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ABSTRACT 

Adenylate cyclase in purified rat luteal plasma membrane 

+2 
preparations was exquisitively sensitive to calcium(Ca ) 

inhibition in both basal and luteinizing hormone(LH)- 

stimulated states. The objective of this thesis is to 

+2 
investigate the mechanism of Ca inhibition of luteal 

adenylate cyclase. 

+2 
Ca in micromolar concentrations inhibited magnesium 

+2 
(Mg )-dependent luteal adenylate cyclase with a half 

+2 
maximal inhibition of 10-20uM. In addition, Ca in 

micromolar concentrations also inhibited fluoride-, 

guanosine triphosphate(GTP)-, and guanyl-5'-yl- 

imidodiphosphate(GppNHp)-stimulated luteal adenylate cyclase 

activity. Inhibition of adenylate cyclase activity by 

+2 
preincubation with Ca at concentrations of 2.5-100uM was 

reversible when 5mM EDTA was subsequently included in the 

+2 
assay. Inhibition by low concentrations of Ca (~<2.5uM) 

was prevented with concentrations of GTP greater than lOmM 

or concentrations of GppNHp greater than luM but only in the 

+2 
presence of LH. Inhibition by Ca at concentrations greater 

than 2.5uM was not prevented even in the presence of very 





11 

+2 
high concentrations of GTP or GppNHp. Addition of 20uM Ca 

did not appear to interfere with the binding of guanine 

nucleotides to luteal membranes, but evidence indicated that 

+ 2 
Ca may interfere with the dissociation of guanine 

nucleotides from the membranes. 

+2 +2 
All three divalent cations, Ca , Mg , and manganese 

+2 
(Mn ) were found to inhibit luteal adenylate cyclase 

activity, but the effective concentrations for their 

+2 
inhibition differed. Ca was inhibitory at concen- 

+2 +2 
trations as low as luM while Mg or Mn was inhibitory 

+2 +2 
only at concentrations greater than 5mM. Both Mg and Mn 

stimulated adenylate cyclase activity at concentrations 

+2 
greater than ImM, but only Mn stimulation occurred in the 

+ 2 
absence of LH. Mg -stimulated luteal adenylate cyclase was 

+2 
sensitive to Ca inhibition in the micromolar range in the 

+2 
presence or absence of LH, while Mn -stimulated enzyme 

+2 +2 
activity was resistant to Ca inhibition. Ca appeared to 

+2 +2 
interact in a competitive manner with Mg but not with Mn 

+2 
on luteal adenylate cyclase activity; increasing Mg 

+2 
concentrations led to an attenuation of Ca -inhibition of 

the enzyme activity. 





The present result showed luteal adenylate cyclase 

+2 
activity was inhibited by Ca in micromolar concentrations 

that would be attainable under physiological conditions. 

+2 
This inhibitory effect of Ca was seen in the presence of 

various adenylate cyclase stimulatory agents with the 

+2 
exception of Mn . Inhibition of LH-stimulated enzyme 

+2 activity by concentrations of Ca less than 2.5uM was 

prevented by GTP and GppNHp but inhibition by higher 

concentrations of Ca +2 . was not blocked by guanine 

nucleotides. Ca+2 did not inhibit Mn+2-sensitive enzyme 

activity at any concentration. Several modes of interaction 

+2 
between Ca and luteal adenylate cyclase are possible. One 

+2 
site of Ca action may be on the regulatory protein(G) 

+2 because inhibition with low concentrations of Ca (<2.5uM)] 

+2 was reversed by GppNHp. Another action of Ca may be on a 

+2 +2 +2 
Mg -sensitive site of adenylate cyclase since Mg and Ca 

+2 showed competitive inhibition. Ca may also act directly 

+2 
on the catalytic subunit site because Ca inhibition at 

concentrations greater than 2.5uM was not prevented by 

+2 
guanine nucleotides and Ca at all concentrations tested 

+2 did not inhibited Mn -sensitive enzyme activity. In 

addition, evidence for the existence of an inhibitory 
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regulatory subunit(G^) in luteal adenylate cyclase was 

+2 
presented. Although a possible role for Ca activation of 

+2 Gi remains speculative, Ca could conceivably regulate G^ 

activation resulting in inhibition of adenylate cyclase. 

Nevertheless, adenylate cyclase activity was shown to be 

exquisitively sensitive to inhibition by very low and 

+2 
physiologically relevant concentrations of Ca . We, 

+ 2 therefore, propose that Ca is an important inhibitory 

cation in the functional regulation of the responses of the 

luteal cells to LH. 
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INTRODUCTION 

In every estrous or menstrual cycle, highly integrated 

endocrine events are necessary for the development and the 

ultimate rupture of the ovarian follicle(s), the release of 

a mature oocyte, and formation of a corpus luteum from the 

remnants of the ruptured follicle. Differentiation and 

regression of the corpus luteum is characteristic of all 

mammalians species, and is highly endocrine-regulated and 

controlled. The nature of the hormonal requirements of the 

corpus luteum varies among species, but LH seems to be a 

common component of the luteotropic hormone complex in all 

species. In the rat, another hormone which appears to 

support luteal function in conjunction with LH is prolactin, 

whereas in the human, LH appears to be the predominant 

luteotropic hormone. 

The endocrine maintenance of the corpus luteum during 

the nonpregnant as well as the pregnant cycle differs 

according to species and has been reviewed recently by 

Hammerstein et al. (1) . In the nonpregnant state of the rat, 

there are two types of luteal phases. An "incomplete" 

luteal phase that is short, ranging from 1-2 days. During 

this "incomplete" luteal phase, the corpus luteum of the 

estrous cycle secretes a small amount of progesterone for 
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one day after ovulation, but the levels decline on the 

following day unless differentiated into a "complete" luteal 

phase either by mating or by cervical stimulation. In the 

rat this stimulus evokes two daily surges of prolactin 

secretion by the anterior pituitary(2) . The prolactin 

surges rescue the corpus luteum and elevates progestin 

secretion. LH is required for progesterone secretion since 

administration of LH antiserum can cause luteal regression 

at this time(3, 4). The rat corpus luteum requires an intact 

pituitary to maintain steroidogenesis, for prolactin action 

early in the life of the rat corpus luteum is necessary for 

acquisition of LH receptors(4) as well as luteal estrogen 

receptors(5). 

It is generally accepted that the steroidogenic action 

of luteinizing hormone(LH) in the luteal cell is mediated by 

an adenylate cyclase linked mechanism(6). In essence, LH 

binds to a membrane receptor, stimulates adenylate cyclase, 

and leads to cyclic AMP(cAMP) accumulation by the corpus 

luteum. Addition of both exogenous cAMP and 

phosphodiesterase inhibitors also stimulate luteal 

steroidogenesis(6). cAMP in the cell is thought to bind to 

protein kinase, and a number of intracellular events are 

initiated, a principal one being an increase in progesterone 

secretion(7). LH was shown to determine the rate and extent 

of progesterone production in a direct, dose-dependent 
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fashion in vivo(8). Rat luteal cells in culture show a 

time- and dose-dependent increase in their responsiveness to 

LH with cAMP accumulation and progesterone synthesis(9). 

Although cAMP mimics the steroidogenic effects of LH, the 

precise relationship between LH, cAMP, and luteal 

steroidogenesis remains unclear. Several investigators have 

shown that LH stimulated cAMP-dependent protein 

phosphorylations may lead to an increase in the availability 

of free cholesterol as substrate for mitochondrial 

pregnenolone production(10) , and in the activities of the 

cholesterol side chain cleavage reaction, the rate limiting 

reaction in steroidogenesis(10 , 11). 

Corpus luteum function is transient and is dependent on 

gonadotropin support for continued function. Regression of 

the corpus luteum, or luteolysis is marked by a sharp 

decrease in serum progesterone and increased secretion of 

its metabolite 20a-hydroxyprogesterone. Biochemical signs 

of luteolysis are followed by histological changes 

indicative of organ involution(9) . Although the 

physiological cause(s) of luteolysis are unclear, 

gonadotropin support is apparently crucial for the function 

of the corpus luteum(12) and an interruption of gonadotropin 

support may induce luteolysis. A decrease in the 

availability of gonadotropin is not involved in the 

initiation of luteolysis since direct measurements of 
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circulating levels of gonadotropin show that no decrease 

precedes luteal regression(9). Since the serum levels of LH 

and prolactin are not decreased at the time of physiological 

luteolysis, local factors must be responsible for the early 

stages of luteolysis. The LH receptor content probably 

ultimately determines the ability of the corpus luteum to 

survive and down regulation of LH receptors is associated 

with luteolysis(13) . A decrease in LH receptors or down 

regulation could be one mechanism for rendering the cells 

insensitive to gonadotropins, but this event is preceded 

many hours by biochemical changes that mark the beginning of 

physiological luteolysis(14) . If prostaglandin(PG) was 

injected into a pseudopregnant rat, the inhibitory effect on 

luteal progesterone secretion was more rapid than a later 

decline in LH receptors, suggesting that the luteolytic 

action of PG was not mediated directly by a decrease in LH 

receptors(14) . 

Although the physiological mechanism of luteal 

regression is unclear, luteolysis in many species can be 

induced by administration of prostaglandin F2a(PGF2q)(15, 

16). There is now abundant evidence that implicate PGF2a as 

the natural luteolysin in many species, including pigs, 

cows, guinea pigs, sheeps, rats, monkey(l, 16-19)—with 

possibly one exception, the human(20). Evidence for a 

physiological role of PGF„ in corpus luteum regression is 
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based upon several observations. First, injection of 

lipid-soluble extracts of uterine endometrium, which were 

later identified to contain prostaglandin F2q, was f°unc3 t0 

cause luteolysis(19). Second, direct administration of 

PGF2a cause luteal regression in a wide variety of 

species(12, 16). Third, active immunization of the animal 

against PGF2q or removal of the uterus in the animal 

prolongs the life span of the corpus luteum(21) . Fourth, 

inhibition of PG synthesis with mdomethacin prolongs the 

life span of the corpus luteum(21). Fifth, an increase in 

the blood level of PGF2a occurs at or near the time of 

luteal regression(16). Evidence in support of a 

physiological role of PGF2a corPus luteum regression has 

been reviewed(15, 16, 22). PGF2a thought to be 

synthesized in the uterus and transferred to the ovary via 

counter-current exchange between the uterine vein and 

ovarian artery(16). There is recent evidence to suggest 

that the rat corpus luteum can synthesize prostaglandins 

which may be involved in the auto-regulation of its own 

function(23,24). 

Initially, several mechanisms were postulated for the 

luteolytic action of PGF2a. These include restriction of 

blood supply to the ovary(25) or corpus luteum(26), 

stimulation of a lytic level of LH secretion from the 
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pituitary(27), or antagonism of gonadotropin support of the 

corpus luteum(28). Currently, it is thought that the site 

of action of PGF2a in luteolysis is directly on the corpus 

luteum(28, 29), as an antagonist of gonadotropin support. 

This conclusion is based upon observations which showed that 

PGF2a is also luteolytic in hypophysectomized rats in which 

the corpora lutea were maintained with exogenous 

gonadotropin(15, 16). Thus stimulation or inhibition of 

pituitary hormone secretion appears not to play a major role 

in PGF2a~induced luteolysis. PGF2a ^oes not aPPear to cause 

luteal regression by reducing blood flow to the corpus 

luteum since any significant changes in luteal blood flow to 

the corpus luteum is preceded by a decrease in progesterone 

secretion. This was shown in the rat(30), rabbit(31), 

ewe(32); intra-arterial administration of PGF2a did not 

change blood flow to the corpus luteum for many hours after 

plasma progesterone was significantly reduced. Thus, PGF2a 

appears to act directly on the corpus luteum and rapidly 

antagonizes LH-stimulated cAMP accumulation and progesterone 

synthesis. Grinwich et_ al, initially demonstrated that 

incubating rat luteal slices with PGF2a and LH diminished 

the rise in cAMP seen with LH alone (33). Lahav et. al. 

later confirmed these results using intact corpora lutea in 

culture(34). In isolated luteal cells, PGF 
2a stimulates 
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basal progesterone accumulation but antagonizes the ability 

of LH to increase cAMP and progesterone accumulation 

125 
(7)without affecting the binding of I-HCG to luteal 

cells(35). PGF2a also diminishes progesterone accumulation 

in response to dibutyl cAMP in luteal cells, indicating that 

PGF2a inhibits steroidogenesis at two loci: formation of 

cAMP and step(s) distal to cAMP accumulation(21, 36). 

Another factor shown to modulate the response of the 

corpus luteum to LH and thereby to control the functional 

state of this gland is gonadotropin releasing 

hormone(LHRH)(37). There is substantial evidence to support 

the conclusion that LHRH, like PGF2a* is a luteolytic agent 

which suppresses corpus luteum function(37) . LHRH acutely 

antagonizes LH-dependent cAMP accumulation in a manner 

similar to, but independent of, PGF2a; unlike PGF2a* 

dibutyryl cAMP reverses the inhibition in progesterone 

synthesis by LHRH(38). In the rat, both luteolytic agents 

have a direct effect on the luteal cell in vitro(39), 

specific receptors are present in the cells for PGF2 (40) 

and LHRH(38) , and their acute affect is to block the 

stimulatory response to LH. The very early action of both 

PGF and LHRH (38) in the luteal cells is inhibition of 

LH-sensitive cAMP accumulation by a mechanism that is 
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independent of an effect on LH receptor-binding activity, 

cAMP degradation, or a direct action on adenylate cyclase. 

Consequently, it appears that PGF2a and LHRH interfere with 

activiation of adenylate cyclase by the occupied receptor. 

Since the inhibitory effects of both prostaglandins F2a and 

LHRH are identical, they occur only in the intact cell, and 

they do not directly inhibit adenylate cyclase activity in 

luteal membranes, it is likely that their effects are 

receptor-mediated and that a common intracellular second 

messenger may mediate the actions of both agents. Behrman 

+2 
et al. (18) proposed that Ca is the possible mediator of 

PGF2a or LHRH in the luteal cell. When dispersed luteal 

+2 
cells were incubated in media depleted of Ca , an increase 

in LH-st imulated cAMP accumulation of about two fold was 

seen compared to the same response in medium that contained 

+2 
1.8 mM Ca (41). Addition of calcium ionophore(A23187) to 

dispersed luteal cells inhibited LH stimulation of adenylate 

cyclase in a dose-dependent manner comparable to PGF2a and 

LHRH(41), and inhibition was dependent on the presence of 

+2 
extracellular Ca . Also, A23187 significantly inhibited 

LH-stimulated progesterone secretion in response to cholera 

toxin and inhibited cholera toxin-stimulated cAMP 

+2 
accumulation(41). Ca and/or A23187 did not affect LH 

receptor-binding activity or cAMP degradation(41). The 
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+2 
inhibition of LH-sensitive adenylate cyclase by Ca was 

seen both in intact luteal cells and in luteal membrane 

preparation. These studies suggested that increased 

+2 intracellular Ca mimics the inhibition of LH stimulated 

cAMP accumulation by PGF2a and LHRH. 

+2 
Additional support for the role of Ca m regulating 

luteal adenylate cyclase has come from studies with ouabain 

and monensin(42), these drugs increase intracellular levels 

of Na+^ by inhibition of Na+^ extrusion and by a direct 

ionophore effect, respectively. In the presence of 

+1 +2 extracellular Na and Ca , both drugs produce a marked and 

dose-related inhibition of LH-stimulated cAMP accumulation 

and progesterone secretion identical to that seen with PGF2a 

and LHRH in intact luteal cells without affecting LH 

receptor binding activity or cAMP degradation(42). Removal 

+1 +2 
of Na and/or Ca from the extracellular medium abolishes 

drug-dependent inhibition on luteal cAMP accumulation(42); 

reducing extracellular Na+^ or using tet rodotoxin, a Na"1^ 

channel blocker, also eliminates this effect(42). Ouabain 

and monensin probably produce a Na+1-dependent influx of 

+2 
Ca into the luteal cell which prevents activation of 

adenylate cyclase by LH(42). LHRH and PGF2a no^ rec3u^re 

+2 
the presence of extracellular Ca for their 
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+2 
antigonadotropic action; removing extracellular Ca or 

+2 
using a Ca channel blocker. Verapamil, has no effect on 

the action of these luteolytic substances(42). This implies 

+2 
that the cell may mobilize intracellular Ca in response to 

luteolytic hormones. Based on studies in which the 

+2 concentration of free Ca required to elicit LH-dependent 

cAMP inhibition was determined(42) , release of intracellular 

+2 Ca from sequestered sites would suffice to illicit such 

inhibition. Although the antigonadotropin effects of the 

divalent- and mono-valent ionophores were dependent on the 

+2 
presence of extracellular Ca (41, 42). Ouabain, monesin, 

+2 
and A23127 have also been reported to induce Ca release 

from intracellular stores under physiological 

condition(43-45) . 

Treatment of animals or cells with PGF2a and LHRH 

+2 inhibits high affinity Ca -ATPase activity in microsomes 

but not in plasma membranes (46) . This could lead to a 

+2 
decrease in sequestration of Ca into microsomes and 

+2 
consequently produce a rise in intracellular Ca . Both 

32 
P^F2a and LHRH causes a rapid and marked increase in P-P^ 

incorporation into phosphatidylinositol(PI) and phosphatidic 

acid(PA) in rat luteal cells in cultures(47) . Since 
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+2 
phosphatidic acid has been suggested as a Ca ionophore in 

biologic membrane(48) and lysosomes(49), changes in PI-PA 

+2 
metabolism may be actively involved in intracellular Ca 

interaction in the adenylate cyclase system. Overall, the 

manner in which these luteolytic substances may release 

+2 
sequestered intracellular Ca is unclear. 

The rat luteal adenylate cyclase system appears to be 

quite similar to other mammalian cyclase systems. 

Birnbaumer et al. reported that corpora lutea of rabbits, 

rats and other species(50-52) respond to LH, to 

prostaglandins(PGs), and to catecholamines through 

stimulation of adenylate cyclase activity. The luteal 

adenylate cyclase system activated by these hormones appears 

to be the same(53) since their action on adenylate cyclase 

is not additive. He also showed that guanine 

+2 
nucleotide(54), and Mg (53) requirements for stimulation of 

adenylate cyclase by these hormones do not differ 

substantially from those seen in other non-ovarian adenylate 

cyclase systems. Current adenylate cyclase models center on 

a three component system: separate receptors(R) for each 

hormone, hormone-occupation of the receptors governs the 

effects of guanine nucleotides acting at nucleotide 

regulatory proteins(G), the latter govern either 

stimulation(s) or inhibition(i) through distinct processes 

or components that affect a common adenylate cyclase unit. 
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the catalytic(C) unit(55). R has been shown to be a 

separate component by biochemical and genetic and 

developmental studies(56). The G unit is an intrinsic 

membrane protein located on the cytoplasmic side of the 

plasma membrane that has been purified(56). C is an 

intrinsic membrane protein located on the inner surface of 

the plasma membrane and has not yet been well 

characterized(56) . In addition to separate R, N, and C 

units, there may be separate components (M) responsible for 

+2 +2 +2 regulation by divalent metal ions (Mg , Mn and Ca )(57, 

58) . 

Cassel and Selinger(59) Proposed that the regulation of 

adenylate cyclase by guanine nucleotides involves a cycle in 

which the enzyme is activate by GTP, GTP is then hydrolyzed 

to GDP at the regulatory site and the dissociation of the 

formed GDP from the regulatory site is the rate limiting 

step in the subsequent action of GTP. This view is based on 

experiments carried out with turkey erythrocyte membranes 

which showed the existence of GTPase activity(60) and that 

hormonal stimulation is associated with an increased rate of 

guanine nucleotide exchange at a site thought to be the 

adenylyl cyclase regulatory site(59). Studies on the 

general requirement of guanine nucleotides in hormonal 

stimulation of adenylate cyclase has led to the finding that 

various stable analogs of GTP, such as Gpp(NH)p , GpptCI^Pf 
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and GTP-^.-S, are potent activators of all hormone-sensitive 

adenylate cyclases; stimulatory hormones accelerate and 

potentiate the activation by these nucleotides(42) . Their 

stimulatory effect is antagonized by GDP(61) or its stable 

analog, GDP$S(61). Fluoride is another ubiquitously 

stimulatory ligand of eukaryotic adenylate cyclase(62). 

Activation usually requires greater than millimolar 

concentrations of fluoride and is irreversible or only 

slowly reversible(62) . 

Recently, studies using toxins from Vibrio Cholera and 

Bordetella Pertussis resulted in identification and 

purification of the guanine nucleotide regulatory systems 

into two separate components, one responsible for 

stimulating(G) and the other inhibiting(G.) adenylate 
b X 

cyclase(63). Hormone receptors, previously classified 

mostly on the basis of the actions of selective agonists and 

antagonists, can now also be classified by whether they 

operate by regulating G or G.(64). There is evidence for the 

existence of both a Gg and a G^ components in the rabbit 

luteal adenylate cyclase(65). Both G and G. activation are 

modulated by guanine nucleotides and both apparently have a 

+2 
requirement for Mg for activation(66-68). Also, both G 

s 

and G^ apparently possess a GTP-hydrolyzing systems(69). 

Currently G has been purified only from rabbit liver(70, 
b 
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71), turkey erythrocytes (72) , and human erythrocytes (73, 

74), and has been found to contain an a, 6(70-74) and 

possibly a ip (75) subunits. The a subunits of both G and 
o 

G. appear to be dissimilar but both bind GTP and its 

analogs(76) and are substrates for ADP-ribosylation by 

Cholera toxins and Pertusis toxins respectively(70, 74, 75). 

The 6 subunits of the two proteins are indistinguishable by 

two-dimensional peptide map analysis(74) and by amino acid 

composition(76). The ^ subunits co-migrate on SDS- 

polyacrylamide and urea gradient gel electrophoresis but it 

is unclear whether they are the same for G and G. . Gilman 
si 

and collaborators (63, 71, 77-80) have suggested in the rat 

liver system that hormone activation of adenylate cyclase 

may coincide with the dissociation of a and 6 subunits into 

isolated components, with concomitant formation of high 

affinity complexes between the a subunits and guanine 

nucleotides(77). Currently, the mechanism for regulation of 

the equilibria between the subunits of G and G. by hormone 
si 

receptors or the mechanism of their interaction with the 

catalytic subunit in the bilayer are still speculative. 

The role of the divalent ions in the adenylate cyclases 

+2 
stimulation has been controversial. Mg , in addition to 

combining with ATP to act as substrate for the catalytic 

site, was also thought to cause activation of the enzyme 
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system through an allosteric site(81). Subsequently 

deHaen(82) and others(83, 84) suggested that the role of 

+2 
Mg in activation of cyclase was to reduce the free 

protonated species of ATP in the medium which was thought to 

be a potent, competitive inhibitor of adenylate cyclase at 

the catalytic site. At a later time, Johnson et al. (85) and 

Londos and Preston(57) showed by kinetic analysis of a 

+2 
number of adenylate cyclase systems that Mg stimulates the 

cyclase system allosterically but they did not identify the 

putative allosteric site. Studies from Birnbaumer et 

+2 
al. (67) also showed Mg accelerated the responsiveness of 

adenylate cyclase and suggested that this allosteric site 

was likely to be on the regulatory subunit. Their group 

+2 
further suggested the mechanism of interaction between Mg 

and the regulatory subunit was other than facilitating the 

dissociation of inhibitory GDP or stimulating the 

association rate of nucleotide to the system. 

+2 
Variable results have been obtained using Mn to 

+2 
stimulate adenylate cyclase activity. Mn can substitute 

+ 2 
for Mg with variable degree of efficacy in some adenylate 

+2 
cyclase systems. Some investigators have found Mn to be 

+2 
more potent than Mg (86, 87), others have found it to be 

+2 +2 
less active than Mg (87, 88). Although Mn appears to be 
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physiologically relevant in only a few adenylate cyclase 

systems(87), data from cells lacking a functioning G showed 

that while Mg-ATP was not a substrate for adenylate cyclase 

in the presence or absence of guanine nucleotide, fluoride 

or hormone(87), Mn-ATP could be used as a substrate 

independent of guanine nucleotide, fluoride or hormone 

modulation. Studies based on soluble cyclase suggested that 

the bare catalytic unit, when alone, can only utilize Mn-ATP 

+2 
as substrate (87) . The physiological role of Mn as a 

possible regulatory ligand of receptor-cyclase function 

remains to be investigated. 

+2 
Ca has been shown to inhibit adenylate cyclase 

activity in a variety of different cells(89-93) and appears 

to be involved in the response to PGs(47) and LHRH (94) in 

other tissues. In the pituitary, several investigators have 

+2 
reported that Ca mediates the action of LHRH, leading to a 

release of LH(94). Berridge et al.(95) suggested that most 

+2 
cellular processes are activated through Ca , whereas cAMP 

+2 functions indirectly to modulate these Ca - dependent 

+2 events. Free cytosolic [Ca ] in cells at rest is usually 

between 0.05uM to 0.5uM(44). When cells are stimulated, a 

+2 
transient rise in free cytosolic [Ca ] between 1 to 2uM(44) 

or as high as 10 to 50uM(95) have been reported. 

In the studies from our laboratory by Behrman et al., 
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+2 
Ca was shown to directly inhibit activation of adenylate 

cyclase by LH in luteal membranes without affecting LH 

receptor binding activity or cyclic AMP degradation(41, 96). 

+2 
This implies that Ca blocks interaction of the occupied 

receptor with adenylate cyclase and thereby prevents enzyme 

activation in a manner identical to that produced by PGF2a 

+2 
and LHRH. Ca produces this effect directly on luteal 

membranes whereas an intact cell is necessary to elicit this 

effect with PGF2a' LHRH or other agents that directly 

+2 
increase intracellular Ca concentration. The possible 

+2 site(s) or mechanism of Ca inhibition of adenylate cyclase 

is unclear. Studies from Behrman et al. (96) showed that 

adenylate cyclase was inhibited by low concentration of 

+2 
Ca (luM) which could be completely reversed by GTP in the 

+2 
presence of LH. This suggested that Ca may affect GTP 

binding proteins that are necessary for activation of 

adenylate cyclase by hormone. This does not preclude other 

+2 modes of interaction that an elevated intracellular Ca may 

inhibit LH-stimulated cAMP increase or mediate 

+2 
antigonadotropic effects. Also whether the effect of Ca 

on luteal adenylate cyclase is mediated through a cadmodulin 

regulating system is currently unclear. 

The experiments in this thesis were designed to further 
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+2 
elucidate the nature of Ca -inhibition of luteal adenylate 

cyclase. Based on the model of Selinger and Cassel(59), it 

+2 
is possible that Ca may interfere with the interaction of 

GTP with the guanine regulatory proteins in the adenylate 

+2 
cyclase complex; conceivably, Ca could interfere with 

either the affinity of GTP binding to the regulatory 

component (G) , the hydrolysis of GTP by GTPase on G, or the 

dissociation of GDP, an antagonist for the activation of the 

regulatory component, from G. Attempts were made to examine 

+2 
the effect of Ca on the interaction of GTP and G protein 

in luteal membrane preparations. The reversibility of 

+2 
Ca -inhibition of luteal adenylate cyclase in isolated 

membrane fractions by GTP, or stable GTP analogs, or 

fluoride were examined. Metal ions play a critical role in 

determining the relative stimulation that can be elicited in 

the luteal adenylate cyclase system(97), one objective was 

+2 +2 also to examine the effect of Mg or Mn on inhibition of 

+2 luteal adenylate cyclase by Ca ; which may indicate other 

+2 modes of Ca interaction in the luteal adenylate cyclase 

system. 
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MATERIALS and METHODS 

ANIMALS 

Immature (26-day-old) female rats (Crl:CD(SD)BR strain 

of Sprague-Dawley, Charles River Laboratories, Wilmington, 

MA) were given a single subcutaneous injection of 50 IU 

Pregnant Mare Serum Gonadotropin (Gestyl, Organon 

Pharmaceuticals, West Orange, NJ) , Followed 60h later by a 

second injection of 25 IU human Chorionic Gonadotropin(hCG) 

(A.P.L., Ayerst Laboratories, Rouses Point, N.Y.). The rats 

were sacrificed by cervical dislocation 5-6 days after hCG 

injection. Their ovaries were quickly removed, used 

immediately or frozen rapidly with dry ice and stored at 

-80C. Injection of hCG, after priming with PMSG, results in 

extensive luteinization of ovaries(98-100). 

PLASMA MEMBRANE PREPARATION 

The procedure for isolation of enriched heavy plasma 

membranes and light plasma membranes from rat luteal tissue 

was based on that of Bramley and Ryan(99-101). Luteinized 

ovaries, freed of fat and connective tissues, were blotted 

dry, weighed, minced, and homogenized (10 volume/g) in 250mM 
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sucrose, 1 mM EDTA, lOmM Tris-HCl buffer, pH 7.4, using 10 

complete strokes of a loose Dounce homogenizer. After 

filtering through several layers of wet cheesecloth, the 

homogenate was subjected to differential centrifugation. A 

1,000 x g pellet and a 20,000 x g pellet (from the 1,000 x g 

supernatant fraction) were prepared and used for isolation 

of heavy and light plasma membrane fractions, respectively. 

All sucrose solutions used in this procedure were prepared 

in 10 mM Tris-HCl buffer, pH 7.4, containing ImM EDTA and 

their concentration adjusted exactly prior to use with an 

Abbe refractometer. The 1,000 x g pellet was resuspended in 

buffer used for initial homogenization and layered on the 

top of a discontinuous sucrose gradient containing 5ml of 

30%, 8ml of 36%, 8ml of 40%, and 5ml of 50% sucrose 

solution. The 20,000 x g pellet resuspended in buffer used 

for initial homogenization was layered on top of a 

continuous sucrose gradient, prepared using 15 ml of 20 % 

and 15 ml of 55% sucrose solutions. Both gradients were 

centrifuged at 63,000 x g for 4 h in a Beckman SW28 rotor. 

A heavy membrane fraction was obtained from the materials 

accumulating at the interface between 30% and 36% sucrose of 

the discontinuous sucrose gradient. A light membrane 

fraction was obtained from membranes in the continuous 

sucrose gradient which accumulated between 27% to 33% 

sucrose concentration inclusively. All fractions were 

collected with a meniscus-sensitive probe (Buchler Auto 
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Densi-Flow 112). The heavy and light membrane fractions, 

each diluted four times with buffer containing 10 mM 

Tris-HCl, pH 7.4 and ImM EDTA, were pelleted at 63,000 x g 

overnight, resuspended in small aliquots of homogenizing 

buffer and stored at -80C. The heavy membrane fraction is 

referred to as basolateral membranes, and the light membrane 

fraction is referred to as microvilli membranes. 

Based on studies by Bramley and Ryan(98,100) , using the 

continuous sucrose gradient, the region between 27-35% 

sucrose will yield 55-70% of the total hCG-binding, but only 

25-35% of the adenylate cyclase with most adenylate cyclase 

activity to be found between 30-40%. Therefore, collecting 

fractions between 27-34% will enable maximal yield of LH 

receptors with partial yield of adenylate cyclase activity 

but would ensure minimal contamination from microsomal and 

mitochondrial materials from the original 20,000 x g 

fraction. 

PREPARATION OF CALCIUM SOLUTIONS AND ASSAY OF FREE CALCIUM 

+2 Analysis of the effect of Ca on enzyme activity was 

+2 determined by preparation of standard solutions of Ca 

(Orion standard) which when added to the reaction mixture 

+2 +2 
resulted in known concentrations of free Ca . Free Ca was 
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+2 
determined directly with an Orion Ca -sensitive 

electrode(41). Calibration of the electrode was carried out 

by preparation of standard solution composed of variable 

levels of known Ca+2, 25 mM Tris, and 1 mM EGTA (pH 7.5). 

+2 
The free Ca level in the standard solution was calculated 

based on a stability constant (K EGTA) of 4.4 x 10^ M ^ 
PH 

in 25 mM Tris pH7.5 which was determined in this 

buffer(102). Results from the standard solution was used to 

+2 construct a standard nomogram. The level of free Ca in 

each reaction mixture was directly measured with the 

calibrated, calcium-sensitive electrode based on the voltage 

recorded which corresponded to the free calcium 

concentration from the standard nomogram. A nomogram of 

total and free calcium was established for each enzyme or 

+2 receptor assay. Standard solutions of Ca for each 

receptor or enzyme assay were made and stored at 4C. 

PROTEIN ASSAY 

Protein was assayed by the procedure of Bradford (103). 

ADENYLATE CYCLASE ASSAY 

Adenylate cyclase activity in membranes from luteinized 
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ovaries was assayed by a modification of the method of 

Birnbaumer et al.(51) described previously(38) . Briefly, 

the reaction mixture (pH 7.5) contained MgCl2 (5mM), EGTA 

(ImM), Isobutylmethyl Xanthine (0.5 mM; IBMX) , Bovine Serum 

Albumin (1 mg/ml; BSA) , Creatine Phosphate (5 mM) , Creatine 

Phosphokinase (500 units/ml), Tris-HCL (25mM), ATP (3 mM) , 

plasma membranes (~10ug protein), and LH (~1 ug) in a final 

volume of 0.1 ml was prepared at 4C. A stock solution of 

MgCl2/ EGTA, IBMX, and Tris was prepared and stored at 4C. 

Solutions of Creatine Phosphate, creatine phosphokinase, ATP 

(pH adjusted to 7.5 with KOH) , and of other reagents and 

nucleotides were prepared immediately prior to assay. 

Reagents were added to tubes in an ice bath and adenylate 

cyclase activity was determined following incubation for 10 

minutes at 37C unless otherwise specified. The reaction was 

stopped by incubation for 10 minute at 80C and cAMP was 

determined by radioimmunoassay as described(42). The 

standard curve of cAMP contained an equivalent volume of the 

reaction mixture to reduce non-specific cross reaction of 

the reaction mixture or reagents used. 

BINDING ASSAYS 

Attempts were made to determine whether Ca +2 
affects 

adenylate cyclase activity by interfering with the binding 
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of guanyl nucleotides to adenylate cyclase subunits. Many 

studies have established a regulatory role for guanyl 

nucleotides in hormone-stimulated adenylate cyclase systems 

of various eukaryotic cells(61, 104-108). Since purified 

guanine dependent regulatory subunits were not available 

+2 
presently, we attempted to correlate the effect of Ca on 

binding of radioactive guanine nucleotides or the 

nonhydrolyzable analog, Gpp(NH)p, to the light membrane 

+ 2 
fraction. The inhibitory effect of Ca on adenylate 

cyclase activity when stimulated with guanine nucleotides or 

Gpp(NH)p was compared to binding of guanine nucleotides. 

The reaction mixture at pH 7.5 contained MgC^ (5mM), EGTA 

(ImM), IBMX (0.5mM), BSA (lmg/ml). Creatine Phosphate (5mM), 

Creatine Phosphokinase (500 units/ml), Tris-HCL (25mM), ATP 

(3mM), AppNHp (0.5mM), light membrane preparation 

+2 (0.5-lmg/ml final), and various concentration of free Ca 

and radioactive labelled guanine nucleotides or Gpp(NH)p. 

Activiation of adenylate cyclase was initiated with the 

addition of LH(10 ug/ml final); the reaction mixture was 

incubated at 30C for varying amount of time. After 

incubation, 0.9 ml of stopping buffer (pH 7.5 include MgC^ 

(5mM) , EGTA (ImM), IBMX(0.5mM), Tris-HCL(25mM) , GTP(ImM or 

O.lmM)) +Ca * was added to 0.1 ml of the reaction mixture 

and kept at 4C. Subsequently samples were then passed 
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through filters (HAWP 025 Millipore, 0.45 uM) under constant 

vacuum pressure, the filters were washed with 8 volumes of 

cold stopping buffer, dried and the radioactivity 

determined. Some of the samples prepared as above were also 

used to examine the amount of nucleotides bound by methods 

modified from that of Cassel and Selinger(59, 109). The 

samples were centrifuged at 12,000g x5 minutes, then washed 

5 times with 1 ml of cold stopping buffer and the remaining 

pellet was solublized in 1% SDS. An aliquot of the sample 

was then counted. 

MEASUREMENT OF LH-INDUCED RELEASE OF MEMBRANE BOUND 

3H-Gpp(NH)p 

The protocol used was described by Cassel and 

Selinger(109) . Attempts were made to examine the effect of 

+2 
Ca on release of bound Gpp(NH)p in the presence of LH. 

3 
Membranes were activated by H-Gpp(NH)p with LH as described 

above; after incubation for 30 minutes at 30C, the samples 

were centrifuged at 12,000g x 5 minutes and then washed 5 

times with 1 ml of cold stopping buffer until radioactivity 

in the supernatant fraction was at background level. The 

remaining pellet was resuspended in 1 ml of stopping buffer 

and incubated at 30C for 1 minute and then centrifuged at 

12,000g x 5 minutes to remove loosely bound radioactive 
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material. The pellet was resuspended in a cold releasing 

medium containing 300ul of the original reaction mixture 

without radioactive substrate or additional membranes, but 

with 0.2 mM GTP, and LH(20ug/ml final concentration). The 

reaction was initiated by the addition of LH at 4C followed 

by incubation at 30C. Samples of equal volume were withdrawn 

at specific intervals and placed in 0.5 ml of ice cold 

stopping buffer. Subsequently the samples were centrifuged 

at 12,000g x 5 minutes and 200 ul of the supernatant was 

3 
removed to measure H-Gpp(NH)p released. Twenty ul of the 

releasing mixture was removed and assayed for cAMP content 

as described above. The final protein concentrations was 

not determined. 

HORMONES, DRUGS and REAGENTS 

Ovine LH (NIADDK oLH 23}, a gift from the NIH (Bethesda, 

MD) , was dissolved in 1% BSA (1 mg/ml) and stored at -80C. 

GTP (Tris salt), ATP (Tris salt), and 51-guanylylimido-di- 

phosphate (Gpp(NH)p) were purchased from Sigma Chemical Ca. 

(St. Louis, MO). NaF was purchased from Fischer Chemical 

Co. (Pittsburgh, PA) . All dry reagents were stored over 

dessicant at -20C unless otherwise indicated. All other 

reagents were purchased from Sigma chemical Co. unless 

otherwise indicated. 
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STATISTICAL ANALYSIS 

Each experiment measuring adenylate cyclase activity 

contained three replicates for each treatment group and many 

of the experiment were repeated at least twice; each point 

represented the mean + standard error of the mean. 
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IV. RESULTS 

IV.1 PREPARATION OF LUTEAL MEMBRANE FRACTIONATION. 

The distribution of adenylate cyclase activities 

associated with each fractionation is shown in Table 1. The 

heavy membrane fraction showed considerably less adenylate 

cyclase activity than the light membrane fraction. The 

heavy membrane pellet was further purified by 

ultracentrifugation on a discontinuous sucrose gradient and 

materials collected from the interface of the 30% and 36% 

sucrose gradient where adenylate cyclase activities, if 

present, would be enriched. 

A continuous sucrose gradient enables greater resolution 

of distinct fractions and was used to isolated the light 

membrane and the microsome-enriched fractions. Both 

fractions showed significant basal adenylate cyclase 

activity and both showed an approximate four fold increase 

in activity following the addition of LH. The microsomal 

fraction contains a higher specific activity than that of 

the light membrane fraction. 

IV.2 FREE CALCIUM DETERMINATION. 

+2 
A free Ca nomogram was developed from calibration of 
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+2 +2 
an Orion Ca sensitive electrode in a Ca -EGTA buffer 

system (Figure 1) . Results of the initial calibration is 

shown in Table 2. The electrode was calibrated using 

+2 
variable levels of known Ca concentration m Tns-EGTA 

+2 
buffer. From the concentrations of total Ca and EGTA in 

— FCTA 
each solution, and with the K H developed by Bartfai 

et al.(102) for appropriate ionic strength and pH, the free 

+2 Ca concentrations were calculated (Table 2) . This table 

+2 was used as a standard for free Ca determination in other 

+2 enzyme assays. A nomogram of total and free Ca was 

determined for the adenylate cyclase assay (Figure 1). 

Bovine serum albumin(BSA) of 1% was included in all 

adenylate cyclase assays, but when not included, the ratio 

+2 +2 
of free Ca to total Ca was changed significantly 

+2 
(Figure2); BSA increased the concentration of free Ca 

+2 +2 
The presence of other metals such as Mg and Mn also 

• +2 +2 
increased free Ca in a Ca -EGTA buffer system by 

metal-EGTA chelation as described by Bartfai(102). With a 

+2 +2 
concentration of Ca at 2.6uM, when Mg concentration was 

+2 
increased from 5mM to 50mM, the increase in free Ca 

concentration was only l.luM (Table 3). With a higher Ca+2 

concentration at 4.7uM, the total change of free Ca+^ was 
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+2 
only 1.4uM with varying the Mg concentration from 5mM to 

+2 
50mM (Table 3) . The largest change in free Ca 

+2 
concentrations occurred when the Mg concentration was 

+2 
increased from 0 to 3mM. The changes in free Ca 

+2 concentration when Mn concentrations were varied was of 

similar magnitude (results not shown) . If experiments with 

+2 Ca inhibition of adenylate cyclase was performed with 0 to 

+2 +2 +2 
3mM Mg or 0 to 3mM Mn , the free Ca concentration needs 

+2 +2 to be readjusted for each Mg or Mn concentration. Since 

+2 +2 a constant excess of total Mg or Mn was used over the 

total amount of nucleoside-triphosphates(XTP) used in the 

Ca+2-XTP 
enzyme assays, and that the K was lower than that of 

+2 -I-O +2 
Mg - and Mn -XTP, the free Ca concentrations were 

relatively unchanged with XTP added to enzyme assays 

(Behrman et al. unpublished result). 

IV. 3 CA+2 INHIBITION OF LUTEAL ADENYLATE CYCLASE ACTIVITY. 

+2 
Ca showed a highly significant and dose-related inhibition 

of LH-stimulated adenylate cyclase activity (Figure 3) . The 

addition of 0.75mM and 1.2mM in the assay mixture produced 

+2 
about 1 and lOOuM free Ca respectively and caused 24% and 

71% inhibition of LH-stimulated cAMP accumulation. 
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+2 
Half-maximal inhibitory concentration (IC5Q) of free Ca 

was between lOuM and 20uM which was in concordance with 

earlier published work by Behrman et al.(41) . In addition, 

the basal luteal cyclase activity in the absence of LH 

stimulation was inhibited by almost 40% with lOOuM of free 

+2 
Ca (Figure 4). Inhibition of LH-stimulated enzyme activity 

+2 by Ca was more pronounced than that of basal enzyme 

activity. 

+2 
Addition of 5 mM EGTA prevented the inhibition by Ca 

of adenylate cyclase activity (Table 4). Both the basal and 

LH-stimulated enzyme activity in the absence of additional 

+2 
Ca was increased by the addition of 5mM EGTA. EGTA is a 

+2 highly specific Ca ion chelator, the increase in cyclase 

activity with the addition of EGTA probably reflected the 

+2 
presence of a small amount of free Ca in the luteal 

membranes that prevented maximal LH stimulation. Reversal 

+2 
of Ca inhibition was much more evident in the presence of 

LH than in its absence. 

IV.4 REVERSAL Of CA+2 INHIBITION OF LUTEAL ADENYLATE CYCLASE 

BY GTP AND GPP(NH)P. 

The effect of GTP and an analog of GTP, GppNHP on 

+ 2 
adenylate cyclase activity in the presence of LH and Ca 
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was examined (Figure 5 - 7). In the presence of LH, a 

significant increase in cyclase activity was seen above luM 

GTP or O.luM GppNHp. GppNHp, a nonhydrolyzable analog of 

GTP, was a more potent activator of luteal adenylate cyclase 

+2 
(Figure 5) . In the absence of Ca , increasing GTP 

concentrations from 0 to l,000uM resulted in a 50% increase 

in LH-stimulated cyclase activity (Figure 6) while raising 

GppNHp concentrations from 0 to lOOuM resulted in a 750% 

increase. The maximum response to GTP or GppNHp stimulation 

was not tested. In the absence of hormones, GTP did not 

activate adenylate cyclase to the extent that was seen with 

GppNHp. 

Inhibition of luteal adenylate cyclase by luM and 20uM 

+2 
of Ca is shown in Figure 6 and 7. Inhibition of luteal 

+2 
adenylate cyclase in the presence of LH by luM free Ca was 

reversed completely by GTP or GppNHp at concentrations of 1 

to lOuM or O.luM respectively. Complete reversal of 

+2 
adenylate cyclase inhibition with 2.5uM free Ca was also 

observed using lOOuM GppNHp or greater but reversal was not 

seen with GTP at concentration as high as ImM (data not 

shown) . GTP or GppNHp concentrations as high as ImM or 

O.lmM respectively were unable to prevent the inhibition of 

+2 
adenylate cyclase by 20uM Ca . Higher concentrations of 

+2 
Ca attenuated and prevented both GTP- or GppNHp-reversal 
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of LH-stimulated adenylate cyclase activity. 

The effect of GTP and GppNHp on adenylate cyclase 

activity in the absence of LH is shown in Figure 8. 

Increasing GTP concentrations from luM to l,000uM resulted 

in an approximately 2-3 fold increase in basal adenylate 

cyclase activity. GppNHp at concentrations greater than 

O.luM also significantly increased adenylate cyclase 

activity and the magnitude of rise in enzyme activity 

observed by GppNHp from 0 to lOOuM was similar to that seen 

+2 
in the presence of LH. One uM of free Ca significantly 

inhibited basal adenylate cyclase activity about 50% and 

increasing levels of either GTP or GppNHp did not reverse 

+2 
the inhibition of enzyme activity by luM Ca . It appears 

that the presence of LH enhanced the reversal of adenylate 

+2 
cyclase inhibition at low concentration of free Ca 

IV. 5 INHIBITION OF SODIUM FLUORIDE-STIMULATED LUTEAL 

ADENYLATE CYCLASE BY CA+2. 

Sodium Fluoride (NaF) is a potent stimulator of 

mammalian adenylate cyclase. Concentrations of NaF of 5mM 

or greater was reported to produce maximal activation of 

adenylate cyclase in most mammalian adenylate cyclases 

studied(110). In the present studies, a concentration of 

lOmM NaF caused an eight fold or greater increase in enzyme 
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activity than that seen with LH(1 ug/ml) stimulation alone 

(Figure 9 and Table 5) . NaF activation of luteal adenylate 

cyclase is independent of LH stimulation, lOmM NaF produced 

the same effect on enzyme activity in the presence or 

+2 
absence of LH (Table 5) . Ca produced a dose-dependent 

inhibition of NaF-stimulated adenylate cyclase activity. 

+2 
The half maximal(ID^g) of Ca inhibition of NaF was about 

+2 
lOOuM whereas the ID5q of the Ca inhibition of 

LH-stimulated enzyme activity was 10 fold less. Addition of 

lOuM GppNHp, but not of lOOuM GTP, decreased the magnitude 

of NaF stimulation and this decrease was more pronounced in 

the absence of LH (Table 5). 

IV.6 EFFECT OF CA+2 ON THE BINDING OF GTP OR GPPNHP 

AND ON RELEASE OF GPPNHP FROM LUTEAL MEMBRANES. 

The dissociation of GDP or the binding of GTP has been 

suggested to be the rate limiting steps in hormone 

+2 stimulation of cAMP formation. Ca concentrations greater 

than 5uM attenuated irreversibly the ability of GTP or 

GppNHp to stimulate LH dependent adenylate enzyme in luteal 

membrane preparation (results not shown). Addition of 20uM 

+2 
Ca to the enzyme led to a 25-50% decrease in LH dependent 

cyclase activity even in the presence of high GTP 

concentrations and a greater degree of inhibition was seen 
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even in the presence of GppNHp (Figure 6 and 7) . On the 

+2 
other hand, inhibition by luM Ca was reversed with 1-lOuM 

GTP or O.luM of GppNHp. Based on the above results, several 

+2 
attempts were made to examine whether Ca may interfere 

with binding of guanine nucleotides to or the dissociation 

of guanine nucleotides from the adenylate cyclase. 

Results from experiments in which the effect of LH 

+2 32 
and/or Ca on the binding of P-GTP to adenylate cyclase 

in luteal membrane preparation was examined and are shown in 

Figure lOa-e. AppNHp was included in the reaction to inhibit 

nucleotide hydrolysis which was reported to be minimal when 

used under similar condition(59, 107). The amount of 

32 
radioactivity bound after incubation of P-GTP with luteal 

membranes increased with time and decreased by raising the 

concentrations of cold GTP in the reaction mixture (Figure 

32 
11). Because P was used in this experiment, it was not 

possible to directly measure the amount of cAMP formed by 

radioimmunoassay(see Materials and Methods). 

In figure 10a, during the period of maximal cyclase 

activity, there was essentially no difference in the amount 

of radioactivity material bound under the conditions 

examined by after 10 of incubation. Figure 10b shows that 

the amount of radioactivity materials bound in the presence 

or absence of LH stimulation only; there were only small 
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32 
differences in the binding of P up to 10 minutes of 

incubation, but at intervals between 30 and 60 minutes, 

there was considerable higher counts in samples without LH. 

This may be consistent with hormone stimulation of GDP 

dissociation since the total amount 
32 

of P-GTP in each 

samples would be expected to decrease gradually over time 

despite a nucleotide regeneration system used in the assay 

(See Materials and Methods) . On the other hand, as shown in 

+2 
Figure lOd, in the presence of 20uM Ca , this difference 

between the presence or absence of LH was not observed; the 

32 
amount of radioactivity from P-GTP that was bound was not 

+2 altered by LH. Also, the presence or absence of Ca did not 

consistently affect the amount of radioactivity bound to 

membranes and this was seen independent of LH stimulation 

+2 
(Figure 8c, 8e) . Either Ca does not inhibit LH-dependent 

luteal adenylate cyclase by interfering with binding or 

dissociation of guanine nucleotides, or the sensitivity of 

the binding assay may not be adequate to detect the changes 

+2 in binding of guanine nucleotides by Ca . Also, since basal 

adenylate cyclase activity was always several folds lower 

than LH-stimulated enzyme activity, figure 10b also shows 

that the amount of guanine nucleotides bound did not 

correspond to the degree of enzyme activity. 

+2 
Attempts were also made to examine whether Ca affected 
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3 
the binding of H-GppNHp to adenylate cyclase in luteal 

+2 
membrane preparations. Filter binding studies with Ca and 

3 
H-GppNHp did not show any differences over time intervals 

examined (results not shown) . Not only was the amounts of 

3 
H-GppNHp bound not changed overtime, but the binding of 

3 
H-GppNHp was essentially at maximum within 1 minute at 30C, 

and therefore the radioactivity bound, like the results from 

the GTP binding studies, did not correlate with the enzyme 

activity. Another approach was used based on the GppNHp 

binding studies in turkey erythrocytes by Cassel and 

Selinger(109) , where instead of filtration, a wash and 

centrifugation was used(see materials and methods); these 

results are shown in Table 6. The amount of membrane bound 

3 
H-GppNHp increased with time with the maximum amount bound 

between 10-15 minutes. The amount of membrane bound 

3H-GppNHp in samples with 20uM Ca+2 or without 20uM Ca+2 

were essentially the same between 5 to 30 minutes, but the 

rate of cAMP formation differed. The rate of cAMP formation 

was stable from 5 to 30 minutes of incubation at 30C. The 

enzyme activity was approximately 20-33% less in the 

presence of 20uM Ca+2 at 30C while the amount of 3H-GppNHp 

bound was essentially similar in the presence or absence of 

+2 —5 
20uM Ca . The addition of 10 M unlabeled GppNHp to 
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"3 

H-GppNHp led to an approximately 8 fold increase in total 

GppNHp bound and a concomitant decrease in the amount of 

membrane bound radioactivity; the GppNHp binding was not 

— fi 
saturated with 10 M GppNHp in a reaction mixture containing 

1 mg/ml of membrane protein. At similar concentrations of 

-5 -6 
GTP, 10 M to 10 M, a greater amount of guanine nucleotides 

was bound to membrane protein when tested with GppNHp than 

with GTP. We did not take into consideration any 

differences in the degree of nonspecific binding between 

32P-GTP or 3H-GppNHp. 

Since the amount of GTP or GppNHp bound to membrane 

protein did not appear to differ significantly in the 

+2 
presence or absence of 20uM Ca , while the rate of cAMP 

+2 
formation was attenuated by the presence of Ca , an attempt 

+2 
was made to evaluate the affect of 20uM Ca on the exchange 

of guanine nucleotides. Luteal membranes bound with 

3 
H-GppNHp were incubated in the presence and absence of 20uM 

+2 
Ca in a reaction mixture containing 10 ug/ml LH and an 

excess of unlabeled GTP in order to release labeled 

nucleotides from hormone-dependent sites at 30C (see 

Materials and Methods for releasing medium). The amount of 

3 
H-GppNHp released at different time intervals was measured 

and the results are shown in Figure 12. In the presence of 
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+2 3 
20uM Ca , less H-GppNHp was released during the time 

intervals measured. Since the releasing medium was similar 

to reaction mixture used to measure adenylate cyclase 

activity, cAMP formation was measured at the same time 

3 
release of H-GppNHp was measured and it was correlated with 

3 3 
the amount of H-GppNHp released. More H-GppNHp was 

+2 
released in the absence of 20uM Ca and this also 

+2 
corresponded to a higher enzyme activity. Ca appeared to 

3 
decrease the rate of exchange of H-GppNHp with cold GTP and 

this was correlated with a lower adenylate cyclase 

activity. 

IV.7 EFFECT OF MAGNESIUM CONCENTRATIONS ON CA+2-INHIBITION 

OF LH-STIMULATED LUTEAL ADENYLATE CYCLASE. 

+2 +2 
The role of Mg in Ca -inhibition of LH-stimulated 

adenylate cyclase was examined and the results are shown in 

+2 
Figure 13. The results are based on total Mg 

+2 
concentrations. Mg was required for activation of enzyme 

activity, there was no measurable activity in the absence of 

+2 +2 
Mg and less than basal enzyme activity with ImM Mg 

Enzyme activity increased with increasing total 

+2 +2 
concentrations of Mg with maximal activity at 5mM Mg . 

Adenylate cyclase activity was decreased between Mg+2 
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concentrations of 5mM to lOmM and enzyme activity was 

+2 
further reduced with higher Mg concentrations. For 

+2 
example, a Mg concentration of 30mM yielded only 19% of 

+2 . +2 
maximal activity seen with 5mM Mg in the absence of Ca 

+2 ... 
Ca inhibited adenylate cyclase activity in a 

+2 
dose-dependent manner in the presence of Mg . This effect 

+2 
was clearly seen in the presence of 3mM and 5mM Mg 

+2 
The degree of inhibition by 20uM Ca was 100%, 78%, 

44%, 19% and 12% with presence of ImM, 3mM, 5mM, lOmM, 30mM 

+2 
Mg respectively (Figure 14) . When the concentration of 

+2 +2 
Mg was increased, the relative % inhibition by Ca was 

+ 2 
decreased; this was true in the range of Ca concentrations 

+2 
tested. Also, increasing the concentrations of Mg reduced 

+2 
the inhibition of adenylate cyclase by Ca . Thus, although 

+2 
high concentrations of Mg was inhibitory, it also 

+2 
attenuated the inhibitory effect of Ca on luteal adenylate 

cyclase. 

IV.7 EFFECT OF MANGANESE CONCENTRATIONS ON CA+2-INHIBITION 

OF LH-STIMULATED ADENYLATE CYCLASE. 

+2 +2 
In the absence of Mg or Mn , there was no measurable 

luteal adenylate cyclase activity (Figure 13 and 15) . The 
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+2 
results are expressed in terms of total Mn concentration. 

+2 +2 
Mn apparently could substitute for Mg for activation of 

+2 +2 
luteal adenylate cyclase. In the absence of Ca , 5mM Mn 

+2 
stimulated adenylate cyclase 2-3 fold more than 5mM of Mg 

+2 
Maximal enzyme activity was seen with Mn concentrations 

+2 
between 5-10mM but higher concentrations of Mn were 

+2 
inhibitory; this was similar to that seen with Mg . More 

+2 +2 
significantly, while Ca inhibited Mg dependent adenylate 

+2 
cyclase in a dose dependent manner, Ca had no effect on 

+2 +2 
Mn -activated enzyme activity (Figure 16) ; Mn also 

increased the activity of adenylate cyclase independent of 

+2 +2 
Ca concentration. Concentrations of Ca between 10-100uM 

+2 
inhibited Mg dependent adenylate cyclase activity from 49 

+2 
to 71% respectively, in the presence of 5mM Mg , but the 

+2 
addition of 5mM Mn eliminated this inhibition and even 

increased the enzyme activity to approximately twice that 

+2 +2 
seen with 5mM Mg in the absence of Ca inhibition. 

+2 
In addition, the effect of Mn on adenylate cyclase 

activity was independent of LH stimulation, since enzyme 

activity was the same in the presence or absence of LH 

+2 
(Table 7). Since Mn can activate luteal adenylate cyclase 
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in the absence of LH, this would implied that mechanisms of 

+2 
Mn stimulation of adenylate cyclase occur independently of 

interaction of hormone receptors with other adenylate 

+2 
cyclase components. The result of Mn stimulation was 

greater than that of maximal LH stimulation, but the effect 

were not additive. 
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DISCUSSION 

+2 
Recent work(96) from our laboratory indicated that Ca 

is an important intracellular ion in the regulation of 

luteal adenylate cyclase activity and may be the 

intracellular mediator of natural luteolytic agents such as 

PGF2a and LHRH. XD. vitro studies by Behrman et al.(41) 

+2 
showed that increasing intracellular Ca leads to a 

decrease in LH-stimulated cAMP formation and progesterone 

secretion identical to that seen with PGF2a and LHRH in 

intact luteal cells. The present studies show a direct 

+2 
inhibition by Ca on cAMP accumulation in purified plasma 

membranes of the rat corpus luteum which is in agreement 

with earlier reports by Behrman et al.(41, 96). 

+2 
Inhibition of adenylate cyclase activity by Ca is 

based on a direct assay of the membrane-bound enzyme 

. . +2 +2 
activity in the presence of Ca . Ca -inhibition of 

adenylate cyclase activity was rapidly reversible when the 

+2 
concentration of Ca is reduced by addition of EGTA to the 

reaction mixture. For example, addition of 5mM EGTA, after 

• +2 
preincubation of membrane-bound enzyme with Ca , led to a 

complete reversal of the inhibition of LH-sensitive 

+2 
adenylate cyclase activity by Ca (Table 5) . EGTA also 
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+2 
reversed Ca - inhibition of basal adenylate cyclase 

activity(96). 

+2 
Previous studies from Behrman e_t al. showed that Ca 

in the assay did not decrease substrate levels of ATP or 

+2 increase cAMP degradation(41). However, Ca did not 

inhibit enzyme activity by an action on the LH receptor 

+2 
since Ca did not affect the affinity or the binding 

capacity of the LH receptor for its ligand(41). Moreover, 

+2 +2 Ca also inhibited basal adenylate cyclase activity. Ca , 

in the concentrations used in the current studies, would 

therefore not be expected alter substrate ATP concentrations 

in the assay(96). Recently, Behrman et al.(96) also showed 

+2 
that Ca over a range of concentrations had no significant 

effect on GTPase activity and that LH, PGF2a, or LHRH also 

had no significant effect on GTPase activity. They(96) 

+2 
concluded that Ca -inhibition of adenylate cyclase did not 

result from an increase in the rate of GTP degradation by 

the guanine nucleotide regulatory protein(G) of luteal 

adenylate cyclase. 

The current studies show a dose-dependent inhibition of 

+2 luteal adenylate cyclase in membrane preparations by Ca in 

the concentration range of luM to as high as 800uM (Table 5 

+ 2 
& Figure 4) . Half-maximal inhibitory concentration of Ca 
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occurred between 10 to 20uM for LH-stimulated enzyme 

activity. Our laboratory has reported earlier that 

+2 
significant inhibition of luteal adenylate cyclase by Ca 

could be achieved with concentrations as low as 0.5-luM. 

Behrman et al.(96) reported earlier that the sensitivity of 

adenylate cyclase in luteal plasma membranes to inhibition 

+ 2 
by Ca was increased by several fold with preincubation of 

+2 
membranes with Ca for 20-60 min at 4C or 5 min at 37C(96). 

+2 
Free cytosolic Ca concentrations m most cells at rest 

+2 
varies between 0.05 to 0.5uM(44), but the Ca concentration 

may rise rapidly to the range of 1 to 2uM(44) or higher(95) 

when stimulated. Also in many cells, a nonuniform 

+2 
distribution of Ca is often seen which could result in a 

+2 
much higher level of Ca in localized areas of the 

cytoplasm(44). 

At present, no direct information is available on role 

+2 
of Ca in corpus luteum function or the reproductive 

+2 
cycle. A large increase in Ca concentration was found in 

cumulus-enclosed oocytes of rats after injection of PMSG 

+2 
with maximal concentration of Ca approximately 55h later, 

when ovulation occurs (112). It is known that the corpus 

luteum secretes progesterone under the influence of LH by 

activating the membrane-bound adenylate cyclase. In view of 
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+2 
the fact that a large change in intracellular Ca is found 

to take place in cells of the corpus luteum(112) , that a 

+2 +2 
Ca concentration of 1 to 2uM Ca which is consistent with 

cellular physiology could lead to significant inhibition of 

membrane-bound luteal adenylate cyclase activity, and that 

+2 
this inhibition of the enzyme activity by Ca could be 

+2 
rapidly reversed, strongly implies that Ca is an important 

intracellular messenger in the luteal cell. 

It is currently understood that adenylate cyclase can be 

regulated by a pair of homologous guanine-nucleotide-binding 

regulatory proteins—a G that mediates stimulation of 
s 

adenylate cyclase activity, and a that is responsible for 

inhibition. Although a fair amount is known about the 

structural similarities between G and G. and their similar 
s 1 

requirements for activation, the mechanism of their 

interaction in regulating the activity of the catalytic 

component of the system is still unclear. There is no 

concrete evidence that rat luteal adenylate cyclase contains 

both a Gg and G^ regulatory site, but there is indirect 

evidence for the existence of both a Gg and a G^ component 

in the rabbit luteal adenylate cyclase(65). Therefore 

+2 
interpretation of the possible modes of Ca interaction 

with rat luteal adenylate cyclase would need to take into 
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account the existence of G and G.. 
s 1 

+2 
Ca -inhibition of adenylate cyclase is not only 

reversed by EGTA alone, it is also reversed by GTP and 

+2 
GppNHp, but only when low level of Ca are used (<2.5uM) 

and in the presence of LH stimulation. GTP and GppNHp in 

concentrations of lOuM and O.luM respectively, could reverse 

+2 
inhibition of adenylate cyclase by luM of Ca (Figure 6 & 

7), but only GppNHp at concentrations of lOOuM or greater 

could reverse inhibition of the enzyme by 2. 5uM of 

+2 
Ca (results not shown). Inhibition by Ca 

+2 
at 

concentrations greater than 2.5uM, was not prevented by high 

concentrations of GTP nor by GppNHp (Figure 6 & 7) . 

+2 
Ca -inhibition of basal adenylate cyclase activity was not 

reversed by GTP or GppNHp (Figure 8). This observation 

suggests that GTP-blockade of inhibition by low 

+2 concentrations of Ca is a hormone dependent process. 

In addition, results from current work and others(59, 

109) have suggested that hormone stimulation of the 

membrane-bound enzyme leads to an increase in the exchange 

of guanine nucleotides. Earlier results also showed that 

+2 
neither Ca or LH have any significant effect on GTPase 

activity in luteal adenylate cyclase(96). Therefore, it 

appears that under conditions of LH stimulation, GTP or 
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GppNHp is able to interact in a competitive manner with low 

+2 concentrations of Ca and in a non-competitive manner with 

+2 
higher concentrations of Ca (at approximately >2.5uM) to 

alter the activity of luteal adenylate cyclase. Although 

+2 
the site of interaction of Ca with the subunit (s) of 

+2 
adenylate cyclase is unknown, our results suggest that Ca 

may interfere with LH-induced exchange of guanine 

nucleotides, a process that is necessary for activation of 

adenylate cyclase in a variety of cell types(61). But since 

both Gg and G^ of the adenylate cyclase regulatory subunits 

are also GTPases(114) , it is unclear on which subunit that 

+2 
Ca effects guanine nucleotides exchange that would 

consequently lead to inhibition of adenylate cyclase. 

Fluoride-stimulated adenylate cyclase activity is known 

to be independent of hormone(LH) activation. This is 

consistent with the original work by Sutherland et 

al.(113). Fluoride-stimulated enzyme activity in luteal 

+2 membrane preparations was inhibited by Ca in a 

dose-dependent manner although a higher concentration of 

+2 
Ca , approximately lOOuM or greater, was required to 

achieve half-maximal inhibition relative to that seen with 

+2 
inhibition of LH-stimulated adenylate cyclase by Ca (Table 

5). In contrast to earlier work of Sutherland et al. (113) , 
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who suggested that fluoride acts directly on the catalytic 

unit of the enzyme, Aurbach et al. (107) showed that the 

guanine nucleotide regulatory protein is necessary for 

fluoride activation of adenylate cyclase and that the nature 

of the guanine nucleotide on the regulatory site influences 

fluoride stimulation. Aurbach et al. (107) group also showed 

that exchange of the guanine nucleotides on the regulatory 

site with other nucleotides in the incubation medium is not 

necessary for fluoride stimulation of enzyme activity; 

endogenous GDP, tightly bound to the guanine nucleotide 

regulatory protein, is sufficient for supporting fluoride 

stimulation of adenylate cyclase activity(107). The ability 

+2 of Ca to affect fluoride-stimulated enzyme activity may 

+2 
indicate that Ca interacts at the regulatory subunit but 

+2 
this does not exclude the possibility that Ca may also 

interact at other sites. Recent work from Birnbaumer et 

al. (114) and others showed that fluoride inhibits the GTPase 

activity of G^ while it also activates G^ and thus leads to 

an inhibition of adenylate cyclase activity in purified G^ 

from CYC cells. Fluoride-activated adenylate cyclase 

activity presented here is reflective of its stimulative 

affect on G since increasing concentrations of fluoride 
o 

leads to a rise in adenylate cyclase activity in the absence 

+2 
of Ca . The membrane-bound luteal enzyme used in the 
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current studies appears to contain both a G and G. 
o 1 

regulatory site since fluoride-activated adenylate cyclase 

was inhibited by stable guanine nucleotides; this effect of 

stable guanine nucleotides on fluoride-activated adenylate 

cyclase has been shown in rabbit luteal cyclase(65) and in 

- +2 
CYC cells(114). The nature of Ca -inhibition of 

fluoride-activated luteal adenylate cyclase appears to 

differ from that of the LH-stimulated enzyme since a 

+2 significantly higher concentration of Ca (lOOuM or 

greater) was required for an equivalent degree of 

+2 inhibition. In addition, low levels of Ca (~2.5uM) 

inhibited LH-stimulated adenylate cyclase activity by ~40%, 

+2 
whereas this level of Ca did not inhibit 

fluoride-stimulated enzyme activity. It has been 

reported(66, 115) that fluoride alone could activate G or 
s 

+2 
G^, and if Ca could enhance fluoride's inhibition of G^, 

+2 
we suggest that Ca acts either at G^ or directly inhibits 

the activity of the catalytic subunit. 

Forskolin, a plant diterpene, is a potent activator of 

adenylate cyclase from virtually all mammalian cells and 

tissues, as well as in broken cell and solublized 

preparations(116). It is also a potent activator of rat 

luteal adenylate cyclase(96) independent of LH stimulation. 
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Early work showed that forskolin activates the catalytic 

subunit of adenylate cyclase directly without the presence 

of the G but with an intact G. in CYC cells, and 
S 1 

therefore, it suggested that the compound acts at a site on 

the catalytic subunit or a closely associated protein(116). 

However, recent studies(117-120) showed a striking 

interdependence of forskolin and receptor-mediated G input 

in the activation of adenylate cyclase in many agonist 

systems; the presence of hormone-activated G potentiated 
O 

the effect of forskolin on cAMP-production in intact 

cells(117). Moreover, the stimulation of cAMP-production by 

forskolin in intact cells is found to be inhibited by 

receptor-mediated G^(117). Also, several studies recently 

showed that forskolin-stimulation of adenylate cyclase in 

CYC cells (122, 121) and in rabbit luteal cell membranes(65) 

can be inhibited by nonhydrolysable guanine nucleotide 

+2 
analogs on G^. Ca ions are found to inhibit forskolin 

responses in both intact cells and membranes(116, 118, 123), 

but only when high concentrations in the millimolar range 

are used. In contrast to earlier work by others(116, 118, 

123), our recent results(96) showed that forskolin-activated 

+2 luteal adenylate cyclase is extremely sensitive to Ca 

+2 
inhibition; 5uM Ca led to a greater than 50% inhibition of 
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the enzyme activity stimulated with lOOuM forskolin. The 

+2 
concentration of Ca required to achieve half-maximal 

inhibition of forskolin-activated luteal adenylate cyclase 

is significantly lower than that for fluoride-activated 

enzyme activity seen in the current study, but is similar to 

that for LH-stimulated enzyme activity. Based on our result 

+2 
which showed that Ca acutely inhibited forskolin-activated 

adenylate cyclase, and others(65, 122, 121) which showed 

that forskolin-activated adenylate cyclase could occur in 

the absence of G or hormone stimulation, it would indicate 
s 

+2 
that Ca may activate Gi or directly inhibit the catalytic 

subunit. Both of the action of Ca+2 would lead to 

inhibition of cAMP accumulation. Since inhibition of 

adenylate cyclase at low concentration of Ca+2 could be 

reversed by guanine nucleotides, it would be interesting to 

investigate whether guanine nucleotides would reverse 

+2 
Ca -inhibition of forskolin-activated adenylate cyclase in 

the presence of LH. This could possibly argue for a site of 

+2 
action of Ca on G ; but this form of reversal could also 

O 

indicate that hormone activated Gg is competitively 

+2 
inhibited by Ca -activated Gi. 

+2 
Studies which showed the effect of Mg as a regulator 

of adenylate cyclase are numerous and have been recently 
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+2 
reviewed by Cech et al. (87). Aside from the fact that Mg 

determines the relative stimulation that can be elicited at 

any given guanine nucleotide concentration with rabbit 

luteal cyclase, Birnbaumer et_ al. (53) recently suggested 

+2 that Mg in micromolar concentrations activates and 

leads to a change in the conformation of and the 

+2 
stimulation of G^dependent GTPase activity. However, Mg 

in millimolar concentrations is required for activation of 

G which then lead to stimulation of adenylate cyclase(53). s 

They(66) also showed with CYC cell membrane preparations 

+2 
that Mg in the low micromolar range leads to a relative 

decrease in adenylate cyclase activity but only with the 

addition of guanine nucleotides; this decrease is relative 

to the control which has no added guanine nucleotides. 

However, the rate of cAMP formation continues to increase in 

the absence and presence of guanine nucleotides when the 

+2 
Mg concentration is increased. Intracellular 

+ 2 
concentrations of free Mg is in the range of 

+2 
0.5-1.OmM(124) and many intracellular enzymes require Mg 

at this concentration range for activation, it is therefore 

+2 unlikely that intracellular concentrations of Mg could be 

decreased to the low micromolar range to mediate hormone 

induced inhibition of adenylate cyclase. On the other hand. 
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these studies emphasize the important role for divalent 

cations in regulation of adenylate cyclase. Also, the 

intracellular concentration of GTP is in large excess in 

mammalian cells and would therefore be unlikely to have a 

regulatory role in the adenylate cyclase system(125) . 

+2 The present studies show that Mg is critical for 

activation of luteal adenylate cyclase, and a total 

concentration greater than ImM is required for expression of 

luteal adenylate cyclase activity. But even when hormone- 

stimulated luteal adenylate cyclase is fully activated in 

+2 the presence of an optimum concentration of Mg , it 

+2 
continues to be exquisitely sensitive to Ca inhibition in 

micromolar concentrations that is consistent with 

+2 +2 
physiological levels of Ca . Ca also inhibited adenylate 

+2 
cyclase activity at higher concentrations of Mg , but 

+2 higher concentrations of Mg were also inhibitory on 

+2 adenylate cyclase activity. High concentrations of Mg has 

been shown to increase the affinity of gonadotropin binding 

only when measured after a 30-40 minutes of incubation(126) ; 

this increase was minimal with short incubations and 

therefore should not contribute to the inhibition of 

adenylate cyclase in our studies. 

Similar to results found with rabbit luteal adenylate 
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cyclase(53), LH activation of the enzyme is optimal only 

+ 2 over a narrow range of Mg concentrations. The relative 

+2 degree of Ca inhibition of adenylate cyclase at higher 

+2 concentrations of Mg was attenuated. There appears to be 

+2 +2 competitive inhibition between Ca and Mg when assayed 

+ 2 with higher concentration of Mg but the kinetics of this 

inhibition require further exploration. It is clear from 

+2 
these studies that Mg plays an important role in the 

activation of adenylate cyclase. Since the intracellular 

+2 free Mg concentration varies between 0.5-lmM and although 

+2 
fluctuation in Mg concentrations has been noted in cells, 

+2 
micromolar concentrations of Mg has never been recorded, 

+2 whereas the concentrations of Ca that inhibit luteal 

adenylate cyclase activity are well within the physiological 

range. 

+2 
Mn , on the other hand, at all concentrations tested, 

+2 
consistently prevented Ca -inhibition of adenylate cyclase 

+2 +2 
activity. In the absence of Mg , Mn could serve to 

activate rat luteal adenylate cyclase in a dose-dependent 

manner but a concentration greater than ImM is required. 

+2 High concentrations of Mn (lOmM or greater) inhibit luteal 

adenylate cyclase activity, a finding that is consistent 
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with earlier reports (87) which showed that increasing 

+2 
concentration of Mn inhibits the V _ of S49 wild cells. 

max 

+2 
The present studies show that Mn activates luteal 

adenylate cyclase independent of LH stimulation. This is 

+2 
consistent with earlier results(87) which show that Mn is 

a direct stimulator of the catalytic subunit. Eut recent 

+2 
evidence also suggests that Mn may act to inhibit 

activation(121), an effect which would produce a similar 

result with adenylate cyclase as does pertussis toxin in 

+2 
blocking inhibition by . Mn was shown to abolish the 

action of fluoride on a G^ purified preparation from CYC 

S49 cells and subsequently antagonized the inhibitory effect 

of G^ when recombined with an intact adenylate cyclase 

+2 
system(66). In the present studies, Ca at all 

+2 
concentrations tested did not inhibit Mn -activated 

+2 adenylate cyclase. However, Ca in millimolar 

+2 - 

concentrations has been shown to inhibit Mn -activated CYC 

adenylate cyclase with enzyme kinetics suggestive of a 

+2 
competitive inhibition(123) . The ability of Mn to 

activate CYC adenylate cyclase and other mammalian 

adenylate cyclase independent of hormone stimulation, 

• +2 implies that the action of Mn is independent of Gg. 
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+2 
Whether Mn interacts with G^, or the catalytic subunit 

directly, cannot be concluded from the current studies, but 

+2 
it is clear that the inhibition of adenylate cyclase by Ca 

that approximated physiological concentrations was 

+2 
completely reversed in the presence of Mn . Mn-ATP is the 

physiological substrate in some lower eukaryotes and 

prokaryotes(87), but not in mammalian adenylate cyclase 

studies, with the exception of CYC variant of S49 and 

naturally soluble adenylate cyclase in rat testes(87). 

+2 
Also, the intracellular concentration of Mn in mammalian 

+2 
cells is negligible. Therefore, although Mn has proven to 

be a useful tool to further our understanding of the 

regulation of adenylate cyclase, the physiological relevance 

+2 of Mn remains unclear. 

+2 +2 +2 
All three divalent cations, Ca , Mg , and Mn 

inhibited luteal adenylate cyclase when used at high 

+2 concentrations, but only Ca was inhibitory at 

concentrations that could approximate intracellular levels. 

+2 
Therefore the for Ca is several hundred fold lower than 

+2 +2 than of Mg or Mn and its effective concentration is more 

suitable for an intracellular regulator. A transient change 

+2 
in intracellular Ca concentration when stimulated by 

hormone or neurotransmitters has been well documented and 
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+2 
recently reviewed(44). On the other hand. Mg was shown to 

have specific and unique properties with regard to hormone 

activation of luteal adenylate cyclase, but since the 

+2 intracellular variation of Mg is usually between 0.5mM to 

+2 lmM(124), it is unlikely that varying Mg concentrations 

alone could be the intracellular regulator of luteal 

adenylate cyclase. 

+2 
Behrman et. al. has shown that with Ca -ionophore(114) 

+2 and other agents(42) which increase intracellular Ca have 

led to an acute inhibition of LH-dependent cAMP accumulation 

and steroidogenesis in intact cells, a response that 

mirrored the acute effect of PGF2a and LHRH. On the other 

hand, the acute effect of PGF2a or LHRH was independent of 

+2 +2 
extracellular Ca (42) . If Ca is the intracellular 

mediator of PGF2a and LHRH, then the rise in intracellular 

+2 
Ca must be attained rapidly from intracellular sources and 

the reversal of this r ise, ie. the return of Ca+2 

concentration to basal level, must also be rapid since 

persistent elevation of Ca+2 is found to be toxic to 

cells(44). There are two relative large intracellular pools 

of nonionic calcium, the mitochondrial matrix and the 

endoplasmic reticulum, and these two pools are in rapid 

+2 
exchange with cytosolic pool of Ca . Studies (44, 95) have 
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shown that both the mitochondria and the endoplasmic 

+2 
reticulum could serve as a source of Ca for cellular 

activation. Thus, based on our studies, a release of 

+ 2 intracellular Ca from these sequestered sites would be 

suffice to inhibit luteal adenylate cyclase activity. 

It is concluded that Ca+2 appears to inhibit luteal 

adenylate cyclase by two combined effects. Low 

concentrations (~<2.5uM) of Ca acutely inhibited LH- 

stimulated , forskolin-stimulated, and basal adenylate 

cyclase activity, while significantly higher concentrations 

+2 of Ca are required to illicit a similar degree of 

inhibition on fluoride-activated enzyme activity. Also, 

+2 
only inhibition of luteal adenylate cyclase by low Ca 

concentrations (~<2.5uM) was prevented by the addition of 

+2 guanine nucleotides. These results indicate that Ca may 

interact at two different sites on the adenylate cyclase 

complex, a high affinity site that is blocked by guanine 

nucleotides and fluoride, and a low affinity site that is 

+2 blocked by Mn stimulation but not by guanine nucleotides, 

fluoride, or forskolin. On the other hand, based on 

studies(122) that showed that activated G and G. may 

interact in a noncompetitive manner and based on results 

+2 from our current studies, it is conceivable that Ca 
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+2 
('<2.5) may activate GSubsequently, the Ca -activated Gi 

may interact with hormone activated Gg in a competitive 

+2 
manner when G^ is activated by a low Ca concentration 

(~<2.5uM), but only a noncompetitive interaction occurs when 

+2 +2 activated by a higher Ca concentration. Also, if Ca 

+2 
activate G^, then Mn , shown to affect the catalytic 

subunit or inhibit G^ activation, would logically prevent 

+2 +2 
the inhibition by Ca . Furthermore, Mg , in concentrations 

consistent with cellular levels, appears to modulate the 

degree of hormone stimulation and consequently the rate of 

+2 +2 cAMP formation. In summary, both Ca and Mg appear to be 

important divalent ions in the regulation of adenylate 

+2 
cyclase. It seems possible that by varying cellular Ca in 

response to hormonal stimulation, then adenylate cyclase 

could alternate between an active or inactive state; and 

+2 
Mg would then serve to modulate the magnitude of 

hormone-stimulated adenylate cyclase activity. 

In conclusion, we have reinforced our previous 

observations that luteal adenylate cyclase is extremely 

sensitive to small increases of physiologically relevant 

+2 . +2 
Ca concentrations. The possible interaction of Ca with 

other divalent ions in the luteal adenylate cyclase system 

have been presented. Based on our current studies, several 
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+2 modes of possible interaction of Ca and luteal adenylate 

cyclase have been explored. Although at present, the 

+2 mechanism of Ca regulation of luteal adenylate cyclase 

+2 
remains speculative, we have shown that Ca is an important 

intracellular ion in the regulation of luteal adenylate 

cyclase activity. 
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Mi crosoma 1 — Enriched merrsbrane fractions. The reac11 on mi ture 

contained LH (iug/ml). Results are expressed as Mean+SE; 

N -- 3 groups. 
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Table EFFECT OF MG- D W h F; E E CA + 2. 

' ' SJ t. <r.j -ir. 1 

\ ffi M) 

C. r~ t:-* 

(uM) 

(Ti Ca f - r~ 
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a "T u 
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' wi "7 
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47 
nr- r-y 

cr r.~ 
iJ . X_J 

5. 9 
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Free calcium J.A) clc determined fa ci “•> 0 ci on c o r r e 1 a ting t. h e 

m e a e u r e m e n t s ■f r Dm the Orion C cl ’+' ^ — s e n s ; i t :t v e e 1 e c 11- o ci e 
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Table 4. REVERSAL UF CA + 2 INHIBITION OF LH 

ADENYLATE CYCLASE' BY EOTA. 
SIMULATED 

LH 

TRE 

EOT 

■NT 

i (5rnM) 

(uM) 

2O 1 0 C 

+ 

+ 

Rate 

Std.Error + 

Inhibition 7. 42 

R =11 e 76 i0 7 

Std.Error + 9.2 22 

Inhibition 7. - 

Reversal 7. + 

115 62.4 

48 1 „ 2 

IS 

Rate 11.9 S.l 

Std.Error + 0.7 0.6 

Inhibiti on 7. ’ 3 2 

Rate 14.2 

Std.Error + U.S 
Inhibition 7. 
Reversal % 

14 1 1 „ 6 
1 0. 7 

IS 

Rate — pmo 1 e cANf-’/ ing protei n / mi n . Rate + Std . Err or = Mean 

+ Standard error; N—3. LOl A (5nilv1) was added to samples at ter 

1 uteai membr a.nes were incubated wi thi Ca+2 at 4C i n a r eact i on 

mixture for 20 min. LH — 1 ug/ml . 7. inhibition was relative 

rate without added Ca+2. Concentration of Ca+2 was determined 

based on adenylate cyclase assay conditions (Materials and Met 

to 

h o d s 
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TABLE EFFECT OF MAGANESE 

A D E N Y L A T E C Y C L A S E. 

MAGNESIUN-DEPENDENT LUTEAL 

TREATMENT: +LH -LH 
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ONLY S I D .. E R P 0 R + / — 
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O „ 7 
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MN+2 

RATE 

STD. ERROR +/- 

11). .j. 84 

Concentration of Mg+2 was 5 mM (See Materials & Methods). 

Concentration of Mn+2 was 5 mM. LH concentral on was 1 ug/ml. 

Rate represents pMole cAMP/Mg Protein/Min and is the mean 

o f t h r e e r e p 3. :L c: a t e s. 
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3 e 7 

FEME CA+2 fpCam -L0CICI+2J) 

+2 Figure 1. Free Ca standard curve 
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TOTAL CALCIUM CONCENTRATION ADDED 
□ with DSA + No BSA 

. Free Ca+^ vs. Total Ca+^ 
absence of BSA. 

Figure 2 in the presence and 
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CA+2 (uM) 
□ LH (1 of/ml) 

Figure 3. Inhibition of LH-stimulated adenylate cyclase 
+2 

activity by Ca 
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CA.+2 (uU) 
□ NO LH sftimoiation 

Figure 4 Inhibition of basal luteal adenylate cyclase 
+2 

activity by Ca 
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Figure 5. Effect of GppNHp on adenylate cyclase activity 
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+ 2 
Effect of GTP on Ca -inhibition of adenylate 
cyclase activity. 

Figure 6. 
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Figure 7. + 2 
Effect of GppNHp on Ca -inhibition of 
LH-stimulated adenylate cyclase activity. 
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+2 
Figure 8. Effect of GTP and GppNHp on Ca -inhibition of 

adenylate cyclase activity in the absence of LH. 

(Copied with permission from H.R. Behrman.) 
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oM CJL+2 
m W. LH U7~X w/o. LH No N«JT & w. LH 

+ 2 
Figure 9. Effect of Ca -inhibition of fluoride-stimulated 

luteal adenylate cyclase activity. 
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Figure 10a. Binding of 32P-GTP to luteal membranes. 
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TIME (MIX) 
LH it No Ca 

32r 
Fig 10b. Binding of P-GTP to luteal membranes: in the presence 

or absence of LH. 

T l 

TIME (MIN) 
LH ± No Ca fxyl LH * 20 vM Ca. 

32 
Fig lQc. Binding of P-GTP to luteal membranes: in the presence 

presence or absence of Calcium and with LH. 
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Fig lOd. Binding of P-GTP to luteal membranes: 

in the presence or absence of LH and of 
Calcium. 

Fig lOe. Binding of P-GTP to luteal membranes: in the 
presence or absence of Calcium and without LH. 
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K71 A + BOuM CTP 
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Figure 11. 32p_GTP filter binding assay with increasing 
concentrations of unlabelled GTP. 
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D No CALCIUM 

+2 +2 
Figure 13. Effect of Mg on Ca -inhibition of luteal 

adenylate cyclase activity. 
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[UN+21 (mJi) 
□ NO CA+2 + luM CA+2 X 2(hiM CA+2 

+2 
Effect of Mn on 
adenylate cyclase 

+2 
Mg 

+ 2 
Ca -inhibition of luteal 
activity in the absence of 

Figure 15 
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ICA.+21 tuW 
□ NO UN+2 + W. S mU MN+2 

Effect of Mn+^ on Ca+2”inhibition of LH- 
stimulated adenylate cyclase activity. 

Figure 16 
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