
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

1993

Counter-regulation of the ileal motility in rabbit
small intestine
Stephen John Ferzoco
Yale University

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Ferzoco, Stephen John, "Counter-regulation of the ileal motility in rabbit small intestine" (1993). Yale Medicine Thesis Digital Library.
2580.
http://elischolar.library.yale.edu/ymtdl/2580

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/2580?utm_source=elischolar.library.yale.edu%2Fymtdl%2F2580&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu




YALE 
UNIVERSITY 

CUSHING/WHITNEY 
MEDICAL LIBRARY 





Digitized by the Internet Archive 
in 2017 with funding from 

The National Endowment for the Humanities and the Arcadia Fund 

https://archive.org/details/counterregulatioOOferz 







COUNTER-REGULATION OF 
ILEAL MOTILITY IN RABBIT 

SMALL INTESTINE 

A Thesis Submitted to the Yale University School of Medicine 

in partial fulfillment of the requirements for the Degree of 

Doctor of Medicine 

by 

Stephen John Ferzoco 
I ( 4. 

1993 



fKe^S' - b 

r//3 
t? ii 
(tlb? 

KUtoa 06-93 



FERZOCO, SJ -2- 

COUNTER-REGULATION OF ILEAL MOTILITY IN RABBIT SMALL 

INTESTINE. Stephen J. Ferzoco. Department of Surgery, Yale 

University School of Medicine, New Haven, CT. 

Disorders of intestinal motility continue to plague 

surgeons of the twentieth century. Unfortunately, the 

regulation of intestinal motility remains incompletely 

understood. Utilizing the isolated whole organ perfusion 

system, segments of rabbit terminal ileum were infused with 

variety of known gastrointestinal hormones, peptides and 

neurotransmitters. In the first series of experiments, 

prokinetic agents such as carbachol (an acetylcholine 

analogue), cholecystokinin, motilin and were tested. All 

three agents caused a concentration-dependent increase in 

measured motor activity. In the second series of 

experiments, agents which increase intracellular levels of 

cAMP, vasoactive intestinal peptide (VIP), forskolin and 

norepinephrine, were tested against prokinetic-stimulated 

segments of ileum. All three agents caused a concentration- 

dependent inhibition of motility. In the third series of 

experiments, neuropeptide Y (NPY) and peptide YY (PYY), 

agents which block intracellular cAMP, reversed the 

inhibitory action of VIP. In the final series of 

experiments, various NPY/PYY analogues with specific Y 

receptor affinity were tested. The Yx receptor analogue 
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[Leu31, Pro34]NPY demonstrated similar ability to reverse 

VIP's effect. In conclusion, peristalsis can be divided into 

two distinct phases. Ascending contraction caused by 

prokinetic agents is orad to a food bolus. In addition, VIP 

is responsible for the descending inhibitory reflex distally. 

NPY released within neurons within the gut wall causes 

reversal of the VIP-mediated inhibition leading to a wave of 

ascending contraction. This reversal is mediated via a Yl 

receptor mechanism. 
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LIST OF ABBREVIATIONS 

CARB: CARBACHOL 

CAMP: CYCLIC AMP 

CCK: CHOLECYSTOKININ 

H Sc E: HEMATOXYLIN AND EOSIN 

FK: FORSKOLIN 

LPNPY: [Leu3i, Pro34] NEUROPEPTIDE Y 

MOT : MOTILIN 

NE: NOREPINEPHRINE 

NPY: NEUROPEPTIDE Y 

NPY (13-36) : NEUROPEPTIDE Y FRAGMENT 13 THROUGH 36 

PP: PANCREATIC POLYPEPTIDE 

PYY: PEPTIDE YY 

TTX: TETRODOTOXIN 

VIP: VASOACTIVE INTESTINAL PEPTIDE 
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BACKGROUND 

20th Century man is afflicted with the ravages of many 

newly-recognized diseases. Many of these are based on 

motility disorders of the gut. Indeed, the irritable bowel 

syndrome, diverticular disease, constipation and perhaps even 

the genesis of gastrointestinal malignancy can be traced to 

pertubations of normal intestinal peristalsis. 

Consequently, exploration of regulatory systems which 

modulate small bowel and colon motility may lead to new 

therapeutic modalities for diseases of 20th century man. 

Indeed, this approach was the basis of classical medicine. 

Greek, Roman and medieval medicine realized the importance in 

restoring normal intestinal motility in various states of 

disease. Ancient physicians utilized a variety of cathartics 

and clysters to purge disease from the intestines and 

regulate motility. 

In this thesis I have focused on the small bowel. Small 

bowel motility has been studied extensively in vivo but this 

has not allowed identification of specific regulatory 

systems. Examination of gut motility in an in vitro system 

eliminates exogenous neural and humoral influences and 

facilitates characterization of specific mechanisms. It is 

the identification of the intrinsic mechansism of the gut 

which will lead to new avenues of therapeutic intervention in 

diseases such as irritable bowel syndrome. 
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HYPOTHESIS 

The regulation of intestinal motility remains 

incompletely understood. Peristalsis can be best defined as 

alternating zones of high and low pressure which sweep food 

down the intestines. Proximal to a food bolus, prokinetic 

agents cause smooth muscle contraction leading to generation 

of a high pressure zone. This high pressure zone is 

responsible for ascending contraction. Distally, it is 

postulated that vasoactive intestinal peptide mediates the 

descending inhibitory reflex. In addition there is a third 

zone, or transition zone, between the high and low pressure 

zones. We hypothesized that there must exist some counter- 

regulatory agent which reverses the descending inhibitory 

reflex caused by vasoactive intestinal peptide and allow the 

generation of the high pressure zone by prokinetic agents. 
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STATEMENT OF THE SPECIFIC AIMS 

The specific aims of the study were: 

1. to test the effects of various prokinetic agents on 

isolated segments of rabbit terminal ileum. 

2. to test the effects of agents which increase 

intracellular cAMP levels on stimulated segments of ileum. 

3. to demonstrate the effects of agents which inhibit cAMP 

accumulation on vasoactive intestinal peptide-mediated 

inhibition of motility. 

4. to demonstrate the effects of various NPY receptor 

analogues on VIP-mediated inhibition of motility. 
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HISTORICAL BACKGROUND 

Thfi Role of Gut Motility Modulation 

in Classical Medical Therapy 

Classical physicians based their treatment of disease 

upon concepts of physiology and pathology which were quite 

different than current concepts. Consequently, their 

approach to therapeutics seems alien to the modern practice 

of medicine. These views, however, persisted well into the 

19th Century and many still survive among folk remedies for 

various conditions. Whereas modern therapeutics is based 

upon experimental science, classical practice was founded 

upon millenia of careful and meticulous observation. As a 

result, medical writings from previous centuries offer an 

immense wealth of clinical observations on the natural 

history of diseases. In addition, modern therapeutics is 

based on pharmacology while in classical therapeutics the 

physician attempted to guide and support their patients 

through illnessess by alterations of diet, bloodletting, and 

stimulation of changes in bowel function and urination. 

The gastrointestinal tract played a prominent role in 

the therapeutics of classical medicine. The classical 

physician believed that the maintenance of normal bowel 

function was a prerequisite for continued good health (Celsus 
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1979). He considered that alterations of bowel function 

played a role in the genesis of some diseases. Moreover, the 

classical physician used manipulation of gastrointestinal 

motility as one of their primary modalities for the treatment 

of both acute and chronic diseases. 

The definition of disease was quite different for the 

classical physician than that which is generally accepted at 

the present time. As a result, the goals of classical 

therapeutics were entirely disparate from those of modern 

medical practice. In this section, we will review the 

classical definition of disease and then examine how this 

definition led to the use of emetics, cathartics, clysters, 

purgatives and enemas in the treatment of acute and chronic 

illnesses by physicians until relatively recent times. 

The Definition of Disease. 

The approach of classical physicians to disease evolved 

from their assumptions of the economy of the human body and 

the genesis of disease. The role of the physician and his 

choice of therapies derived from these postulates. 

Hippocrates describes the development of medical practice in 

Ancient Medicine. The role of diet in health and in disease 

was evidently always a central concern of the physician. 

Hippocrates writes: 

"For the art of Medicine would not have been 
invented at first, nor would it have been made a subject 
of investigation (for their would have been no need of 
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it,) if when men are indisposed, the same food and other 
articles of regimen which they eat and drink when in 
good health were proper for them, and if others were 
preferable to these. But now necessity itself made 
medicine to be sought out and discovered by men, since 
the same things when administered to the sick, which 
agreed with them in good health, neither did nor do 
agree with them (Hippocrates)." 

Hippocrates indicated that the earliest role of the physician 

was the study of diet in health and disease and that 

therapeutics was initially based on changes in diet. 

Furthermore, Hippocrates stressed that the natural faculties 

functioned differently in health and in disease. We will 

return to this issue in the next section. 

The teachings of Hippocrates remained a central theme in 

Western medicine until recent times. Thomas Sydenham, the 

leading practioner of medicine in the 17th Century, pleaded 

for a greater return to these Hippocratic ideals. A distinct 

definition of classical concepts of disease is offered by 

Thomas Sydenham in his Medical Observations Concerning the 

History and Cure of Acute Diseases: 

"A disease, however much its cause may be adverse 
to the human body, is nothing more than an effort of 
Nature, who strives with might and main to restore the 
health of the patient by the elimination of the morbific 
matter. For, since it is the will of God, the Supreme 
Arbiter and Regulator of all things, that the human 
frame be, by nature adapted to the reception of 
impressions from without, it follows that it must also 
be liable to a variety of maladies. These arise partly 
from the particles of the atmosphere, partly from the 
different fermentations and putrefactions of the 
humours. The first insinuate themselves amongst the 
juices of the body, disagree with them, mix themselves 
up with the blood; and, finally, taint the whole frame 
with the contagion of disease. The second are confined 
within the body longer than they ought to be, its powers 
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having proved incompetent, first to their digestion, 
afterwards to their excretion. This may arise from 
either their bulk, or the incongruity of their qualities 
(Sydenham 1847)." 

The contrast of this definition to modern concepts was 

pointed out by Benjamin Rush in his introduction to an 

American Edition of The Works of Thomas Svdenham, M.D, 

published early in the 19th Century (Sydenham 1809). Rush 

wrote: 

"I consider our author's (Thomas Sydenham) 
definition of a disease to be erroneous, viz. that it is 
'a vigorous effort of nature to throw off morbific 
matter, and thus to recover the patient,' instead of 
which I believe a disease, to use the definition he has 
rejected, to consist 'in the confused and irregular 
operations of disordered and debilitated nature'. 
(Sydenham 1809, p. iv) 

This contrast of views in the cause of symptoms is central to 

the differences between the classical practice of medicine 

and current therapeutics. For the classical physician, the 

symptoms of disease were the response of the patient's 

constitution to an illness and thus, something which should 

be promoted. In sharp contrast, modern physicians tend to 

think of symptoms as the consequence of disease and that 

suppression of the symptoms will ameliorate the disease. 

Sydenham's definition highlights two fundamental 

postulates of classical medicine. The first is the belief 

that the symptoms of disease are produced by the response of 

the natural faculties to the disease. The second is that the 

genesis of disease is through the putrefaction of humors 
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within the body. Both of these points must be grasped to 

appreciate the use of prokinetic agents in the treatment of 

disease. 

Vis Medicatrix Naturae 

The classical physician studied attentively the 

progression of symptoms in acute and chronic illnesses. In 

particular, he focused on the divergence of symptoms between 

patients that recovered and those that succumbed from the 

disease. It was the role of the physician to promote 

symptoms such as vomiting and diarrhea when the response of 

the patient was judged inadequate and to temper symptoms when 

they became too extreme. This approach to therapeutics 

derived from the concept that symptoms were the response of 

the patient's constitution to the illness and represented the 

attempts of the patient’s body to throw off the irritating 

causes of his illness. The role of the physician, then, was 

to assits nature in the fight against disease (Guthrie 1946, 

Kutumbiah 1971). 

The importance of Nature in the battle against disease 

explicitly remained the central postulate of therapeutics 

until the 19th Century. This doctrine was deemed Vis 

Medicatrix Naturae. William Cullen, Professor of Medicine 

at the University of Edinburgh in the late 18th and early 

19th Century, defined this important concept. Cullen wrote 

while addressing the Phaenomena of Fevers: 
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"How the state of debility produces some of the 
symptoms of the cold stage, we cannot particularly 
explain, but refer it to a general law of the animal 
oeconomy, whereby it happens, that powers, which have a 
tendency to hurt and destroy the system, often excite 
such motions as are suited to obviate the effects of the 
noxious power. This is the VIS MEDICATRIX NATURAE, so 
famous in the school of physic; and it is probable, that 
many of the motions excited in fever are the effects of 
this power (Cullen 1777)." 

Thus, the classical physician did not believe that he could 

directly treat a disease. Instead, his role was to support 

and to assist the natural response of his patient to his 

illness. The physician guided the powers of nature in the 

struggle against disease. 

Classical Concepts of Digestion. 

Classical physicians were forbidden to dissect the human 

body because of prevalent religious doctrines regarding the 

sanctity of man. Consequently, knowledge of human anatomy 

was limited. Similarly, the function of various organs could 

only be inferred. Nonetheless, concepts of the animal 

economy developed. In order to understand the goals of 

physicians in the use of cathartics and purgatives in the 

treatment of disease a brief description of classical 

concepts of digestion is required. 

Classical concepts of digestive physiology and on the 

functions of the intestine have descended to us primarily 

through the writings of Galen. Classical perception of 

digestion is outlined in On The Natural Faculties (Galen 
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1927). The Natural Faculty of Digestion was accomplished by 

1. Presentation (prosthesis) of the nutrients to the 

alimentary tract, 2. Adhesion (prosphysis) of the nutrients 

to the wall of the organs, 3. Assimilation (alteration) of 

the nutrients into the lacteals and vessels, 4. Retention of 

the nutrients until assimilation occurred, and 5. Expulsion 

of the unabsorbed substances (superfluidities) . All 

discourses on digestion adhered to this general theory for 

the next fifteen centuries. It must be emphasized, however, 

that these processes were not confined to the 

gastrointestinal tract. 

Role of Digestion in the Genesis and Treatment of Disease 

The natural faculty of nutrition and the processes of 

digestion could lead to the generation of disease and could 

also be used to treat diseases. The manner by which 

alterations of digestion could lead to disease was descibed 

by Sydenham in his discussion On Acute Diseases in General. 

Sydenham wrote that diseases "arise partly from the particles 

of the atmosphere, partly from the different fermentations 

and putrefactions of the humors (Sydenham 1847)." Further, 

he detailed the alterations in digestion which caused 

illness: 

"The (different fermentations and putrefactions of 
the humours) are confined within the body longer than 
they ought to be, its powers having proved incompetent, 
first to their digestion, afterwards to their excretion. 
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This may arise from either their bulk, or the 
incongruity of their qualities (Sydenham 1847)." 

Thus, it was supposed that an accumulation of superfluidities 

and putrefactions within the body produced many of the acute 

and chronic illnesses. 

Fortunately, Nature had forseen this eventuality and 

provided mechanisms for the body to cleanse itself of these 

offending substances. Sydenham again offers a succinct 

description of these processes: 

"Hence Nature, in the concatenation and exclusion 
of the peccant and foreign matter, which otherwise, 
would undo the whole fabric of our frame...This 
undertaking Nature performs at different rates; quickly 
or slowly, according to the different processes by which 
she strives to expel the morbid influence...As often she 
calls in the aid of fevers for the isolation of the 
tainted particles from the remainder of the blood; and 
when, by a further process, either by diaphoresis or 
diarrhoea, by eruptions, or some other evacuations, she 
expels the particles thus isolate (Sydenham 1847)." 

Nature fights off these diseases through the elimination of 

the offending substances. One of the principle ways of 

cleansing the system is through evacuations of the bowels. 

Thus, manipulation of bowel function became an important 

focus of attention for the classical physician. 

Unfortunately, the response of Nature to these imbalances of 

the system were inappropriate. Sydenham points out: "When 

left, indeed, to herself, (Nature) may do too much or too 

little, and, in either case, kill the patient (Sydenham 

1847)." The role of the physician, then, was to observe the 





FERZOCO, SJ GUT MOTILITY IN CLASSICAL THERAPEUTICS -18- 

progress of Nature in the elimination of putrefactions and, 

if need be, either to promote or retard this process. 

We will now examine more closely the writings of various 

medical authorituies over the last several millenia. We will 

focus on their use of the gastrointestinal tract in their 

treatment of disease. 

Greek Medicine - Hippocrates 

Unquestionably, the foundation of Greek Medicine is 

based on the writings of Hippocrates (Figure 1). 

Hippocrates, a native of the island of Cos, was born about 

460 B.C. Although little is known about the man himself, he 

is said to have been taught medicine by his father and 

traveled extensively within the Greek Empire lecturing on 

medicine and surgery. After his death, his followers 

propagated his teaching to new generations of physicians and 

established the Library of the Hippocratic School at Cos 

(Osier 1921). 

Osier wrote that "empiricism, experience, the collection 

of facts, the evidence of senses, the avoidance of 

philosophical speculations, were the distinguishing features 

of Hippocratic medicine. One of the most striking 

contributions of Hippocrates is the recognition that diseases 

are only part of the processes of nature, that there is 

nothing divine or sacred about them." Indeed, Hippocrates 
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based his treatment of disease on the vis medicatrix naturae, 

the power of nature (Osier 1921). 

Figure 1: Reproduction of a fourteenth-century Byzantine 
portrait of Hippocrates, courtesy of the 
Bibliotheque Nationale, Paris. 
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Hippocrates devoted much attention to gut function. He 

carefully observed the quantity and appearance of stool in 

health and believed that maintenance of normal defecation was 

a fundamental requirement for continued good health. In 

illness, Hippocrates studied the changes in the quantity and 

character of vomitus or stool which was expelled from his 

patients. He believed that this gave him direct information 

about the processes of concoction and putrefaction which were 

occurring in his patient. Further, by following the changes 

in the character of the vomitus and stool he could draw 

conclusions about the course of the disease in his patient. 

If the patient stopped vomiting and the character of the 

stool returned to normal, the patient had passed through the 

crisis of the disease and would recover. If on the other 

hand, the vomitus became feculent and the stool remain filled 

with putrefaction or even worse blood, the patient would 

perish. 

Hippocrates described the natural course of bowel 

movements in his Prognostics: 

"The excrement is best which is soft and 
consistent, is passed at the hour which was customary to 
the patient when is health, in quantity proportionate to 
the ingesta; for when the passages are such, the lower 
belly is in a healthy state. But if the discharges be 
fluid, it is favorable that they are not accompanied 
with a noise, nor are frequent, nor in great quantity; 
for the man being oppressed by frequently getting up, 
must be deprived of sleep...But in proportion to the 
ingesta he should have evacuations twice or thrice a 
day, once at night and more copious in the morning, as 
is customary with a person in health. The faeces should 
become thicker when the disease is tending to a crisis; 
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they ought to be yellowish and not very fetid. It is 
favorable that round worms be passed with the discharges 
when the disease is tending to a crisis. The belly, 
too, through the whole disease, should be soft and 
moderately distended; but excrements that are very 
watery, or white, or green, or very red, or frothy, are 
all bad. It is also bad when the discharge is small and 
viscid, and white, and greenish, and smooth; but still 
more deadly appearances are the black, or fatty, or 
livid, or verdigris-green, or fetid. Such as are of 
varied characters indicate greater duration of the 
complaint, but are no less dangerous; such as those 
which resemble scrapings, those which are bilious, those 
resembling leeks, and the black; these being sometimes 
passed together and sometimes singly (Hippocrates 1849). 

Hippocrates realized the importance of the intestines as 

an organ of "concoction" or digestion. It was important that 

the bowel perform this function in order that health be 

preserved. Hippocrates argued that it was necessary for 

digested material to be expelled by the body. In Aphorisms 

XXI of Section I, "Those things which require to be evacuated 

should be evacuated, wherever they most tend, by the proper 

outlets (Hippocrates 1849)." Otherwise, the accumulation of 

the superfluidities would lead to the genesis of disease. 

Similarly, in Aphorisms XXII of Section I, "We must purge and 

move such humours as are concocted, not such as are 

unconcocted, unless they are struggling to get out, which is 

mostly not the case (Hippocrates 1849)." 

When the use of purgatives is indicated, it is necessary 

to augment them through their natural course. In Aphorisms 

II of Section IV, "In a purging we should bring away such 

matters from the body as it would be advantageous had they 

come away spontaneously, but those of an opposite character 
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should be stopped (Hippocrates 1849)." The physician assists 

nature in the regulation of digestion. 

Hippocrates also used evacuation of the bowels as a 

central weapon in his arsenal for the therapy of diseases. 

In Aphorisms LXVIII of Section VII, Hippocrates wrote that in 

acute diseases: "When the dejections are allowed to stand 

and not shaken, and a sediment is formed like scraping (of 

the bowels), in such a case it is proper to purge the bowels; 

(Hippocrates 1849)." Further, in the Appendix to the works 

On the Regimen in Acute Diseases, Section XV, he adds: "All 

diseases are resolved either by the mouth, the bowels, the 

bladder, or some other such organ. Sweat is a common form of 

resolution in all these cases (Hippocrates 1849)." 

Hippocrates felt that the use of purgatives, although 

necessary for the elimination of disease, had to be used 

judiciously. In Aphorisms XXIV of Section I, he states, "Use 

purgative medicines sparingly in acute diseases, and at the 

commencement, and not without proper circumspection 

(Hippocrates 1849)." 

Hippocrates prescribed many regimens in the treatment of 

disease. The majority of them dealt with abnormalities of 

the gastrointestinal tract. The majority of his treatment 

modalities can be found in his On Regimen in Acute Diseases: 

Section V: "Ptisans are to be made of the very best 
barley, and are to be well boiled, more especially if you 
do not intend to use them strained. For, besides 
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the other virtues of ptisan, its lubricant quality 
prevents the barley that is swallowed from proving 
injurious... for that which is well boiled is very 
lubricant... of very easy digestion... If then one do not 
pay proper attention to the mode of administering the 
ptisan, much harm may be done; for when the food is shut 
up in the bowels, unless one procure some evacuation 
speedily, before administering the draught, the pain, if 
present, will be exasperated (Hippocrates 1849). 

Section VII; But if the pain be below the 
diaphragm, and do not point to the clavicle, we must 
open the belly either with black hellebore or peplium, 
mixing the black hellebore with carrot or seseli, or 
cumin, or anise, or any of the other fragrant herbs; and 
with the peplium the juice of the sulphium 
(assafoetida), for these substances when mixed together, 
are of similar nature. The black hellebore acts more 
pleasantly and effectually than the peplium, while, on 
the other hand, the peplium expels wind much more 
effectually than the black hellebore (Hippocrates 1849). 

Section XV: But unmixed hydromel, rather than the 
diluted, produces frothy evacuations, such as are 
unseasonably and intensely bilious, and too hot; but 
such an evacuation occasions other great mischiefs, for 
it neither extinguishes the heat in the hypochondria, 
but rouses it, induces inquietude, and jactitation of 
the limbs, and ulcerates the intestines and anus 
(Hippocrates 1849)." 

In describing treatment for "ardent fever (causus)", 

Hippocrates advocates administration of an emetic and 

clyster; "and if these things do not loosen the bowels, purge 

with the boiled milk of asses (Hippocrates 1849)." 

In the Appendix to the works On the Regimen of Acute 

Diseases, Section XXI, he adds: 

"Those who have the inferior intestines hot, and 
who pass acrid and irregular stools of a colliquative 
nature, if they can bear it, should procure revulsion by 
vomiting with hellebore; but if not should get a thick 
decoction of summer wheat in a cold state, lentil soup, 
bread cooked with cinders, and fish, which should be 
taken boiled if they have the fever, but roasted if not 
feverish; and also dark coloured-wine if free of fever; 
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but otherwise they should take the water from medlars, 
myrtles, apples, services, dates or wild vine. If there 
be no fever...the patient should drink hot asses' milk 
in small quantity at first, and gradually increase it, 
and linseed, and wheaten flour, and having removed the 
bitter part of Egyptian beans, and ground them, sprinkle 
on the milk and drink; and let him eat eggs half- 
roasted, and fine flour, and millet, and perl-spelt 
(chondrus) boiled in milk (Hippocrates 1849)." 

In the Appendix to the works On the Regimen of Acute 

Diseases, Section XXXVIII, Hippocrates states: "A medicine 

for opening the bowels. Pour upon figs the juice of spurge, 

in the proportion of seven to one: then put into a new 

vessel and lay past when properly mixed. Give before food 

(Hippocrates 1849)." 

Hippocrates felt that purgatives were only beneficial 

when the undigested material passed to the distal bowel. In 

the Appendix to the works On the Regimen of Acute Diseases, 

Section VII, he comments: "When fever seizes a person who has 

lately taken food, and whose bowels are loaded with faeces 

which have been long retained, whether it be attended with 

pain of the side or not, he ought to lie quiet until the food 

descend to the lower region of the bowels, and use oxymel for 

drink; but when the load descends to the loins, a clyster 

should be administered (Hippocrates 1849)." 

Hippocrates attributed some states of diarrhea to an 

excess of black bile in the body. In the Appendix to the 

works On the Regimen of Acute Diseases, Section VIII, 

Hippocrates states: 
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"In those cases of fever in which the bowels are 
loose, and the mind is disordered... such attacks appear 
to me to be connected with black bile. When in these 
cases there is a colliquative diarrhea, I am of the 
opinion that we ought to give the colder and thicker 
ptisans, and that the drinks ought to be binding, of a 
vinous nature, and rather astringent. (Hippocrates 
1849) . " 

Disorders of intestinal motility could even be traced to 

dietary changes. In the Appendix to the works On the Regimen 

of Acute Diseases, Section XVIII, Hippocrates writes: 

"Disorders connected with regimen, for the most part, make 

their attack accordingly as any one has changed his habitual 

mode of diet...but if the bowels are not opened, he should 

get his body rubbed with hot oil...Cheese produces flatulence 

and constipation...The stalk and the juice of silphium 

(assafoetida), pass through some people's bowels very readily 

(Hippocrates 1849)," 

Roman Medicine 

While the name of Hippocrates is associated with Greek 

Medicine, Galen is recognized as the father of Roman Medicine 

(Figure 2). Born at Pergamos in 133 A.D., Galen united the 

concepts of observer, experimenter and philosopher (Osier 

1921). Unlike Hippocrates, we know a great deal about 

Galen's life, principally from his own writings. After 

taking up medicine at age 17, he eventually gave public 
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Figure 2: The frontispiece of the Latin translation of Galen 
published by the Venetian printing house of Giunta 
in 1541. Reproduced from Sherwin Nuland's 
Doctor's, the Biography. Vantage Books, New York, 
1988. 

lectures on anatomy in Rome in 162 A.D. Galen soon found 

himself the principle physician to Emporor Marcus Aurelius 

after successfully treating the Emperor's stomachache after 
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eating too much cheese. Aurelius is said to have remarked: 

"I have but one physician and he is a gentleman." (Osier 

1921) . 

Perhaps the most prolific writer of the ancient 

physicians, Galen did not ally himself with any particular 

school of medicine, but regarded himself as a disciple of 

Hippocrates. Galen does not seem ever to have had the 

opportunity to dissect the human body but he did carry out 

large scale experiments which added to the basic corpus of 

medical information (Osier 1921). 

In his Hygiene (De Sanitate Tuenda), Galen further 

develops his ideas on digestion and disease. In his third 

chapter, he describes the production and elimination of 

excrements. "Nature not only has provided organs for their 

excretion but has endowed them with powers whereby some 

attract the excrements, some propel them, and some eliminate 

them. And it is necessary that these should neither be 

obstructed by anything nor impaired in their functions to 

keep the body clean and free from impurities (Galen 1951)." 

Galen also proposed that various organs of the 

intestinal tract had specific functions and roles in the 

maintenance of health. "She (Nature) provided the animals 

with many organs, some purging and separating the excrements, 

some propelling them, others collecting, and others 

eliminating them...For in the first place the excrement is 
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separated and gradually propelled through all the intestines 

into a large cavity called the rectum (Galen 1951)." 

In chapter XVIII, Galen discusses the causes and 

prevention of excrementary retardation: 

"Now retardation of the excrements from the stomach 
may arise from fault in the food and drink taken, or 
from the stomach and intestines themselves. From fault 
of food or drink, retardation may occur on account of 
their quality or quantity or the order and manner in 
which they are taken. On account of their quality, if 
they are bitter, sour, or of a dry nature. On account 
of their quantity, if there is more or less than is 
proper... 

The causes of retardation of the excrements due to 
the stomach and intestines may be intrinsic or acquired. 
The intrinsic causes arise from faulty constitutions of 
the body...There are eight different forms of acquired 
disorders affecting the abdomen, each a dyscrasia of 
individual sort. Four of these are simple -- heat and 
dryness, heat and moisture, cold and dryness, cold and 
moisture. 

Dyscrasias from internal causes arise when there is 
in the food or drink something of a pharmacologic nature 
which either warms or cools or dries or moistens, or 
warm and dries, or produces any other combination of 
these qualitites...From these causes the excrement of 
the abdomen is suppressed (Galen 1951)." 

Like Hippocrates, Galen noted the importance of 

evacuation of retained excrements. In Chapter XIV: "It is a 

universal docrine for all excrements, to employ the opposite 

to the cause of their retention." Similarly in chapter IX, 

he discusses the preparation and use of cathartics and 

enemas: "But if after being constipated for two days, they 

do not move on the third day, then a mercurial herb is 

sufficient...(as is) sea-cabbage, calomel in barley (Galen 

1951). 
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Galen further describes the importance of diet in the 

maintenance of health in chapter V, Diet and Venesection: 

"And since also the hypochondrium in all such patients 

becomes swollen and distended, and whatever they take turns 

easily to gas, it would be better to give some long pepper 

with the food; for this dissolves the thickness of the 

flatulent gas, and also pushes towards the lower abdomen what 

is sluggishly arrested in the hypochondrium, and contributes 

to the digestion of food...white pepper... so-called drug of 

Diospolis... equal parts cummin and pepper and springwort and 

nitre (Galen 1951)." 

Classical physicians attentively observed the character 

of the urine and stools since this gave them insight into the 

processes of digestion and concoction that were occurring in 

their patients. It was believed that alterations in these 

processes contributed to disease. Much of the therapy of 

classical physicians was directed towards re-establishing the 

normal balance of gastrointestinal function through the use 

of medicated syrups. 

DARK ACES 

Following the death of Galen, virtually no new 

information was gained regarding anatomy or physiology until 

the Renaissance. The teachings of Galen survived, however, 

through three lines of descent (Osier 1921). A continuous 

series of physicians practiced medicine in the Greek 
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tradition. Many manuscripts of the original Greek texts 

remained extant in the Eastern Empire but apparently were 

unavailable to physicians of the West until the fall of 

Constantinople in 1453 (Nuland 1988). A second source of 

Greek learning was the South of Italy where Greek remained 

the spoken language until the thirteenth century. The 

schools of southern Italy and Sicily translated scientific 

manuscripts directly from the Greek to Latin as early as the 

eleventh century (Singer 1928). Alphanus, the Archbishop of 

Salerno (d. 1085), for example, translated a work by Nemesius 

into Latin. These translations increased in numbers over the 

following centuries. No anatomical works by Hippocrates, 

Aristotle or Galen are thought to have been available in 

western Europe before the 12th Century (Corner 1927). The 

major source of Galenic teachings during the late Dark Ages 

in the West was from Arabian medicine. 

The major stream through which Greek medicine reached 

western Europe following the Eleventh Century was Arabian 

medicine. After the period of conquest, the Arabs settled 

down to the arts of peace. Baghdad and Cordova became great 

centers of learning. Unfortunately, the Greek teachings were 

second or third hand by the time they were translated into 

Latin. Much of Galenic anatomy was translated into Arabic 

not from the original texts but rather from synopses of Galen 

such as Collecta medicinalia which was compiled by Oribasius 

at the request of the Emperor Julian (McMurrich 1930). 
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Similarly, Islamic knowledge of Galenic medicine derived 

largely from translations of The Seven Books of Paulus 

Aegineta written in Alexandria in the seventh century (Nuland 

1988) . 

Within a hundred years of the First Crusade, many Arabic 

texts were translated into Latin and became available in 

western Europe (Campbell 1926). Constantine the African 

between about 1070 and 1087 A.D. produced about 15 medical 

manuscripts at Salernum (Corner 1927). Stephen of Antioch 

produced in 1127 A.D. a translation of Hali Abbas which 

contained an important anatomical section (Singer 1928). 

Archbishop Raymond of Toledo established a school of 

translation called "The House of Wisdom". Gerard of Cremona 

(1115-1185 A.D.) translated at least 92 manuscripts from 

Arabic to Latin. The medical text which proved the most 

influential in western Europe was the Canon of Medicine of 

Avicenna which was largely based on Arabic translations of 

Galen. Thus, in a brief time period beginning in the 12th 

Century a prodigious volume of medical knowlege was 

reintroduced into western Europe through Arabic sources. 

These Latin translations contained much of Galenic anatomy 

and physiology but the texts were derived from Arabic 

translations of Byzantine synopses of Galen's works. The 

intervening centuries and nuances of different languages had 

introduced many vagaries and errors into the Galenic 

tradition. 
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The flood of knowledge into western Europe from Arabian 

sources also introduced Islamic customs. Arabian medicine 

divorced the practice of medicine from surgery. The Arabic 

authorities maintained that under certain conditions the body 

was unclean. This belief led to the Edict of Tours in 1163 

which stated "Ecclesia abhuret a sanguine." As a result of 

this edict, surgery was relegated to barbers and mountebanks 

(Cambell 1926). This distinction was warmly received by the 

scholastic philosophy prevalent among the western scholars 

since medicine lent itself better to logical argument as to 

causes, principles and treatment while surgical conditions 

required prompt intervention (McMurrich 1930). This led to 

the banishment of surgery from the universities during their 

period of development. Similarly, anatomy was of little 

value in the practice of the Arabian version of Greek 

medicine. The study of anatomy and function was 

conventionalized into the reading of Latin translations of 

Arabic summaries of Galen. Cadaveric dissections were deemed 

irrelevant since Galen was accepted as the authoratative 

source of all anatomic information. Unfortunately, during 

the descent of Galenic anatomy from the second century A.D., 

it was forgotten that Galen rarely studied human anatomy but 

rather carried out dissections in various animals 

particularly monkeys (McMurrich 1930). The differences 

between Galenic teachings and actual human anatomy were only 
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discovered in the Sixteenth Century when cadaveric 

dissections became more prevalent. 

Within a hundred years of the First Crusade, many Arabic 

texts were translated into Latin and became available in 

western Europe. The medical text which proved to be the most 

influential in western Europe was the Canon of Medicine of 

Avicenna which was largely based on Arabic translations of 

Galen. Avicenna (930-1037 A.D.), an Arabic philosopher, 

delineated the processes of digestion in The Canon on 

Medicine. Avicenna (Abu al-Hussain Ibn Abdullah Ibn Sina) 

was born in 980 A.D. in the village of Afshana in the 

province of Bukkara, Persia. "The Prince of Physicians" 

according to Persians, his textbook, The Canon on Medicine 

became the textbook of medical schools in many European 

medical schools. Even today, many consider the text an 

excellent amalgamation of all the medical doctrines of 

Hippocrates and Galen with the biological concepts of 

Aristotle (Lewis 1965). 

Avicenna differed from Hippocrates on his definition of 

disease and the significance of symptoms. Avicenna defined 

disease as "an abnormal state of the human body, in virtue of 

which injurious effects result (Gruner 1930)." He no longer 

judged a symptom a response to an illness but rather a result 

of the disease. He wrote: "Symptom...a phenomenon consequent 

upon this non-natural state of the body (Gruner 1930)." 

Indeed, he had veered so far away from the views of 
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Hippocrates that Avicenna taught that a symptom could even be 

the primary cause of the affliction: "A symptom may be the 

cause of a disorder (Gruner 1930)." Thus, Arabian medicine 

was not just a restatement of classical teachings but had 

evolved away from some of the fundamental postulates of 

Hippocrates and Galen. 

Despite these differences in the definition of disease 

and the importance of syptoms, many of the views of Avicenna 

were firmly founded on the teaching of the Greek tradition. 

Avicenna, like Hippocrates, felt that disease could be 

explained by an imbalance in the natural state of the body. 

Health derived from an equilibrium between what the body 

takes in and assimilates and what the body excretes. 

Observation of the characteristics of stool could render 

important information about the condition of the individual 

and the balance of his natural faculties. Avicenna wrote: 

"The following are the characters (of stool) to 
note: the quantity; the consistence; the colour; the 
form or shape; and the time occupied in the passage of 
food through the bowel. 

1. Quantity. If greater than the amount of food 
taken, the reason lies in abundance of humours; if 
smaller in amount, the reason lies in deficient amount 
of humours, or in a retention of the food in the caecum 
or colon...The reason may also be that the expulsive 
power is insufficient. 

2. Consistence. Moist excretion denoted defective 
digestion or obstruction of some form; weakness of the 
mesentery, so that it does not absorb sufficient water 
from the food; fluxion from the head; some constituent 
of the diet which causes the dejection to be moist. If 
the faecal matter is both moist and viscid, this shows 
that there is colliquation in the tissues. Fetor is 
then present... Dry stool results from...a long delay in 
the intestines. 
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When fecal matter is both moist and hard, the 
dryness is due to undue delay in the intestines due to 
moisture which cannot escape. 

When the feces are passed out too rapidly it is a 
bad sign; it shows...that there is a weakness of the 
retentive power. A delay in the passage of fecal matter 
through the body denotes a feeble digestion, coldness of 
the intestines, abundant moisture (Gruner 1930)." 

Avicenna described various regimens for the regulation 

of intestinal motility. Health could be maintained by 

expulsion of the humors associated with disease. The 

practioner, however, needed to take into account such 

variables as the age of the patient and the season of the 

year. "Articles of food which have a laxative action, 

appropriate for elderly persons.--For summer: Figs and 

prunes; for winter: dried figs cooked in water and in honey. 

They must be taken before food, to have a laxative effect 

(Gruner 1930)." The physician herded over his patient both 

in health and in illness. By proper attention to bowel 

function, the physician could hope to prevent the development 

of various maladies in his patients. 

The physician could tailor his intervention to the 

specifics of the situation. He could stimulate evacuation of 

the rectum as outlined above or he could direct his attention 

to the more proximal gut. He described, for example, 

additional cathartics for the proximal gastrointestinal 

tract. "A medicine often leaves its odour behind in the 

stomach, making it appear to be still there. The remedy for 

this is to partake of a barley ptisan or barley-meal cake, 
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for this will have the effect of cleansing the stomach 

(Gruner 1930)." The selection of various remedies required 

meticulous evaluation of the clinical situation. Based on 

the character, color and quantity of the stool, the physician 

selected his remedy for the patient. Millenia of observation 

ensured the precipitation of the expected result if the 

physician carefully followed these guidelines which had been 

first developed among the Greeks and passed down by the 

Arabs. 

15th Century 

Physicians in western Europe gained access to the 

original manuscripts of Hippocrates and Galen following the 

crusades. Careful study of these works revealed the 

differences between Arabian medicine and the older Greek 

traditions. Many scholars of this period turned their 

attention to the cleansing of Galenic medicine from Arabian 

"heresies". In the same spirit of the Protestant Reformation 

which was sweeping western Europe at this time, physicians 

demanded the reinstitution of the "true" teachings of Galen. 

This is best illustrated by the writings of Michael Servetus 

(1511-1553), "theological reformer, scholar, geographer, 

astrologist, lawyer, mathematician, scholar, and spiritual 

founder of the modern Unitarian movement", who was condemned 

as a heretic by the Roman Church in Vienne and burned at the 

stake by Calvin in Geneva (Servetus 1989). Servetus viewed 
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the Arabs as the enemy of truth. His treatise The Svruos, 

which summarizes gastrointestinal function, attempts to free 

the "sacred authority of Galen" of Arabic inaccurancies 

(Servetus 1989). In his preface to The Svruos. Servetus 

writes: 

"In our happy age, (Galen) once shamefully 
misunderstood is reborn and re-establishes himself to 
shine in his former lustre; so that like one returning 
home he has delivered the citadel which has been held by 
the forces of the Arabs, and he has cleansed those 
things which had been bespattered by the sordid 
corruptions of the barbarians (Servetus 1989)." 

As a result of this effort to restore the true teachings of 

Galen, the attention of physicians was directed towards Greek 

manuscripts of Galen rather than the investigation of 

function of the parts of the body. 

Michael Servetus extensively described the teachings of 

Galen on the processes of digestion and concoction and the 

genesis of disease in The Svruos. Servetus also explained 

the use of these syrups in the treatment of disease. 

Servetus demonstrated the importance of "digestive 

syrups" in the maintainence of health. "A great many 

disagree on the question of digestive syrups... They consider 

them as doing nothing other than to digest or concoct, and 

content that bilious humors are not to be evacuated without 

awaiting coction (Servetus 1989)." 

Like his predecessors, Servetus postulated that 

imbalances in intestinal motility led to disease. 
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"Therefore it is necessary that excrement, whether 
it be hot or whether it be cold, either be driven out or 
at least altered. Not all excrement receives alteration 
from nature, since not all food is concocted in the 
stomach of every living thing, but there must be a 
certain relationship of that which is concocted and that 
which concocts. Therefore what is entirely foreign can 
in no way be made so that it may receive the service of 
the nature, but as soon as possible it must be 
endeavored to evacuate it; equally surely those things 
which have been truly corrupted in the stomach had best 
be driven out by vomiting or by purging (Servetus 
1989) . " 

Serevetus stressed the importance of the return of 

normal bowel function: "If expulsion is not achieved, 

obstructions can occur in which not the concocting faculty 

but the expulsion must be aided (Servetus 1989)." 

"Attempted purgation by disturbing the nature will 
impede future concoction which will be aided by 
quiet...In addition, not only must the crude humors then 
be expelled, but others which are unprepared for 
expulsion if they are blocking the passages of the crude 
through which the others must be eliminated (Servetus 
1989)." 

Servetus employed a variety of "syrups" in the treatment 

of intestinal disorders. These syrups were extracts derived 

from plants or animals, as well as oils. By expelling the 

bad humors, restoration of health would occur. 

"For a strong concocting force employing retention 
surrenders nothing until it expels by thickening it to a 
considerable consistency. A weak one concocts, 
retaining weakly, and discharges a thin liquid, as 
though filtered out; or overburdened, it expels 
prematurely. Therefore from a weal concoction 
attenuated excrements occur. 

And so the reason for the prohibition of purgation 
is that the crude humor, because of thickness and 
coldness, is of slow movement and does not respond to 
drugs; whence bad symptoms result and become worse in 
the degree that the drug is more powerful in attraction 
and the humor, because of the greater thickness, 
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stronger in resistance or more fixed in the narrower 
passages (Servetus 1989)." 

Not only was it necessary for the removal of the crude 

or bad humors from the body, but the method was also 

critical. Slow humors needed to be removed quickly and by 

the speediest route. "The reason of our aphorism forbids 

elimination of the crude humors from the stomach through the 

bowel. For the crude humor is slow in movement, the transit 

of the pylorus narrow, and the twists of the intestine many 

in which the humor may be delayed and especially in the 

supporting mesenteric veins (Servetus 1989)." 

"For what Hippocrates and Galen fear is the 
attractive strength of the drugs which, with no humor to 
expel, usually arose bad symptoms. 

"But if you assuage the belly with light drugs and 
ease it from excrements, very often as we have already 
said, that evacuation is not forbidden by Hippocrates 
because it is not evacuation of crude humors; indeed, 
evacuation of the bowel is permitted when venesection is 
not permitted, since the belly having been freed and the 
passages opened, the nature also more easily expels some 
of the noxious humor. But if by more powerful drugs you 
attempt to expel the crude humors downward through the 
bowel, you will adduce bad symptoms (Servetus 1989)." 

Servetus stressed the importance of recognizing sickness 

and instituting treatment immediately. Recognizing that 

patients responded better to treatment the sooner therapy was 

administered, Servetus commented: "It is preferable to 

eliminate by the bowel in the beginning, by a suppository, 

clyster or a gentle drug, so that the intestines are relieved 

of the burden of excrements and rendered better prepared for 

the elimination of other juices (Servetus 1989)." 
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According to Servetus, the uses of syrups are many and 

varied. 

"There are many and various uses of syrups... first, 
as an aid to concoction...second, for aiding concoctions 
in all parts Galen causes those things which extenuate 
and comminute to precede... for they prepare the body, 
open the passages, dissipate obstructions and remove the 
thickness and stickiness of the humor, and as we shall 
say, they eliminate something...Third, emision of blood 
also occurs more easily with this aid where there is 
abundance of crude humors (Servetus 1989)." 

Later during his discourse, Servetus lists a variety of 

syrups, each with their own purpose and indication: "If in 

the beginning of the sickness the bowel must be moved it is 

safer to employ sweet potions of this sort... than by other 

drugs harmful to it and which may destroy the nature already 

weakened by the fever." pp 154. 

"Of this class (of syrups) are those common potions 
generally evacuating through the bowel, sweats and 
urines, such as ptisan, mead and decoction of oxymel, 
apomel and parsley. 

"Those which at the same time cut up and control 
the bowel are honey of roses, syrups of lavender, 
hyssop, squill, cyclamen, or sowbread; decoctions of 
cabbage, nettle and gallus decrepitus...Finally there 
may be syrups which at the same time extenuate and 
loosen the bowel such as dodder of thyme, polypody and a 
fumatory of grass, or the same herbs with whey and a 
fumatory of grass or of hops (Servetus 1989)." 

Servetus also commented on the need for multiple 

regimens to restore one's health. If one uses a particular 

medication too frequently, tachyphalaxis could occur. 

"A second matter for consideration which must not 
be overlooked is that regarding the accustoming of the 
nature to defecation...it ought to be accomplished with 
not one but various medicaments... so that the bowel 
ought to be loosened in turn by dog's-mercury, sea- 
cabbage, which is called soldanella, safflower, and 
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turpentine. For...if it becomes accustomed to only one, 
it will (in time) disregard it (Servetus 1989)." 

Sixteenth Century 

In the Sixteenth Century, Leonardo da Vinci's studies of 

the alimentary tract provided new insights on current 

knowledge of the intestines. In 1508, Leonardo met an 

elderly patient at the Hospital of Santa Maria Nuova in 

Florence, Italy. Hours after his death, da Vinci began an 

autopsy, "in order to ascertain the cause of so peaceful a 

death" (Keele 1972). 

After removing the omentum, Leonardo displayed the 

pattern of the small and large intestines in approximately 

their correct relationships (Figures 3,4). This had been the 

first time that the exact anatomical position had been 

achieved. In addition, da Vinci discovered the appendix. 

This so impressed the artist that he included a special 

sketch of the region. The force which propelled the 

intestinal contents was supplied by wind, according to da 

Vinci. He proposed that the appendix would provide a 

reservoir for excessive wind in the intestines (Kelle 1972). 
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Figure 3: Drawing from Leonardo da Vinci showing an 
arrangement of the intestines. DaVinci felt that 
there was considerable variation in the arrangement 
of the loops of small bowel. From the stomach, 
the intestine bends downward (duodenum), courses 
upward (jejunum) and finally descends once again 
(ileum) before becoming the large intestine. 
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Figure 4: A second arrangement of the intestines. In this 
varient, daVinci demonstrates that the terminal 
ileum transverses the body before joining the 
ascending colon. 
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Although da Vinci's drawing of the alimentary tract were 

unsurpassed, his ideas of the physiology of digestion were 

less impressive. His one major error of observation was the 

failure to note the peristaltic action of the intestines. 

The reason for this is a simple one. Da Vinci held deep 

respect for life and deliberately excluded vivisection as a 

method of physiologic study; it has also been remarked that 

da Vinci was a vegetarian. Although he did recognize the 

muscles which lined the intestines, he felt that their sole 

purpose was to prevent rupture of the tube: 

"If you should say that the longitudinal muscles of 
the stomach are for drawing down the food and the 
transverse muscles for retaining it I shall reply that 
that the whole intestine and everything adapted to 
dilatation and contraction has transverse and 
longitudinal fibers, as is seen in the texture of cloth. 
And this is done in order that no force or power... shall 
be able to break it (Kelle 1972)." 

Da Vinci believed that propulsion of food down the 

intestines was the result of action of the diaphragm and the 

transverse abdominal muscles. The opposing movements of 

these two muscles were called "Motors of the food and air 

within the human body" (Kelle 1972). 

"The flux and reflux of the two powers created by 
the diaphragm and the abdominal wall are those which 
compress the stomach and produce interrupted 
expulsion...during which food is alternately expelled 
and retained by the stomach (Kelle 1972)." 
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Seventeenth Century 

Andreas Vesalius (1514-1564, Figure 5) and then the 

comparative anatomists deduced the function of organs by 

their gross appearance and eventually by experiments in live 

animals. Vesalius based his anatomic descriptions upon 

cadaveric dissections (Figures 6,7). An alternative approach 

evolved from the alchemists of the Renaissance. Basil 

Valentine, a Benedictine monk, pursued both the philosopher's 

stone (the substance which catalyzed the transmutation of 

things such as lead into gold) and also the nature of drugs 

(Foster 1901)." He pursued the role of vegetables and 

minerals in the cure of disease. He introduced many new 

chemical compounds such as hydrochloric acid. He also 

developed a new unifying concept of nature which rested upon 

three elements rather than the classical four. These 

elements represented the general qualities of all matter not 

individual substances as we use this term: sulphur 

represented all things which were combustible; mercury 

embodied things which temporarily disappeared but could be 

recovered; and salt indicated things that were fixed such as 

the ash which remains after combustion. In addition, he 

postulated an "archaeus" which was the force or forces by 

which God brought about events. This philosophy was taught 

to Paracelsus (Theophrastus Bombast von Hohenheim 1493-1541) 

by Bishop Trithemius. The great contribution of Paracelsus 
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was that he introduced into medicine and surgery a chemical 

approach to disease (Pachter 1951)." 

Figure 5: Woodcut portrait of Andreas Vesalius (1514-1564) by 
Jan Stephan van Calcar. 
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Figure 6: The sixth figure of the fifth book from Andreas 
Vesalius' De Humani Corporis Fabrics (1543) 
demonstrating the relationship of the liver, 
stomach and intestines in their true position. 
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Figure 7: The seventh figure of the fifth book from De Humani 
Corporis Fabrica. Here, Vesalius provides a 
detailed look at the small intestine and in 
particular the terminal ileum and the ileocecal 
junction. 
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Paracelsus attacked the Galenic teachings of medicine. 

He was a staunch empiricist who believed in his own power of 

observation. Paracelsus wrote that "Every physician must be 

rich in knowledge, and not only of that which is written in 

books, his patients should be his book, they will never 

mislead him... and by them he will never be deceived (Jacobi 

1979)." Paracelsus was an ardent advocate of experiment and 

scorned a dogmatic approach to medicine. "From his own head 

a man cannot learn the theory of medicine, but only from that 

which his eyes see and his fingers touch (Jacobi 1979)." He 

did not base his concept of disease upon anatomy but rather 

on the effect of drugs on disease. Thus, he suggested that 

diseases should be named by the drugs by which they are cured 

(Foster 1901). The impact of Paracelsus on the practice of 

medicine is suggested by Robert Boyle (1627-1691), the father 

of modern chemistry. 

"Chymists have put some men in hope of greater 
cures than formerly could be thought possible. Before 
men were awakened by the many promises and some cures of 
Arnaldus de Villanova and Paracelsus... many physicians 
used to pronouce a disease incurable. They would rather 
discredit the art and detract nature than confess the 
two could do what ordinary physick could not (Pachter 
1951) . " 

The doctrines of Paracelsus persisted and contributed to the 

growth of chemical physiology in the Seventeenth Century. 

Ultimately, these concepts of treating disease with chemicals 

displaced the therapeutics of Hippocrates and Galen and 

became the basis of modern therapeutics. 
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In the Seventeenth Century, Jean Baptiste Verduc wrote 

on the importance of peristalsis and the circular valves of 

the intestine to the separation of the chyle from the 

excrements. He wrote that: 

"The intestines have a particular motion, in a 
manner, like that of the Earth Worm, which is called 
Peristaltick or Progressive... altogether necessary for 
clearing the Chyle from the Excrements, and for 
promoting its passage into the Milky Vessels. The 
Valves, which, at a certain distance from each other are 
plac'd in the Intestines, contribute very much to the 
retarding of the descent of the Chyle...all this brings 
the Chyle nearer to the inside of the Pipe (Verduc 
1704) . " 

Eight e_en t h _ Century 

In 1761, Giovanni Battista Morgangni wrote De sedibus et 

causis morborum -- The seats and causes of disease (Figure 

8). The publication of this text marked the turning point 

from an ancient conception of disease to the modern one. 

Here we see the first combination of clinical history and 

underlying pathology of most of the diseases that we 

recognize today. 
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Figure 8: A contemporary portrait of Giovanni Battista 
Morgagni by the French engraver Jean Renard. 
Reproduced from Sherwin Nuland's Doctor's, the 
Biography. Vantage Books, New York, 1988. 
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Morgagni recognized the importance of peristalsis in 

maintaining health in the gastrointestinal system. He 

realized that digested food travelled down the intestine and 

all waste passed through the colon before exiting the body 

via the anus. However, in several diseased states, Morgagni 

observed what he termed "antiperistalsis" or antegrade motion 

of the intestines. 

"Why, therefore, must we altogether, and at all 
times, reject this cause, and suffer it to have no part 
in the performance? Is it because the peristaltic 
motion is perhaps scarcely to be acknowledged any 
longer? How is it then? Is it possible for the nature 
of animals to be so chang'd, that in our age the 
circumstance scarcely appears any more, which those very 
ancient observers have seen, in consequence of whose 
opinion Cicero has expresly written, "that the 
intestines both constringe and relax themselves 
alternately," either to agitate and prepare the food, or 
to drive the remains of it, after concoction, downwards? 
But left it should happen to any one of thise whom I 
have refer'd to, in the preface to the second 
Adversaria, near the latter end, that this passage of 
Cicero, also, may seem, "to be quoted" by me, "by way of 
severe reproach," I choose rather to neglect what may be 
replied on this occassion, and to come down from the 
ancients, to the more modern observers. Shall I then 
forget the great number of observations...of my own on 
dogs, sheep and rabbits...a motion alternately 
antiperistaltic. (Morgagni 1769) Book III, Letter 
XXXIV, Article 32." 

As with others, Morgagni recognized the ability of 

certain foods or clysters to alter intestinal motility and 

function to help alleviate symptoms of disease. 

"So he also prescribed various remedies to be taken 
internally, and among thise the turpentine-resin, after 
which was to be drunk a water, medicated with vulnerary 
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herbs...in the winter he recommended wine at the table, 
and that of the domestic kind, in which, at the autumnal 
season, when it fermented in the cask, such roots, 
woods, and leaves...had been macerated (Morgagni 1769) 
Book III, Letter XXXII, Article 9." 

One of the major figures in surgery of the Eighteenth 

century was John Hunter (1728-1793). Hunter introduced the 

concept of experimental technique into surgery. His tireless 

work on comparative anatomy involving over five hundred 

dissections led to many discoveries. Hunter was the first to 

combine the disciplines of anatomy, pathology and surgery. 

His discourses on physiology were considered "so far in 

advance of his times that it was not comprehended (Dennis 

1895)." In addition, Hunter's pupils such as John Abernathy 

would continue his philosophy of learning into the Nineteenth 

century. 

Despite the immense amount of anatomic discoveries 

during this century, treatment modalities for various 

gastrointestinal disease continued to be based on centuries 

old Galenic teaching. William Cullen, professor at the 

University of Edinburgh, wrote on the Method of Cure in 

Fevers, "We form three general indications in the cure of 

continued fevers. The first is to moderate the violence of 

re-action. The second is, to remove the causes, or obviate 

the effects of debility. And, the third is to obviate or 

correct the tendency of the fluids to putrefaction (Cullen 

1777) . 



' 
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Nineteenth Century 

John Abernathy, a student of John Hunter and surgeon at 

St. Bartholomew's Hospital in London provided new insight 

into the changes that occurred in the contents of the 

intestines. Abernathy focused his attention to the function 

of the intestines because he believed that he could treat 

specific diseases by altering gastrointestinal function. He 

states: "By correcting the obvious errors in the state of 

the digestive organs, the local disease, which had baffled 

all attempts to cure by local means, has speedily been 

removed (Abernathy 1809)." 

Abernathy devoted an entire treatise to the remote 

connection between the brain and the gut. He wrote that "the 

reciprocal sympathy which exists between the brain and the 

digestive organs, is generally admitted (Abernathy 1809)." 

In addition, he commented "It is the remote sympathies, 

according to (Hunter's) division, of which I am now speaking 

(Abernathy 1809)." He reported that afflictions of the colon 

and rectum might adversely affect the stomach. 

"When digestion is imperfectly performed, the 
functions of the intestinal canal will soon participate 
in the disorders of the stomach... Should the disease 
commence in the large bowel, it disturbs the functions 
of the stomach, and secretion of the liver, and becomes 
augmented in its turn by its sympathy with these parts 
(Abernathy 1809)." 

Thus, Abernathy conceived that humoral actions mediated this 

remote sympathy of the intestines on the stomach and liver. 
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More than one hundred years would pass before further 

experimental studies began to elucidate humoral factors 

(hormones) which might account for these observations. 

Sir Astley Cooper, an eminent surgeon in London in the 

early nineteenth century, demonstrated that clinical practice 

was still Galenic. "A deficiency of secretion from the 

alimentary canal is the cause of a great number of the 

diseases which human beings are subject (Cooper 1839)." 

With Rush's change of the classical definition of 

disease in 1809, (see earlier section of thesis) there 

followed a loss of the classical approach to the treatment of 

disease. 

The later half of the nineteenth century saw a dramatic 

explosion in the field of medicine and, in particular, 

surgery. Gut motility now became an area of active interest. 

In 1857, Pfluger noted that splanchnic nerve stimulation 

inhibited intestinal movements. Intestinal peristalsis was 

further investigated by Ludwig. In 1861, he described the 

swaying motions of the intestines between the intervals of 

peristalsis. He termed these movements Pendelbewegungen. 

Auerbach and Meissner provided additional proof of an 

intrinsic control mechanism of intestinal peristalsis with 

the identification of intrinsic nerve plexuses in 1862. Mall 

demonstrated that the peristaltic wave occured in one 

direction -- proximal to distal. In his experiment of 1896, 

Mall excised loops of small bowel and reversed it in situ. 
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producing intestinal obstruction proximal to the reversed 

section (Garrison 1913). 

Perhaps the most classic experiment of the 19th century 

was performed by Bayliss and Starling in 1899 who confirmed 

the hypothesis that intestinal peristalsis was a reflex 

through the intrinsic ganglia. The conclusion of 19th 

century investigation of intestinal motility was that the 

intestines were an autonomic mechanism which is regulated by, 

but not dependent upon, extrinsic nerves (Garrison 1913). 

Twentieth Century 

Cannon observed peristalsis or "segmentation" of the 

intestines by means of Roentgen rays in dogs and cats in 

1902. Ten years later in 1912, Glenard made cinematographic 

studies of the intestinal movements under normal and purged 

states. These studies were performed using rabbit bowel 

which was isolated and constantly perfused with Locke's 

solution (Garrison 1913) 

In 1902, Hemmeter attempted to elucidate the effects of 

various agents on the regulation of intestinal peristalsis. 

Carbon dioxide, hydrogen sulfide and methane were determined 

to cause an increase in motility. Exposure of bowel to 

oxygen, such as during a surgery, resulted in a paralysis of 

bowel function. Hemmeter further evaluated the effects of 

various drugs, chemicals and toxins. Belladonna and atropine 

administration led to reduced irritability of Auerbach's 
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plexus. Opium and morphine had biphasic effects. Low doses 

caused an increase in contractility while high doses 

inhibited peristalsis. Finally caffeine, muscarin and 

nicotine all resulted in increased motility (Hemmeter 1902). 

Hertz expanded on the regulation of motility in 1909. 

After administration of a bismuth meal, transit time studies 

revealed that the meal could be localized to the cecum after 

an average of four hours. The effect of intestinal motility 

caused by food entering the stomach was due to a reflex 

action. Hertz also tested the effects of certain meals on 

transit time. 

"Much of the activity of intestines depends on the 
chemical stimulation produced by certain constituents of 
the food and of the products of digestion. 
Sugar...stimulates peristalsis in the small intestine 
but not the colon. Organic acids such as formic, 
acetic, butyric, tartaric, citric and lactic acid 
stimulate peristalsis in the small more than the large 
intestine... Carbon dioxide and marsh gas produced by 
fermentation of carbohydrates and sulpheretted hydrogen 
produced by putrefacation of proteins actively stimulate 
peristalsis in all parts of the intestine (Hertz 1909)." 

Hertz also proposed treatment modalities for 

constipation in much the same way as the ancient physicians -- 

by means of altered diet. 

"Treatment of constipation by diet is one of the 
most effective methods of treatment...Mechanical 
stimulation of intestinal movements depends on direct 
irritant action of cellulose and distention produced by 
the food. The chief chemical stimulants of intestinal 
activity are the sugars, organic acids and their salts, 
which are present in vegetable food (Hertz 1909)." 

Hertz divided his treatment modalities into four 

pharmacotherapy groups. In the first group he described the 
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use of alkaloids. Strychnine caused an increase reflex 

excitability of the nervous system as well as increasing 

muscular tone. Atropine was classified in his second group. 

Administration of this drug led to relief of "spastic 

constipation." The third group of drugs included opium, 

morphine and codeine. This group relieved constipation due 

to pain leading to biliary and renal colic. Finally the 

fourth group of drugs included pilocarpine and physostigmine. 

According to Hertz, this group caused direct stimulation of 

the motor and secretory nerve endings of the intestines 

(Hertz 1909). 

Gastrointestinal function is considered fundamentally 

important for continued health. Abnormalities in 

gastrointestinal function led to disease. Physicians would 

then use the gastrointestinal tract to rid the patient of any 

morbidic matters by purging them from the body. Classical 

concepts continued as the basis of medical therapeutics well 

into the 20th century. As a point of speculation, many of 

the prevalent diseases of the gastrointestinal system such as 

diverticulitis, irritable bowel syndrome and colon cancer may 

be produced by alterations in motility. Therapy might better 

benefit from a more complete understanding of peristalsis and 

the subsequent development of pharmacotherapeutic probes. 
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MOTILITY 

Review of Current Concepts 

Galenic teachings dictated the concepts of disease and 

intestinal function for hundreds of years. In the eighteenth 

century John Hunter's experiments led to new insight into the 

mechanism of intestinal motility, and since that time more 

and more precise knowledge has accrued on regulation of 

motility. Disorders of intestinal motility continue to be a 

major concern to mankind during the twentieth century. The 

irritable bowel syndrome, diverticular disease and perhaps 

even the genesis of colon cancer can be traced to alterations 

of intestinal peristalsis. 

Fgngtipn 

In 1899, the first major insight into the mechanism and 

regulation of intestinal motility was proposed by Bayliss and 

Starling: "The peristaltic contractions are true coordinated 

reflexes, started by mechanical stimulation of the intestine, 

and carried out by the local nervous mechanism...They travel 

only in one direction, from above downwards, and are 

abolished on paralysing the local nervous apparatus (Bayliss 

1899) . 



-- 
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The main function of the small intestine is digestion 

and absorption of nutrients. The intestines accomplish this 

role, in part, by the process of motility in which food 

products mix with the digestive enzymes and the contact of 

chyme with the absorptive cells over a sufficient length of 

bowel, and finally to propel remnants into the colon. 

Motility can be broken down into two components, 

peristalsis and segmentation. Peristalsis consists of waves 

of one or more contractions of circular muscle that is 

propagated along the bowel. This action has been described 

as a moving ring of contraction. The primary role of 

peristalsis is propulsion of food boluses down the intestine. 

Segmentation consists of two or more standing contractions, 

separated by a short distance. The purpose of these standing 

contractions is to form an occluded segment thereby allowing 

maximal mixing of luminal contents and absorption of digested 

nutrients to the mucosal lumen (Wingate 1983). 

Smooth Muscle 

The inner muscle layer of the small bowel is the 

muscularis mucosae, a thin layer of smooth muscle underlying 

the mucosa itself. The muscularis mucosae defines the 

boundary between the mucosa and submucosa. This layer is not 

believed to play a significant role in the gross movements of 

the small intestines but rather a role in mixing chyme 

adjacent to the mucosal surface and possibly in modulating 

the permeability of the mucosal layer. 
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Circular smooth muscle invests the entire small 

intestine. The circular muscle of the small bowel is thicker 

than the longitudinal muscle layer and is the major source of 

contractile activity. Contraction of the circular muscle 

layer will constrict the lumen. Muscle cells in this layer 

may play a role in coordinating propagation of slow waves 

down the intestine with the longitudinal layer (Weisbrodt 

1987, Bortoff 1983). 

The outer coat of muscle is the longitudinal muscle 

layer. Contraction of this muscle mass will shorten the 

intestine (Wingate 1983). Although thinner than the circular 

layer, it plays a major role in antegrade propagation of 

intestinal slow waves. The longitudinal arrangement of the 

smooth muscles facilitates rapid electrical conduction, 

compared to the perpendicular arrangement of the muscle cells 

in the circular layer. 

The cell membranes of small intestinal smooth muscle 

exhibit a rhythmic depolarization (Bortoff 1969, Christensen 

1971). This effect was first described by Alvarez and 

Mahoney in 1922 (Alvarez 1922) and has been referred to as 

slow wave, basic electrical rhythm, or electrical control 

activity (Cohen 1979). This rate of rhythmic depolarization 

decreases distally down the small intestine (Christensen 

1964, Christensen 1966). This is due to the inherent 

pacemaker of the duodenum in initiating small intestinal 

motility (Herman-Taylor 1971). 
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Smooth muscle cells undergo cyclical depolarizations. 

Contraction only occurs when action potentials are 

superimposed on the depolarization plateau. The occurrence 

of action potentials is signalled by the appearance of spike 

bursts superimposed on the slow wave. The timing of these 

spike bursts is dictated by the slow wave and may be 

considered to be "phase-locked" events (Wingate 1983). This 

spike response is calcium dependent. The primary role of 

these slow-wave associated spike potentials is the mixing of 

intestinal chyme by intestinal segmentation (Cohen 1979). 

Contractions of the wall of the small intestine are a 

consequence of changes in lengths of the smooth muscle cells 

that make up the tunica muscularis. The temporal and spatial 

patterns of intestinal contractions depend on factors that 

influence these smooth muscle cells. These factors include 

the intrinsic properties of the smooth muscle cells 

themselves, the activities of nerves that constitute the 

intrinsic nerve plexuses such as the myenteric plexus, the 

influence of the extrinsic sympathetic and parasympathetic 

nerves that are distributed to the muscle and intrinsic 

nerves, and the influence of the various chemicals that reach 

the nerves and muscles of the gut by endocrine and paracrine 

pathways (Cohen 1979). 
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Intrinsic Nervous Control 

The major control system of the small intestine appears 

to reside within the intrinsic nervous system. Numerous 

neurons, nerve endings, and receptors lie in the intestinal 

wall. These nerve elements tend to be concentrated in nerve 

plexuses, the most prominent of which is the myenteric plexus 

of Auerbach between the longitudinal and the circular muscle 

layers. The neurons in the plexus receive input from several 

sources, including receptors in the mucosa and in the muscle 

wall, from other neurons in the plexus, and from extrinsic 

nerves. They form an important neural control center acting 

in effect as a "little brain" of the gut (Vantrappen 1975). 

The regulatory capacity for the myenteric plexus has 

been difficult to evaluate. Research has focused on the 

inhibition and activation of these nerves in various 

intestinal preparations. Various neuronal agonists and 

antagonists have been utilized in hoping to elucidate the 

regulatory mechanisms of neural control. When an isolated 

segment of small intestine from a cat is placed in an organ 

bath, intermittent contraction is evident. When 

tetrodotoxin, a potent neuronal antagonist, is added to the 

bath, the segment contracts at the rate of the frequency of 

the slow wave (Biber 1973, Bortoff 1975). Recordings from 

neurons within the myenteric plexus showed that many of these 

neurons were active during those periods when the bowel was 

not contracting and that tetrodotoxin blocked activity of 
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those neurons (Ohkawa 1972). Thus, it appears that there are 

tonic inhibitory nerves in the plexus that actively suppress 

contractions of the circular smooth muscle. Additional 

studies supporting this hypothesis come from investigations 

of aganglionic segments of bowel. Wood demonstrated that 

these aganglionic segments lack a normal myenteric plexuses 

and are tonically contracted (Wood 1972). Electrical or 

chemical stimulation of the nerves within the myenteric 

plexus also affects contractions of the muscle (Hidaka 1969, 

Wood 1975, Wood 1979, Weisbrodt 1987). 

Bennett postulated that from a neuropharmacologic 

viewpoint four types of efferent nerves are involved in the 

control of intestinal motility: cholinergic excitatory; 

adrenergic inhibitory; nonadrenergic, noncholinergic 

inhibitory; and probably, noncholinergic excitatory nerves 

(Bennett 1975) . 

Peristalsis consists of two simultaneous events: 

ascending contraction, proximal to a food bolus, and 

secondly, descending inhibition with smooth muscle relaxation 

distal to the bolus. These pressure zones allow food to be 

pushed down the lumen (Makhlouf 1989, 1990). 

Ascending contraction: The present model for the 

regulation of peristalsis has been proposed by Makhlouf 

(Figure 9). Interneurons projecting cephalad in the 

myenteric plexus coordinate a wave of contraction proximal to 
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a bolus. This is referred to as ascending contraction. 

Stretch receptors in the intestinal wall synapse with 

Figure 9: Mechanism of intestinal peristalsis. Prokinetic 
agents (here shown being released from a neuron) 
cause smooth muscle contraction. This in turn 
leads to generation of a high pressure zone 
proximal to a food bolus. Stretch receptors, 
sensing the bolus within the lumen, cause release 
of inhibitory agents such as vasoactive intestinal 
peptide distally. This release leads to smooth 
muscle relaxation and generation of a low pressure 
zone distal to the food bolus. 

interneurons in the myenteric plexus. These project 

proximally and synapse with prokinetic cholinergic neurons, 

orad to the bolus. The cholinergic neurons cause contraction 
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in the circular muscle layer which propels the bolus 

distally. 

Descending Inhibition: Synchronous with 

ascending contraction, descending inhibition is initiated by 

sensory receptors in the intestinal wall. These convey 

stretch from a food bolus in the lumen, to the network of 

ganglia in the myenteric plexus. The impulse is transmitted 

down a relay of three inhibitory neurons, whose transmitters 

are somatostatin, opioid and vasoactive intestinal peptide, 

in sequence. 

Stimulation of somatostatin neurons causes inhibition of 

opioid neurons. The opioid neurons exert a continuous 

inhibitory restraint on VIP neurons. Release of somatostatin 

therefore inhibits release of the opioid mediator and the VIP 

neurons are no longer inhibited. The final inhibitory VIP 

neurons project into the circular muscle layer. Release of 

VIP into the muscle coat causes smooth muscle relaxation, and 

descending inhibition results. Intestinal muscle distal to 

the bolus then relaxes, enabling it to be propelled further 

down the intestine (Makhlouf 1990). This system produces 

synchronous contraction orad to the bolus, and relaxation 

distal to the bolus, enabling it to be propelled down the 

lumen. 

Research has focused on the "transition zone" between 

the high and low pressure zones which are well characterized. 

Researchers suggest there must be some counter-regulatory 
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mechanism between the high pressure zone created by 

prokinetic agents and the low-pressure zone due to vasoactive 

intestinal peptide release (Figure 10). 

Figure 10: Research has focused on counter-regulatory agents 
involved in intestinal peristalsis. Between the 
high and low pressure zones generated by prokinetic 
and inhibitory agents, there must exist some 
mechanism which reverses the low pressure zone and 
allow generation of a high pressure zone by 
prokinetic agents. 
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Extrinsic Nervous Control 

The small intestine receives an extrinsic innervation 

from both divisions of the autonomic nervous system, 

parasympathetic and sympathetic. The extrinsic innervation 

to the small bowel is provided by the vagal and splanchnic 

nerves (Gonella 1978, Gershon 1981). The exact role played 

by these extrinsic nerves remains incompletely understood. 

Small intestinal motor activity is essentially unaffected by 

either vagotomy or splanchnicectomy (Vantrappen 1985) . 

Parasympathetic input to the small bowel arises from the 

vagus which innervates the bowel to the mid-transverse colon. 

Pre- and post-synaptic neurons synapse in the vagal nucleus 

in the midbrain, and the left and right vagi pass down the 

esophagus as anterior and posterior vagi respectively. 

Vagal input to the small bowel comes predominantly from 

the posterior vagus, which passes through the celiac and 

superior mesenteric plexi, without synapsing. The vagal 

fibers, like the sympathetic counterparts, reach the small 

bowel via the arterial tree (Longo 1989). The vagus is 

connected to the muscle through the myenteric plexus which 

then interfaces with intestinal smooth muscle cells (Wingate 

1983) . 

Sympathetic (thoracolumbar) input arises from the 

intermedio-lateral cell column in the spinal cord and pre- 

synaptic fibers pass through the sympathetic chain without 
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synapsing. The fibers pass to the celiac and superior 

mesenteric ganglia, where they synapse with postganglionic 

fibers. The post-synaptic fibers travel together with vagal 

fibers via the arterial tree to the small bowel. Sympathetic 

fibers convey not only efferent signals, but also noxious 

stimuli from the gut to the central nervous system. 

Early studies on the effects of nerve stimulation and 

transection on intestinal contractions demonstrated, in 

general, that activation of the parasympathetic nerves 

increased contractions and activation of the sympathetic 

nerves decreased contractions (Kewenter 1965, Kewenter 1970, 

Kosterlitz 1968). Researchers have also demonstrated that 

certain reflexes depended on integrity of extrinsic 

innervation (Gernandt 1946, Gregory 1947, Johansson 1967). 

The primary reflex studied was the intestinal inhibitory 

reflex, which is characterized by inhibition of intestinal 

contractions at all adjacent loci during marked distension of 

an area of bowel. This reflex appeared to depend on 

integrity of the sympathetic nerves. Some studies implicated 

participation of the brain and spinal cord, since sectioning 

of the splanchnic nerves abolished the reflex. Other 

studies, however, suggested that the reflex involved only the 

prevertebral ganglia, since the reflex persisted after 

splanchnic section but not after ganglionectomy (Weisbrodt 

1987) . 
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Several studies have been designed to determine the 

neural pathways between the intestine and the prevertebral 

ganglia (Kreulen 1979A, Szurszewski 1976). Both afferent and 

efferent fibers have been demonstrated 

electrophysiologically. Also, an intestinointestineal reflex 

has been observed in a preparation in vitro that contained 

only the colon, the prevertebral ganglia, and interconnecting 

nerves (Kreulen 1979B). Thus reflex arcs contained solely 

within the intrinsic and prevertebral ganglia do exist and 

they are functional. These studies were performed on 

preparations of colon. Whether or not they exist for the 

small intestine remains to be determined (Weisbrodt 1987). 

Kosterlitz delineated the spinal and supraspinal 

influences on the intestine (Kosterlitz 1968). Although 

there have been studies which indicate that certain reflexes 

and patterns of motility can be expressed in preparations 

lacking central nervous connections, one should not conclude 

that the central nervous system is not needed or does not 

influence patterns of motility. There are areas within the 

brain that when stimulated cause either an increase or a 

decrease in intestinal contractions (Roman 1987). Thus 

higher centers can alter activity of other neural and 

muscular tissue. Also, endogenous peptides, autocoids and 

pharmacologic agents injected into the cerebral ventricles 

alter contractions and intestinal transit (Bueno 1985). Such 

activation of structures within the brain is thought to 
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elicit a response by way of the autonomic nervous system. 

However, there are data to indicate that in some instances a 

humoral substance may be involved (Bardon 1984) . 

The site of action of the extrinsic nerves could be 

either on the smooth muscle cells themselves or on the nerves 

of the myenteric plexus (Gabella 1972, Youmans 1972). 

Structural and physiologic studies indicate that extrinsic 

nerves end at the level of the myenteric plexus. This is 

true for both sympathetic and parasympathetic nerves. A few 

adrenergic nerve terminals can be found within the muscle 

layers themselves, but their function is not clear. 

Therefore, extrinsic nerves probably function to regulate and 

modulate activity of the intrinsic nerves, which in turn 

affect the intrinsic activity of the intestinal smooth 

muscle. 

Cholinergic neurons 

Acetylcholine is the transmitter of many, if not all, of 

the preganglionic vagal and sacral fibers that reach the 

intestines. Researchers have demonstrated that cholinergic 

preganglionics innervate both excitatory and inhibitory 

neurons (Kosterlitz 1964). Kosterlitz also demonstrated that 

intrinsic excitatory ganglion neurons are also cholinergic 

(Kosterlitz 1968). Segments of guinea pig ileum maintained 

in vitro spontaneously release large amounts of acetylcholine 

(Chujyo 1953). This spontaneous release reflects the 

spontaneous activity of the enteric nervous system. 
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Researchers reported that there is a larger release of 

acetylcholine when the gut is stimulated electrically 

(Gershon 1981). This extra store of acetylcholine probably 

arising from neurons within the enteric nervous system (Paton 

1968) . 

HORMONAL CONTROL 

CHOLECYSTOKININ 

In 1928, Ivy and Oldberg described the release of a 

mediator from small bowel mucosa by infusing fat into the 

duodenum. The mediator caused contraction of the gallbladder 

when reinfused into the animal and was thus named 

cholecystokinin (Thompson 1984). Cholecystokinin (CCK) was 

isolated from hog intestine as a 33-amino-acid peptide. It 

possessed, in addition to gallbladder-contracting activity, 

pancreatic-enzyme-stimulating activity (Mutt 1968). 

In the intestine, CCK is found in open-type endocrine 

cells, most abundant in the duodenum and proximal jejunum. 

It has also been isolated in neurones in the myenteric and 

submucosal plexi of both the small and large intestine 

(Gutierrez 1974, Stewart 1977, Amer 1972). 

The chemical structure of CCK is complicated by the 

natural occurence of multiple molecular forms. In addition 

to the 33-amino acid form (CCK-33), intestinal extracts 

contain roughly equivalent amounts of a larger form composed 

of 39 amino acids (CCK-39) and an even larger form containing 
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58 amino acids (CCK-58) (Eysselein 1982, Mutt 1968). The 

principle smaller form is the carboxy-terminal octapeptide 

(CCK-8) that has been isolated from sheep and human brain 

(Dockray 1977, Reeve 1984, Walsh 1987). 

CCK and gastrin have several common features. The 

carboxyl-terminal pentapeptide amide sequence, identical in 

the two peptides, includes the biologically active region for 

both. The six amino acid extensions that immediately follow 

the pentapeptide sequence are the same in the human CCK and 

gastrin precursors (Gly-Arg-Arg-Ser-Ala-Glu). Carboxyl- 

terminal amidation of CCK and gastrin involves the action of 

an enzyme that converts glycine-extended phenylalanine to 

carboxyl-amidated phenylalanine (Bradbury 1982, Eipper 1985). 

The principal structural difference related to biological 

activity between gastrin and CCK is the invariant presence of 

a tyrosine O-sulfate group in the seventh position from the C- 

terminus in CCK, while the tyrosine residue located in the 

sixth position from the C-terminus in gastrin may be either 

sulfated or non-sulfated (Walsh 1987). 

Bertaccini and Levant have both reported that CCK 

analogs markedly decrease transit time of contrast material 

through the human intestine (Bertaccini 1971, Levant 1974) . 

CCK causes disruption of the fasting pattern of myolectric 

activity in canine intestine, but the stimulated spike 

potentials are not identical to those that occur after a meal 

(Mukhopadhyay 1977). CCK-8 produced contraction of circular 
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muscle and relaxation of longitudinal muscle of dog small 

intestine that were antagonized by atropine, tetrodotoxin, 

and depolarizing concentrations of nicotine, suggesting that 

CCK-8 interacts with a nonnicotinic receptor on 

postganglionic cholinergic neural elements in intestine 

(Stewart 1977, Walsh 1987). 

MOTILIN 

Motilin, purified from hog upper intestine, was 

characterized by its ability to stimulate gastric motor 

activity in antral and fundic pouches in dogs and by 

stimulation of gastric pepsin but not acid secretion (Brown 

1971). 

Motilin is located in the endocrine-paracrine cells of 

the duodenal and jejunal mucosae (Polak 1976, Pearse 1976, 

Smith 1981). It is a linear peptide containing 22 amino 

acids and has a molecular weight of 2,700. Canine and 

porcine motilin differ in amino acid residues at positions 7, 

8, 12, and 14, accounting for differences in immunoreactivity 

found with some antibodies (Poitras 1983, Reeve 1985). 

Researchers have reported that synthetic motilin, 13-N-Leu, 

and natural porcine motilin caused contractions of isolated 

segments of rabbit intestine (Shimizu 1976, Wunsch 1976). In 

addition, these contractions were not associated with 

excitation of cholinergic receptors nor with the release of 

acetylcholine from nerves. 
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Motilin is a hormone of the fasting state unlike most 

gut hormones which are released postprandially. Several 

physiological phenomena can induce rises in plasma motilin. 

Mitznegg demonstrated that duodenal acidification increased 

motilin levels 90% over baseline. He additionally discovered 

that fat ingestion increased motilin levels 65% whereas 

protein and glucose ingestion failed to change observed 

levels (Mitznegg 1976). 

Motilin has significant effects on gatrointestinal 

smooth muscle. Intravenous infusion of motilin in conscious 

dogs during the interdigestive period initiates myoelectric 

complexes in the antroduodenal region that are propagated 

distally in the small intestine and appear identical to the 

myoelectric complexes that appear spontaneously at 80- to 90- 

minute intervals during fasting (Wingate 1975). However, it 

has little effects on the postprandial pattern of intestinal 

activity (Itoh 1976). 

Motilin caused contraction of gastric and intestinal 

muscle strips from humans and rabbits in vitro, and this 

stimulation appeared to be direct rather than by neural 

mediation (Strunz 1975). The stimulation was abolished by 

the calcium antagonist verapamil. Similar results have been 

reported with synthetic motilin (Strunz 1975, Walsh 1987). 

GASTRIN 

Gastrin was the first gastrointestinal peptide for which 

the structure was determined. Subsequently, several 
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molecular forms have been identified. Noyes and Yoo 

identified the gene that encodes gastrin by the use of mRNA 

isolated from porcine antrum (Noyes 1979, Yoo 1982). Wiborg 

isolated the human gene from a human genomic DNA library 

(Wiborg 1984). 

Earners localized various forms of gastrin in the 

gastrointestinal tract. He discovered that the most abundant 

form of gastrin found in the antrum is the heptadecapeptide C- 

17. The 34-amino acid peptide, G-34, was found to be more 

abundant than G-17 in the human duodenum (Lamers 1982). 

The effects of gastrin on smooth muscle in vitro include 

stimulation of muscle contractions and electrical activity. 

Morgan reported that pentagastrin is about as potent as G-17 

and G-34 on canine antral muscle (Morgan 1978). In many 

systems, gastrin appears to act directly on smooth muscle 

cells to elicit contraction. In dog antrum, pentagastrin 

stimulates longitudinal muscle partially by release of 

acetylcholine from nerves, whereas it stimulates circular 

muscle directly (Szurzewski 1975). In some preparations, 

there is evidence that it exerts its effect entirely by 

release of acetylcholine or substance P from nervous 

elements. This is especially evident in guinea pig ileum 

where contractile responses to both gastrin and CCK peptides 

are abolished by tetrodotoxin and reduced by atropine and by 

substance P desensitization (Hutchinson 1981, Vizi 1974, 

Walsh 1987) . 
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ERYTHRQMYCIN 

Erythromycin, a macrolide antibiotic, stimulates 

motility throughout the gastrointestinal tract. It promotes 

gastric emptying after post-vagotomy gastroparesis (Mozwecz 

1990) and stimulates antral and duodenal peristalsis 

(DiLorenzo 1990). In the small bowel, it stimulates both 

anterograde and retrograde propulsion (Otterson 1990, Inatomi 

1989), accounting for the diarrhea and abdominal cramps often 

seen as a consequence of erythromycin ingestion. In the 

large bowel, the drug may have a therapeutic role in colonic 

pseudoobstruction. Intravenous infusions of erythromycin at 

doses far below those needed for its antimicrobial activity 

induce a pattern of propagative gastrointestinal motility in 

the fasting state strongly resembling the interdigestive 

migrating motor complex (Itoh 1984 and 1985). 

The prokinetic actions of erythromycin in the small 

bowel mimic the actions of endogenous motilin administration, 

since motility is stimulated only in the interdigestive phase 

(Inatomi 1989, Itoh 1984, Strunz 1975, Itoh 1985, Adachi 

1981, Wingate 1976, Lang 1986, Itoh 1976, Depoortere 1990). 

In addition, Peeters demonstrated that erythromycin binds in 

vitro to motilin receptors, located on the smooth muscle cell 

surface (Peeters 1989). These receptors are distinct from 

the traditional cholinergic receptors, although activation of 

each results in smooth muscle contraction. 
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Arms trong demonstrated that erythromycin-stimulated 

ileal motor activity was not inhibited by neuronal blockade 

with tetrodotoxin, muscarinic blockade with atropine, or 

opiate antagonism with naloxone (Armstrong 1992). These 

results indicated that erythromycin acted by the direct 

stimulation of smooth muscle motor activity. Further studies 

indicated that the prokinetic effect of erythromycin was 

calcium channel-dependent since the nonspecific calcium 

channel blocker verapamil reversibly inhibited this effect. 

Finally, Armstrong demonstrated that the specific calcium 

channel blockade with dihydropyridine also reversibly 

inhibited erythromycin-stimulated ileal motor activity. 

These results suggested that erythromycin stimulated ileal 

motor activity by a direct effect on smooth muscle cells 

which was dependent upon both dihydropyridine-sensitive 

calcium channels (Armstrong 1992). 

Armstrong additionally showed that erythromycin 

stimulated a concentration-dependent increase in small bowel 

motility which was not inhibited by atropine and the opiate 

antagonist naloxone. Furthermore, pre-treatment with 

tetrodotoxin had no effect on the erythromycin-induced 

activity. The prokinetic actions of erythromycin were 

therefore not mediated via the classical cholinergic 

receptor, nor via inhibition of the inhibitory opiate 

receptors. The lack of any inhibition with tetrodotoxin 

indicated that the receptor for erythromycin was located on 
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the smooth muscle cell surface, rather than within a neural 

pathway (Armstrong 1992). These findings were consistent 

with previous studies that indicated that target receptor of 

erythromycin was in fact the smooth muscle motilin receptor 

(Peeters 1989) . 

Contraction of smooth muscle involves calcium entry into 

the cell and Ca2+-calmodulin complex formation. This in turn 

activates myosin light chain kinase and subsequent cross¬ 

bridge formation (Yoshino 1989). Entry of calcium into the 

cell is regulated by receptor-linked calcium channels. 

Currently, three subtypes of calcium channels are described, 

"t," "1," and "n," although the classification is still 

evolving (Nowycky 1985, Tsien 1987, Bean 1989). 

VASOACTIVE INTESTINAL PEPTIDE 

In 1970, Said and Mutt isolated VIP from porcine gut 

mucosa. When this was re-injected intravenously, arteriolar 

and venous dilatation resulted. They therefore named the 

mediator vasoactive intestinal peptide (Buchanan 1979, 

Thompson 1984) . 

Vasoactive intestinal peptide is not present in 

mammalian endocrine cells of the gut. It is found in 

neurones of the enteric nervous system, as well as the 

central nervous system, urological tract, cardiovascular 

system and lungs. In the gut, VIP is found in all the 
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component layers but is most abundant in the neuronal plexi 

(Korman 1989) . 

Vasoactive intestinal peptide release is seen after 

ingestion of a meal, but the specific stimulus is not known. 

Vagal stimulation releases VIP, and this can be reproduced by 

acetylcholine administration (Chijiiwa 1986). The ganglion 

blocker hexamethonium inhibits this, suggesting that 

preganglionic cholinergic nerves mediate VIP release. 

In the gut, the actions of VIP have been fairly well 

characterized. It is a potent secretagogue, stimulating 

chloride secretion and inhibiting sodium absorption. It 

appears to act via adenylate cyclase mediated increase in 

intracellular cAMP (Grider 1988). Its action on gut motility 

involve relaxation of circular smooth muscle, again by 

increasing intracellular levels of cAMP. VIP plays an 

important role in descending inhibition of intestinal 

peristalsis. Descending inhibition distal to a food bolus 

allows anterograde propulsion down the intestine (Makhlouf 

1989, 1990). 

DISORDERS OF INTESTINAL MOTILITY 

IRRITABLE BOWEL SYNDROME 

The irritable bowel syndrome (IBS) is one the leading 

diseases of gastrointestinal function in the Western world. 

The irritable bowel syndrome refers to a well-characterized 

complex arising from interactions among the digestive tract, 
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the psyche, and luminal factors (Camilleri 1992). Studies 

have demonstrated that 15%-20% of the population suffer from 

IBS and that most do not seek medical attention for their 

symptoms (Drossman 1992). 

An international working panel has provided a definition 

for this troubling disorder: "The irritable bowel syndrome 

is a functional gastrointestinal disorder attributed to the 

intestines and associated with symptoms of pain and disturbed 

defecation and/or symptoms of bloatedness and distension 

(Drossman 1990). 

First recognized in 1849, Cumming commented on how 

constipation and diarrhea could occur in the same patient 

(Cumming 1849). Indeed, for nearly 150 years, the complete 

etiology and treatment of patients with the irritable bowel 

syndrome still eludes physicians. 

What is known about patients suffering from IBS is that 

pain symptoms are produced by motor hyperreactivity. Alvarez 

noted abnormal peristalsis in a patient with the irritable 

bowel syndrome (Alvarez 1943). Horowitz and Farrar were the 

first to observe clustered contractions during periods of 

abdominal colic (Horowitz 1962). Cann demonstrated that 

patients with IBS and diarrhea had accelerated whole-gut 

transit times and, in some patients, fast orocecal transit 

was noted (Cann 1983). Vassallo showed accelerated transit 

in the ascending and transverse colon in patients with 

diarrhea-predominating IBS (Vassallo 1992). 
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Treatment modalities for IBS have been as varied as the 

symptoms themselves. Physicians have tried a variety of 

pharmacotherapy, hypnosis, and behavior modification -- all 

with limited success. Several drugs such as 

anticholinergics, opioids, calcium channel blockers, 

cholecystokinin antagonists, and selective serotonin 

antagonists have failed to provide symptomatic relief of 

patient symptoms. 
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NEUROENDOCRINE REGULATION OF GUT 

MOTILITY 

Neuropeptide Y and Peptide YY 

John Abernathy was the first to describe the neuro-gut 

axis (Abernathy 1809). Bayliss and Starling founded the 

discipline of endocrinology with the publication of "The 

Mechanisms of Pancreatic Secretion" in 1902. They described 

the substance "secretin" and defined the term "hormone." 

Since that time, a plethora of gut peptides have been 

identified. In particular, vasoactive intestinal peptide, 

peptide YY and neuropeptide Y appear to play a prominent role 

in gastrointestinal motility. 

ISOLATION AND CHARACTERIZATION 

Peptide YY (PYY) and neuropeptide Y (NPY) are members of 

a family of peptides which are structurally related to 

pancreatic polypeptide. Tatemoto first isolated PYY from 

porcine small intestine in 1980 (Tatemoto 1980). A 

characteristic of many biologically active peptides is the C- 

terminal amide structure. By employing a technique which 

isolated peptides with C-terminal amides, Tatemoto isolated a 

36-amino acid peptide and discovered that it contained an N- 
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terminal tyrosine as well as a C-terminal amide. The peptide 

was called peptide YY (PYY) due to these terminal tyrosine 

residues (tyrosine = Y). It was this same technique that 

enabled Tatemoto in 1982 to isolate neuropeptide Y (NPY) from 

porcine brain (Tatemoto 1982). 

The sequences of PYY and NPY were determined to be quite 

similar not only to each other but also to pancreatic 

polypeptide (PP) which Chance had isolated (Chance 1974) and 

sequenced. Thus, PYY, NPY and PP constituted a new family of 

peptides. Their sequences are depicted in Figure 11. PYY 

and NPY share nearly 70% homology while PYY and PP share 50% 

homology. 

PYY: YPAKPEAPGEDASPEELSRYYASLRHYLNLVTRQRY 

NPY: YPSKPDNPGEDAPAEDLARYYSALRHYINLITRQRY 

PP: APLEPVYPGDDATPEQMAQYAAELRRYINMLTRPRY 

Figure 11: The amino acid sequence of PYY, NPY and PP. 
Peptide YY shares nearly 70% homology with NPY and 
50% homology with PP. 
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DISTRIBUTION OF PYY 

Although PYY and NPY share structural homology, the two 

peptides exhibit distinct anatomical distributions. 

Immunohistochemistry provided the first clues to the 

localization of PYY containing cells. Utilizing tissue from 

five species, Lundberg demonstrated that PYY-like 

immunoreactivity occured almost exclusively in endocrine 

cells of the gastrointestinal mucosa. PYY immunoreactivity 

was also noted to be 100-fold higher in the colon than the 

duodenum in the rat (Lundburg 1982A). Further work revealed 

that PYY immunoreactivity occured in a variety of species 

including toad and grass lizard (El-Salhy 1982A); domestic 

fowl (El-Salhy 1982B); guinea pig and cat (El-Salhy 1982A); 

rat (Bottcher 1984); dog (Taylor 1985); rhesus monkey (El- 

Salhy 1983A); and man (El-Salhy 1983B). PYY-containing cells 

were shown to be present in the gastrointestinal tract from 

the stomach down to the rectum. Bottcher described PYY 

immunoreactivity in the intestine and more specifically in 

the basal portion of the crypts of Lieberkuhn (Bottcher 

1984) . 

Researchers next focused on the morphology of the PYY- 

producing cell. Bottcher, utilizing protein A-gold 

labelling, described PYY-containing secretory granules in a 

population of L-type endocrine cells in feline colon and 

human rectum (Bottcher 1986) . El-Salhy described these cells 
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as being of the open type, extending from the basal lamina to 

the gut lumen (El-Salhy 1983A). He noted that at the 

ultrastructural level, PYY-immunoreactivity was localized in 

a basal granulated cell containing round or slightly oval 

electron-dense granules with an average diameter of 190 nm 

(range 110-390). Studies have shown that PYY-immunoreactive 

cells emit cytoplasmic processes to the neighboring goblet 

cells (El-Salhy 1983B). This fact suggests the possibility 

of a paracrine function for these cells (Kishimoto 1985). 

PYY has been shown to co-localize with enteroglucagon 

within the L-cells of the colon (Bottcher 1984 and 1986, Ali- 

Rachedi 1984). Ali-Rachedi demonstrated co-localization of 

PYY and enteroglucagon immunoreactivity in both rat and human 

tissue (Ali-Rachedi 1984). El-Sahly reported that PYY and 

enteroglucagon were co-stored in only some cells in the 

monkey (El-Salhy 1983A) and did not co-localize in human (El- 

Salhy 1983B). Bottcher demonstarted coexistence of PYY and 

enteroglucagon in sequential staining of tissue from rat, pig 

and man (Bottcher 1984). Since the two peptides were 

released from the same cell, it was hypothesized that perhaps 

PYY was contained in the proglucagon molecule. This proved 

not to be true and it was suggested that these endocrine 

cells are capable of expressing two separate gene products 

(Bottcher 1984 and 1986). 

Nilsson demonstrated that L-cells were the sole source 

of PYY and enteroglucagon in the rabbit colon and that L- 
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cells contain different populations of secretory granules. 

He proposed that the existence of different secretory 

granules in L-cells may explain the selective release of PYY 

and enteroglucagon observed in the rabbit colon (Nilsson 

1991) . 

Ali-Rachedi reported that radioimmunoassay of human 

fetal pancreatic extracts revealed the presence of PYY 

immunoreactivity. PYY concentrations declined with age in 

contrast to the amount of glucagon which remained 

statistically constant throughout the same fetal period (Ali- 

Rachedi 1984). These fetal pancreatic A cells, although 

morphologically primitive, exhibit similar characteristics as 

L-cells. Changes in cellular gene expression could explain 

the declining concentrations of PYY in these cells but more 

importantly it suggests that one cell type is capable of 

simultaneously translating two gene products (PYY and 

enteroglucagon). 

Adrian mapped the distribution of PYY in the 

gastrointestinal tract of the pig utilizing radioimmunoassay 

(Adrian 1987C). PYY content was noted to be low in the 

foregut and higher in the distal colon. Peptide 

concentrations were 3.4 pmol/g in the antrum; 10.9 pmol/g in 

the mid-duodenum; and significantly higher in the ileum, 

100.8 pmol/g. Similarly, PYY concentrations increased from 

the proximal to distal colon (pmol/g); cecum 14.0; ascending 
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colon 24.8; transverse colon 135.1; descending colon 270.2; 

sigmoid 435.0; rectum 406.5. 

PYY distribution follows a similar pattern in other 

mammalian species. Results have shown that PYY 

concentrations are highest in the ileum, colon and rectum. 

Peak concentrations have been reported in the distal colon 

while trace amounts have been measured in the stomach, 

duodenum and jejunum (Adrian 1987b, Taylor 1985, Adrian 

1982). Miyachi identified the distribution of PYY-like 

immunoreactivity in rat tissue utilizing specific RIA 

(Miyachi 1986). The highest concentration of PYY was in the 

colon (298.7-449.5 pmol/g). These levels were approximately 

100-200 times more than that measured in the duodenum. The 

concentration of PYY in the mucosa was higher than that in 

the muscular layer in the small bowel, cecum, colon and 

rectum. Taylor measured higher levels of PYY in his study 

with dogs (Taylor 1985). The highest concentration of PYY was 

present in the ileum and colon, 1610 and 1607 ng/g 

respectively, while lower levels were measured in the 

proximal small bowel. 

Adrian addressed the question of PYY distribution in 

human tissues (Adrian 1985B). In tissue taken from surgical 

specimens, PYY was found throughout the small intestines; 

duodenum 6 pmol/g; jejunum 5.0 pmol/g; but highest in the 

ileum, 84 pmol/g. Higher concentrations were measured in the 
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colon; ascending 82 pmol/g, sigmoid 196 pmol/g. PYY was 

found exclusively in the mucosal epithelium (Figure 12). 

Figure 12: Distribution of peptide YY (PYY) in the human 
gastrointestinal tract (picomoles per gram wet 
weight of tissue). From Adrian TE. Gastroenterol 
1985; 89:1070-1077. 
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DTSTRIBUTION OF NPY 

The localization of NPY has been studied using 

histochemistry and and radioimmunasssay techniques. Studies 

have shown that NPY has a wide distribution throughout the 

body with very high concentrations in the central nervous 

system (Adrian 1983), (Busch-Sorensen 1989). Allen 

demonstrated presense of NPY in the brain (Allen 1983) while 

Sasek described NPY-immunoreactivity in the spinal cord 

(Sasek 1985). Others have reported NPY in blood vessels 

(Lundberg 1982B), heart (Gu 1984)- intestine, stomach, 

pancreas, genital tract (Lundberg 1982B), lung (Shepard 

1983) , spleen (Lundberg 1985), adrenal medulla (Varndell 

1984) and other organs (Lundberg 1982B). Ding showed that NPY- 

containing nerves were identified in the liver, gallbladder 

and pancreas (Ding 1991). Neurologically, NPY is found to 

coexist with other neurotransmitters both centrally and 

peripherally (Carlei 1985, Everitt 1984). Emson demonstrated 

colocalization of NPY with somatostatin (Emson 1984) in the 

telencephalon while O'Donohue reported NPY colocalization 

with catecholamines in the brain stem (O'Donohue 1985). In 

the peripheral nervous system, NPY almost exclusively is 

colocalized with norepinephrine (Ekblad 1984A). NPY nerves 

densely innervate the circular and longitudinal muscle and 

myenteric plexus of many organs in the human digestive tract 

(Ekblad 1984B, Furness 1983). Although NPY has been shown to 

colocalize with norepinephrine in the periphery, Sundler 
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demonstrated in the gastrointestinal tract that nerve fibers 

which contained NPY lacked norepinephrine and that these 

nerves originated in intramural ganglia (Sundler 1983). The 

distribution of NPY throughout the gastrointestinal tract 

suggests an important role in the modulation of 

gastrointestinal functioning. 

RELEASE OF PYY INTO CIRCULATION 

The first studies which addressed the release of PYY 

into circulation focused on post-prandial release of the 

peptide. Adrian studied the levels of porcine plasma PYY 

after the ingestion of a meal (Adrian 1987B). Venous levels 

of PYY began to rise within the first thirty minutes after 

eating and peaking at two hours. Adrian also demonstrated 

some evidence for the metabolism of PYY during its pass 

through the liver. Greeley proposed that cholecystokinin may 

mediate the postprandial release of PYY (Greeley 1989A). 

Taylor, in canine studies, demonstrated a 205 pmol/liter 

increase of plasma PYY levels after intragastric infusion of 

a liver extract meal (Taylor 1985). Serum PYY concentrations 

increased progressively over the two hour study period. 

Taylor hypothesized that the delayed peak PYY response to 

food could reflect small bowel transit time. In his second 

series of experiments, Taylor noted that there was no 

significant PYY response to insulin hypoglycemia. This 
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observation demonstrated that the parasympathetic system does 

not play a major role in the release of PYY. 

Pappas observed an 86 pmol/liter increase over fasting 

levels of plasma PYY following ingestion of a meat meal in 

canines (Pappas 1985). More interesting however was the 

significantly larger rise in plasma PYY levels after infusion 

of oleic acid, 403 pmol/liter. Aponte expanded on the role 

of fatty acids and the release of PYY (Aponte 1985). 

Utilizing dogs with chronic gastric, duodenal and jejunal 

fistulas, fatty acids of varying length, oleate (C18) and 

dodecanoate (C12)/ were administered. The fatty acids were 

suspended in a taurocholate solution. He demonstrated that 

PYY release was not dependent on length of fatty acids. 

However, Aponte failed to evoke an increase in PYY when 

fatty acids were infused into the stomach or duodenum. Only 

by instilling the fatty acids into the distal gut did he 

demonstrate release of PYY. It is therefore apparent that 

there are at least two mechanisms involved in the release of 

PYY from the gut: a moderate post-prandial response as well 

as a second more potent release following the direct 

instillation of fatty acids and bile salt into the colon. 

Longo similarly reported a release of PYY in the isolated 

rabbit colon after infusion of short chain fatty acids (Longo 

1991) . 

Adrian documented the release of PYY in human subjects 

(Adrian 1985D). Utilizing 25 healthy human subjects, PYY 
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levels were recorded during a fasted state as well as after 

various caloric meals. Fasting plasma PYY levels were 8.5 

pmol/liter. After the administration of a 530 kcal meal, 

this level rose 3.7 pmol/liter. Similarly, an 870 and 4500 

kcal meal caused significant increases in plasma PYY levels, 

16.2 and 45.0 pmol/liter respectively. 

Greeley compared the effects of various nutrients (fats, 

proteins, amino acids, and carbohydrates) given directly into 

the duodenum or the colon on the release of PYY in conscious 

dogs (Greeley 1989B). Although intraduodenal administration 

of an amino acid mixture, glucose or liver extract failed to 

elevate plasma levels of PYY, intracolonic administration of 

these nutrients significantly stimulated PYY release. The 

study suggested that unabsorbed nutrients can release PYY by 

direct contact with the PYY-containing cells of the terminal 

ileum, colon and rectum. 

Ballantyne demostrated that deoxycholic acid is a potent 

agent for stimulating the release of PYY from the isolated 

perfused rabbit left colon. These findings suggest that the 

arrival of bile salts into the colon may play an important 

part in a feedback system whereby the colon participates in 

regulating proximal gastrointestinal function (Ballantyne 

1989) . 

These studies have therefore demonstrated that PYY is 

released into the systemic circulation in response to normal 

feeding patterns in humans and mammalian systems. It has 
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also been demonstrated that there is an even greater release 

of PYY following instillation of fatty acids suspended in 

bile salts directly into the distal bowl. In addition, 

although the mechanism of release of PYY is incompletely 

understood, it does not appear to be vagally mediated. 

NPY RELEASE 

NPY is released with norepinephrine in response to 

sympathetic nerve stimulation (Lundberg 1982D). Sheikh 

demonstrated electrical stimulation of the splanchnic nerve 

supply to the isolated perfused pig pancreas resulted in the 

co-release of NPY and noradrenaline into the venous effluent 

(Sheikh 1988). Stimulation of the vagus nerve caused a 

substantial release of NPY without altering levels of 

noradrenaline. This release of NPY can be blocked by 

guanethidine in the cat spleen and is facilitated by alpha-2- 

adrenoceptor blocking agents in the dog spleen (Lundberg 

1984, Schoups 1988). 

PYY IN GASTROINTESTINAL PHYSIOLOGY 

The effects of PYY on gastrointestinal physiology have 

been extensively studied. Although PYY is found in highest 

concentrations in the terminal ileum, colon and rectum, the 

major effects of the peptide include inhibition of gastric 

acid and pancreatic secretion, gastric and intestinal 

motility, and the release of insulin and glucagon. 
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Stomach In human studies, Adrian demonstrated that PYY 

inhibits gastric acid secretion (Adrian 1985A). Human 

subjects were given a continuous infusion of PYY, 0.2 

pmol/kg/min, sufficient to cause an increase in plasma PYY of 

27 pmol/liter. Pentagastrin stimulated gastric acid and 

pepsinogen output were decreased by 77% and 96%, 

respectively. The incremental gastric volume response 

decreased by 90%. Pappas evaluated the effect of PYY on meal- 

stimulated gastric and pancreatic secretion in dogs (Pappas 

1985). Pancreatic protein secretion and gastric acid 

secretion were significantly inhibited by PYY infusion at a 

rate of 400 pmol/kg/hr. 

Pancreas: The role of PYY on pancreatic exocrine 

function has also been evaluated. Tatemoto demonstrated in 

the anesthetized cat that a bolus injection of 100-200 

pmol/kg PYY caused a 70-80% reduction of pancreatic secretion 

of fluid and bicarbonate following both secretin and 

cholecystokinin stimulation of the pancreas (Tatemoto 1982B). 

Adrian performed studies in which PYY failed to inhibit 

pancreatic secretions in human (Adrian 1985D). Although 

Adrian demonstrated that low dose PYY inhibited gastric acid 

and pepsin secretion, there was no effect on the secretion of 

pancreatic bicarbonate or trypsin, or duodenal juice 

following low-dose secretin and cholecystokinin-8 

stimulation. 
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Szecowa demonstrated that PYY did not have any effects 

on pancreatic endocrine function (Szecowa 1983). In 

anesthetized rats, PYY was infused at a dose of 100 

pmol/kg/min to elevate plasma levels well above normal 

physiologic levels. At this high dose, there was no effect 

on basal insulin and glucagon levels. Similarly, there was 

no observed change in glucose-induced insulin release from 

pancreatic islet cells. 

Several reports stated that PYY exerts its inhibitory 

effect of pancreatic secretion via an activation of an 

adrenergic pathway. Konturek demonstrated that PYY inhibits 

pancreatic secretion only in vivo but not in vitro isolated 

pancreatic acini after administration of the alpha-receptor 

antagonist phentolamine and the beta-receptor antagonist 

propranolol (Konturek 1986). Pawlik reported that in a 

series of 22 anesthetized canines, phentolamine and 

propranolol blocked the the action of PYY on secretin-induced 

pancreatic secretion. In addition, the antisecretory 

activity of PYY was partially blocked by total bilateral 

adrenalectomy (Pawlik 1986). 

Gallbladder: Further studies evaluated the role of PYY 

in gallbladder function. Grace demonstrated that PYY 

significantly inhibited CCK-stimulated sphincter of Oddi 

phasic wave frequency and motility index (Grace 1988). 

However, gallbladder contractions were unaffected. In a 

canine model, the common bile duct was canulated and PYY 
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infused in graded doses from 100-400 pmol/kg/hr. When 

intraduodenal administration of hydrochloric acid was 

performed, the bile flow rate increased but the total output 

of the bile salts remained unchanged (Gomez 1986). In human 

studies, Adrian demonstrated that low-dose PYY, 0.62 

pmol/kg/min, had no effect on bilirubin output in the 

duodenum, following low dose secretin and cholecystokinin-8 

stimulation (Adrian 1985D). 

Vasculature: PYY is also known to demonstrate 

vasoconstricting properties. Utilizing an anesthetized cat 

model, Lundberg demonstrated that electrical stimulation of 

the cervical trunk resulted in submandibular salivary 

secretion and vasoconstriction (Lundberg 1982C) . The 

vasoconstricting properties of PYY were still present after 

alpha-receptor blockade as well as in sympathectomized 

animals. Infusions of PYY, neuropeptide Y (NPY) as well as 

pancreatic polypeptide (PP) resulted in a vasoconstriction 

similar in nature to that of the adrenergically blocked 

electrically stimulated response, slow in onset and long in 

duration (Lundberg 1982D). These results suggest that 

noradrenaline (fast response) coupled with a PP-related 

peptide (slow response) might be the transmitters involved in 

these vascular nerves. In addition, PYY and these peptides 

elevated systemic blood pressure during these experiments. 

This is presumed to be a result of systemic vasoconstriction. 
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Thus, significantly elevated levels of PYY and NPY might act 

directly on the vascular smooth muscle (Vukasin 1989). 

Lundberg demonstrated that PYY had marked vascular 

effects in the gastrointestinal tract (Lundberg 1982A). 

Close intraarterial administration of PYY (25-150 pmol/kg) in 

cats caused an intestinal vasoconstriction as well as an 

increase in systemic blood pressure. These effects were 

reproducable even with pretreatment with an adrenergic 

blocking agent. Adrian studied the hemodynamic effects of 

infused PYY into human volunteers (Adrian 1986B). During 

infusion periods, plasma PYY levels increased 73 pmol/liter 

more than basal levels. There was a significant increase in 

both systolic and diastolic blood pressure, 8.6 mmHg and 10.9 

mmHg respectively. These studies further support the 

hypothesis that significantly elevated levels of PYY may act 

directly on vascular smooth muscle leading to contraction and 

elevation of systemic blood pressure (Vukasin 1989). 

Motility: PYY has significant and profound effects on 

gastric emptying and bowel motility. Lundberg demonstrated 

that both jejunal and colonic motility were inhibited by 

intraarterial infusion of PYY (Lundberg 1982A). The 

inhibition of motility was most pronounced in the colon, 

lasting for nearly one hour after cessation of PYY infusion. 

Suzuki investigated the effect of PYY on gastric contractile 

activity in Heidenhain pouch dogs (Suzuki 1983). PYY was 

given in an intravenous bolus with doses ranging between 12.5 
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and 100 pmol/kg. PYY had no effect on contractile activity 

in the stomach during the digestive state. However, in the 

interdigestive state, PYY, in a dose-dependent manner, 

inhibited the interdigestive migrating contractions in the 

innervated main stomach but did not affect the motor activity 

in the pouch. This supports the hypothesis that PYY exerts 

its effects through the extrinsic nerves. Al-Saffar 

evaluated the effect of PYY on the myoelectric activity of 

the small intestine in conscious rats (Al-Saffar 1985). 

Following intravenous infusion, PYY (50 pmol/kg/min) had no 

effect on the occurence of the migrating myoelectric complex 

in the duodenum but interrupted its distal propagation and 

almost abolished total spike activity in the jejunum. The 

rats were additionally given a sicr labelled marker and it was 

observed that its transit was significantly delayed in those 

given PYY. Al-Saffar suggested that inhibition of the 

activity front by PYY may account for the delay in small 

bowel transit in those rats receiving PYY (Vukasin 1989). 

Several studies reported the effects of PYY on 

gastrointestinal motility in humans. Allen administered 

intravenous PYY (2 pmol/kg/min) to achieve a plasma level of 

59 pmol/liter, which significantly delayed gastric emptying 

(Allen 1984). Savage evaluated the effects of peptide YY 

(PYY) on mouth-to-cecum intestinal transit time and on the 

rate of gastric emptying in healthy adults (Savage 1987). 

Subjects were given two doses of PYY, the lower dose 0.18 
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pmol/kg/min, mimicking the post prandial state while the 

higher dose, 0.51 pmol/kg/min, representing a malabsorptive 

state. Gastric emptying was prolonged from 37 minutes to 63 

minutes for the low dose and to 130 minutes for the high dose 

of PYY. Mouth-to-cecum transit time was delayed from 67 

minutes to 94 minutes for the low dose and to 192 minutes for 

the high dose of PYY. 

Secretion• PYY may also play an important role in the 

regulation of chloride transport in the small bowel. Serosal 

application of PYY decreases basal short circuit current in 

rat jejunal and colonic mucosa. 36cl-flux studies indicate 

that this drop in short circuit current results from the 

inhibition of chloride secretion (Cox 1988A). Playford 

reported that PYY also inhibited VIP-stimulated secretion in 

healthy human volunteers (Playford 1990). 

NPY.. ...IN GASTROINTESTINAL.PHYSIOLOGY 

Many NPY-containing enteric neurons of the gut innervate 

the epithelial cells of the intestinal mucosa (Furness 1983). 

Friel first reported that NPY may play an important role as a 

powerful modulator of epithelial ion transport (Friel 1986). 

Researchers have demonstrated that NPY inhibits carbachol, 

VIP, substance-P, and prostaglandin E2-stimulated chloride 

secretion in rat jejunum (Cox 1988B, Saria 1985). Hubei, in 

a study with rabbits, demonstrated that NPY increases ileal 

chloride absorption (Hubei 1986). 
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The colocalization of NPY and vasoactive intestinal 

peptide (VIP) in neurons that innervate intestinal epithelia 

led researchers to believe that NPY down-regulates VIP- 

stimulated ion transport through direct effects on the 

colonic enterocytes. Indeed, Flint demonstrated that when 

NPY was administered to the basolateral membrane, there was 

inhibition of VIP-stimulated short-circuit current changes by 

a tetrodotoxin-insensitive mechanism (Flint 1990). 

Hellstrom demonstrated that intraarterial infusion of 

NPY in the anesthetized rat caused a decrease in measured 

colonic motility (Hellstrom 1985). Allen reported that NPY 

inhibited contraction of longitudinal ileal nonvascular 

smooth muscle in vitro (Allen 1987). In the study, NPY 

inhibited both spontaneous contractions and also reduced 

amplitude of neurally mediated contraction of longitudinal 

smooth muscle elicited by electrical stimulation of the 

intramural nerve plexuses. Wiley reported that NPY caused a 

dose-dependent relaxation of guinea pig colon longitudinal 

muscle (Wiley 1987). This relaxation occured via release of 

norepinephrine with subsequent inhibition of acetylcholine 

release. Norepinephrine, located in sympathetic nerves in 

the myenteric plexus, inhibits cholinergic transmission via 

alpha-2-receptors located on postganglionic cholinergic 

nerves. 

Researchers have also focused on the role of NPY on 

mammalian sphincter control. Ferri demonstrated the presense 
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of NPY in the intramural neurons of the internal anal 

sphincter of humans (Ferri 1988). NPY was shown to 

colocalize with VIP-containing nerve fibers in this region 

(Wattchow 1988). Nurko examined the role of NPY in the 

opossum internal anal sphincter (Nurko 1990). He determined 

that NPY acted directly on internal anal sphincter smooth 

muscle to increase sphincter pressure. It also inhibits 

relaxation of the sphincter produced by the rectoanal reflex. 

CHANGES IN PLASMA LEVELS OF PYY IN STATES OF PATHOPHYSIOLOGY 

Researchers have demonstrated altered plasma levels of 

PYY in various pathophysiologic states in addition to several 

post-surgical states of the gastrointestinal tract. Adrian 

examined the release of PYY following ingestion of glucose in 

patients with the dumping syndrome, a complication of 

gastrectomy and gastrojejunostomy (Adrian 19850. The 

dumping syndrome is thought to be caused by the rapid transit 

of hyperosmolar chyme into the jejunum, followed by an 

osmotically driven fluid rush into the small bowel depleting 

intravascular volume, and hence, the cause of much of its 

symptomatology. Vasoactive intestinal peptide or neurotensin 

may be involved in the etiology of the disorder (Blachburn 

1980, Sagor 1981). Adrian administered 100 grams of glucose 

to patients and measured plasma PYY levels. Plasma PYY 

levels in the control patients increased by 3.4 pmol/liter, 

while those in patients with dumping syndrome increased by 65 
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pmol/liter. The effect of PYY was completely abolished by 

the intravenous administration of somatostatin, a paracrine 

regulator present in endocrine cells throughout the 

gastrointestinal tract (Vukasin 1989). 

Plasma PYY levels are also altered after various 

gastrointestinal surgical procedures (Ballantyne 1990). 

Savage demonstrated that plasma PYY levels were increased in 

rats who underwent 75% proximal small bowel resection (Savage 

1985). Preoperatively, plasma levels averaged 28 pmol/liter 

and levels rose to 85 pmol/liter six days postoperatively. 

Levels were consistently elevated for 48 days. Adrian 

reported plasma PYY levels in a series of human subjects who 

had undergone resection of small bowel, colon or pancreas 

(Adrian 1987a). In 18 patients who had undergone partial 

ileal resection, basal PYY levels were greatly elevated as 

compared to control. However, in 16 patients who underwent 

colonic resection and ileostomy, PYY levels were 

significantly lower. In eight patients who had undergone 

pancreatectomies, the plasma levels of PYY were only 

moderately increased. The elevated levels of PYY in patients 

with pancreatectomy and ileal resection could be attributed 

to a release of PYY in response to increased bile salts, 

fats, or other nutrients reaching the distal bowel. 

The "ileal brake" mechanism of small intestinal motility 

refers to the slowing of gastric emptying and small bowel 

transit following infusion of nutrients into the ileum. 
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Small intestinal resection prompts adaptive changes which 

slow intestinal motility and increase mucosal absorptive 

capacity. Circulating levels of PYY increase following small 

intestinal resection. This slowing effect of gut transit 

following meals has been termed the "ileal brake" effect 

(Spiller 1984, Macfarlane 1983, Hill 1974). Armstrong 

reported an adaptive increase in PYY after proctocolectomy 

and pelvic ileal reservoir construction in dogs (Armstrong 

1991) . 

Large bowel resection leads to a reduction of plasma 

levels of PYY. This lack of hormonal adaptation may be due 

to the loss of hormone secreting cell mass (Adrian 1987C) and 

has been implicated in the etiology of post-colectomy 

diarrhea. In addition, combined large bowel resection and 

ileal resection results in watery diarrhea which is 

disporportionally profuse considering the short lengths of 

ileum resected (Neal 1984). This may result from the loss of 

the "ileal brake." 

Similarly, PYY levels are significantly augmented in 

various gastrointestinal disorders. Adrian reported plasma 

PYY levels in patients with various gastrointestinal diseases 

(Adrian 1986A). Patients with steatorrhea due to tropic 

sprue had significantly elevated plasma PYY levels after a 

meal. Basal levels in these patients were reported to be 10- 

times higher than in their control population. Similarly, 

patients with steatorrhea due to chronic destructive 
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pancreatitis had increased basal and postprandial levels of 

PYY. In patients with inflammatory bowel disease, there was 

a moderate elevation of PYY levels. Sjolund reported that 

plasma PYY levels were increased in patients with celiac 

disease. In addition, he demonstrated that these abnormal 

levels were inversely proportional to the concentration of 

plasma folic acid concentrations. Adrian proposed that PYY 

levels were elevated in patients with disoders of 

malabsorption. The presence of abnormal bowel contents 

reaching the distal colon may cause release of PYY. PYY 

would likely assuage the symptoms of these disorders by 

delaying gastric emptying as well as small bowel motility 

leading to increased proximal absorption. 

PYY AND NPY RECEPTORS 

Cell surface receptors for PYY have been characterized 

but the number, distribution and classification of these 

receptors remain under intense investigation. To date, there 

exists at least four distinct NPY/PYY receptors, designated 

Yl, Y2, Y3 and Y4. High affinity receptors for PYY were 

first identified on rat jejunal epithelial cells (Laburthe 

1986). The receptor bound both NPY and PYY but had a five¬ 

fold higher affinity for PYY. The distribution of PYY is not 

uniform within the intestinal mucosa. Studies have shown 

that the PYY-preferring receptor is found in greater number 

on the crypt cells than on the mature villus cells (Voisin 
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1990) . Mannon demonstrated that the greatest density of PYY 

receptors in the rabbit was in the descending colon (Mannon 

1991) . 

PYY and NPY may bind the same receptors. Sheikh 

reported distinct receptors for NPY and PYY, designated Yl 

and Y2 (Sheikh 1989A). These receptors are pharmacologically 

distinct. Wahlestedt reported evidence for different pre- 

and post-junctional receptors for NPY and PYY (Wahlestedt 

1986, Wahlestedt 1990). In various animal studies, he 

demonstrated that NPY and PYY exerted three distinct effects 

at the level of the sympathetic neuroeffector junction. NPY 

and PYY had a direct post-junctional effect, leading to 

constriction of certain blood vessels. Secondly, they 

potentiated the response to various vasoconstrictors. 

Finally, NPY and PYY were demonstrated to act pre- 

junctionally to suppress the release of noradrenaline from 

sympathetic nerve endings in stimulated rat vas deferens. 

The distinction between Yl and Y2 is based on the C- 

terminal fragment of these peptides. Sheikh demonstrated 

that the Y2 receptor binds the long COOH-terminal fragment of 

NPY or PYY (amino acids 13-36) (Sheikh 1989B). This fragment 

is unable to bind to the Yl receptor. Fuhlendorff, in a 

study utilizing human neuroblastoma cell lines, classified a 

specific Yl receptor in which two critical amino acid 

substitutions have been made (Fuhlendorff 1990A). This 

compound, [Leu31, Pro34]NPY displaced radiolabelled NPY only 
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from cells that expressed Yl receptors and not those 

expressing Y2 receptors (Figure 13). Further work by Sheikh 

structurally characterized these receptors for NPY and PYY by 

affinity cross-linking (Sheikh 1990). Their results 

indicated that the Yl receptor is a glycoprotein with an Mr = 

70,000 binding subunit, whereas the Y2 receptor is a 

glycoprotein with a Mr = 50,000 binding subunit. The study 

demonstrated that the Yl and Y2 receptor subtypes are 

structurally distinct glycoproteins, not disulfide-liked to 

other subunits. Fuhlendorff further determined that position 

34 on the peptide was critical for specific binding 

(Fuhlendorff 1990B). The antiparallel pancreatic-polypeptide 

fold present in NPY and PYY is of structural importance for 

the receptor binding. This fold allows presentation of the 

carboxyl- and amino-terminal segments of the peptide to the 

receptor. 

Y3 receptors can be activated by NPY but not PYY and may 

mediate cardiovascular responses (Baranowska 1987, Grundemar 

1991, Sheriff 1990). Other receptor subtypes are still being 

investigated (Wahlenstedt 1992). A receptor with equal 

affinity for PYY, NPY and PP was detected on rat pancreatic 

islet and acinar cells, hepatocytes and epithelial cells of 

the stomach, duodenum and small intestine (Nata 1990) . The 

Y4 receptor has only recently been characterized. Ballantyne 

has demonstrated a receptor which shows the same affinity for 

NPY, PYY and PP as well as the same efficacy. Activation of 
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this receptor blocks vasoactive intestinal peptide-stimulated 

chloride secretion from the colon (Ballantyne 1993). 

Neuropeptide Y 

VPSKPDNPGEDAP AEDLARYYSALRHYINLITRQRY?0 

[Leu 31 .Pro 341NPY 

YPSKPDNPGEDAP AEDL ARY YSALRHY I NLtSTR0RY:° 
i i i i i i '•'j 

Pancreatic polypeptide 

APLEPVYPGDNATPEQMAQY AADLRRYINMLTRPRY:0 
, i i i i i . ^ 
5 10 15 20 25 30 35 

Figure 13:Diagram of the structure of [Leu31,Pro34]NPY and 
the aligned sequences of NPY, [Leu31,Pro34]NPY, and 
PP. The schematic structure of the NPY analog 
shown at the top was based on the x-ray structure 
of avian PP. From Fuhlendorff J. PNAS (USA) 1990; 
87:182-186. 
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Initially, it was believed that the Y2 receptor was localized 

presynaptically while Yl was confined postsynaptically but 

studies have demonstrated the presence of Y2 receptors on 

renal proximal tubule cells suggesting that this scheme may 

be overly simplified. 

MECHANISMS-QF ..ACTION OF PYY AND NPY 

Although the exact mechanisms of action of both PYY and 

NPY are incompletely understood in gastrointestinal 

physiology, there are three possible actions of these 

peptides: 1)inhibition of cAMP formation; 2)increase of 

cytosolic levels of calcium; and 3)mobilization of 

intracellular calcium. 

Research has demonstrated that both PYY and NPY cause 

hydroelectrolytic absorption and inhibit vasoactive 

intestinal peptide (VIP) and prostaglandin E2-induced 

secretion in the small bowel in vivo and in vitro (Saria 

1985, MacFadyen 1986, Friel 1986, Cox 1988A). VIP and 

prostaglandin E2 are both potent secretagogues that act via 

increase in cAMP levels. Servin demonstrated that PYY and 

NPY inhibited VIP-stimulated cAMP production in epithelial 

cells isolated from rat intestines (Servin 1989). NPY and 

PYY also inhibited prostaglandin E:-, prostaglandin E2-, and 

foskolin-stimulated cAMP production and reduced basal cAMP 

levels. These effects were confined to the small bowel. 
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Further studies have demonstrated that NPY and PYY inhibited 

basal and forskolin stimulated adenylate cyclase activity 

(Westlind-Danielsson 1988). 

Studies suggest that PYY may act through a pertussis 

toxin-sensitive G protein (Kassis 1987, Motulsky 1988). 

Valet demonstrated that PYY and NPY inhibited cAMP dependent 

lipolysis in both canine and human adipocytes through 

specific receptors coupled negatively with adenylate cyclase 

by a pertussis toxin-sensitive protein (Valet 1990). 

Additionally, Lobaugh showed that NPY specifically bound to 

a G protein-linked receptor that inhibits adenylate cyclase 

in human neuroepithelioma cells (Lobaugh 1990). 

The role of calcium mediated processes in the actions of 

NPY and PYY is still under investigation. The effects of NPY 

on intracellular calcium levels has been partially defined 

whereas knowledge of PYY's effects remain incompletely 

understood. The mobilization of calcium can occur via influx 

of extracellular calcium or through mobilization on 

intracellular stores. NPY stimulates vasoconstriction as 

well as enhances the release of calcium channels (L-channels) 

(Pernow 1987, Lundberg 1988, Crowley 1990). NPY decreases 

the release of acetylcholine from rat nodose neurons by 

inhibiting gadolinium sensitive calcium channels (N calcium 

channels) through a pertussis toxin-sensitive mechanism 

(Wiley 1990). Effects of NPY on voltage dependent calcium 

channels may also be indirect. Shangold proposed that NPY 
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may inhibit calcium entry through L channels by enhancing a 

hyperpolarization K+ conductance (Shangold 1989). Present 

studies support the hypothesis that NPY may modulate influx 

of extracellular calcium via actions on either L-, or N-type 

calcium channels in different cell types. 

Other actions of NPY appear independent of extracellular 

calcium (Sabatino 1989). In human neuroblastoma cells which 

only express the Yl receptor, [Leu31, Pro34]NPY but not NPY(16- 

36) causes a transient elevation of intracellular Ca++ 

(Aakerlund 1990). This effect is independent of 

extracellular calcium, is blocked by thapsigargin which 

selectively depletes calcium stores in the endoplasmic 

reticulum (Thastrup 1989), and is pertussis toxin-sensitive. 

Jackson demonstrated that the calcium pool affected by 

thapsigargin is inositol 1,4,5-triphosphate-sensitive 

(Jackson 1988). These studies suggest that when NPY binds Yl 

receptors a transient calcium signal is produced through 

mobilization of calcium from stores in the endoplasmic 

reticulum and that this effect is mediated by a G protein and 

a generation of inositol 1,4,5-triphosphate. 

Some of the actions of PYY may result from the 

inhibition of the release of other regulatory peptides. PYY 

may inhibit sham feeding-stimulated acid secretion by 

blocking acetylcholine release from vagal fibers (Pappas 

1986). The effects of PYY on pancreatic secretion may derive 

from the inhibition of cholecystokinin release (Lluis 1988, 
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Hosotani 1989). PYY inhibits acetylcholine release from 

nerves in the guinea pig stomach (Wiley 1991). Also, PYY 

inhibition of cholecystokinin stimulated contractions of 

ileal muscle strips may stem from the inhibition of 

acetylcholine release from cholinergic nerves (Baba 1990). 

Thus the effects of PYY in vivo are complex and result from 

cascade of direct and indirect actions. 
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METHODS 

ISOLATED PERFUSED RABBIT ILEUM New Zealand white 

rabbits (3-4 kg) were anesthetized with subcutaneous ketamine 

HCl (50 mg/kg) and xylazine (20 mg/kg). Intravenous fluids 

(0.9% NaCl) were administered through a lateral ear vein to 

maintain stable heart rate, blood pressure and urine output. 

Preoperatively, heparin (2000 units) was injected 

intravenously. The abdomen was entered via a midline 

incision. The ileocolic artery and vein were then identified 

as well as the terminal ileum. The ileocolic artery was then 

cannulated with a standard 20 guage intravenous catheter (20G 

Cathlon, Critikon, Tampa, Florida). The artery was 

immediately perfused with warmed (37°C) , oxygenated (95% 02/5% 

C02) Krebs Ringer's Bicarbonate solution (NaCl 118.4 mM, KCl 

4.7 mM, CaCl2 2.5 mM, MgCl2 1.3 mM, NaHC03 23.4 mM, NaH2P04 

0.12 mM, dextrose 5.6 mM, bovine serum albumin 30 (1M) at a 

rate of 3 ml/min. Perfusion was initiated before the vessels 

are ligated. Consequently, there was no period of ischemia. 

A 10 cm segment of terminal ileum based on the cannulated 

vasculature was harvested. The margins of the mesentery were 

ligated and divided so as to avoid loss of perfusate. The 

organ was then placed on a warmed humidified organ plate 

(Nigel Cox, Yale Instrumentation Shops, New Haven, CT). At 

the end of the operation, the rabbits were euthanized with an 
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additional ketamine bolus (200 mg/kg IV) followed by a 

saturated KC1 solution (5 ml IV). 

ORGAN VIABILITY Organs were examined by light 

microscopy to ensure structural integrity. At the termination 

of experiments tissue samples from the perfused segments of 

small bowel were preserved in formalin and subsequently 

embedded in paraffin, sectioned and stained with hematoxylin 

and eosin. In addition, serial arterial and venous blood 

gases were obtained at hourly intervals for the duration of 

the experiments. pH, pC02, and p02 were measured with a 

clinical grade Corning 168 pH/Blood Gas Analyzer (Corning 

Medical & Scientific, Medfield, MA). 

MOTILITY Motility of the perfused segment of ileum was 

measured by insertion of a multilumen (4 port) manometry 

catheter (J.S. Biomedicals, Ventura, CA.) into the gut lumen. 

The manometer ports were spaced at 2.5 cm intervals and 

perfused at a constant pressure of 15 cm H20 with distilled 

water (a total volume of 3 cc/min). The manometer catheter 

was linked to pressure transducers which were interfaced to a 

polygraph (Narco Biosystems MMS 200, Houston, TX.) The 

analog signal was then digitalized at a rate of 8 data points 

per second and stored on a computer hard disc (IBM PC System 

2, Model 70, 386) for subsequent statistical analysis. 

Motility was quantified by the integration of the area under 

the digitalized pressure-time curve for one minute intervals 

using computer software (Narco MMS, Houston, TX.) Mean 
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activity in all four channels was used to quantitate 

motility. Results were expressed in units of mmHg.min. 

STATISTICAL ANALYSIS For each test agent, the 

integrated response during the stimulated period was compared 

to the resting period and the recovery period using Student's 

t-test for paired samples. Integrated responses of groups of 

test agents were compared by testing the homogeneity of 

variances using Bartlett's test. When a significant F value 

results from the analysis of variance (p<0.05), the Tukey 

test was applied on the means of the integrated response of 

the test agents ranked in order of magnitude. All data 

analysis was performed using a computer software package. 

EXPERIMENTAL DESIGN Each concentration of test agent or 

control was tested in four individual colon preparations (N = 

4). In each preparation, the isolated ileum was allowed a 

ten minute recovery period, during which it was maintained on 

the organ perfuser with no intraluminal stimulation. 

Intraluminal test agents were then infused through the 

arterial side at a rate of 0.3 ml/min. Infusions of various 

test agents ranged from 5 to 90 minutes. Prokinetic agents 

were infused at a constant rate and concentration for ninety 

minute time periods. Inhibitory agents were infused from 5- 

10 minutes. Experiments with pancreatic polypeptide-fold 

family analogs (NPY, PYY or PP) required pretreatment of the 

appropriate test agent for five minutes prior to 

administration of the inhibitory agent (Figure 14). 
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MATERIALS The following chemicals and agents were 

obtained from Sigma, St. Louis, MO: NaCl, KCl, CaCl2, MgCl2, 

NaHC03, NaH2P04, dextrose, bovine serum albumin, ketamine HCl, 

xylazine, formalin, paraffin, hematoxylin, eosin, 

tetrodotoxin, naloxone, atropine, carbachol, norepinephrine 

and forskolin. Cholecystokinin, the cholecystokinin 

antagonist L364,718, motilin, vasoactive intestinal peptide, 

peptide YY, neuropeptide Y, pancreatic polypeptide, 

[Leu31, Pro34]NPY and NPY (13-36) were obtained from Peninsula 

Laboratories, Inc., Belmont, CA. 
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A) 

Basal Prokinetic agent 

time 

Test Agent 

VIP 

Prokinetic agent 

time 

Figure 14: These figures represent the experimental protocol. 
After isolation of the segment of terminal ileum, the organ 
is allowed a brief recovery period prior to measurement of a 
baseline level of motor activity. The specific prokinetic 
agent tested is then infused at a constant concentration and 
rate (A). In those experiments in which a test agent is used, 
infusion of the appropriate test agent begins five minutes pri 
to administration of the prokinetic antagonist, in this case 
VIP (B). 
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RESULTS 

ORGAN VIABILITY 

After 90 minutes of perfusion on the whole organ 

apparatus, sections of tissue from the experimental ileum 

were collected for histological evaluation. Subsequently, 

these tissues were stained with hematoxylin and eosin for 

light microscopy. Cellular architecture and integrity of the 

ultrastructural features remained intact during this period 

(Figure 15). However, there was some interstitial edema 

present. 

Oxygen and carbon dioxide tensions in the arterial and 

venous fluids were consistent with normal metabolic activity 

within the isolated organ preparation. At no time did the 

arterial P02 fall below 100 mm Hg or the venous C02 exceed 35 

mm Hg (Table 1). 

ILEAL MOTILITY 

Unstimulated motility in the isolated ileum was 

evaluated. After a brief latency period, resting ileal 

motility reached a stable plateau: 41.3±2 mmHg/min. There 

were no statistically significant changes of resting ileal 

motility for 90 minutes of recording (Fig 16). All 

subsequent experiments were therefore limited to ninety 

minute test periods. 
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Figure 15: Hematoxylin and eosin section (x 20) of rabbit 
terminal ileum after 90 min of perfusion on an 
isolated organ platform. The smooth muscle and 
mucosa appear viable. Some interstitial edema is 
present. 
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TABLE 1. 

1 HOUR 

2 HOURS 

ARTERIAL AND VENOUS BLOOD GAS MEASUREMENTS 

ARTERIAL VENOUS 

PH 7.46 ± 0.024 7.29 ± 0.05 

C02 17.6 ± 1.1 17.4 ± 1.4 

02 320 ± 34 131 ± 13 

PH 7.43 ± 0.06 7.44 ± 0.02 

C02 19.1 ± 2.3 23.0 ± 3.2 

02 223 ± 37.4 170 ± 19.8 

PH 7.46 ± 0.041 7.46 ± 0.056 

C02 22.3 ± 4.5 22.2 ± 1.8 

02 191.6 ± 19.8 106 ± 3 .7 

3 HOURS 
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Figure 16: Baseline motor activity of unstimulated segment of 
terminal ileum after 90 minutes of perfusion. 
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PROKINETIC AGENTS 

CARBACHOL 

The effect of carbachol on ileal motility was tested. 

Carbachol (10-8-10-5M) infusion caused a concentration- 

dependent increase in phasic motor activity with an ED50 of 10- 

7M (Figure 17) Carbachol-induced motility values remained 

stable for more than 90 minutes (Figure 18). All other 

experiments which utilized a continuous infusion of carbachol 

were limited to less than 90 minutes (Table 2). 

Unstimulaled 10 8 M 10-,M 10 8 M 10 5 M 

CARBACHOL 

Figure 17: Action of carbachol on isolated, perfused ileum. 
Carbachol infusion resulted in phasic ileal 
contractions. A concentration-dependent increase 
in motor activity was seen with an ED50 = 10-7 M 

(inset). n = 4 for each group. 
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Figure 18: Pressure recording of motor activity for 
unstimulated and carbachol (10-7 M) treated ileum 
over a 90-minute time period. After a 10-minute 
equilibrium period, motor activity for both 
unstimulated and carbachol-stimulated preparations 
remained essentially unchanged for the duration of 
the experiment, n = 4 for each group. 
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TABLE 2. CARBACHOL-STIMULATED INCREASE OF MOTOR ACTIVITY IN 

ISOLATED PERFUSED SEGMENTS OF RABBIT TERMINAL ILEUM 

CARBACHOL 

BASELINE 10-8 M 10-7 M 10-6 m 10-7 M 

41+2 88+8* * 312+6* 1006+38* 984+40* 

* P < 0.05 COMPARED TO BASELINE VALUES. 
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C HQ L EC Y.STDK ININ 

CCK (10-9-10-7 M) infusion resulted in an increase in 

motility (Figure 19). This phasic pattern of motor activity 

was unaffected by tetrodotoxin (lO6 M) or naloxone (10-5 M) 

but was inhibited by atropine (10-5 M) and the CCK antagonist 

L-365,718 (IO-9 M) (Table 3). CCK-induced motility remained 

stable for greater than 90 minutes (Figure 20). All other 

experiments which utilized a continuous infusion of CCK were 

limited to less than 90 minutes. 

Figure 19: Effect of cholecystokinin on isolated segment of 
rabbit terminal ileum. Cholecystokinin, a 
naturally occuring peptide in the gastrointestinal 
system, resulted in phasic ileal contractions. A 
concentration-dependent increase in motility was 
seen with an ED50 of IO-9 M (inset) . n = 4 for each 

group. 
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TABLE 3. EFFECTS OF TETRODOTOXIN, ATROPINE AND L364,718 ON 

CCK STIMULTED MOTILITY 

ljQ-2L_M 10^1 M 10^1 M 

CCK ALONE 1187+44 1113+44 479+14 

TETRODOTOXIN (10 "6M, n=5) 524+43 

NALOXONE (10-5M, n=4) 484+18 

ATROPINE (10_5M, ii 
G 243+121 

L3 64,718 (10-9M, n=3) 114+40* 

* P < 0.05 COMPARED TO CCK (10-9M) ALONE 
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TIME (min) 

Figure 20: Pressure recording of motor activity for 
unstimulated and cholecystokinin (10-9 M) treated 
ileum over a 90-minute time period. After a 10- 
minute equilibrium period, motor activity for both 
unstimulated and cholecystokinin-stimulated 
preparations remained essentially unchanged for the 
duration of the experiment, n = 4 for each group. 
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MOTILIN 

Motilin (10-10-10-7 M) caused a concentration-dependent 

increase in measured motor activity in isolated segments of 

perfused terminal ileum (Figure 21). Phasic motor activity 

was similar to those of other prokinetic agents. Motor 

activity remained stable for the duration of infusion and 

returned to preinfusion levels with the cessation of motilin 

administration. 

MOTILIN 

MOT 108 

Figure 21: Action of motilin on isolated, perfused terminal 
ileum. Motilin infusion resulted in phasic ileal 
contractions. A concentration-dependent increase 
in motility was seen with an ED50 of 10-8 M (inset) 

n = 4 for each group. 
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CAMP DEPENDENT AGENTS 

VIP INHIBITION 

To determine the effects of cAMP dependent agents on 

intestinal motility, vasoactive intestinal peptide was tested 

against various prokinetic agents. VIP (10-9-10-7M) caused a 

concentration dependent inhibition of carbachol (10-7 M) - 

stimulated motility after a brief latency (Figure 22). This 

inhibition was reversible after the cessation of VIP 

administration. The half-effective dose (ED50) for VIP was 10- 

8M. 

10'® M 10*M ia7M 

VASOACTIVE INTESTINAL PEPTIDE 

4 
VIP 10 8 M VIP OFF 

Figure 22: Effect of vasoactive intestinal peptide (VIP) on 
carbachol-stimulated ileum. The cAMP-mediated 
agent VIP caused a concentration-dependent 
inhibition of carbachol-stimulated ileal motility 
with an ED50 = 10-8 M (inset). This effect was 
reversible after cessation of VIP administration, 
n = 4 for each group. 
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VIP (10-7 - 10-9M) similarly caused a dose-dependant 

inhibition of CCK (10-9M) -stimulated motility after a latency 

of 15 - 20 seconds (Figure 23). Motility returned to 

previous levels after stopping the VIP infusion. 

E 
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CCK 10 9 M 

VASOACTIVE INTESTINAL PEPTIDE 

Figure 23: Effect of vasoactive intestinal peptide (VIP) on 
cholecystokinin-stimulated ileum. The cAMP- 
mediated agent VIP caused a concentration-dependent 
inhibition of cholecystokinin-stimulated ileal 
motility with an ED50 = 10~8 M (inset). This effect 

was reversible after cessation of VIP 
administration, n = 4 for each group. 
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NQREPINEPHRINE INHIBITION 

Norepinephrine (10-8-10-6M) caused a concentration- 

dependent decrease in measure motility in carbachol- 

stimulated ileum (Figure 24). The inhibition was reversible 

upon the cessation of infusion. Preinfusion of tetrodotoxin 

(10~6M) for five minutes, followed by administration of 

norepinephrine (10-6M) , failed to reverse norepinephrine's 

inhibition of motility (Figure 25). 

CartMChoI 10 *M 10'm io 8 m 

NOREPINEPHRINE 

NE 10 6 M NE OFF 

Figure 24: Effect of norepinephrine on carbachol-stimulated 
ileal motility. Norepinephrine caused a complete 
but reversible inhibition of carbachol-stimulated 
ileal motility, n = 4 for each group. 
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TTX OFF 

Figure 25:Effect of pretreatment with tetrodotoxin (10-6 M) on 
norepinephrine inhibition of carbachol-stimulated 
motor activity. Tetrodotoxin was preinfused for 3 
min prior to the administration of norepinephrine. 
Norepinephrine completely but reversibly abolished 
measured motor activity in the carbachol-stimulated 
preparation, n = 4 for each group. 
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FORSKOLIN INHIBITION 

Forskolin (10-7-10-5M) similarly caused a concentration- 

dependent decrease in measured motility in carbachol 

stimulated ileum (Figure 26). Like VIP and norepinephrine, 

forskolin's inhibitory effect was reversible. Norepinephrine 

appeared to be 10 times more potent in reversing carbachol 

stimulated motility than forskolin. 

Results of the actions of cAMP dependent agents on 

carbachol-stimulated ileal motility is summarized in Table 4. 

350 -i 

Carbachol 10 7 M 10 6 M 10 5 M 

10 7 M FORSKOLIN 

FK 10 5 M FK OFF 

Figure 26: Effect of forskolin on carbachol-stimulated ileal 
motility. Forskolin, a diterpene compound which 
increases intracellular cAMP, reversibly inhibited 
carbachol-stimulation of phasic contractions. n = 
4 for each group. 
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TABLE 4. EFFECT OF cAMP-MEDIATING AGENTS ON CARBACHOL-INDUCED 

MOTOR ACTIVITY 

CARBACHOL 

(10-7 M) 

VIP 

(10-8 M) 

NOREPINEPHRINE 

(10-6 M) 

FORSKOLIN 

(10-5 M) 

312 + 6 67+11* 42+15* 53+11* 

★ P < 0.05 COMPARED TO CARBACHOL (10"7 M)-STIMULATED MOTOR ACTIVITY 
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AGENTS WHICH INHIBIT INTRACELLULAR CAMP FORMATION 

NPY/PYY REVERSAL 

We then attempted to define the role of agents which 

inhibit intracellular cAMP formation in intestinal motility. 

PYY and NPY had no effect on CCK-stimulated motility (Table 

5). Preinfusion of PYY (10-9 - 10-8M) for 5 minutes, followed 

by VIP (10~8M) administration, did however reverse VIP's 

inhibition of motility (Figure 27). Preinfusion of lower 

doses of PYY (10-10M) did not reverse the inhibitory action of 

VIP. Preinfusion of NPY (10-8M) also reversed VIP's inhibitory 

activity (Figure 28), whereas lower concentrations of NPY (10- 

9M) had no effect. PYY is therefore approximately 10 times 

more potent in reversing VIP's actions than NPY (Table 6). 

TABLE 5. EFFECTS OF VIP, PYY AND NPY ON CCK-STIMULTED MOTILITY 

PEPTIDES lH—_M 10-hl M 1Q^_M IONIUM 

CCK IO-9 M 480+52 

CCK 10-9 M + VIP 122±17* 162±14* 455+58 

CCK 10-9 M + NPY 598±62 554+58 384+82 

CCK 10-9 M + PYY 416+16 518+46 470±42 

★ P < 0.05 COMPARED TO CCK (10~9M) 
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PYY 10 9 4 

vip io 8 4 

4 
4 

Figure 27: Effect of peptide YY (PYY) on VIP-mediated 
inhibition of cholecystokinin-stimulated ileal 
motility. PYY, when pretreated prior to VIP 
administration, abolished VIP's inhibition of motor 
activity. A concentration-dependent inhibition of 
motility was seen with an ED50 of 3 x 10-10 M 

(inset). This effect was 10 times more potent than 
NPY. n = 4 for each group. 
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NEUROPEPTIDE Y 

NPY 10 8 4 4 

VIP io 8 4 4 

Figure 28: Effect of neuropeptide Y (NPY) on VIP-mediated 
inhibition of cholecystokinin-stimulated ileal 
motility. NPY, when pretreated prior to VIP 
administration, abolished VIP's inhibition of motor 
activity. A concentration-dependent inhibition of 
motility was seen with an ED50 of 3 x 10-9 M 

(inset), n = 4 for each group. 
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TABLE 6. EFFECTS OF PYY AND NPY ON VIP MEDIATED INHIBITION OF 

CCK STIMULTED MOTILITY 

PEPTIDES 

CCK 

CCK 10-9 m + VIP 10-8 M + NPY 

CCK 10-9 M + VIP 10-8 m + PYY 

10^& M 10-22. M 

475+43 

500+17 114+66* 120+60 

452+29 476+66 167+51 

★ P < 0.05 COMPARED TO CCK (lO-^M) 
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SPECIFIC Y AGONISTS 

To determine which Y receptor may be involved in 

regulating intestinal motility, various Y receptor agonists 

were tested. When the ileal preparation was pretreated with 

the specific Y1 agonist [Leu31, Pro34]NPY, motility recordings 

were similar to those of NPY/PYY's reversal of VIP mediated 

inhibition. This inhibition of motility was active at the 

same concentration range as PYY (Figure 29). The ED50 of 

[Leu31, Pro34]NPY was 3 x 10"11 M. 

The specific Y2 receptor agonist NPY(13-36) was 

similarly added to the preparation prior to the addition of 

the motility antagonist VIP. However, NPY(13-36) failed to 

reverse VIP-mediated inhibition up to concentrations of 10-7 M 

(Figure 30). 

Similarly, pancreatic polypeptide, which recognizes the 

Y3 receptor, failed to reverse VIP-mediated inhibition up to 

concentration of 10-8M (Figure 31). 

The results of the NPY/PYY/PP receptor analogues are 

summarized in Table 7. 
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VIP 10'8 M 

CCK10'“m VIP 10"® M I0'"M 3xI0'"M io,0m io“m 

LPNPY 

LPNPY 107 VIP VIP OFF 

Figure 29: Effect of [Leu^i, Pro34]NPY, (LPNPY), on VIP- 
mediated inhibition of cholecystokinin-stimulated 
ileal motility. LPNPY, when pretreated prior to 
VIP administration, abolished VIP's inhibition of 
motor activity. A concentration-dependent 
inhibition of motility was seen with an ED50 of 3 

10-n m (inset). n = 4 for each group. 
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CCK lO’M VIP IO*M 10 *M 10* M 10 ' M 

NPY 13-36 

NPY VIP 10-8 VIP OFF 
13-36 
10'9 

Figure 30: Effect of the long C-terminal fragment of NPY, NPY 
13-36, on VIP-mediated inhibition of 
cholecystokinin-stimulated ileal motility. NPY 13- 
36, when pretreated prior to VIP administration, 
failed to abolish VIP's inhibition of motor 
activity in concentrations as high as 10~7 M. n = 
4 for each group. 
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CCKI0 9M VIP 10* M 10 ioM 109 M 10* M 

Pancreatic Polypeptide 

Figure 31: Effect of pancreatic polypeptide (PP) on VIP- 
mediated inhibition of cholecystokinin-stimulated 
ileal motility. PP, when pretreated prior to VIP 
administration, failed to abolish VIP's inhibition 
of motor activity in concentrations as high as 10-7 
M. n = 4 for each group. 
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TABLE 7. EFFEECTS OF LPNPY, NPY 13-36, AND PANCREATIC POLYPEPTIDE 

ON VIP-MEDIATED INHIBITION OF CCK STIMULATED MOTILITY 

PEPTIDES 10^5. M 10-L M lO^JHM 

CCK 316+32 

CCK 10-9 M + VIP 10-8 M + LPNPY 325±25 307+65 293+61 

CCK 10-9 M + VIP 10-8 M + NPY 13-36 94+7* 103+8* 97+11* 

CCK 10-9 M + VIP 10-8 M + PP 61+22* 76+10* 84+20* 

* P < 0.05 COMPARED TO CCK (10-9M) 
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DISCUSSION 

Validation of model 

The motility patterns derived using this model of gut 

motility were similar to those obtained in other isolated 

intestinal models and indistinguishable from those seen in 

vivo in man (Fox 1985, Sarna 1989, Summers 1983). Viability 

of the preparation was confirmed by analyzing oxygen tensions 

in the arterial perfusate and venous effluents. In addition, 

hematoxylin and eosin stained sections of ileum after ninety 

minutes of perfusion demonstrated viable bowel. A direct 

correlation between intestinal transit time and contractile 

activity, as measured in the present study, cannot be made. 

Using this model system, one is able to quantitate intestinal 

smooth muscle contractility and to investigate its regulation 

by gut peptides in an intact model which preserves the 

relationship between myenteric plexus and intestinal smooth 

muscle. 

Prokinetic Agents 

CARBACHOL 

The present study demonstrated the prokinetic actions of 

carbachol in isolated perfused segments of terminal ileum. 

Carbachol, an agent which acts through Ca++-dependent 

mechanisms, generated a concentration-dependent increase in 

ileal motility. 
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In this model, we utilized a Ca++ agonist to stimulate 

phasic motor activity. Prokinetic agents produce contraction 

in smooth muscle cells by increasing intracellular levels of 

Ca++ from stores within the cell (Makhlouf 1987). Smooth 

muscle contraction is brought about when Mg2+-ATPase activity 

of actomyosin is activated in the presense of Ca++. Cross¬ 

bridging between actin and myosin chains thus results in 

smooth muscle cell contraction (Hartshorne 1987). 

CHOLECYSTOKININ 

CCK is a well characterized motility agonist in the 

ileum of several species (Amer 1972A,B). Depending on the 

species involved, it exerts its prokinetic action by either 

acetylcholine release from the myenteric plexus, a purely 

neurogenic (tetrodotoxin sensitive) mechanism. Alternatively, 

in other species CCK acts via a combination of neurogenic and 

direct, non-neurogenic (tetrodotoxin-insensitive) stimulation 

of smooth muscle receptors (Stewart 1977). CCK caused a 

concentration-dependent increase in measured motor activity. 

In this model, tetrodotoxin did not inhibit motility and even 

resulted in a slight increase in contractile activity. This 

suggests that CCK activates rabbit ileal smooth muscle by a 

direct stimulation of cell surface receptors. 
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MOTILIN 

In our study, motilin was demonstrated to possess 

significant prokinetic actions on isolated perfused segments 

of rabbit ileum. Intravenous administration of motilin was 

reported to produce contraction of the lower esophageal 

sphincter in dog (Jennewein 1973) and opossum (Gutierrez 

1977) and dog stomach (Brown 1971, Brown 1972, Cook 1974). 

Motilin has also been shown to increase action potentials of 

the antrum and duodenum in dogs (Wingate 1976). 

The primary role of motilin appears to be the 

coordination of the migrating myoelectric complex in both the 

stomach and duodenum. Phase III contractile patterns appear 

in the duodenum immediately after a similar, but not 

identical pattern, in the stomach (Tanaka 1989). This 

observation accounts for the coordination in both duodenal 

Phase III activity and gastric phase III activity in 

propelling digesta distally through the intestine. Peaks in 

plasma motilin levels have been demonstrated with the 

occurence of MMC in the stomach and duodenum (Lee 1978, 

Vantrappen 1979). In addition, administration of anti-motilin 

antibody resulted in abolished MMC activity in both the 

stomach and duodenum. 

Motilin appears to act directly on the smooth muscle 

cells of the duodenum and cause propagation of the MMC 

distally through the small intestine in a calcium-dependent 

process (Adachi 1981). The effect of motilin is greatest in 
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the duodenum where it is reported to be 100 times more potent 

than acetylcholine and in addition, more pronounced in 

duodenum than ileum (Adachi 1981). This further supports the 

concept that the duodenum is an important pacemaker in 

regulating intestinal motility. 

CAMP DEPENDENT AGENTS 

In this study we explored the role of cAMP dependent 

agents in the regulation of intestinal motility. We used for 

a model carbachol-stimulated motility in isolated perfused 

segments of rabbit terminal ileum. In this experimental 

system, carbachol, an agent which acts through Ca++-dependent 

mechanisms, generated a concentration-dependent increase in 

ileal motility. Both VIP and norepinephrine are 

neurotransmitters which are found in high concentrations in 

enteric neurons and increase intracellular levels of cAMP. 

These two agents inhibited in a concentration dependent 

manner motility stimulated by carbachol. In addition, 

forskolin which also acts through cAMP mediated mechansisms 

inhibited carbachol stimulated motility. Neuronal blockade 

with tetrodotoxin failed to block the inhibition of carbachol 

stimulated motility by norepinephrine. 

VASOACTIVE INTESTINAL PEPTIDE 

Vasoactive intestinal peptide (VIP) is a 

neurotransmitter found within the myenteric and submucosal 
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plexuses of the gut (Bitar 1982). VIP containing neurons 

project into the circular muscle layer and run parallel with 

the smooth muscle cells. VIP can hyperpolarize the smooth 

muscle cell membrane and relax tension in gastrointestinal 

circular muscle (Bishop 1983, Mahklouf 1982). In addition, 

VIP causes an increase in intracellular levels of cAMP. 

These elevated levels of cAMP cause activation of cAMP- 

dependent protein kinases which are involved in smooth muscle 

cell relaxation (Willenbucher 1992). Indeed, our results 

support previous models since VIP caused a concentration- 

dependent reversal of carbachol-stimulated phasic 

contractions. 

VIP's inhibitory action on intestinal motility is well 

characterized in the intestinal tract of many species. VIP 

neurones project into the muscle layers of the intestinal 

wall and are subject to inhibitory tone of opioid neurones. 

These in turn are inhibited by somatostatin neurones in the 

myenteric plexus. During the descending relaxation phase of 

peristalsis, somatostatin is released and this inhibits the 

opioid neurons, so releasing the restraint on VIP neurones. 

As a result VIP is released and smooth muscle relaxation 

results. This relaxation of smooth muscle is accompanied by 

an increase in cAMP levels. VIP is also a potent secretogogue 

in intestinal mucosa, its action likewise being mediated by 

the second messenger cAMP. Inhibition of motility 

demonstrated in the present study was dose dependent and 
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reversible after stopping the VIP infusion, when motility 

returned to previous levels. These findings point to a 

physiological inhibition of smooth muscle contraction. 

NOREPINEPHRINE 

In the gut, norepinephrine is found in high 

concentrations in postganglionic sympathetic neurons. It is 

thought to act on intramural ganglia of the gut and blood 

vessels (Burks 1987). Adrenergic fibers which contain 

norepinephrine are also known to synapse directly with smooth 

muscle cells. Binding of beta-adrenergic receptors by 

norepinephrine activates adenylate cyclase with subsequent 

increases in intracellular concentrations of cAMP. In our 

study, norepinephrine caused a concentration-dependent 

decrease in carbachol-stimulated motor activity. This 

observation supports the classical model of tonic opposition 

of the parasympathetic system by the sympathetic nervous 

system. 

FORSKOLIN 

Forskolin, a diterpene from the roots of Coleus 

forskohlii, (Bhatt 1977) is a known activator of adenylate 

cyclase with subsequent activation of cAMP-generating systems 

within the cell (Seamon 1981). Forskolin does not appear to 

activate adenylate cyclase by interaction with cell-surface 

receptors (Seamon 1981) but rather through direct activation 
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of the catalytic subunit of the adenylate cyclase enzyme 

complex (Rodbell 1980). As with norepinephrine and VIP, 

forskolin caused a concentration-dependent inhibition of 

carbachol-stimulated phasic contraction. These results 

suggest that inhibition of motility may be a characteristic 

shared by a broad class of agents which stimulate adenylate 

cyclase activity. 

More than one mechanism may be involved in relaxation of 

smooth muscle which is mediated by cAMP. Among those invoked 

is mobilization of Ca++ into intracellular stores and/or 

inhibition of the activity of CaWcalmodulin-dependent myosin 

light chain kinase (Hartshorne 1987). Additionally, it has 

been suggested that cAMP modulates the sensitivity of the 

contractile apparatus to existing concentrations of calcium 

(Kamm 1989) as well as inhibition of phosphoinositol 

hydrolysis (Hall 1989, Kim 1989). Scheid proposed that cAMP 

enhanced Na+/K+ transport and induce relaxation. Stimulation 

of this transport induces relaxation through enhanced Na+/Ca++ 

exchange (Scheid 1979). 

In conclusion, this study indicates that regulatory 

agents which act through cAMP dependent mechanisms inhibit 

carbachol stimulated motility in isolated segments of 

terminal ileum and suggests that these agents may play a role 

in the counter-regulation of calcium dependent gut motility. 

Furthermore, our results imply that pharmacologic agents 

which stimulate adenylate cyclase or lead to increased 
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intracellular levels of cAMP may be recruited to subserve 

this same role. These observations may point towards new 

avenues for the development of pharmacotherapeutic probes 

aimed at the treatment of the many disturbances of 

gastrointestinal motility which plaque Western society. 

AGENTS THAT INHIBIT INTRACELLULAR CAMP FORMATION 

PYY AND NPY 

PYY is stored in mucosal "1" cells, principally in the 

colon, and is released in response to a variety of stimuli 

including bile salts and short chain fatty acids. Blood and 

tissue levels of PYY are increased in many diarrheal states 

and short bowel syndrome. In vivo, PYY inhibits myoelectrical 

and peristaltic activity in the small intestine. Evidence 

exists to support the concept that PYY causes a compensatory 

slowing of gut motility in rapid transit states such as 

celiac disease and short bowel syndrome. PYY shares 70% 

sequence homology with neurotransmitter, Neuropeptide Y 

(NPY). Both NPY and PYY have essentially the same biological 

activities although PYY is more potent in many biological 

systems. Centrally, NPY is involved with control of circadian 

rhythm, memory and food ingestion. Peripherally, NPY is a 

potent modulator of gut epithelial ion transport. Based on 

findings in Human Erythroleukemic cell Lines (HEL), two 

receptor subtypes have been proposed for NPY: Yx and Y2. Y2 

represents the predominant receptor in the central nervous 
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system and is the major presynaptic receptor. Yi and Y2 

receptors occur in both pre- and post- synaptic locations. 

Specific agonists have been synthesised for Y3 and Y2 

receptors; The specific agonist at Y4 receptors is the analog 

[Leu31, Pro34]NPY, and Y2 agonist is the C-terminal fragment of 

NPY, NPY(13-36). 

In addition, scientists have recently identified two new 

receptors, designated Y3 and Y4 (Wahlestedt 1992, Ballantyne 

1993). The Y3 receptor shows affinity for NPY but not PYY. 

The Y4 receptor is characterized by having equal affinity for 

NPY, PYY and pancreatic polypeptide. 

Several previous studies have described an inhibitory 

role of PYY on CCK stimulated gut motility in the rat. This 

has been put forward as an explanation of PYY1s slowing 

action on gut transit in diarrheal states. In the present 

rabbit model, neither PYY nor NPY inhibited CCK stimulated 

motility. In separate studies we were unable to demonstrate 

inhibition of carbachol stimulated motility by PYY at 

physiological concentrations in the isolated perfused rabbit 

model. 

The present findings of PYY and NPY’s reversal of VIP 

mediated inhibition of intestinal motility indicate that PYY 

and NPY may inhibit intestinal transit by abolishing VIP 

mediated descending inhibition. The results reported here 

indicate that this is mediated by post synaptic (Y3) 
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receptors. It is of interest that both VIP and CCK (in the 

present model) also act at a post synaptic location. 

In colonic mucosa, VIP-stimulated ion transport is 

inhibited by both PYY and NPY. This is due to a lowering of 

VIP-stimulated increase in cAMP levels. In the same isolated 

perfused colon model we have previously demonstrated PYY- 

stimulated release of VIP, which may represent an example of 

feed-back inhibition of VIP-stimulated mucosal ion transport. 

Other studies have demonstrated CCK-stimulated release of VIP 

from intestinal mucosa. These studies, together with the 

present findings demonstrate a close resemblance between 

regulation of gut secretion and control of gut motility. 

Stimulants of mucosal secretion (VIP) inhibit gut motility 

and conversely, antagonists of secretion (PYY and NPY) 

reverse VIP's inhibition of motility. 

The integration of PYY and NPY's inhibition of VIP into 

the current model of gut motility is a new concept. A wave of 

relaxation (descending inhibition), mediated by VIP release, 

precedes a bolus traveling along the gut. Orad to the bolus, 

a wave of contraction (ascending contraction) is mediated by 

cholinergic neurones. The present study demonstrates PYY and 

NPY inhibit VIP mediated relaxation. Prevention of descending 

relaxation may inhibit the coordinated distal propagation of 

gut contents. This provides a mechanism for PYY1s known 

action of slowing intestinal transit. Two important points 

emerge from the present study; first the demonstration of the 
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parallel control of gut secretion and motility and; second, 

possible mechanism to explain PYY's slowing of intestinal 

transit. 
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