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ABSTRACT 

CHARACTERIZATION OF AND NYC EXPRESSION IN A HL-60 MUTANT 
RESISTANT TO DMSO INDUCED DIFFERENTIATION 

Walter Michael Stadler 
1988 

The promyelocytic cell line, HL-60, has been extensively 
studied for its ability to terminally differentiate in res¬ 
ponse to various chemical inducers, including, but not li¬ 
mited to, DMSO and retinoic acid. It has also been noted 
that the myc oncogene is amplified and highly expressed in 
these cells. Furthermore, differentiation in this line, as 
well as in several other cell lines, is accompanied by a 
marked decline in myc expression, leading to the hypothesis 
that this decline is mechanistically important for differen¬ 
tiation to occur. To probe this phenomenon more closely and 
to test this hypothesis I isolated an HL-60 mutant that no 
longer responded to DMSO induced differentiation and measured 
myc expression in these cells following exposure to DMSO, 
retinoic acid, or a combination of the two. I show that such 
a mutant is also partially cross resistant to retinoic acid 
induced differentiation, that the myc gene locus is not 
rearranged or changed in amplification status, and that a 
decline in myc expression can be associated with an undif¬ 
ferentiated, replicating phenotype. 
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ABBREVIATIONS 

A26 0, A280: absorbence of a s 
spectively 

DMSO : dimethyl sulfoxid 

HMBA : N,N-hexamethylene 

MOPS : buffer consisting 
fonic acid, 5 mM 
(pH 7.0) 

lution at 260 or 280 nm, re- 

bisacetamide 

of 20 mM morpholinopropanesul- 
odium acetate and 1 mM EDTA 

NBT 

NP40 

PBS 

RA 

SDS 

SSC 

TE 

TPA 

: nitroblue tetrazolium 

: octylphenol ethylene oxide condensate, a nonionic 
detergent 

: phosphate buffered saline 

: all trans retinoic acid 

: sodium dodecyl sulfate, an ionic detergent 

: buffer consisting of 150 mM NaCl, 15 mM sodium 
citrate (pH 7.0) 

: buffer consisting of 10 mM Tris-HCl, 1 mM EDTA 
Number following is pH 

: 12-O-tetradecanoylphorbol-l3-acetate 
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INTRODUCTION 

The HL-60 cell line was originally isolated from a 

patient with acute promyelocytic leukemia (1,2). It has been 

shown that a variety of agents can induce these cells to 

differentiate along either the granulocytic, monocytic, or 

even eosinophilic pathways (3-15). The morphological matura¬ 

tion is accompanied by numerous functional and cytochemical 

changes, including the acquisition of the ability to reduce 

NET, an assay for the ability of phagocytic cells to generate 

an oxidative burst (4). Although most of these changes 

approximate the characteristics of normal granulocytes or 

macrophages, it has been pointed out that there are signifi¬ 

cant differences (16,17). Of particular note is the ability 

of uninduced HL-60 cells to divide continuously in culture, 

an unusual characteristic even of most leukemias, and their 

grossly abnormal karyotype (2), which does not correspond to 

any commonly recognized association between karyotype and 

malignancy (18). 

Yet, like normal terminally differentiated cells, in¬ 

duced HL-60 cells have a finite lifetime and cannot be main¬ 

tained in culture or cloned (19). It is for this reason, 

that they are believed to be a good model system to investi¬ 

gate differentiation mechanisms and to explore differentia¬ 

tion induction as a possible therapeutic modality. 

Oncogenes were first isolated from transforming retro¬ 

viruses (20) and subsequently from NIH3T3 cells transfected 
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with tumor DNA (21). They have since been identified in 

normal cells and their elevated expression or mutated forms 

identified in numerous human and animal malignancies (22-26). 

Oncogenes are thought to be involved in regulating growth and 

replication. In fact, several have been shown to be growth 

factors or growth factor receptors (27-32). The protein 

product of others, such as the myc oncogene, have also been 

shown to reside in the nucleus and to bind double stranded 

DNA (33). Since a cardinal manifestation of a malignant cell 

is an undifferentiated phenotype, a role for some oncogenes 

in maintaining such a state or in initiating the differen¬ 

tiated state was soon hypothesized and explored. One of the 

first such investigations used the HL-60 leukemia and showed 

that during differentiation the RNA expression of the myc 

oncogene was greatly reduced (34). It had already been shown 

that the myc gene locus is amplified in these cells (35,36). 

Subsequent work showed changes in other oncogenes, including 

a similar decline in the expression of another nuclear onco¬ 

gene, myb (37), and extended these observations to other 

differentiating cell lines (38-40). 

In further studies, the kinetics of the decline in myc 

expression were more carefully defined (19,41), demonstrating 

that they are mostly due to a specific decline in the myc 

transcription rate (42). The decrease in expression is also 

accompanied by a slight change in SI nuclease sensitive sites 

of the myc gene (43). Finally, constitutive expression of 
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myc in a mouse erythroleukemia line inhibited DMSO or HMBA 

induced differentiation (44-46), but transgenic mice with a 

similarily activated myc locus developed normally (47,48). 

Thus, although it seemed that high myc levels were sufficient 

to maintain the undifferentiated replicating phenotype, there 

was no direct information as to whether high levels of ex¬ 

pression were necessary. 

To analyze the importance of myc expression to the 

differentiation process, I developed a mutant HL-60 line 

which no longer responded to DMSO induced differentiation and 

measured the effects of DMSO exposure on myc expression. 

Several other investigators have reported isolating DMSO 

resistant HL-60 cells (49-52). One report documented cross¬ 

resistance to several other inducers, as well as a reduction 

in the myc gene copy number (51). Accompaning changes in the 

expression of several cell membrane proteins were also noted, 

but myc RNA expression was not measured (53). Another report 

showed a slight decline in myc expression in a DMSO resistant 

mutant, but the decrease was only 2-fold and only dot-blots 

were used to document the finding (52). Here I report a 

marked decline in myc RNA expression following DMSO exposure 

in mutant HL-60 cells unable to respond to DMSO induced 

differentiation. 
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METHODS 

CELL CULTURE 

HL-60 cells were originally obtained from Dr. Robert C. 

Gallo of the National Cancer Institute (1) and stock cultures 

were maintained and stored at our facilities. Cells were 

grown in RPMI 1640 supplemented with 10% heat inactivated 

fetal bovine serum, 100 units/ml penicillin, and 100 ug 

streptomycin at 37°C in a 5% CO2 humidified incubator. They 

were kept in exponential phase by splitting every 2-3 days 

and were periodically tested to insure freedom from mycoplas¬ 

ma infection. Every set of experiments was conducted by 

growing a sufficient number of cells such that all treatments 

and time points were begun concurrently and with the same set 

of seed cultures. All media were prewarmed to 37°C. 

The mutant cells were isolated as described in the 

Results section and were maintained in the manner described 

above except that the medium was also supplemented with 1.2% 

DMSO. Before beginning an experiment, cells were washed in 

drug-free medium and passaged once in drug-free medium before 

resuspending in the appropriate treatment flasks. All cell 

counts were obtained on a Coulter model ZBI particle counter. 

NBT TEST AND STAINING 

To measure differentiation, cells were cytospun onto 

acid-washed slides, fixed, and stained for morphological 
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evaluation by a rapid staining solution (Canko Quik Stain II) 

that approximates the Wright-Giemsa stain. The NBT test was 

6 
conducted as previously described (4). One x 10 cells were 

resuspended in 0.5 ml of medium and 0.5 ml of 0.2% NBT (made 

up in sterile PBS protected from light, and stored at 5°C). 

TPA (from a 1 mM stock solution made up in DMSO, protected 

from light, and stored at -20°C) was added to a final concen¬ 

tration of 0.1 uM and the suspension incubated at 37°C for 20 

min. The reaction was stopped by placing the solution on 

ice, the cells were collected by centrifugation, resuspended 

in a minimal amount of medium, and the percentage of cells 

containing black formazan particles was measured using a 

standard counting chamber. All cell counts (for both morpho¬ 

logy and NBT reduction) were done blindly, in at least dupli¬ 

cate, and at least 200 cells were counted each time. 

NORTHERN ANALYSIS 

RNA was isolated by the guanidine thiocyanate method 

(54) and analysed by Northern blotting (55,56). Briefly, 

cells collected by centrifugation were washed in ice-cold 

PBS, and resuspended in 0.7 ml of 4 M guanidine thiocyanate 

in 25 mM sodium citrate with 0.1 M 2-mercaptoethanol 

(pH = 7.0). Cells were immediately vortexed and 0.5% Sarko- 

syl was added to complete the cellular disruption. This 

mixture was layered over 4 ml of 5.7 M CsCl in 25 mM sodium 

citrate (pH * 5.0) and centrifuged at 32K RPM in a Beckman 
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SW-40 rotor for 18 h at 20°C. The RNA pellet was resuspended 

in sterile water and reprecipitated. The final RNA pellet 

was resuspended in TE7.5 and quantitated spectrophotometric- 

ally by A260. 

Ten ug of RNA was heat-denatured in 50% formamide and 6% 

formaldehyde and loaded onto a 1.2% agarose formaldehyde gel. 

After electrophoresis in lx MOPS, the 18S and 28S bands were 

visualized by acridine orange staining and the RNA trans¬ 

ferred to nitrocellulose with 5x SSC. 

The baked filters were prehybridized in a buffer con¬ 

taining 50% formamide and 10% dextran sulfate at 42°C for 2 

to 12 hr and then hybridized in the same solution for ap¬ 

proximately 24 hr at 42°C. Blots were rinsed in 2x SSC with 

0.5% SDS at room temperature, washed for 15 min in 2x SSC 

with 0.5% SDS at room temperature, washed for 20 min in lx 

SSC with 0.1% SDS at 42°C, and finally washed for 30 min in 

0.5x SSC with 0.1% SDS at 65°C. The blots were exposed to 

Kodak XRP film for 24 to 48 hours at -70°C. 

CYTODOT ANALYSIS 

Cytodot analysis was accomplished by a modification of a 

published technique (57) that was arrived at after systematic 

6 
analysis (see Figure 1). Two x 10 cells were washed twice 

in ice-cold PBS and resuspended in 45 ul of TE7.0 and 1000 

units of RNAsin. Five ul of 5% NP40 were added and the 

mixture incubated on ice for 5 min. Another 5 ul of 5% NP40 
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FIGURE 1: Cytodot probed with v-myc♦ Lane 2 cells treated 

with NP40, RNasin, and Centrifugation as described in Meth¬ 

ods, other lanes had the following changes. 1,10: no RNAse 

inhibitors added; 3,5,7,9: vanadyl nucleoside analogs replace 

RNAsin; 4-7,10: phenol/c’nloroform extraction of supernatant 

added; 6-10: proteinase K treatment of supernatant added; 11: 

same as 6, but RNAse added at end. 



CYTODOT PROTOCOL DEVELOPMENT 

I 23456 789 10 II 
I x I06 • • • 

5 x I05 • • • 

2.5x I05 • • • 

I.2xl05 

6.2x I04 

3.1 x I04 

1.5 xIO4 
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were added and the mixture was incubated on ice for a further 

5 minutes. The nuclei were collected by centrifugation and 

50 ul of the resulting suspension were added to 30 ul of 

20x SSC. The RNA was denatured with 7% formaldahyde at 60°C 

for 20 min and the amount of solution representing 1 x 10^ 

cells was placed on Gene-Screen with a Minifold blotting 

apparatus. Dilutions (1:2) were made with 15x SSC. The 

filters were baked and blotted as above. 

SOUTHERN ANALYSIS 

DNA was isolated from cells by a phenol/chloroform me¬ 

thod and analyzed by Southern blotting (56,58). Briefly, 

cells were collected by centrifugation, washed in ice-cold 

PBS, resuspended in TE8.0, and lysed with 10 volumes of a 

0.5 M EDTA, 0.5% Sarkosyl, and 100 ug/ul proteinase K 

solution at 50°C. The nucleic acids were extracted by re¬ 

peated phenol, phenol/chloroform, and chloroform extrac¬ 

tions and the solution dialyzed against TE8.0. RNA was 

removed by treating the solution with DNAse-free RNAse fol¬ 

lowed by repeated phenol/chloroform extractions. After a 

second dialysis against TE8.0, the DNA was concentrated by 

reprecipitation, and quantitated spectrophotometrically by 

A260. Agarose gel electrophoresis showed that all of the DNA 

so isolated was greater than 23kb. 

Approximately 12 ug of DNA were cut by restriction 

enzymes (56), the fragments separated on a 1.2% agarose gel, 
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and then transferred to nitrocellulose. Prehybridization, 

hybridization, and washing were as for the Northern analysis. 

PROBES 

For Southern blots, a v-myc probe (59) provided by Dr. 

Mark Carmen was used. For Northern blots, a murine c-myc 

probe (60,61) and a human N-ras probe isolated from HL-60 

cells (62), both of which were received from the American 

Type Culture Collection, were used. Probes were isolated 

from coli using standard procedures (56). 
g 

All probes were labeled to approximately 9 x 10 cpm/ug 

by an oligonucleotide labeling technique (63). Briefly, 

denatured probe was incubated with oligonucleotides, dATP, 

32 
dGTP, dTTP, P-dCTP, and the Klenow fragment of bacterial 

DNA synthetase. Free nucleotides were separated from the 

labeled probe by passage over a G-50 column. 

DENSITOMETRY 

Radioautographs were densitometrically scanned using a 

Zeineh soft laser scanning densitometer equipped with an 

Apple computer which was used for data analyses. 

CHEMICALS AND SOLUTIONS 

All chemicals used were of the highest grade available 

and supplied by standard laboratory suppliers. All solutions 

were sterilized in an autoclave before use. In addition, 
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glassware for RNA work was baked at 250°C for 4 hr prior to 

use. 
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RESULTS 

CELL ISOLATION AND CHARACTERIZATION 

Under the conditions employed parental HL-60 cells had a 

doubling time of about 36 hours and plateaued after 3 doub¬ 

lings. When treated with 1.2% DMSO or 1 uM RA, their growth 

was inhibited and they acquired a differentiated phenotype as 

assayed by the ability to reduce NBT (Figure 2). 

To create an HL-60 line resistant to DMSO induced dif¬ 

ferentiation, parental HL-60 cells were continuously main¬ 

tained in medium with serially increasing concentrations of 

DMSO until a culture resistant to 1.2% DMSO was created. 

This was successful in three instances. In each case the 

cells grew well in 1.2% DMSO (albeit somewhat more slowly 

than the parental line) without showing any ability to re¬ 

duce NBT. However, these resistant lines died when placed in 

drug-free medium, indicating a dependency on DMSO (*). Be¬ 

cause of the close resemblance to the growth characteristics 

of the parental line, one of these resistant lines, termed 

HL-60-DA, was selected for further study. 

Figure 3 shows the growth and differentiation of 

HL-60-DA cells in DMSO concentrations ranging from 1.2% to 

2.2%. The cells grew well in 1.2% to 1.6% DMSO; however, 

they demonstrated up to 20% NBT positivity at this latter 

concentration. As the DMSO was further increased, the cells 

grew less well and demonstrated greater NBT positivity. A 

*This initial work was carried out by David Frank, MD, PhD. 







14 

FIGURE 2: HL-60 growth and differentiation (inset). Condi¬ 

tions and measurments are as described in Methods. Each 

point represents a separate flask and is the average of at 

least duplicate samples. 
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FIGURE 3: HL-60-DA dose response to DMSO. Culture conditions 

and measurments are as described in Methods. The accompaning 

tabular insert shows the percentage of cells capable of 

reducing NBT on the last day of culture. Cells treated with 

2.2% DMSO were not assayed due to the large amount of cellu¬ 

lar debris. 
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DMSO concentration of 2.2% was toxic, as demonstrated by 

cellular vacuolation and debris after 3 days in culture. 

As mentioned above, it has been reported that myc ex 

pression decreases dramatically in parental HL-60 cells upon 

DMSO induced differentiation (34). Therefore, I assayed myc 

RNA levels in HL-60-DA cells during exponential growth, as 

well as during plateau phase. An RNA "dot blot" showed that 

myc expression in the mutant line was significantly lower 

than in the uninduced parental line and was approximately as 

low as in DMSO induced parental HL-60 cells (data not shown). 

These studies, however, were complicated by the necessity of 

continuously maintaining the mutant cell line in DMSO. It 

was impossible, therefore, to determine whether this decrease 

was a DMSO-induced effect or a permanent alteration. For 

this reason, I attempted to isolate a cell line that remained 

resistant to DMSO induced differentiation but was not depen¬ 

dent on it for growth. 

To this end, some HL-60-DA cells were placed in drug- 

free medium. In contrast to earlier results, after two 

passages a cell line developed that grew well both in the 

presence and absence of DMSO. This line, now termed HL-60- 

DAl, was maintained in drug-free medium. Figure 4 shows the 

growth and NBT positivity of HL-60-DA1 cells in 1.2% DMSO, in 

1 uM RA, and in drug free medium. This cell line grew 

slightly better in the medium with DMSO than in the drug-free 

medium, but failed to differentiate in either case. Surpri- 
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FIGURE 4: Growth of HL-60-DA1 cells in presence of DMSO or RA 

Culture conditions and measurements are as described in Meth¬ 

ods. The accompaning tabular insert shows the percentage of 

cells capable of reducing NBT on the last day of culture. 
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singly, the cells also grew well, and differentiated only 

partially (30% NBT positivity) when exposed to RA. Control 

HL-60 cells cultured at the same time and induced with either 

RA or DMSO showed the expected growth inhibition and greater 

than 75% NBT positivity at plateaued growth, thus demonstra¬ 

ting that the assays were functioning properly. Subsequent 

experiments demonstrated that the growth of HL-60-DA1 cells 

was inhibited and differentiation occurred, with the cells 

expressing greater than 75% NBT positivity, when they were 

placed in both 1.2% DMSO and luM RA (data not shown), thus 

proving that the resistance to differentiation was not abso¬ 

lute. 

The HL-60-DA1 cells maintained their mutant phenotype 

for approximately fifteen passages in drug-free medium and it 

was initially felt that this was a stable mutant. Unfortun¬ 

ately, as the cells continued to be passaged in drug-free 

media in preparation for measuring myc RNA expression, it was 

noted that they began to revert back to the parental pheno¬ 

type. For this reason, some of the early passage HL-60-DA1 

cells were removed from frozen storage and placed in medium 

supplemented with 1.2% DMSO to maintain the selective pres¬ 

sure. Unlike the parental line, the recovery of viable cells 

from the frozen stock of HL-60-DA1 cells was extremely low 

and estimated to be less than 1%. 

A viable culture was eventually created and these cells, 

now termed HL-60-DA2, were maintained in 1.2% DMSO until 
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ready for study. Figure 5 shows their initial growth and 

differentiation. Although qualitatively similar to the ori¬ 

ginal HL-60-DAl cells, they do show some differences. They 

still grow well in drug free, DMSO treated, or RA treated 

media, but now show up to 50% NBT positivity with RA treat¬ 

ment. In addition, cells treated with both RA and DMSO also 

developed only 50% NBT positivity, although they did so more 

rapidly than those treated with RA alone. A control HL-60 

culture grown and assayed at the same time once again res¬ 

ponded as usual. To further characterize these cells, 

Wright-Giemsa stained samples from the cultures were examined 

for morphological changes (Figure 6). The cells in drug-free 

or DMSO treated media both matured slightly from predomin¬ 

antly promyelocytes to approximately 50% myelocytes. The 

drug-free cells seemed to mature somewhat more extensively, 

2 
but this was not statistically significant (p > 0.05 by X 

I 

analysis). Cells treated with both RA and DMSO differen¬ 

tiated so that a majority of the cells resembled metamyelo¬ 

cytes or bands. Unfortunately, the sample for the 8-day 

treatment with RA was lost thereby making analyses difficult. 

These findings confirmed the NBT results and correlated well 

with them, in so much as metamyelocytes are considered the 

earliest cells capable of expressing NBT positivity. 

Stock HL-60-DA2 cells were continuously maintained in 

1.2% DMSO for two months, at which time the confirmation of 

the above results, as well as the results of the myc analysis 
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FIGURE 5: HL-60-DA2 growth and differentiation. Culture 

conditions and measurements are as described in Methods. 
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FIGURE 6: Morphological differentiation of HL-60-DA2 cells 

Assay performed as described in Methods. All samples were 

blinded, at least 200 cells were counted, and the results 

represent the average of at least duplicate measurements. 

Error bars represent + one standard deviation or 5%, which 

ever is greater. 
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discussed below, was attempted. The experiment was repeated 

in the exact manner as before except that the cells were 

cultured in smaller flasks. Figure 7 shows their growth and 

NBT positivity and Figure 8 the morphological analysis. It 

is clear that the cellular characteristics had changed and 

thus they are now termed HL-60-DA3 cells. These cells grew 

well even in the presence of both RA and DMSO and expressed a 

maximum of 10% NBT positivity under those conditions. Mor¬ 

phology confirmed these results for the drug-free, the DMSO 

treated, and the RA treated cultures. The cultures treated 

with both RA and DMSO developed more metamyelocytes and bands 

than would be predicted from the NBT test but still not as 

many as the HL-60-DA2 cells (see Figure 6). Parental HL-60 

cells cultured and tested at the same time and with the same 

reagents once again behaved as expected. 

ANALYSIS OF THE MYC ONCOGENE 

RNA was isolated at various times from the cells des¬ 

cribed in Figures 5 and 6 and probed for the myc oncogene. 

Since it has been shown that N-ras RNA levels do not change 

with HL-60 differentiation (19), the blots were simultaneous¬ 

ly probed for this oncogene as a control. Figure 9 shows the 

Northern blots and Figure 10 the densitometric scanning re¬ 

sults. All bands are consistent with previously reported 

sizes for these RNA species (34,62,64). With a few minor 
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FIGURE 7: HL-60-DA3 growth and differentiation, 

conditions and measurements were as described in 

Culture 

Methods. 
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FIGURE 8: Morphological differentiation of HL-60-DA3 cells. 

Analyses are as in Figure 6. 
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FIGURE 9: Northern analysis of total RNA isolated from HL-60- 

DA2 cells and probed with human N-ras and mouse c-myc. 

Twenty micrograms of total RNA were isolated, separated, and 

hybridized as described in Methods. Bands were labeled and 

confirmed by independent hybridizations. N-ras bands were 

more clearly visualized on the original autoradiograph and on 

overexposure of the film. 
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FIGURE 10: Densitometric measurements of Northern analysis 

from Figure 9. N-ras bands could not be scanned because of 

their low intensity. 
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exceptions attributable to loading variations, the RNA levels 

of N-ras remained relatively constant. Myc RNA levels, how¬ 

ever, varied dramatically. First of all, the untreated par¬ 

ental HL-60 cells consistently expressed high levels of myc 

which were dramatically reduced when the cells were induced 

to differentiate with DMSO. The 5 to 20-fold decrease in 

myc expression is consistent with previously published 

data (19,34). The untreated HL-60-DA2 cells showed even 

higher levels of myc RNA expression than the untreated paren¬ 

tal line. Given the difficulty of accurately scanning the 

high density bands in these experiments, it is not known if 

the modest decline over time seen in Figure 10 is signifi¬ 

cant. Treatment with DMSO, which in this line does not cause 

differentiation, once again caused a dramatic decrease in myc 

RNA. Treatment with RA, which causes moderate differenti¬ 

ation, induced similar changes. Treatment with RA and DMSO, 

which caused moderate differentiation at a faster rate than 

RA alone, produced a dramatic decline in myc RNA, similar to 

that seen in the differentiating parental line. 

To confirm these results, I attempted to repeat them 

using a cytodot method (57). Preliminary experiments showed 

that this was a feasible technique (see Methods). This 

method was chosen for its rapidity and convenience in ana¬ 

lyzing samples and time points. In addition, densitometric 

scanning was easier than with the Northern blots. The draw¬ 

backs include difficulty in controlling for nonspecific bin- 
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ding of the probe and, since RNA levels are expressed in 

units/cell rather than in units/ug of total RNA, difficulty 

in comparing the results to the earlier Northern blots. I 

attempted to circumvent the first by using the same stringent 

washing conditions as for the Northern analysis. The second 

difficulty, however, cannot be ameliorated, but it may be 

argued that the amount of myc per cell is the physiologically 

more important value. In addition to these drawbacks, and as 

described above, the characteristics of the HL-60 mutant 

changed in the interval between the experiments. 

Despite these problems the results were very similar. 

Figure 11 shows some of the representative blots and Figure 

12 the results from densitometric scanning. It should be 

first noted that the changes in myc RNA levels are not as 

dramatic as with the Northern blots. This finding is probab¬ 

ly due to the inherent high levels of nonspecific binding. 

Nevertheless, N-ras levels did not change with treatment or 

over time in the parental line, while a slight decline oc¬ 

curred over the course of the experiment in the mutant. This 

decline was consistent and equal for all of the four treat¬ 

ments. In addition, it was observed that the density of the 

N-ras dots in the mutant were higher than in the parental 

line. It is not known if this reflects a relatively higher 

concentration of that RNA species within the cell or simply 

an artifact. 

As seen with the Northern blots, myc RNA levels declined 
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FIGURE 11: Representative cytodots probed with human N-ras or 

mouse c-myc. One xlO^ cells were treated, blotted onto gene- 

screen, and hybridized as described in Methods. Dilutions 

and probes used are indicated. 
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FIGURE 12: Densitometric measurements of cytodots represented 

in Figure 11. N-ras and myc density scales are only approxi¬ 

mately equal. 
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significantly in HL-60 cells induced to differentiate with 

either DMSO or HA. The decrease was evident as early as 2 

hours and completed by 8 hours in the DMSO treated cells and 

by 24 hours in the RA treated ones. The untreated HL 60-DA3 

cells showed myc RNA levels that were consistantly twice 

those of the untreated parental line. When treated with 

DMSO, which did not induce differentiation, a dramatic early 

decrease in myc expression occurred which returned to inter¬ 

mediate levels afte 1 day. The change in myc RNA expression 

in RA treated HL-60-DA3 cells, that also did not differ¬ 

entiate, was somewhat different than in the results with the 

HL-60-DA2 cells. Myc RNA levels stayed high for several days 

and then decreased to intermediate levels when the plateau 

phase was reached. When HL-60-DA3 cells were treated with 

both RA and DMSO, which induced only minimal differentiation, 

the changes in myc were similar to those noted with the 

HL-60-DA2 cells. Thus, an early dramatic drop occurred with 

a slight reaccumulation at the time of plateau growth. A 

similar reaccumulation at the plateau phase also occurred in 

the DMSO treated cells. 

To analyze the myc genomic organization, DNA of the 

mutant line was analyzed by Southern blotting. Figure 13 

shows no difference between the HL-60 and the HL-60-DA2 cells 

indicating that no gross rearrangement or significant change 

in the amplification of the myc gene occurred in the mutant 

line as compared to the parental line. All bands were in 







43 

FIGURE 13: Southern analysis of the myc genome in HL-60 and 

HL-60-DA2 cells. Twelve micrograms of total DNA were diges¬ 

ted, separated and hybridized as described in Methods. Res¬ 

triction enzymes and molecular weight markers are as indi¬ 

cated. 
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their previously reported locations (44,59,65,66), except for 

the 4.0 kB EcoRl band and the high molecular weight band seen 

with BamHI digestion. The latter can be attributed to incom¬ 

plete digestion (data not shown). 
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DISCUSSION 

A DMSO Selected Differentiation Mutant Exhibits Cross 

Resistance to Retinoic Acid 

An HL-60 mutant line that is resistant to DMSO and RA 

induced differentiation was developed and characterized. 

This line was then analysed for myc RNA expression in res¬ 

ponse to these agents. Although the line was created by 

selective pressure from constant DMSO exposure, it was found 

to also be resistant to RA induced differentiation, a finding 

previously reported for another DMSO resistant line (51). 

That the cells are indeed a differentiation mutant and not a 

mutant in the ability to respond to the NBT assay was shown 

by morphological analysis. 

The changing characteristics of this line are note¬ 

worthy. First, when no selective pressure was maintained the 

line reverted back to the parental phenotype; whereas, when 

the selective pressure was continuously maintained the line 

became even more cross-resistant to the RA. This in itself 

is not too surprising in so far as parental cells usually 

have a growth advantage under the standard culture conditions 

and will thus eventually dominate the culture. The mutants 

with the greatest resistance, on the other hand, will domi¬ 

nate when selection pressure is maintained. It is not im¬ 

mediately clear whether the phenomenon is due to inducible 

genetic material in a clonal line (such as homogeneously 
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staining chromosomal regions or double minute chromosomes) or 

to a heterogeneous cell population. It has been shown that 

the HL-60 line has a very aberrant karyotype that does con¬ 

tain double minutes, homogeneously staining regions, and am¬ 

plified genes (2,35,26,67,68). Genetic amplification that 

would then be lost in the abscence of selective pressure is 

thereby easily envisioned (69). However, given the large 

numbers of cells used and the previously reported karyotypic 

heterogeneity of the parental HL-60 cell line (2,67,68), it 

must be assumed that the mutant line is also a nonclonal and 

heterogeneous cell population. 

With this heterogeneity and the lack of knowledge re¬ 

garding the mechanism of differentiation produced by both 

DMSO and RA, it is difficult to dissect the exact mechanism 

by which the cells express resistance to differentiation. 

However, given the vastly different chemical structures and 

concentrations at which DMSO and RA are effective, it is not 

likely that their differentiation induction pathways are 

exactly the same. In fact, it has been postulated that RA 

exerts its effects through a specific RA binding protein 

(70,71), while DMSO may exert its effects through a nonspeci¬ 

fic membrane interaction (72). In addition, the original 

isolate of the mutant line described here responded partially 

to RA and responded well to combined treatment, thereby 

giving further support to the possible existence of multiple 

differentiation mechanisms. Nevertheless, because the final 
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outcome of all differentiation inductions are very similar, 

the biochemical events produced by each of these mediators 

must eventually intersect. Thus, since the line described 

here eventually became resistant to both agents, the mutation 

almost certainly involves one of these intersecting events. 

The Proliferating, Undifferentiated Phenotype Does Not 

Require Elevated myc Expression 

Once the resistant line was established, I attempted to 

use it to probe for the role of the myc oncogene in differen¬ 

tiation. The presumed heterogeneous cell cultures and the 

changing phenotype made rigorous analysis of the measurements 

impossible. The changes in both myc and N-ras RNA expres¬ 

sion in the parental line is well within the realms of pre¬ 

vious reports (19,34). The changes seen with the cytodot 

technique, as mentioned before, are not quite as dramatic as 

in other reports but, once again, this was attributed to the 

high nonspecific signal seen with this technique. Also, the 

kinetics of the decrease in myc were somewhat more rapid than 

in a previously published report (19). The reasons for this 

are unclear, but careful reading and analysis of published 

HL-60 growth curves and response to standard differentiation 

inducers from different laboratories shows that significant 

variation occurs despite comparable culture conditions. 

Thus, the different kinetics of the decline in myc RNA may 

simply be an example of divergent cell line evolution. 





49 

The results with the myc oncogene in the mutant HL-60 

line are at first glance confusing. However, some interest¬ 

ing conclusions can be made. The Northern gel of the 

HL-60-DA2 RNA clearly shows a marked decrease in myc RNA 

levels with both DMSO and RA treatment that is proportionally 

as great as that seen in the parental line when compared to 

the untreated control. Yet there is no or only limited 

differentiation. Thus, in this case, a decrease in myc RNA 

expression was not sufficient for differentiation to occur. 

Or looking at it in another way, high myc levels are not 

necessary to maintain the undifferentiated, proliferating, 

phenotype. It may be argued that it is not the relative 

amount of myc in a cell that is important but the absolute 

amount. The Northern blots leave this question open because 

myc RNA expression in both the RA and the DMSO treated cells, 

despite being relatively less than the untreated control, are 

still greater than the differentiating parental line. The 

myc RNA levels in the mutant cells treated with both RA and 

DMSO were decreased to the levels seen with DMSO treated 

parental cells, but they differentiate relatively well also. 

The cytodot analysis, however, showed that HL-60-DA3 

cells treated with both RA and DMSO have myc RNA levels that 

are at least as low as that seen in differentiating parental 

cells. In this case, though, they only differentiate to a 

limited extent. Thus, it seems that even an absolute decline 

in myc RNA levels is not sufficient to cause differentiation 
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in this line. The cytodot methodology also confirms the 

consistantly high constant myc RNA levels in the untreated 

mutant cells. In addition, the cytodot analysis corroborated 

the decline in myc RNA, without cellular differentiation, 

that occurs with DMSO treatment. The very early decline in 

myc with subsequent reaccumulation is reminiscent of the 

changes seen in differentiating Friend leukemia cells (39). 

One report also claims elevated myc expression at 24-48 h in 

differentiating HL-60 cells (73). Since it was not looked 

for, it is not known if a similar biphasic change occurred in 

the cells used for the Northern blots. The high myc RNA 

levels seen with RA treatment of the HL-60-DA3 cells as well 

as the rise in myc RNA levels seen in the DMSO and in the RA 

plus DMSO treated cells at the plateau phase of growth was 

not consistent with earlier results and is incompletely un¬ 

de r stood. 

Finally, when attempting to define the importance of a 

putative mediator of a pathway, it is the function of the 

protein that is the physiologically important variable. Al¬ 

though myc protein and RNA levels have been correlated 

(74,80), until a good assay for myc protein function is 

developed, this limitation will remain. For now then, we 

will assume that a declining myc RNA level reflects a decline 

in the level and function of the myc protein. 

In general myc RNA levels decline dramatically with HL- 

60 differentiation (19,34,41), as well as with the differen- 
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tiation of several other cell lines (38,40). Also, recent 

work shows that constitutive expression of myc inhibits dif¬ 

ferentiation in mouse erythroleukemia cells (44-46). Ad¬ 

ditionally, the kinetics of the decline in myc RNA parallels 

the kinetics of the decline in the clonability and NBT 

positivity of HL-60 cells but not the kinetics of thymidine 

incorporation into DNA upon the induction of differentiation 

(19). Thus, the data suggest that a decline in myc expres¬ 

sion is necessary for differentiation. 

However, there are many experimental systems in which 

increased myc RNA levels are related to the entrance of the 

cells into a proliferative state (74-83). Thus, it seems 

that increased myc expression is associated with the proli¬ 

ferative state, and in fact may be directly involved in DNA 

replication (84). Another way of looking at the decrease in 

myc levels seen with differentiation, therefore, is that it 

may simply be a reflection of the concomitant loss of prolif¬ 

erative capacity. Although elevated myc levels are insuf¬ 

ficient to induce the replicative mode in some quiescent or 

differentiated cells (82), high myc levels could be suf¬ 

ficient to maintain the undifferentiated, proliferating 

phenotype (44-47). In this scenario, one could postulate 

that obligatory elevated myc expression occurs in all pro¬ 

liferating cells. Although this is certainly not true for 

all tumor cells (23,85), or even in all cells of a developing 

embryo (86), there has been little direct evidence for the 
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maintenance of the proliferating, undifferentiated phenotype 

in the face of declining levels of myc RNA. 

This study is the first to describe such a pattern. 

That is, a decline in myc expression is not correlated with 

either the differentiated phenotype or the inhibition of 

growth in the HL-60 differentiation mutant described here. 

If the decline in myc is seen as mechanistically an important 

step in the maturation process, the obvious conclusion is 

that a decrease in the expression of myc is not sufficient 

for differentiation or, alternatively, the lesion in the 

differentiation pathway of this mutant is distal to the point 

at which a decline in myc RNA is initiated. On the other 

hand, as suggested above, myc expression can be seen as 

mechanistically important in maintaining the proliferating, 

undifferentiated phenotype. In that case, despite other 

studies which have shown that high myc RNA expression is 

sufficient for maintaining the undifferentiated, prolifera¬ 

ting state (44-47), the conclusion of this study must be that 

it is not always necessary. 

NOTE ADDED IN PROOF: Since writing this, Ely et al (Cancer 
Res. 47, ?59~5-4600 ) have described a HL-60 mutant partially 
resistant to phorbol dibutyrate induced monocytic differen¬ 
tiation in which myc expression initially declines drama¬ 
tically but then reaccumalates at 15 to 30 hours postinduc¬ 
tion. 
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