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ABSTRACT 

REGULATION OF POTASSIUM TRANSPORT IN RAT MESANGIAL 

CELLS: A FLUORESCENT ANALYSIS USING THE POTASSIUM- 

SENSITIVE DYE, PBFI. Scott E. Kasner and Michael B. Ganz. Section 

of Nephrology, Department of Medicine, and Department of Cellular and 

Molecular Physiology, Yale University School of Medicine, New Haven, 

CT. 1992. 

We investigated the regulatory transport processes that maintain 

potassium homeostasis in cultured rat glomerular mesangial cells 

(MCs). Intracellular potassium concentration ([K+]i) of MCs was 

measured by spectrofluorometry using the potassium-sensitive dye, 

potassium-binding benzofuran isophthalate (PBFI). Ionophores 

valinomycin and nigericin were used to clamp [K+]j to known [K+]0 and 

thereby obtain an intracellular calibration of the dye. Normal resting 

[K+]i in MCs was 102 ± 7 mM. When MCs were exposed to ouabain, 

[K+]i fell to 48 ± 6 mM and did not recover, suggesting the presence of 

the the Na+/K+-ATPase. When MCs were exposed to furosemide, [K+]i 

transiently declined to 58 ± 11 mM that was followed by rapid recovery to 

near steady-state, indicating the additional presence of the Na+/K+/Cl‘ 

cotransporter. Recovery was completely abolished when MCs were 

exposed to ouabain. Exposure to barium led to an immediate increase in 

[K+]j to 124 ± 8 mM followed by a rapid return to steady-state [K+]i. 

Resting [K+]i was not altered by angiotensin II (ANG II), serotonin (5- 

HT), bradykinin (BK), or atrial natriuretic peptide (ANP). ANG II, 5- 

HT, and BK stimulated the Na+/K+-ATPase by 28, 41, and 24%, 

respectively, as measured during recovery of [K+]i toward normal 

following a diuretic-induced fall in [K+]i. ANG II and 5-HT also 

significantly stimulated the activity of the Na+/K+/Cl‘ cotransporter, by 

55 and 47%, respectively. BK had no significant effect on the 

cotransporter, and ANP had no significant effect on either the ATPase 





or the cotransporter. We conclude: 1) MCs possess the ouabain- 

sensitive Na+/K+-ATPase, the loop diuretic-sensitive Na+/K+/Cl‘ 

cotransporter, and barium-sensitive K+ channels. 2) ANG II, 5-HT, 

and BK stimulate the Na+/K+-ATPase, but only ANG II and 5-HT 

stimulate the Na+/K+/Cl' cotransporter in MCs. ANP had no 

significant influence on either. 3) Continuous measurement of [K+Ji 

and an examination of its regulatory mechanisms in MCs can be 

achieved through the use of the fluorescent dye, PBFI. 
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INTRODUCTION 

Overview 

Vasoactive agents have been shown to regulate glomerular filtra¬ 

tion, presumably by eliciting changes in glomerular surface area via 

mesangial cell contraction and relaxation. Moreover, many of these 

agents have been demonstrated to influence ion transport mechanisms 

in contractile cells. Potassium transport mechanisms have been pro¬ 

posed to play a key part in mesangial cell volume and shape regulation, 

and they may be modulated by vasoactive agents. The mechanisms of 

potassium transport and their roles in determination of membrane 

potential and regulation of cell volume will be briefly discussed in the 

following sections. The effects of vasoactive agents on these cellular 

functions will also be reviewed. We sought to evaluate the effects of 

vasoactive agents on mesangial cell potassium transport during 

hormonally-induced alterations in mesangial cell shape. This was 

accomplished through the use of the novel potassium-sensitive 

fluorescent dye, PBFI. 

Mesangial Cells and Glomerular Filtration 

The mammalian renal glomerulus is a microvascular network 

which serves as the site of ultrafiltration of plasma. This capillary 

network is comprised of epithelial, endothelial, and mesangial cells, as 
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well as an unique basement membrane. The process of ultrafiltration 

appears to be dependent on the interactions among these three cell types, 

in addition to regulatory systemic and local factors. Recent evidence has 

emerged indicating that the glomerulus is both a target for, and a site of 

synthesis of, endogenous vasoactive agents. These hormones are 

thought to play an important role in the regulation of the glomerular 

filtration rate (GFR). 

The filtration rate for a single glomerulus (single nephron glomeru¬ 

lar filtration rate, SNGFR) is determined by the relationship between the 

hydraulic pressure (P) and oncotic pressure (11) gradients across the 

glomerulus, as well as the ultrafiltration coefficient (Kf): 

SNGFR = Kf (AP - AU) 

Kf is a composite parameter which is defined as the product of the 

effective hydraulic permeability of the capillary wall and the capillary 

surface area available for filtration (15). Consequently, SNGFR can be 

changed by a perturbation in any one or more of these factors. 

Hydraulic and oncotic pressure alterations may occur at systemic, 

whole kidney, or local levels and will not be discussed here. The effective 

hydraulic permeability appears to maintain a relatively constant value 

in mammals, and it has been suggested that differences in Kf between 

and within species are predominantly a function of variations in 

capillary surface area (16,65). 
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A wide variety of humoral agents have been shown to regulate Kf: 

angiotensin II (ANG II), arginine vasopressin (AVP), parathyroid 

hormone (PTH), norepinephrine, acetylcholine (ACh), bradykinin (BK), 

histamine (HIS), and prostaglandins (PG) E2 and I2 (4,32,67). Although 

the glomerular response to ANG II is most extensively studied, it has 

been observed that the changes in glomerular filtration caused by PTH, 

HIS, PGI2, PGE2, and dibutyryl cyclic AMP (DBcAMP) are strikingly 

similar to those caused by ANG II (67). However, the decline in Kf 

caused by all of the aforementioned agents can be completely blocked by 

the specific ANG II antagonist, saralasin (67). This implies that these 

hormones exert their effect on the glomerulus by an ANG II-dependent 

pathway. It has thus been suggested that these vasoactive agents act in 

part by stimulating local synthesis and release of ANG II. Further 

work confirmed this hypothesis; the juxtaglomerular epithelial cells 

contain all of the enzymes required for the synthesis of ANG II, in 

addition to those used in the synthesis of renin (9). Therefore, within the 

glomerulus itself lies the machinery to regulate filtration. 

Renal glomerular mesangial cells (MCs) are smooth muscle-like 

cells that occupy the highly specialized interstitium of the glomerulus. 

Their interposition between endothelial and epithelial cells, combined 

with their abundant intracellular contractile myofilaments, make them 

particularly well-suited for a key role in the modulation of GFR via their 

ability to alter their shape and surface area (66). MCs also appear to 

have an immunological function, and proliferation of these cells has 

been implicated in the inflammatory response to glomerular injury 

(35,76). 
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MCs in culture have been demonstrated to have binding sites for the 

vasoactive peptide, ANG II, and will contract in response to this agent 

(3). In addition, cultured MCs exhibit contractile responses to other 

vasoactive substances, such as AVP and norepinephrine, as well as to 

mediators of inflammation including HIS and serotonin (3,16,38,39,46). 

Atrial natriuretic peptide (ANP) appears to inhibit the contractile 

response (2). To date, only ANG II, AVP, and norepinephrine have been 

demonstrated to stimulate specific receptors on MCs leading to con¬ 

traction (3,46). The ANG Independent agents described above have no 

contractile effect on isolated cultures of MCs (3,39), thus providing 

further support for ANG II as a mediator in the regulation of Kf and 

SNGFR. 

Many stimuli for contraction are also known to influence specific ion 

transport systems in contractile cells (6,8,19,31,53,62,78). Ion transport 

is of major importance in the regulation of volume in all eukaryotic 

cells, and is likely to be of particular significance in cells that are 

frequently changing their shape and surface area. Vascular tone is 

clearly dependent on membrane potential, which in turn is a function of 

the transmembrane ion gradients and conductivity. In vascular smooth 

muscle, regulation of potassium (K+) transport mechanisms is thought 

to play a critical role in the control of vascular tone at the cellular level 

(13,26,51). Vasoactive agents have been recently found to regulate K+ 

flux pathways in vascular smooth muscle cells, and evidence is emerg¬ 

ing that these pathways are also closely regulated in MCs. Thus, 

identification of the mechanisms of K+ homeostasis in MCs and investi- 
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gation of the behavior of the K+ transporters during hormonally-induced 

MC contraction and relaxation is crucial for understanding the role of 

the MC in glomerular filtration. 

Mechanisms of Cell Potassium Homeostasis 

The maintenance of a high intracellular potassium concentration is 

essential for many processes including cell growth, enzyme activity, cell 

volume regulation, and determination of membrane potential. Cell 

potassium concentration is determined by the balance of influx and 

efflux across the cell membrane, including processes of active and 

passive transport. The cell membrane may be conceived as a barrier to 

ionic species. Spanning this lipid bilayer are integral membrane 

proteins that transport non-lipid-soluble substances through the barrier 

(61). 

Three categories of membrane transport proteins are described. The 

first major type of transport mechanism works passively, moving ions 

down their electrochemical gradients without dependence on other ions. 

Passive transport commonly occurs through ion-specific channels. 

Primary active transport mechanisms utilize the chemical energy from 

ATP hydrolysis in order to move ions across a membrane. In general, 

ions are moved against either a concentration gradient or an electrical 

gradient by this system. Secondary active transport, or coupled trans¬ 

port, does not require the chemical energy of hydrolysis. Instead, it 

makes use of the potential energy of the electrical or concentration 





gradient of one ion to drive another ion against its own gradient. This 

can occur with the solutes being simultaneously transported in the 

same direction or opposite directions. Such mechanisms are known as 

cotransporters and exchangers (or antiporters), respectively. 

Membrane transport of potassium is generally performed by one or 

more of four major pathways. The sodium/potassium ATPase (Na+/K+- 

ATPase) pumps sodium (Na+) out of the cell and K+ into the cell, 

hydrolyzing ATP in order to transport both ions against their concen¬ 

tration gradients. The inward Na+ gradient can drive simultaneous 

transport of Na+, K+, and two chloride (Cl") ions into the cell via a 

secondary active transporter, the Na+/K+/Cl' cotransporter (also known 

as the Na+/K+/2C1' cotransporter). K+ efflux may occur via K+ 

channels or a K+/C1" cotransporter. The function of each cell type will 

determine which of these K+ transporters will be present, as well as the 

number of transport molecules, and the appropriate mechanisms for 

regulation. In most cases, intracellular K+ concentration ([K+]i) is 

maintained at a steady-state value under normal conditions by a 

dynamic equilibrium among the multiple K+ transporters (61). In 

contractile cells, at least three of the major K+ transport mechanisms 

have been demonstrated to be involved in K+ homeostasis: the Na+/K+- 

ATPase, the Na+/K+/Cl' cotransporter, and K+ channels (17,62). The 

coordinated interaction of these mechanisms thus keeps [K+]i relatively 

constant at a level well above the extracellular K+ concentration ([K+]0). 
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Potassium and Membrane Potential 

Potassium is an important factor in the determination of membrane 

potential. The large K+ gradient across the membrane is maintained by 

the balanced interactions of the many ion transporters. Further, resting 

cell membranes are generally more permeable to K+ than to Na+, Cl", or 

other ions. Membrane potential depends on both the magnitude of the 

gradient and the permeability for each ion, and therefore is determined 

predominantly by K+. The equilibrium potential for a particular ion is 

defined as the potential at which there is no net ion transfer across the 

membrane, i.e., when the forces on the ion are equal on both sides of the 

membrane. In the case of K+, the chemical potential of the concen¬ 

tration gradient drives K+ outward because [K+]i is greater than [K+]0, 

and the electrical potential pulls K+ inward since the cell is electro¬ 

negative inside and attracts positively-charged ions. No net potassium 

current flows when these forces are balanced, and K+ is at equilibrium 

across the membrane. This equilibrium potential for K+ (Ek) is also 

known as the Nemst potential and is calculated as: 

RT [K+]0 
Ek = — In- 

zF [K+]i 

where R is the gas constant, T is the absolute temperature, z is the 

charge of the ion, and F is the Faraday constant. For example, a 

hypothetical cell with a K+ concentration of 140 mM inside and 4 mM 

outside would have an Ek of approximately -90 mV. In a living cell, the 

measured membrane potential (Em) is usually near Ek, and is 
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generated not only by K+, but by other ions to which the membrane may 

also be permeable (11). 

In arterial smooth muscle cells, Em ranges between -35 mV and -75 

mV (26,51). These cells have a relatively lower permeability to K+ than 

other excitable tissues and a somewhat higher ratio of Na+ to K+ 

permeability (26). Moreover, vascular smooth muscle can alter its K+ 

conductance in response to environmental changes (29). Small changes 

in [K+lo therefore do not lead to dramatic alterations of Em. Nonethe¬ 

less, small graded potential changes in Em do lead to significant 

changes in intracellular calcium concentration, which is the major 

regulator of the smooth muscle contractile apparatus. Thus, slight 

depolarization may cause a marked increase in tone and slight hyper¬ 

polarization can lead to relaxation (8,33,70). It is also well documented 

that depolarization of smooth muscle will lead to a significant increase 

in tension induced by norepinephrine, whereas hyperpolarization 

results in a diminished contractile response to several vasoactive 

agents, particularly norepinephrine (8,25,27). The actual relationship 

between the effect of vasoactive agents and Em is unclear, however. In 

many studies, norepinephrine-induced contraction of smooth muscle 

was found to occur in the absence of membrane depolarization; this 

phenomenon is referred to as pharmacomechanical coupling (75). It 

appears that the value of Em is an important factor in the development 

of tension in contractile tissue, but the initiating event, either electro- or 

pharmacomechanical, seems to depend on the specific cell type (26). 

Further, the influence of vasoactive agents on K+ conductance and other 

K+ transport mechanisms is likely to be a critical factor in the regula- 
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tion of membrane potential and vascular tone. This accentuates the 

biological importance of understanding K+ homeostasis in cells. These 

issues have not been explored with regard to mesangial cell 

contractility. 

Potassium and Cell Volume Regulation 

Potassium is the predominant intracellular cation in most 

eukaryotic cells, and as such, its transport is of major importance in the 

control of volume in both isotonic and anisotonic media. In the steady 

state, ion transporters maintain transmembrane ion gradients while 

water flows freely across membranes to balance intra- and extracellular 

osmolality. This state can be disrupted by cellular injury such as 

hypoxia, or by substances which interfere with specific transport 

mechanisms. 

An osmotic "crisis" can be created by inhibition of the Na+/K+- 

ATPase with ouabain. As soon as the ATPase is inactivated, the cell 

loses its ability to balance K+ efflux (i.e., via channels) with an equal 

influx, and also cannot oppose the inward Na+ gradient. Na+ flows 

inward as K+ exits in order to maintain electroneutrality. The loss of 

intracellular K+ reduces the equilibrium potential for K+ and the cell 

depolarizes. Depolarization then allows small anions, predominantly 

Cl", to move into the cell along their electrochemical gradients. The 

relative number of anionic molecules in the cell (including both the 

polyvalent macromolecules and Cl") increases, and thus a greater 
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amount of Na+ is drawn inward. The net result of ATPase inhibition is 

thus an accumulation of osmotically active particles within the cell. 

Water moves into the cell to equilibrate the osmotic pressure across the 

membrane and the cell swells (24). 

Many cell types have mechanisms to limit osmotic swelling. The 

degree to which a cell will take up solute during ATPase inhibition 

depends on the permeability of the membrane to Na+, K+, and Cl'. In 

toad bladder epithelial cells, for example, inhibition of the Na+/K+- 

ATPase will lead to a secondary block of Na+ permeability which 

prevents severe osmotic overload and cell rupture (45). Similarly, the 

Na+/K+/Cl" cotransporter may function as an alternative pathway for 

solute influx, and its inhibition may decrease the effect of ATPase 

inactivation. This may be accomplished by an intracellular mecha¬ 

nism, or pharmacologically by loop diuretics such as furosemide, 

bumetanide, or ethacrynic acid (45). Regulation of one transporter in 

response to the altered functioning of another may thus serve as a 

homeostatic volume control mechanism in cells that may experience 

changes in their osmotic environment. This has been best characterized 

in the diluting segment cells of the thick ascending limb of the loop of 

Henle. These cells rapidly transport ions from their apical to basolateral 

surfaces without significant volume changes. Blockade of the 

Na+/K+/Cl" cotransporter by loop diuretics should lead to an abrupt 

decrease in cell volume, assuming that K+ continues to leak out of the 

cell while influx is halted, but actually no dramatic change in volume 

was observed (24). The efflux of K+ must therefore have been suddenly 

reduced to maintain a high [K+li and a constant volume (24). The 
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complex series of interactions which adjusts and coordinates the 

transporters is not understood, but it is clearly of great importance for 

these epithelial cells to regulate their volume, and it is likely to be a key 

regulator in many other tissues, especially contractile cells. 

Vasoactive Agents and Potassium Transport 

The regulation of potassium transport certainly plays a pivotal role 

in the maintenance of high [K+]i, determination of membrane potential, 

and control of cell volume. A vast amount of literature has attempted to 

demonstrate that vasoactive agents influence K+ transport mechanisms 

in many cell types. In mesangial cells, vasoactive agents may, via the 

modulation of K+ transporters, modify cellular tension and volume, 

thereby alter glomerular filtration, and ultimately affect systemic blood 

pressure, serum electrolyte balance, and urine output. 

Clinically important regulation of sodium and potassium balance 

occurs in response to the mineralocorticoid, aldosterone. This hormone 

stimulates the Na+/K+-ATPase, as well as Na+ and K+ channels, in the 

cells of the distal nephron (80). Alternatively, atrial natriuretic peptide 

has been shown to inhibit the ATPase in several cell types (52,68), and 

appears to oppose the effect of aldosterone in vivo. AVP, ANG II, and 

norepinephrine have been shown to cause indirect stimulation of the 

ATPase in vascular smooth muscle cells (7,55,71). The stimulatory 

effect of ANG II on the ATPase was demonstrated in renal cortical 

tubules (56), and AVP stimulated the ATPase in rat medullary thick 
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ascending limb cells as well (10). It is unclear whether these agents 

have a direct effect on the Na+/K+-ATPase or if they cause an increase 

primarily in intracellular Na+ concentration which then secondarily 

stimulates the ATPase (71). Modulation of the ATPase also appears to 

have an effect on the cell's response to these vasoactive agents. Inhibi¬ 

tion of the ATPase enhances the vascular contraction induced by A VP, 

ANG II, and norepinephrine in smooth muscle (55,71), and the effect of 

bradykinin on atrial endothelial cells was also augmented by ATPase 

inhibition (42). Although there is a vast literature on the Na+/K+- 

ATPase, relatively little is known about its regulation by vasoactive 

agents in mesangial cells. 

The effect of vasoactive agents on the Na+/K+/Cl‘ cotransporter 

seems to vary according to each individual tissue or cell type. In 

vascular smooth muscle cells, ANG II and ANP have both been demon¬ 

strated to stimulate the cotransporter (54,59,72). In endothelial cells, 

however, cotransport is increased by ANG II and decreased by ANP (52). 

Furthermore, the intracellular signals involved in the coupling of 

receptor-binding to modulation of transport also appear to differ among 

various cell types. Elevation of cyclic adenosine monophosphate (cAMP) 

will stimulate cotransport in avian erythrocytes (60) but inhibit it in 

mammalian erythrocytes (23). Cyclic guanosine monophosphate 

(cGMP), calcium, and protein kinase C (PKC) have also been implicated 

in signal transduction for Na+/K+/Cl' cotransporter regulation, and 

appear to exert different effects in different cell types (17,54,57,59). 

Serotonin (5-hydroxytryptamine, 5-HT) has been noted to activate 

adenylate cyclase and therefore increase cAMP levels in the guinea pig 
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hippocampus and in blowfly salivary gland tissue, but to inhibit the 

cyclase in rat hippocampus (64). Multiple receptor subtypes are known 

for this neurotransmitter and may explain the diversity of its effects on 

cAMP levels (64), but its effects on the Na+/K+/Cl" cotransporter are not 

established. 

Homma et al. (31) have recently demonstrated the presence of the 

loop diuretic-sensitive Na+/K+/Cl' cotransporter in rat MCs using 

radioactive rubidium flux measurements. Their experiments demon¬ 

strated further that the cotransporter was stimulated by ANG II, AVP, 

and ANP (31). Increased intracellular cAMP levels inhibited the 

Na+/K+/Cl' cotransporter in MCs, while PKC caused transient stimula¬ 

tion of cotransport followed by significant inhibition (30). Homma and 

Harris (30) speculate that this biphasic response of the cotransporter 

may reflect undetected changes in the intracellular ionic environment, 

such as a response to redistribution of transported ions or alteration of 

cell volume. The 86Rb+ flux method, however, does not provide a 

method for continuous monitoring of intracellular ion concentrations, 

and the precise sequence of events cannot be determined. 

The effect of vasoactive agents on K+ channels and conductance is 

not well understood, nor is the relationship between Em and vasoactive 

agent-induced contraction of smooth muscle cells. In arterial smooth 

muscle, norepinephrine will induce an increase in tension without a 

change in Em at low doses, but at higher doses will cause depolarization 

with increasing tension (8). The threshold dose for depolarization varies 

among different species (26). In addition, the permeability of the 
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membrane to ions such as Na+> K+, and Cl' may be altered by either 

direct or indirect effects of norepinephrine (8,14). Total ionic conduc¬ 

tance of the cell to potassium might then be increased to prevent any 

significant net depolarization. This is further confounded by the 

observations that 5-HT, a known stimulus for smooth muscle contrac¬ 

tion, has been observed to either increase or decrease K+ conductance in 

various cell types (18,64). Bradykinin, a potent vasodilator, is consistent 

in that it increases the K+ permeability and hyperpolarizes renal 

epitheloid cells (41), as well as aortic endothelial cells (12). ANP also 

relaxes the vasculature, yet it has been found to hypopolarize renal 

medullary collecting duct cells by inhibition of Na+ channels rather 

than altering K+ conductance (43). Ultimately, the effect of a vasoactive 

agent on mechanical coupling by either an electrical or pharmacological 

mechanism appears to depend primarily on the particular contractile 

tissue studied and the species from which it was derived (26). This 

again points to the complexity of the regulation of ion transport, and the 

need to evaluate these mechanisms in each unique cell type. 

Previous studies in mesangial cells have investigated the effects of 

vasoactive agents on membrane potential and chloride conductance. 

Em was found to range from about -45 mV to -53 mV (40,47,58). ANG II 

and AVP were demonstrated to stimulate a calcium-activated Cl' 

conductance and depolarize the MC membrane (40,58). However, the 

influence of other vasoactive agents on this and other ion transport 

mechanisms remains to be investigated. 





15 

Measurement of Intracellular Potassium 

Few methods exist for evaluating K+ transport in intact living cells 

over a continuous time period. Many studies have employed methods 

which require destruction of the cells at particular timed intervals, such 

as flame photometry, atomic absorption, and 86Rb+ flux analysis. The 

loss of temporal resolution presents a major drawback to these methods 

when rapid changes (on the order of seconds) occur in the ionic environ¬ 

ment. Furthermore, 86Rb+ may not substitute exactly one-to-one for 

potassium in all transport pathways (73). Nuclear magnetic resonance 

studies are nondestructive but require large quantities of tissue to be 

placed in a magnet cavity which may limit access for manipulation, and 

are also extremely costly (49). Impalement with K+-sensitive micro¬ 

electrodes has thus far been of limited applicability in many types of 

small eukaryotic cells because of technical difficulty (1). 

The recent development of the K+-sensitive fluorescent dye, 

potassium-binding benzofuran isophthalate (PBFI), has provided a non- 

invasive technique for determining [K+li in MCs under both steady-state 

and transient conditions with excellent temporal resolution. As synthe¬ 

sized by Minta and Tsien, PBFI fluoresces differentially in the presence 

of varied [K+] but is less affected by other ions such as Na+ and H+ (49). 

Fluorescent dyes have been used extensively to measure intracellular 

pH and calcium concentration in MCs (5,19,20,22,78,79), as well as 

membrane voltage and intracellular concentrations of sodium and 

magnesium in other cells (28,49,50,56). 
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We examined [K+]j using the fluorescent technique to further our 

understanding of mesangial cell ion transport processes. The purposes 

of this study were: 1) to examine the spectral properties of PBFI, 2) to 

obtain an intracellular calibration of [K+li with the dye in mesangial 

cells, and 3) to investigate the mechanisms of potassium transport in 

these cells. We sought to establish that by using this fluorescent 

technique, fluctuations in [K+]i during specific experimental maneu¬ 

vers could be measured in MCs, and would be useful in showing the 

presence of multiple transport pathways for K+ and their interrelation. 

We measured [K+li continuously under control conditions and during 

selective inhibition of putative K+-cotransporters, exchangers, and 

channels (36). The effect of several vasoactive agents on K+ flux in these 

unique cells was also examined. 
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METHODS 

Culture of Mesangial Cells 

Isolated glomeruli from young male rat kidneys were obtained by 

differential sieving and harvesting from a wire mesh. Glomeruli were 

then digested with collagenase to remove epithelial cells, leaving cores 

which consisted predominantly of mesangial cells, matrix, and 

capillary loops (44,48). The cells were grown in Dulbecco's Modified 

Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS), 5 

H-g/mL insulin, 5 (ig/mL transferrin, 5 ng/mL selenous acid, 10 mM L- 

glutamine, 25 mM glucose, 400 ng/mL penicillin, 500 ng/mL strepto¬ 

mycin, and 25 mM HCO3'. In this medium, MCs grew readily while 

other glomerular cells did not survive (44,48). MCs proliferated to form 

confluent monolayers (i.e., one-cell-thick layers, with each cell in 

contact with neighboring cells) and were subsequently suitable for 

passage of subcultures. 

Routine examination of the cultured cells, to confirm their identity 

as MCs, was performed by indirect immunofluorescence microscopy 

using rabbit immunoglobulin G (IgG) directed against vascular smooth 

muscle myosin and fluorescein isothiocyanate (FITC)-conjugated mouse 

IgG directed to rabbit IgG. Cells showed uniformly strong positive 

staining of longitudinal filaments, a pattern that is characteristic of 

MCs (77). In addition, cultured cells stained uniformly with anti-Thy 

1.1, which is also considered to be indicative of MCs (22). 
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Our studies employed subcultures of the third to eighth passage of 

MCs grown on glass cover slips at 37°C in 5% 002*95% air. The cells 

were suitable for experimentation after 10-14 days of growth in culture 

on the the cover slips, shortly before reaching confluence. Twenty-four 

hours prior to potassium fluorescence measurements, the medium was 

changed from 10% to 0.5% FBS to halt cell growth and facilitate 

subsequent dye-loading. 

Fluorescent Measurement of Intracellular Potassium 

[K+li was determined by use of the K+-sensitive dye potassium¬ 

binding benzofuran isophthalate (PBFI). The cell-permeant acetoxy- 

methyl ester (AM) form of the dye was dissolved in dimethyl sulfoxide 

(DMSO) to a stock concentration of 5 mM and then diluted to 5 pM in 

saline. The detergent Pluronic F-127 enhances dye-loading, and was 

added to the dye mixture to make a 0.04% (w/v) solution. Serum-starved 

MCs on cover slips were incubated with the dye mixture for 90 min at 

37°C. The cells were then washed with standard saline solution and 

placed in a thermostatically controlled (37°C) polystyrene cuvette in a 

Perkin-Elmer LS-5B spectrofluorometer (Norwalk, CT). The AM ester is 

hydrolyzed within the cell to yield the impermeant, polyanionic, In¬ 

sensitive PBFI free acid form, which exhibited an excitation maximum 

at 340 nm and an emission maximum at 500 nm (excitation slit width 

was 3 mm, emission slit width was 5 mm). The fluorescent signal 

recorded was the summation of luminescences from all cells in the light 
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path. Continuous perfusion of the cuvette with the standard saline 

solution removed extracellular PBFI and minimized any interference by 

dye leakage into the extracellular space. 

As shown in the series of excitation spectra (Figure 1), the fluores¬ 

cence of the dye was particularly sensitive to [K+]i when excited at 340 

nm, but was relatively unaffected by varied [K+]i upon excitation at the 

isosbestic point near 380 nm. The ratio of the luminescences, obtained 

by exciting the cells at these wavelengths (340 nm/380 nm) while 

measuring at a constant emission at 500 nm, was thus indicative of 

[K+li yet undisturbed by other parameters such as number of cells in the 

light path and dye leakage from the cells. Background noise contributed 

to less than 10% of the signal in dye-loaded cells, and agonists and 

antagonists contributed to less than 10% of the total fluorescence 

throughout all experiments. Autofluorescence of cells, solutions, and 

antagonists was corrected for in all experiments. Furthermore, 

luminescences obtained from excitation at both 340 and 380 nm declined 

minimally (by less than 15%) during an average 10-20 minute experi¬ 

ment, yet the ratio remained constant despite these changes. This most 

likely represents photobleaching and did not influence determinations of 

[K+li since the ratio was not affected. 

Prior analysis of PBFI by the manufacturer has demonstrated that 

dye is not completely selective for K+, but also has affinity for Na+ and 

H+ ions (49). In order to ascertain the contribution of Na+ to fluores¬ 

cence, we preincubated MCs with monensin and nigericin and then 

exposed the cells to varying concentrations of Na+ (replaced with N- 
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Fluorescence 

(arbitrary 
units) 

Figure 1. Fluorescence excitation spectra of PBFI in MCs as a function 

of [K+]i. These spectra were obtained in various calibration solutions as 

described in Methods. Emission wavelength was set at 500 nm. 

Excitation maximum occurred near 340 nm, and a relatively [K+h- 

insensitive isosbestic point occurred near 380 nm. The values of 

extracellular [K+] (in mM) are indicated above their respective spectra. 
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methyl-D-glucamine as necessary to maintain a constant osmolarity) 

and recorded the fluorescent intensity of the dye. This method, like the 

calibration which follows, should clamp intracellular Na+ concen¬ 

tration ([Na+]i) to the known extracellular Na+ concentration (28). The 

fluorescence of the dye was not significantly affected by [Na+]i of 5, 50, 

and 75 mM (n=3 each, data not shown). At higher levels of [Na+]i, PBFI 

fluorescence did increase by 27% when [Na+]l was 100 mM, and by 34% 

when [Na+]l was 150 mM (n=3 each, p<0.05). These results suggest that 

the sensitivity of PBFI for changes in [K+]i are only likely to be signifi¬ 

cantly and adversely affected by an extraordinarily high [Na+]i. 

In order to confirm that PBFI was not affected by intracellular pH 

(pHj), MCs were subjected to an acid load by ammonium pulsing 

(NH4+/NH3) and allowed to recover spontaneously (as described 

previously (5,19)). No significant changes in fluorescence were detected 

during these acute acid-base perturbations at pHj values of 6.6, 7.0, 7.2, 

and 7.8 (n=3 for each value of pHi, data not shown) PBFI therefore 

retains its sensitivity to K+ in the face of wide variations in pHi. 

Experiments involving manipulation of ion transporters and [K+]i 

may also cause transient changes in cell volume, which may conse¬ 

quently alter the properties of the dye. To assess the effect of large and 

rapid volume changes on PBFI fluorescence, we altered extracellular 

osmolarity of the MC bathing solution from 200 mM to 500 mM by the 

addition of sucrose. Within this range, no significant changes in 

fluorescence were noted (n=3 for each). At higher extracellular osmo¬ 

larity, however, the fluorescence ratio of the dye increased, by 8% at 550 
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mM, 15% at 600 mM, and 20% at 650 mM (n=3 each, p<0.05). These 

osmolarities represent near doubling of the likely physiological range for 

the cells, and these data indicate that the calibration of the dye may yield 

unreliable values of [K+]i when cells experience severe osmotic distur¬ 

bances. In other words, factors which modify [K+]i by a direct mecha¬ 

nism on the K+ transporters may also alter cell volume, secondarily 

resulting in a change in [K+]i. In this situation, it would not be possible 

to distinguish between the direct and volume-related effects on [K+li. 

Calibration of PBFI 

PBFI was calibrated intracellularly by clamping [K+]i to known 

values of [K+]0 using the ionophores valinomycin and nigericin. The 

cyclic peptide antibiotic valinomycin, a K+-ionophore and mitochondrial 

uncoupler, increased the permeability of the membrane to K+ and 

depleted intracellular energy stores (74) while nigericin, a K+/H+ 

exchanger, equilibrated extracellular pH with intracellular pH (79). All 

active ion transport was inhibited and K+ became distributed equally on 

both sides of the membrane. Valinomycin and nigericin were initially 

dissolved into ethanol to 1 mM stock and then diluted 1:1000 and 1:200 in 

the calibration saline solutions, respectively. Cells were first dye-loaded 

with PBFI and then incubated for 15 minutes in the presence of 1 |iM 

valinomycin, 5 |iM nigericin, and varied [K+]0 in a calibration solution. 

Assuming that [K+]i equalized to [K+]0 under these conditions, a 

standard curve was generated by plotting the fluorescence ratio against 

[K+]i. Whole cell patch-clamp experiments support the validity of this 
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method. They confirm that the membrane potential approaches zero 

when MCs are incubated with valinomycin and nigericin (unpublished 

observations by R.M. Henderson and R. Unwin at the Royal 

Hammersmith Hospital, U.K.). 

As the fluorescence intensity of the dye depends on [K+]i in the same 

manner as the activity of an enzyme does on substrate concentration, a 

nonlinear least squares fit of the data to the form of the Michaelis- 

Menten equation was performed: 

I340 [K+li 
- = Imax + lo 

I38o [K+]i + KM 

where I340/I38O is the measured fluorescence ratio, Io indicates the mini¬ 

mal ratio (as [K+]i goes to zero), the sum of Imax and Iq represents the 

maximal ratio (as [K+li approaches infinity), and Km is the Michaelis- 

Menten constant that reflects the affinity of the dye for K+. The curve 

fitting analysis determined the values of Io = 2.29 and Imax = 3.93 with a 

Km equal to 113 mM (n=40, r=0.998, Statistical Analysis System, Yale 

Computer Center) (See Figure 2). The calibration curve thus generated 

was used in all experiments to determine the values of [K+li from the 

measured 340 nm/380 nm fluorescence ratios in PBFI-loaded glomeru¬ 

lar mesangial cells. 
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Figure 2. Calibration Curve. The dependence of the fluorescence ratio 

(340 nm/380 nm) on [K+] was fit to the Michaelis-Menten equation 

(nonlinear least squares fit, r=0.998, n=40) with Km determined to be 113 

mM. Five samples were measured for each value of [K+]0, and standard 

error bars are indicated about the means (x). 
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Data Analysis 

Tracings of [K+]i (Figures 3-6) are actual recordings of fluorescence 

when the cells are excited at 340 nm, but data were evaluated via the 

calibration curve (Figure 2). [K+li is reported as a mean ± standard 

deviation, and statistical significance was determined by paired t test or 

analysis of variance. Results were considered to be significant when 

p<0.05. 

Solutions 

The standard saline solution contained (in mM) 145 Na+, 5 K+, 150 

Cl", 1.0 Mg2+, 1.8 Ca2+, 1.0 PO^-, 10.0 glucose, and 32.2 N-2-hydroxy- 

ethylpiperazine-N'-2-ethanesulfonic acid (HEPES) and was titrated to a 

pH of 7.40. Calibrating solutions containing valinomycin and nigericin 

were prepared in the same standard saline buffer, but K+ and Na+ were 

varied such that the sum of [K+]0 and [Na+]0 was maintained at 150 

mM. Ouabain was used to inhibit the Na+/K+-ATPase and was 

dissolved in standard saline to a final concentration of 0.5 mM. 

Furosemide and ethacrynic acid antagonize the activity of the 

Na+/K+/Cl" cotransporter, and were made up as 10 mM stock solutions 

in DMSO and were diluted in standard saline to 10 pM for application to 

the cells. Barium (0.5 mM) and TEA (10 pM) were used to block K+ 

conductance and were dissolved in the standard solution, except the 

barium solution was made without phosphate. These substances were 

used alone and in combinations with each other in these studies to 
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separate the roles of each transporter on [K+]i homeostasis. 

Angiotensin II (1 pM), serotonin (10 pM), atrial natriuretic peptide (100 

nM), and bradykinin (1 pM) were all dissolved in the standard saline 

solution on the day of the experiment. The fluorescence of each of these 

agents in solution, if significant, was subtracted from the fluorescence 

measurements of the PBFI-loaded MCs. The solvents, DMSO and 

ethanol, had no effect on fluorescence measurements or determinations 

of[K+]i. 

Materials 

PBFI/AM, Pluronic F-127, and valinomycin were obtained from 

Molecular Probes (Eugene, OR). Furosemide, ethacrynic acid, 

angiotensin II, bradykinin, serotonin, barium, nigericin, ouabain, 

monensin and plastic cuvettes were purchased from Sigma (St. Louis, 

MO). Atrial natriuretic peptide (human 1-28) was purchased from 

Peninsula Laboratories (Belmont, CA). DMEM, FBS, penicillin, 

streptomycin, were obtained from GIBCO Laboratories (Grand Island, 

NY). Anti-Thy 1.1 was purchased from Chemicon (Temecula, CA). 

Personnel / Technical Assistance 

The sacrifice of rats, isolation of glomeruli, and preparation of 

primary MC cultures were performed by M.B. Ganz and M.C. Perfetto. 

MCs were stained by P. Dann for the purposes of identification. Pre- 
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paration of passages 2 through 8, plating of MCs on cover slips, and 

routine maintenance of MCs were done by S.E. Kasner. All culture 

media were prepared by M.C. Perfetto. 

The protocol for PBFI dye-loading, method for calibration, and 

experimental design for all fluorescence measurements were developed 

by S.E. Kasner. All determinations of fluorescence ratios and [K+]i were 

performed by S.E. Kasner. M.B. Ganz assisted in the acid-loading 

experiments used in the assessment of the effect of pH on PBFI. 

Statistical analysis was performed by S.E. Kasner. The calibration 

data were analyzed for curve fitting on the Statistical Analysis System 

(Yale Computer Center) with the assistance of J. Goffinett. 

All solutions used in experiments were made by either S.E. Kasner 

or M.B. Ganz. The continuous perfusion apparatus was designed and 

constructed by S.E. Kasner. 
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RESULTS 

Mechanisms of Potassium Homeostasis 

[K+Ji in MCs. The resting level of [K+]j in MCs, pooled from all 

experiments, was determined to be 102 ± 7 mM (n=81). The 340/380 nm 

fluorescence ratio, and therefore [K+]i, remained relatively constant for 

at least 30 min during all static experiments, regardless of any photo- 

bleaching or leakage of dye from the cells. None of the experiments in 

this study required a time period longer than 30 minutes. 

Na+ /K+ ATPase. This laboratory has previously demonstrated that 

rat MCs express the alpha subunit for the Na+/K+ ATPase (63). The 

physiological activity of the Na+/K+ ATPase was assessed here by 

inhibiting with ouabain. Concentrations as low as 10 pM ouabain led to 

a significant decrease in [K+]i in MCs without evidence of return toward 

initial [K+]i. A maximal fall in [K+]i occurred at ouabain concentra¬ 

tions of 0.5 mM or greater. In MCs exposed to 0.5 mM ouabain, [K+]i 

declined to 48 ± 6 mM (n=8, p<0.01) within 2.9 ± 0.9 min (Figure 3). At no 

time in the continued presence of ouabain was any recovery of [K+]i back 

toward the initial steady-state value observed, implying that there was 

not an ouabain-insensitive mechanism that could maintain [K+]i 

homeostasis when the Na+/K+-ATPase was disabled. 

Na+ /K+1 Clm cotransporter. We determined the activity of the 

Na+/K+/Cl' cotransporter through the use of two antagonists, the loop- 
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diuretics furosemide and ethacrynic acid. As shown in Figure 4A, 

when MCs were exposed to 10 }iM furosemide, there was a rapid drop in 

baseline [K+]i to 58 ± 11 mM, a 43% decrease (n=16, p<0.01) within 1.2 ± 

0.5 min (Figure 4A). The decrease in [K+]i was followed by a return to 

near baseline [K+]i within 5.0 ± 1.2 min in the continued presence of 

furosemide. Furthermore, when MCs were exposed acutely to 

furosemide and then to 0.5 mM ouabain, the recovery was completely 

abolished. These experiments suggest that the Na+/K+ ATPase plays a 

major role in the recovery of [K+]i to near steady-state levels in the 

presence of furosemide. We sought to additionally confirm the presence 

of the Na+/K+/CT cotransporter in MCs using ethacrynic acid, since 

this antagonist to the cotransporter is minimally fluorescent at these 

same wavelengths and thus required no mathematical correction. In a 

manner similar to that of furosemide, MCs exposed to 10 pM ethacrynic 

acid exhibited a fall from initial [K+]i to 63 ± 9 mM, a 38% decline (n=13, 

p<0.01) in 1.9 ± 0.6 min, that was followed by a return to near baseline 

[K+]i in 4.1 ± 0.9 min (Figure 4B). In the continued presence of 

ethacrynic acid, the application of ouabain completely prevented the 

recovery of [K+]j to original levels. The difference between the effects of 

furosemide and ethacrynic acid was not significant. 

K+ conductance pathways. In order to determine whether the 

presence of a K+ conductance can be shown using PBFI, known blockers 

of K+ channels, barium and TEA, were employed. In MCs exposed to 

barium, [K+]i rapidly increased from the baseline value to 124 ± 8 mM 

(n=9, p<0.01) (Figure 5). The sudden increase in [K+]i was followed by a 

prompt return to near baseline within 3.9 ± 0.7 min. This barium- 
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Figure 3. Effect of ouabain on [K+]i. Ouabain (0.5 mM) was added 

directly to the cuvette. [K+]j fell to an average of 48 ± 6 mM (p<0.01). No 

recovery was observed in the continued presence of ouabain. This 

tracing is a representative of 8 experiments. 





furosemide 

B. 

[K*]. (mM) 

Figure 4. Effect of diuretics on [K+]i. A: Effect of furosemide. [K+]i 

declined to an average of 58 ± 11 mM (p<0.01). In the continued presence 

of furosemide, [K+]i returned toward near baseline levels. Exposure to 

ouabain completely prevented the recovery. This tracing is a 

representative of 16 experiments. B: Effect of ethacrynic acid. [K+]i 

declined to an average of 63 ± 9 mM (p<0.01). In the continued presence 

of ethacrynic acid, [K+]i returned toward near baseline levels. Exposure 

to ouabain completely prevented the recovery. This tracing is a 

representative of 13 experiments. 





Barium 

Figure 5. Effect of barium (Ba2+) on [K+h. [K+]j increased to an average 

of 124 ± 8 mM (p<0.01). In the continued presence of Ba2+, [K+h 

returned toward near baseline levels. This tracing is a representative of 

9 experiments. 
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induced increase in [K+]i was prevented when the cells were preincu¬ 

bated with both ouabain and furosemide (n=5, non-significant difference 

from baseline, data not shown). When MCs were exposed to TEA there 

was a similar increase in [K+]i to 123 ± 10 (n=8, p<0.01), which was 

followed by a return to near baseline (data not shown). 

Effect of Vasoactive Agents 

[K+]i in MCs. MCs were treated with the vasoactive substances, 

angiotensin II, serotonin (5-hydroxytryptamine), bradykinin, and atrial 

natriuretic peptide at the concentrations stated above as a single pulsed 

dose. These agonists did not induce any significant change in the 

resting level of [K+]i in MCs, either acutely or during the 10 min 

following initial exposure (data not shown); [K+]i remained at the 

preagonist level of 103 ± 6 mM (n=16, four experiments for each agonist 

tested). 

Na+ /K+-ATPase. The recovery of [K+]i following treatment of MCs 

with furosemide or ethacrynic acid is attributed to continued function¬ 

ing of the Na+/K+-ATPase. As a means of assessing the kinetics of the 

Na+/K+-ATPase, we determined a recovery rate in the presence of 

ethacrynic acid defined as the rate of increase in [K+]i over a 10 s 

interval, measured at the point of reference when [K+]i was 70 mM. The 

influence of ANG II, 5-HT, BK, and ANP on the activity of the Na+/K+- 

ATPase was evaluated by comparison of these rates. In the absence of 

other modifiers, ethacrynic acid transiently caused [K+]i to fall as 
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described above, and subsequently returned toward original levels at a 

rate of 2.9 ± 0.4 mM/10 s (n=6). Pretreatment with ANG II, 5-HT, and 

BK significantly stimulated recovery velocities when compared to this 

control, but no significant differences between any two of these agents 

were noted: ANG II increased the rate to 3.7 ± 0.4 mM/10 s (n=6, p<0.01, 

Figure 6A), 5-HT to 4.1 ± 0.7 mM/10 s (n=6, p<0.01), and BK to 3.6 ± 0.4 

mM/10 s (n=6, p<0.01). ANP exhibited no effect on the recovery phase 

(rate was 3.0 ± 0.2 mM/10 s, n=6, NS, Figure 6B) (See Table 1). 

Na+ /K+ / Cl~ cotransporter. The influence of these vasoactive agents 

on the Na+/K+/Cl' cotransporter was more difficult to assess. MCs were 

not able to restore K+ homeostasis in the presence of ouabain in a 

manner analogous to their recovery from loop diuretics. This precluded 

the direct evaluation of the kinetics of the cotransporter in response to a 

fall in [K+]i. As an alternative means of evaluation, we sought to 

compare the effects of vasoactive factors on the fraction of K+ uptake that 

could be attributed to the Na+/K+/Cl' cotransporter. As described above, 

ethacrynic acid applied to MCs caused a precipitous fall in [K+]i to 63 ± 9 

mM, and thus we inferred that 38% of steady-state [K+]i was maintained 

by the cotransporter. In MCs preexposed to ANG II, ethacrynic acid 

caused a significantly greater decline to 42 ± 6 mM (n=6, p<0.01). MCs 

treated with 5-HT demonstrated an increased sensitivity to ethacrynic 

acid of similar magnitude, as [K+]i fell to 45 ± 8 mM (n=7, p<0.01). The 

effect of BK was not significant, with [K+]i decreasing to 56 ± 7 mM (n=6, 

NS), and ANP also appeared to have no influence on the cotransporter 

([K+li was 60 ± 4 mM, n=7, NS) (See Table 2). 
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A. 

B. 

Figure 6. Effect of vasoactive agents on recovery from an ethacrynic 

acid-induced fall in [K+]i. A: Effect of angiotensin II (ANG II). 

Pretreatment with ANG II increased the rate of recovery to 3.7 ± 0.4 

mM/10 s, a 28% increase compared to the control rate of 2.9 ± 0.4 mM/lOs 

(p<0.01). B: Effect of atrial natriuretic peptide (ANP). Pretreatment with 

ANP caused no significant change in the rate of recovery (3.0 ± 0.2 

mM/lOs) when compared to control. Each tracing is a representative of 

6 experiments. 
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EFFECT OF VASOACTIVE AGENTS ON THE 
Na+/K+-ATPase 

Rate of 
Recovery 
(mM/lOs) 

Percent 
Increase 

control 2.9 ± 0.4 — 

ANG II 3.7 ±0.4* 28 %* 

5-HT 4.1 ±0.7* 41 %* 

BK 3.6 ±0.5* 24 %* 

ANP 3.0 ±0.2 3% 

Table 1. Effect of the vasoactive agents on the Na+/K+-ATPase. This was 

determined as the rate of recovery of [K+]i in the presence of ethacrynic 

acid. Significant differences (p<0.01 by analysis of variance) from control 

rates are indicated with an asterisk (). 
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EFFECT OF VASOACTIVE AGENTS ON THE 
Na+/K+/Cl- COTRANSPORTER 

[K+]i 
after EA 

(mM) 

Fractional 
Contribution 

to [K+]i 

Percent 
Increase 

control 63 ± 9 38 % — 

ANG II 42 ±6* 59% * 55 %* 

5-HT 45 ±8* 56 %* 47 %* 

BK 56 ±7 45 % 18% 

ANP 60 ±4 41 % 8% 

Table 2. Effect of the vasoactive agents on the Na+/K+/CT cotransporter. 

This was calculated as the fractional contribution to [K+]i maintenance 

that was inhibited with ethacrynic acid (EA) (i.e. the maximal EA-induced 

change in [K+]i from the initial value, divided by the initial value of [K+]i). 

Significant differences (p<0.01 by analysis of variance) from control rates 

are indicated with an asterisk (*). 





38 

DISCUSSION 

Analysis of PBFI 

This is the first cellular application of which we are aware for the 

new fluorescent potassium indicator, PBFI. In a previous report, this 

dye had been used in liposomes, and the calibration method did not 

utilize fluorescence excitation ratios (34). We were able to characterize 

the properties of the dye in cells, as well as examine and discern some of 

the major K+ transport mechanisms in mesangial cells and their 

response to several vasoactive agents. 

Our experiments demonstrated that fluorescence of PBFI was not 

significantly affected by acute changes in pHi from 6.6 to 7.8, alterations 

in intracellular Na+ concentrations when [Na+]i was less than 75 mM, 

nor changes in osmolarity from 200 to 500 mM. The use of the iono- 

phores, valinomycin and nigericin, proved to be a valid method for cali¬ 

bration of dye fluorescence ratios in the determination of [K+]j. Our 

results further indicate that PBFI is reasonably well-suited for the 

continuous monitoring of rapid changes in K+ homeostasis in whole 

cells. We have also shown that the net effect of various K+ transporters 

on [K+]i may be assayed both individually and collectively. 

The fluorescent technique offers a number of distinct advantages 

over other methods in the examination of ion transport. It provides a 

continuous rather than interval record of the changes in [K+]i, elimi- 
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nates the need for radioisotopes, and is extremely sensitive within the 

likely physiological range of [K+]i (50-120 mM). It is a technically simple 

and inexpensive method that does not require the extensive apparatus or 

skill such as that necessary for intracellular electrophysiological 

measurements. 

The usefulness of the dye may be limited by several parameters. 1) 

Many of the agents used to inhibit the K+ transporters are fluorescent to 

some degree, and although interfering fluorescence has been subtracted 

from all experiments, some extremely transient alterations in [K+]i may 

be masked by extraneous changes in fluorescence. 2) The resolution of 

the dye for [K+]i above the physiological range is greatly diminished. At 

levels of [K+]i greater than 130 mM, the calibration curve (Figure 2) 

flattens, and thus the sensitivity of the dye decreases dramatically: a 

small error in the measurement of a fluorescence ratio would result in a 

large error in the determination of [K+]i. Measurements of high [K+]i 

are therefore likely to be inaccurate. In our experiments, we did not 

measure increases in [K+]i above 130 mM in MCs. 3) The effect of 

alteration in cell volume on the calibration of PBFI is ill-defined. While 

the dye does not appear to exhibit significant change in its fluorescent 

properties when osmolarity is changed, this does not negate the 

possibility that an acute volume shift may cause a secondary effect on 

the measured value of [K+]i. 

PBFI is clearly not optimal for all investigations of [K+]i. A more 

quantitatively precise K+-sensitive dye must demonstrate greater 

selectivity for K+ over Na+. It should have longer excitation maximum 
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and isosbestic wavelengths in order to minimize the effects of cell and 

reagent fluorescence, thereby increasing the signal-to-noise ratio. 

Finally, it should have a higher value of Km to improve the resolution of 

[K+]i at levels greater than 130 mM. Nonetheless, PBFI provides a vast 

improvement in noninvasive continuous potassium measurement in 

cultured cells, and promises to be useful for physiological measure¬ 

ments in many systems. 

Regulation of [K+]i in Mesangial Cells 

The properties of the PBFI allow us to examine [K+]i under basal 

and stimulated conditions. Moreover, these experiments demonstrate 

that real time changes in intracellular potassium concentrations in 

mesangial and other cells may be measured using PBFI. Our deter¬ 

mination of resting [K+]i to be 102 ± 7 mM in MCs concurs with results 

obtained recently by preliminary patch-clamping experiments in MCs 

(R.M. Henderson and R. Unwin, unpublished observations). The 

results also confirm ongoing work by Homma et al. (31), demonstrating 

that MCs possess at least two mechanisms for K+ uptake, the Na+/K+- 

ATPase and the Na+/K+/Cl' cotransporter. As measured in intact 

quiescent MCs in vitro, we found that the ouabain-sensitive component 

of K+ uptake is responsible for maintaining 53% of [K+]i and the 

furosemide-sensitive component for 43%. Thus, it appears that these 

two transport mechanisms can account for nearly all of K+ uptake in 

MCs. These findings are also consistent with those of Homma et al. (31), 

in which 46% of 86Rb+ uptake was shown to be mediated by the Na+/K+- 
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ATPase and 24% by the furosemide-sensitive Na+/K+/Cl' cotransporter. 

Furthermore, it is clear that MCs can recover from the inhibitory effect 

of furosemide on the cotransporter, via the activity of uptake pathways, 

i.e., the Na+/K+-ATPase, but they are unable to maintain [K+]j 

homeostasis if the ATPase is inhibited by ouabain. The operation of the 

Na+/K+-ATPase, as a primary active transport mechanism, is therefore 

deemed to be a prerequisite for K+ transport in MCs, but its quantitative 

role in K+ uptake appears to be interrelated with the activity of the 

Na+/K+/Cl' cotransporter. 

The effects of the vasoactive agents on K+ transport mechanisms in 

MCs defy easy categorization. The Na+/K+-ATPase is shown to be 

stimulated by the vasoconstrictors, ANG II and 5-HT, in MCs recover¬ 

ing from an acute (diuretic-induced) drop in [K+Ji. However, the 

ATPase is also stimulated by BK, a vasodilator, but not by ANP. ANP is 

often considered to be an inhibitor of the ATPase (52,68), but here no 

significant effect was recorded. The physiological importance of these 

data are somewhat unclear, given the observation that both vasocon¬ 

strictive and one of the vasorelaxant substances led to stimulation of the 

Na+/K+-ATPase. However, the ATPase is generally not thought to play 

a major part in volume regulation (69). Rather, the activity of the 

Na+/K+-ATPase has been shown to be secondarily augmented in many 

volume regulatory responses to osmotic stimuli, presumably in response 

to increased [Na+]i from other pathways, and may serve only a support¬ 

ive role in [K+]i and [Na+]i homeostasis (17,55,69,71). We therefore 

needed to examine the influence of the vasoactive agents on the other K+ 

flux mechanisms. 
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The activity of the Na+/K+/Cl' cotransporter in MCs was dramati¬ 

cally increased by ANG II and 5-HT. Thus, the vasoconstrictors 

stimulated both the ATPase and the cotransporter, suggesting a close 

relationship between these transporters in maintaining [K+]i and in 

regulating cell shape and volume. BK stimulated the Na+/K+-ATPase 

while ANP had no effect, but neither of these vasodilators exerted any 

significant influence on the Na+/K+/Cl‘ cotransporter in MCs. A 

difference thus exists between the effects of constrictors and dilators on 

the cotransporter. This suggests that the cellular mechanisms for 

contraction and relaxation in response to these vasoactive agents may be 

coupled to their effects on the Na+/K+/Cl' cotransporter, but perhaps not 

to the Na+/K+-ATPase. In addition, a distinction can be made between 

the effects of the two vasodilators examined here. BK stimulated the 

Na+/K+-ATPase but not the Na+/K+/Cl* cotransporter, whereas ANP 

had no significant effect on either, implying that peptide-induced 

relaxation of MCs may be mediated through more than one biochemical 

pathway. These results imply greater complexity of K+ transport 

regulation in MCs than had been previously realized. 

Previous studies have utilized 8f>Rb+ flux measurements to show 

that ANG II stimulates the Na+/K+/Cl" cotransporter in MCs (31) and 

in vascular smooth muscle cells (53,54,59,72), but BK has also been 

demonstrated to increase the activity of the cotransporter in endothelial 

cells (6). In addition, some of these flux studies have also shown ANP to 

exert a stimulatory effect on the cotransporter in smooth muscle (53,54), 

but not in endothelial cells (52). The discrepancy between our results in 
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mesangial cells compared to those in vascular smooth muscle and 

endothelial cells is at present unclear. Mesangial cells are unique, 

however, in that they share several morphologic features with both 

smooth muscle and endothelial cells, and they lie in a position of direct 

contact with the endothelium at particular sites in the glomerular 

capillary loop (48). The data presented here suggest that MCs manifest 

a composite of the properties of these two cell types with regard to their 

potassium transport regulatory processes as well. 

PBFI also allows us to demonstrate the presence of K+ channels in 

MCs. K+ conductance pathways in MCs were blocked by treating the 

cells with barium or TEA. The excellent time resolution of the dye 

revealed a rapid 23% rise in [K+li when K+ channel blockers were 

added. The effects of barium and TEA were indistinguishable from each 

other. The abrupt and transient increase in [K+li appears to be a 

consequence of continued functioning of the two major K+ influx 

transporters during channel inhibition, since it was readily inhibited by 

a combination of ouabain and furosemide. In addition, this rise in [K+]i 

was halted and reversed spontaneously, such that it may be presumed 

that some currently undefined feedback mechanisms must slow K+ 

influx and/or activate other efflux pathways in MCs. The presence of 

other mechanisms for K+ transport is suggested by indirect evidence, as 

MCs are capable of restoring [K+]i to initial levels when channels are 

blocked by barium and TEA. This may represent alternative regulation 

via barium/TEA-insensitive K+ channels, activation of K+/C1" cotrans¬ 

port (K+ exit), opening of Cl' channels (57), and/or additional modula¬ 

tion of the Na+/K+-ATPase and the Na+/K+/Cl' cotransporter. Both 
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barium and TEA are known to be nonspecific K+ channel blockers, 

particularly at high concentrations, and examination of the properties of 

the specific types of K+ channels in MCs is a necessary part of future 

examinations. However, this is likely to require a more direct channel 

evaluation by an alternative method such as patch-clamping, since 

determinations of whole cell [K+]i are likely to be obscured by simulta¬ 

neous fluctuations induced by the other K+ transporters. The role of 

these K+ channels in MC contraction and relaxation in response to 

vasoactive agents also awaits further investigation. 

The concerted regulation of K+ flux pathways appears to be of vital 

importance in MCs. Under steady-state conditions, MCs closely 

maintain [K+]i at a constant level with significant contributions from 

the Na+/K+-ATPase, the Na+/K+/Cl' cotransporter, and K+ conduc¬ 

tance pathways. While categorization of the effects of the vasoactive 

agents on K+ transport is difficult, certain conclusions can be reached. 

[K+]i is held at a constant level despite modulation of the K+ trans¬ 

porters by the vasoactive agents. ANG II, 5-HT, and BK stimulated the 

Na+/K+-ATPase, but only ANG II and 5-HT stimulated the Na+/K+/CP 

cotransporter. Since no change in [K+]j was recorded during vasoactive 

agent-induced stimulation of the K+ influx pathways, it is likely that 

feedback and regulation of K+ efflux pathways occurs as well. In the 

response to these substances, the Na+/K+-ATPase does not appear to be 

a primary modulator of cellular shape change, however, since it fails to 

react oppositely to vasoconstrictors and vasodilators. The Na+/K+/Cl' 

cotransporter, on the other hand, seems to be stimulated by vasocon¬ 

strictors and is unaffected by vasodilators, suggesting a potential direct 
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role for this transporter in MC contraction. The central mechanism for 

the contraction or relaxation of MCs under the influence of these agents 

may additionally be related to the regulation of K+ conductance via K+ 

channels. However, the specific regulation of K+ channels in MCs 

requires further study. The intracellular biochemical signals that 

coordinate and selectively activate or inhibit the individual K+ trans¬ 

porters in MCs also remain to be identified. These studies may be 

facilitated by the use of the potassium-sensitive fluorescent dye, PBFI. 
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