32, Trinchieri, G., and B. Perussia. 1984. Biology of disease: human 
natural killer cells: biologic and pathologic aspects. Laboratory 
Investigation. 50:489-513. 

33. Phillips, W. H., I. R. Ortaldo, and R. B Herberman, 1980. Selective 
depletion of human natural killer cells on monolayers of target 
cells. The Journal of Immunology. 125:2322-2327. 





38 

REFERENCES 

Abbas, A. K., A. H. Lichtman, and Pober, J. S. 1991. Cellular and 
Molecular Immunology. W.B. Saunders Co., Philadelphia. 256-258. 

Allavena, P., and J. R. Ortaldo. 1984. Characteristics of human NK 

clones: target specificty and phenotype. The Journal of 
Immunology. 132:2363-2369. 

Bender, J. R., L. Tackett, and R. Pardi. 1991. Endothelial cell class II 
HLA expression induced by cytotoxic lymphocytes is regulated by 
genetically determined differences in CD 11 A/CD 18. 
Transplantation Proceedings. 23:99-101. 

Bender, J. R., R. Pardi, and E. Engleman. 1990. T-cell receptor 
negative natural killer cells display antigen-specific cytotoxicity 
for microvascular endothelial cells. Proceedings of the National 
Academy of Science USA. 87:6949-6953. 

Bender, J. R., R. Pardi, J. Kosek, and E. G. Engleman. 1989. Evidence 

that cytotoxic lymphocytes alter and traverse allogeneic 
endothelial cell monolayers. Transplantation. 47:1047-1053. 

Ciccone, E., M. Colonna, O. Viale, D. Pende, C. DiDonato, D. Reinharz, 

A. Amoroso, M. Jeannet, J. Guardiola, A. Moretta, T. Spies, J. 
Strominger, and L. Moretta. 1990. Susceptibility or resistance to 
lysis by alloreactive natural killer cells is governed by a gene in 
the human major histocompatibility complex between BF and 

HLA-B. Immunology. 87:9794-9797. 

Ciccone, E., D. Pende, O. Viale, C. DiDonato, G. Tripodi, A. M. Orengo, 
J. Guardiola, A. Moretta, and L. Moretta. 1992. Evidence of natural 
killer (NK) cell repertoire for (alio) antigen recognition: definition 
of five distinct NK-determined allospecificities in humans. The 

Journal of Experimental Medicine. 175:709-718. 

Ciccone, E., D. Pende, O. Viale, G. Tambussi, S. Ferrini, R. Biassoni, A. 
Longo, J. Guardiola, A. Moretta., and L. Moretta. 1990. Specific 

recognition of human CD3"CD16+ natural killer cells requires the 
expression of an autosomic recessive gene on target cells. The 
Journal of Experimental Medicine. 172:47-52. 





3 9 

Ciccone, E., O. Viale, D. Pende, M. Malnati, R. Biassoni, G. Melioli, A. 
Moretta, E. O. Long, and L. Moretta. 1988. Specific lysis of 

allogeneic cells after activation of CD3" lymphocytes in mixed 

lymphocyte culture. The Journal of Experimental Medicine. 
168:2403-2408. 

Colonna, M., E. G. Brooks, M. Falco, G. B. Ferrara, J. L. Strominger. 
1993. Generation of allospecific natual killer cells by stimulation 
across a polymorphism of HLA-C. Science. 260:1121-1124. 

Fossum, S., and B. Rolstad. 1986. The roles of interdigitating cells and 
natural killer cells in the rapid rejection of allogeneic 
lymphocytes. European Journal of Immunology. 16:440-450. 

Frey, J. L., T. Bino, R. R. S. Kantor, D. M. Segal, S. L. Giardina, J. Roder, 
S. Anderson, and J. R. Ortaldo. 1991. Mechanism of target cell 
recognition by natural killer cells: characterization of a novel 

triggering molecule restricted to CD3' large granular 

lymphocytes. The Journal of Experimental Medicine. 172:1527. 

Giorda, R., W. A. Rudert, C. Vavassori, W. H. Chambers, J. C. Hiserodt, 
and M. Trucco. 1990. NKR-P1, a signal transduction molecule on 

natural killer cells. Science. 249:1298-1300. 

Garni-Wagner, B. A., A. Purohit, P. A. Mathew, M. Bennett, and V. 
Kumar. 1993. A novel function-associated molecule related non- 

MHC-restricted cytotoxicity mediated by activated natural killer 
cells and T cells. The Journal of Immunology. 151:60-70. 

Harris, D. T., W. W. Travis, and H. S. Koren. 1989. Induction of 
activation antigens on human natural killer cells mediated 
through the Fc-gamma receptor. The Journal of Immunology. 
143:2401. 

Herberman, R. B., and J. R. Ortaldo. 1981. Natural killer cells: their 
role in defenses against disease. Science (Wash. DC). 214:24-30. 

Hercend, T., and R. E. Schmidt. 1988. Characteristics and uses of 
natural killer cells. Immunology Today. 9:291-293. 





40 

Karlhofer, F. M., R. K. Ribaudo, and W. M. Yokoyama. 1992. MHC class 

I alloantigen specificity of Ly-49+ IL-2-activated natural killer 
cells. Nature. 358:66-70. 

Lanier, L. L., J. H. Phillips, J. Hackett, Jr., M. Tutt, and V. Kumar. 1986. 
Natural killer cells: definition of a cell type rather than a function. 
The Journal of Immunology. 137:2735-2739. 

Lanier, L. L., J. J. Ruitenber, and J. H. Phillips. 1988. Functional and 
biochemical analysis of CD 16 antigen on natural killer cells and 
granulocytes. The Journal of Immunology. 141:3478-3485. 

Moretta, A., C. Bottino, D. Pende, G. Tripodi, G. Tambussi, O. Viale, A. 
Orengo, M. Barbaresi, A. Merli, E. Ciccone, and L. Moretta. 1990. 

Identification of four subsets of human CD3'CD16+ natural killer 
(NK) cells by the expression of clonally distributed functional 
surface molecules: correlation between subset assignment of NK 
clones and ability to mediate specific alloantigen recognition. The 

Journal of Experimental Medicine. 172:1589-1598. 

Moretta, A., G. Tambussi, C. Bottino, G. Tripodi, A. Merli, E. Ciccone, G. 
Pantaleo, and L. Moretta. 1990. A novel surface antigen expressed 

by a subset of human CD3"CD16+ natural killer cells: role in cell 
activation and regulation of cytolytic function. The Journal of 
Experimental Medicine. 171:695-714. 

Moretta, L., E. Ciccone, A. Moretta, P. Hoglund, C. Ohlen, and K„ Karre. 
1992. Allorecognition by NK cells: nonself or no self? Immunology 
Today. 13:300-306. 

Morris, D. G., and H. F. Pross. 1989. Studies of lymphokine-activated 
killer (LAK) cells: I. evidence using novel monoclonal antibodies 
that most human LAK precursor cells share a common surface 
marker. The Journal of Experimental Medicine. 169:717-736. 

Nemlander, A., E. Saksela, and P. Hayry. 1983. Are "natural killer" 
cells involved in allograft rejection? European Journal of 
Immunology. 13:348-350. 





Nitta, T., H. Yagita, K. Sato, and K. Okumura. 1989. Involvement of 
CD56 (NKH-1/Leu-19 antigen) as an adhesion molecule in natural 
killer-target cell interaction. The Journal of Experimental Medicine. 
170:1757-1761. 

Pardi, R., J. R. Bender, C. Dettori, E. Giannazza, and E. G. Engleman. 
1989. Heterogeneous distribution and transmembrane signaling 
properties of lyphocyte function-associated antigen (LFA-1) in 
human lymphocyte subsets. The Journal of Immunology. 

143:3157-3166. 

Pardi, R., J. R. Bender, and E„ G. Engleman. 1987. The Journal of 
Immunology. 139:2585. 

Phillips, W. H., J. R. Ortaldo, and R. B. Herberman. 1980. Selective 

depletion of human natural killer cells on monolayers of target 
cells. The Journal of Immunology. 125:2322-2327. 

Ritz, J. 1989. The role of natural killer cells in immune surveillance. 
The New England Journal of Medicine. 320:1748-1749. 

Ritz, J., R. E. Schmidt, J. Michon, T. Hercend, and S. F. Schlossman. 
1988. Characterization of functional surface structures on human 
natural killer cells. Advances in Immunology. 42:181-201. 

Schwarz, R. E., and J. C. Hiserodt. 1988. The expression and functional 
invovement of laminin-like molecules in non-MHC restricted 

cytotoxicity by human leu-19+/CD3" natural killer lymphocytes. 
The Journal of Immunology. 141:3318-3323. 

Suzuki, N., E. Bianchi, H. Bass, T. Suzuki, J. Bender, R. Pardi, C. A. 
Brenner, J. W. Larrick, and E. G. Engleman. 1990. Natural killer 
lines and clones with apparent antigen specificity. The Journal of 
Experimental Medicine. 172:457-462. 

Suzuki, N., T. Suzuki, and E. G. Engleman. 1991. Evidence for the 
involvement of CD56 molecules in alloantigen-specifie recognition 
by human natural killer cells. The Journal of Experimental 
Medicine. 173:1451-1461. 

Trinchieri, G. 1989. Biology of natural killer cells. Advances in 
Immunology. 47:187-376. 





Trinchieri, G., and B. Perussia. 1984. Biology of disease: human 
natural killer cells: biologic and pathologic aspects. Laboratory 
Investigation. 50:489-513. 

Weber, B., M. Welte, C. Hammer, J. Stadler, C. Koller, C. Caspo, W. Land, 
G. Hillebrand, and M. Castro. 1984. Increase of natural killer cells 
in rejecting kidney grafts. Transplantation Proceedings. 16:1177. 













YALE 
UNIVERSITY 

CUSHING/WHITNEY 
MEDICAL LIBRARY 




	Yale University
	EliScholar – A Digital Platform for Scholarly Publishing at Yale
	1994

	Natural killer lymphocyte membrane antigens involved in allorecognition
	Kevin Elisabeth Bishoff
	Recommended Citation


	Natural killer lymphocyte membrane antigens involved in allorecognition

