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Abstract 

MITOMYCIN C : AN ANALYSIS OF ITS CYTOTOXICITY THROUGH 

STUDIES USING AN ANALOGUE DECARBAMOYL MITOMYCIN C 

Susie Young Kim 

Yale University 

1994 

Hypoxic regions in solid neoplasms have been associated with tumor recurrence 

and resistance to various forms of cancer treatment, including radiation therapy. Various 

strategies have been designed to target radioresistant cells, including the use of the 

bioreductive alkylating agent mitomycin C [MC], which has been shown to exert 

preferential cytotoxicity under hypoxic conditions in some cell lines. Analyses of the 

chemical mechanism of action of MC indicate that this drug can form cross-links with 

DNA, and it is currently thought that the bisadduct is the critical lesion responsible for the 

inhibition of DNA synthesis. Computer-generated models indicate that the MC adduct can 

fit snuggly into the minor groove of B-DNA, suggesting that it does not impose major 

distortion to the structure of the DNA molecule. Based on these observations, how can we 

explain the ability of MC to disrupt DNA synthesis as well as to exhibit preferential toxicity 

to hypoxic cells? 

Numerous studies on MC have been performed in both chemical and biochemical 

systems. Several analogues of MC have also been the subject of research. In order to gain 

additional insight regarding the role of cross-linkage in the production of cytotoxicity, the 

analogue decarbamoyl mitomycin C [DMC] has been studied. DMC is structurally identical 





to MC except for the replacement of the carbamoyl group at the C-10" position by a 

nonalkyating hydroxyl group. This structural alteration would be expected to result in 

functional changes which would prevent DMC from forming bisadducts with DNA. 

Chemical studies reveal that at least in chemical systems, DMC can produce only 

monoadducts. If indeed it is the MC-DNA cross-links which kill cells, it would be 

expected that DMC would produce less cytotoxicity than MC. Interestingly enough, results 

from tissue culture experiments suggest that DMC is at least as toxic as MC to the EMT6 

mouse mammary tumor and to the wild type AA8 Chinese hamster ovary [CHO] cell lines. 

To further investigate the cytotoxic nature of DMC, experiments were conducted 

using mutant CHO lines which have specific deficiencies in DNA repair. The UV4 and 

UV5 lines, which are hypersensitive to bulky monoadducts and crosslinks, were chosen to 

help delineate DMC's ability to produce cytotoxicity in these mutant phenotypes. The data 

revealed similar results for DMC and MC treatments, suggesting that in these biological 

systems DMC has a pattern of cytotoxicity and a potency that are similar to those of its 

parent compound mitomycin C. These observations strongly suggest that although 

crosslink formation by MC may partially account for its cytotoxicity, there may be another 

product, possibly a monoadduct that is generated by both DMC and MC, which also 

contributes to the antitumor activity exhibited by the two compounds. 
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Introduction 

The intimate relationship that is found in normal tissues between cells and their 

microenvironment is disrupted in solid neoplasms. Tumors are often characterized by 

abnormalities in blood flow, tissue oxygenation, nutrient supply, environmental pH, and 

bioenergetic status (Vaupel, 1989). A major focus of cancer research today relates to 

understanding the alterations which result from the malignant transformation of cells and 

the mechanisms by which neoplastic growth can be manipulated. Considerable research 

has been devoted to identifying characteristics that are unique to malignant cells which can 

then be exploited in selective antineoplastic therapy. 

The purpose of this thesis is to examine in detail one mode of attacking solid 

neoplasms. The experiments that have been performed relate to investigation of a class of 

alkylating agents called mitomycins, an unusual group of antibiotics which are capable of 

mono- and bi-functional DNA alkylation. I was interested in analyzing the mechanism of 

action of the mitomycins at the molecular level. To carry out this research, an analogue of 

mitomycin C [MC], decarbamoyl mitomycin C [DMC], was studied extensively through 

tissue culture experiments under aerobic and hypoxic conditions. This compound was first 

examined using the EMT6 mouse mammary cell line. Currently the cytotoxicity of 

mitomycin C is attributed mainly to its ability to crosslink DNA and thereby inhibit DNA 

synthesis. Since DMC possesses only one of the two proposed alkyating sites in MC, 

DMC was expected to produce less cell kill; the results, however, do not support this 

hypothesis. In order to study how the toxicity of DMC might be related to the DNA lesions 

it creates, further investigation was performed using Chinese hamster ovary [CHO] cell 

lines having various deficiencies in DNA repair. A discussion of possible explanations for 
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the ability of DMC to exert cytotoxic effects will follow the presentation of the experimental 

data. 

The remainder of the introduction will review topics pertinent to the research that 

will be presented. First, I will discuss hypoxia in solid tumors and its role in conferring 

radioresistance, the effects of hypoxia on radiotherapy, and the acidic environment that is 

characteristic of many tumor tissues. I will then review the concept of bioreductive agents 

and will discuss more specifically the mitomycins. The evolution of this class of drugs will 

be presented, as well as the current understanding of how these compounds function at the 

subcellular level. The analogue decarbamoyl mitomycin C will be described and discussed 

in further detail, since the focus of my research is centered around this molecule. 

Hypoxia in Solid Tumors 

With the advent of hybridoma technology and genetic engineering, a number of 

novel therapeutic agents have been developed. These include monoclonal antibodies 

conjugated with radionuclides, toxins, cytokines, enzymes, effector antibodies, 

immunotoxins, lymphocyte activated killer cells, and tumor infiltrating lymphocytes (Jain, 

1989). Yet these modalities face the same problem that has already confronted the existing 

chemotherapeutic drugs, namely inadequate penetration of these agents to malignant cells. 

Interestingly, it has been observed that most forms of cancer therapy are affected in some 

way by the poor vasculature that has been found to be associated with solid tumors 

(Denekamp, 1993, 1991, 1990). 
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In order for an anti-cancer agent to reach neoplastic cells, it must first enter the 

tumor circulation. Gullino and Grantham hypothesized in 1962 that the tumor vasculature 

consists of vessels recruited from the pre-existing network of the host vasculature as well 

as vessels resulting from the angiogenic response to cancer cells (Gullino & Grantham, 

1962). However, a key structural difference between normal and tumor vessels is that the 

latter are dilated, saccular, and tortuous, often containing tumor cells within the endothelial 

lining of the vessel wall (Jain, 1989; Jain, 1988). Also characteristic of the neoplastic 

process is that cells within these vessels proliferate at a slower rate than the rapidly dividing 

cancer cells. In addition, blood flow rates near the necrotic regions of tumors have been 

found to be low, whereas blood flow rates in the non-necrotic areas are variable and often 

substantially higher than those in surrounding normal tissues (Jain, 1988). Tumors have 

been shown to possess areas of high interstitial pressure, which has been correlated with a 

reduction in tumor blood flow and subsequent development of necrosis (Jain, 1989; Jain, 

1987; Young et al., 1950). Although the mechanisms responsible for intermittent blood 

flow in tumor tissue are not entirely clear, it is speculated that causative factors include 

vessel plugging by white blood cells, rouleaux formation of circulating tumor or red blood 

cells (Jain, 1989), collapse of vessels in areas of high tumor interstitial pressure (Sevick, 

1989), and spontaneous vasomotion in incorporated host arterioles, affecting flow in 

downstream capillaries (Reinhold, 1977; Intaglietta, 1977). Consequently, the vascular 

network becomes less dense and is reduced to a degree that creates a general rarefaction of 

the vascular bed. As a result of these modifications, there is diminished oxygen transport 

capacity with progressive tumor growth, leading to regional hypoxia and anoxia, as well as 

glucose depletion, in the neoplastic tissue. These conditions have been strongly implicated 

as the cause for cytolysis, necrobiosis, and necrosis (Vaupel, 1977). 
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The presence of hypoxic cells in solid tumors was first demonstrated 

radiobiologically by Powers and Tolmach in 1963 using transplantable mouse 

lymphosarcomas (Powers & Tolmach, 1963). Further studies have demonstrated that the 

vast majority of cancer tissues possess hypoxic cells, frequently constituting 10-20% of the 

total tumor tissue population (Moulder & Rockwell, 1984). The imbalance between 

oxygen consumption and availability in solid tumors results from the abnormal vasculature 

and the absence of adequate perfusion. Heterogeneity of oxygenation within these tumors 

has been demonstrated by studies using oxygen microelectrodes, hemoglobin saturation 

measurements, cytochrome c reduction, and nuclear magnetic resonance spectroscopy 

(Moulder & Rockwell, 1990; Vaupel et al, 1981). It has also been shown that the hypoxic 

cell fractions in many transplantable rodent tumor systems increase with tumor size 

(Moulder & Rockwell, 1984). 

As a result of poor vascularization, solid tumors possess viable, oxygen-deficient 

cells of two different classes - chronically and transiently hypoxic cells (Rockwell, 1992; 

Vaupel & Thews, 1974; Thomlinson & Gray, 1955). Hypoxic cells are thought to be 

capable of proliferating and causing tumor recurrence, in part due to the protective nature of 

an oxygen-depleted environment against radiotherapy or chemotherapy. Thus the presence 

of anoxic cells in solid tumors is regarded as a major obstacle to the currently available 

treatment modalities for solid neoplasms. 
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Hypoxia and Its Effects on Radiotherapy 

In 1923, Petri noted a relationship between radiosensitivity and the presence of 

oxygen from a study of the effects of radiation on vegetable seeds. About a decade later, 

Mottram reported that marginal cells of carcinomatous cell masses are more sensitive to y - 

radiation than centrally located cells, and hypothesized that these peripherally located cells 

have a more abundant oxygen supply because of closer proximity to blood vessels, which 

renders them more radiosensitive (Mottram, 1936). Thomlinson and Gray later published 

some astonishing results which have made a great impact on studies of tumor biology. 

Their histological study of fresh specimens of human bronchial carcinoma revealed that 

avascular tumor areas with a radius of 200 p or greater possessed necrotic centers which 

were surrounded by intact tumor cells. It appeared that these tumor cells could proliferate 

and grow actively only in close proximity to a supply of oxygen or nutrients from the 

stroma. It was concluded that oxygen concentration fell off rapidly with increasing 

distance from the blood capillaries which carried an abundant supply of oxygen. Cells 

situated in the region distant from the capillaries would be relatively resistant to radiation 

treatment due to their low oxygen tension and could thus provide a focus for subsequent 

tumor regrowth (Thomlinson & Gray, 1955). 

Further evidence that hypoxic cells can be an important source for tumor regrowth 

has subsequently been obtained. Transplanted tissues from necrotic tumor regions have 

been shown to be capable of producing malignancies with a relatively high frequency 

(Goldacre & Sylven, 1962). In addition, it has been reported that fragments of the Walker 

256 carcinosarcoma which were perfused for 56 hours with medium low in oxygen grew 

as well as transplants from well-oxygenated tumor tissue (Gullino, 1968). 
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These major discoveries triggered tremendous interest in oxygen as playing a 

critical role in radiotherapy. It is now known from in vitro studies that as the oxygen 

concentration increases, cells become progressively more sensitive to radiation, until in the 

presence of oxygen tensions of 20-40 torr, radiosensitivity plateaus, with cells becoming 

about three times as sensitive as under complete anoxia (Hall, 1988). Tumors contain cells 

at low oxygen concentrations, which are resistant to radiation while normal tissues are fully 

oxygenated, and fully radiosensitive. Research therefore has been focused on efforts to 

make tumor cells more amenable to the cytotoxic effects of radiation. Initially in the early 

1960's, there was a search for compounds which mimic oxygen in sensitizing tissues to the 

effects of X-rays (Hall, 1988). Presently the problem of radioresistance is being 

approached from various angles, including the use of radiation sensitizers and protectors, 

hyperthermia, anti-angiogenesis, and the use of bioreductive agents (Horsman, 1993). 

Environmental pH 

In addition to inadequate oxygenation resulting from poor vascularization, 

inadequate nutrient supply has also been observed in solid tumors (Crabtree & Cramer, 

1934; Mottram, 1936). It is thought that due to the high metabolic rate of these rapidly 

growing tumor cells, sufficient nutrient supply cannot be maintained. As Tannock and 

Steel had initially observed, cell death appears to be closely related to blood stasis, which 

may result from occlusion of vessels by thrombi, by mechanical pressure, or by a tendency 

for vessels which supply central tumor regions to be bypassed with formation of capillary 

shunts closer to the periphery (Tannock & Steel, 1969). Consequently there is a build-up 

of lactic acid and other acidic metabolites which causes lowering of the pH. This 

acidification of the microenvironment has been shown to inhibit cell proliferation, DNA 
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synthesis, and glycolysis (Cater & Phillips, 1954). Furthermore, lowering of the pH has 

been associated with a decrease in the radiosensitivity of mammalian cells, modulation of 

the cytotoxicity of certain anticancer agents, and enhancement of the cell killing effect of 

heat (Vaupel, 1989; Tannock & Rotin, 1989; Kennedy, 1987). 

In rodent tumors, the pHs measured using microelectrodes vary from 5.80 to 7.52, 

and both intratumor and intertumor heterogeneity have been observed (Wike-Hooley et al., 

1984). Similar measurements made on the EMT6 tumors have demonstrated regional 

heterogeneity in pH, with values ranging from 5.8 to 7.6 (Rockwell et al., 1991). Studies 

on human tissue have shown that while normal human tissue usually has pH values 

between 7.0 and 7.4, human tumors can exhibit pH values as low as 6.15 (Vaupel, 1989; 

Wike-Hooley etal., 1984). 

Bioreductive Alkylating Agents 

In the 1930's, anaerobic cultures of microbes revealed that as cultures under either 

aerobic or anaerobic conditions grow and became more crowded, the redox potential of the 

microbial cultures decreases (Hewitt, 1936; Porter, 1964). By analogy, it has been 

hypothesized that hypoxic cells remote from the vasculature of a tumor mass might have a 

greater capacity for reductive reactions than their normal well-oxygenated counterparts 

(Kennedy, 1980), and therefore may be more sensitive to bioreductive alkylating agents 

(Sartorelli, 1988). 

Two classes of agents are presently known to exhibit preferential cytotoxicity 

toward hypoxic cells through reductive activation: the quinone bioreductive alkylating 
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agents such as mitomycin C [MC], BMY-42355, and EO-9, and the nitroaromatic 

heterocyclic hypoxic cell sensitizers such as misonidazole and metronidazole. The action of 

these compounds is very dependent on the microenvironment, as evidenced by the 

prerequisite of reductive activation in order to produce their cytotoxic effects (Rockwell, 

1992; Sartorelli, 1988; Kennedy et al., 1980; Moore, 1977). In a reciprocal manner, the 

cell's ability to tolerate alterations in cell physiology produced by the chemical perturbation 

will dictate the outcome of the effects of these drugs. 
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Mitomycin C : Chemical Strucure and Cytotoxic Activity 

The mitomycins, which were first isolated from Streptomyces caespitosus in 1956 

by Hata and co-workers (Hata et al, 1956), interestingly possess antimicrobial (Kinoshita 

et al., 1971) as well as antitumor activity (Crooke & Bradner, 1976). Several additional 

compounds which were subsequently isolated (Wakaki et al., 1958; De Boer et al., 1961) 

were found to be similar in structure and activity, and were therefore grouped and classified 

together as mitosanes. From this group of compounds, mitomycin C [MC] has been the 

most extensively studied. Its chemical structure was confirmed by structural analysis 

(Stevens et al., 1964) and is illustrated in Figure 1. MC possesses three major functional 

groups: the quinone, the carbamate, and the aziridine ring (Teng et al., 1969). 

Early studies on the mechanism of its action as an antibiotic revealed that MC can 

inhibit DNA synthesis in bacterial cells (Sekiguchi & Takagi, 1959; Shiba et al., 1959) and 

in mammalian cells (Sekiguchi & Takagi, 1960; Shatkin, 1962). Analysis using cesium 

chloride and cesium sulfate equilibrium density centrifugation enabled Iyer and Szybalski to 

hypothesize that inhibition of DNA synthesis by MC resulted from the cross-linking of 

complimentary strands of DNA (Iyer & Syzbalski, 1963). It has been demonstrated that 

MC is not active in its quinone form, but requires activation by enzymatic or chemical 

reduction (Iyer & Szybalski, 1963), or by mild acidic treatment (Tomasz, 1979). It is only 

after activation that MC can alkylate DNA to yield both mono- and bi-functional convalent 

adducts; because of this unique mechanism of action, MC has been referred to as the 

prototype bioreductive alkylating agent (Sartorelli, 1988). 
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FIGURE 1. The Chemical Structure of Mitomycin C 

Mitomycin C possesses three major functional groups: the quinone, the carbamate, and the 

aziridine ring. The drug is not active in the quinone form, but must first undergo 

bioreductive activation. Analogues of mitomycin C which have alterations in one or more 

of these functional groups, such as decarbamoyl mitomycin C, have been analyzed in order 

to facilitate in elucidating the mechanism of action of this compound. 
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Upon further analysis of its cytotoxic effects, it has also been demonstrated that MC 

creates single-strand breaks in bacterial DNA (Otsuji & Murayama, 1972). Investigation 

on mammalian DNA by alkaline elution, however, has not shown that single-strand or 

double-strand breaks are produced, which suggests that MC does not kill mammalian cells 

by generating oxygen free radicals, but instead acts primarily by alkylation when used 

within the pharmacological range (Dorr et al, 1985; Pristos, 1986). Although these 

conclusions may appear contradictory, MC could actually exert its toxicity via two differed 

mechanisms (Kennedy et al, 1981; Satorelli, 1988). First is its oxygen-dependent 

toxicity, which is proposed to occur by cyclic one-electron reduction of MC followed by 

oxidation by molecular oxygen to produce the original MC molecule and a superoxide 

radical (Bachur et al, 1978, 1979). The second mechanism is thought to involve 

bioreductive activation of the MC molecule to a highly reactive bifunctional alkylating 

species (Iyer & Szybalski, 1963, 1964). Further investigation on the molecular damage 

produced by MC has been performed by analysis of mutations at the hprt locus of Chinese 

hamster V79 cells induced by MC (Davies, 1993); these experiments revealed that MC can 

produce total, partial, and point deletions on the hprt gene, suggesting that, at the molecular 

level, the alterations created by MC are possibly multilocus deletions. 

The increased sensitivity to MC of hypoxic cells over their oxygenated counterparts 

has been attributed to the fact that oxygen decreases the formation of the reduced 

intermediate responsible for the production of what is presently considered to be the 

primary cytotoxic lesion, namely the cross-linking of DNA (Sartorelli, 1988). With the 

knowledge that some solid tumors contain hypoxic regions resistant to radiation, this 

concept of using this preferential cytotoxicity to hypoxic cells has since been applied by 

combining MC and radiotherapy (Rockwell, 1993, 1992). The ability of the mitomycin 

antibiotics to eradicate hypoxic cells in solid tumors has been noted in well-established 

implants of the EMT6 mammary sarcoma in BALB/c mice (Keyes et al, 1985; Rockwell, 





1983; Teicher et al., 1981; Kennedy et al., 1981; Kennedy et al., 1980). Cell culture 

experiments on the effects of MC combined with radiation have produced data which 

indicate that the shape of the MC survival curve is not changed by irradiation, nor does the 

addition of MC alter the shoulder or slope of the radiation dose-response curve. Hence in 

vitro studies suggest that mitomycin C does not sensitize EMT6 cells to X-irradiation, and 

that these two modalities behave in an additive fashion (Rockwell et al., 1985; Rockwell, 

1982). 

Studies on mitomycin C have been conducted under a number of conditions, 

including several chemical and biochemical systems, and cell cultures derived from normal 

and malignant tissues from humans and animals, as well as tumors and normal tissues of 

experimental rodents. Clinical trials on patients with various malignancies have also been 

conducted with MC and with another one of its analogues, porfiromycin. Although data 

generated from these various experiments provide useful information, interpretations must 

be made with caution, since each system possesses intrinsic differences which may 

influence the results. 

Mitomycin C : Bioreductive Activation 

In order to produce cytotoxicity, mitomycin C must first undergo activation (Lin et 

al., 1972; Schwartz et al, 1963). The C-l and C-10 positions of the compound (refer to 

Figure 1) are considered to be masked alkylating functions which become allylic, and hence 

activated, upon reduction of the quinone system (Tomasz et al., 1988a). Previous studies 

have shown that enzymatic systems which activate these quinones and produce oxygen 

radicals include the NADPH-cytochrome c reductase, xanthine oxidase, and intact 





mitochondria (Pristos & Sartorelli, 1986). Activation apparently occurs either via a one- 

electron reduction to produce a semiquinone or via a two-electron reduction to form a 

hydroquinone (Patrick et al., 1964). In the mammalian system, the anaerobic metabolism 

of MC has been shown to be increased two-fold by the addition of cytochrome P-450 to the 

NADPH-cytochrome c reductase reaction mixture; it is thought that this action results from 

modulation of the activity of NADPH-cytochrome c reductase by the cytochrome P-450 

(Sartorelli, 1988). 

Figure 2 illustrates possible mechanisms by which MC undergoes activation. In 

1966, Murakami (1966) postulated that one-electron reduction of the mitomycins to the 

semiquinones was important for DNA cross-linking. This creates a structural change in the 

nucleotide bases corresponding to their tautomeric isomers, particularly for cytosine and for 

guanine as compared to thymine and to adenine. It has been suggested that the 

semiquinone form is the active intermediate which cross-links the O6 position of guanine 

and the N-4 of cytosine to the N-4 and 0-5 of mitomycin. Other investigators have 

supported the existence of the semiquinone form with direct evidence by esr spectroscopy 

and by electron paramagnetic resonance spectrometry (Patrick et al., 1964; Nagata & 

Matsuyama, 1969; Lown et al., 1978; Bachur et al., 1979; Kalyanaraman et al., 1980). 

Furthermore, it has been proposed that following the single-electron reduction, reoxidation 

of MC may occur in the presence of oxygen to generate a superoxide radical, which may 

dismute to hydrogen peroxide and to other radicals known to be cytotoxic (Fridovich, 

1972). There is also evidence supporting the two-electron reduction of the mitomycins 

(Workman & Stratford, 1993; Patrick et al., 1964; Iyer & Szybalski, 1964). Studies from 

tissue culture experiments support the fact that the oxygen radicals may contribute to the 

aerobic cytotoxicities of some mitomycins (Pristos et al., 1989) but do not explain the 

enhanced cytotoxicity of these drugs under hypoxic conditions (Rockwell et al., 1982). 
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FIGURE 2. Possible Mechanisms for the Activation of Mitomycin C 

Mitomycin C is initially reduced and alkylated to yield a monoadduct species 8". This 

intermediate subsequently enters one of two pathways. The monofunctional activation 

pathway is taken via electron transfer to unreacted MC, which occurs predominantly when 

the reduction rate is slow. The bifunctional pathway is taken via retro-Michael elimination 

of the C-10" carbamate to yield end products designated 7 and 9. Chemical studies 

suggest that reduction kinetics, rather than redox potentials, as the critical factor in 

determining the pathway for the activation of mitomycin C. (Reprinted with permission, 

Tomasz etal., 1988). 
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Additional studies have suggested that the binding of MC to DNA is more 

dependent upon the semiquione form of the activated compound than upon the 

hydroquinone (Tomasz et ai, 1974). More recently, it has been observed that MC can also 

be activated solely by an acidic environment, an interesting observation in regal'd to the fact 

that lower pHs have been noted in many tumor tissues relative to normal tissue (Tomasz, 

1979). 

Mitomycin C : Mechanism of Action 

The mechanism of action of MC has been investigated since the 1960's, when Iyer 

& Szybalski proposed both mono- and bi-functional alkylation by this agent. Tomasz and 

co-workers studied the adduct formation resulting from monofunctional and bifunctional 

activation in the chemical systems by treating DNA from Micrococcus luteus with MC and 

by analyzing the adduct distribution by high performance liquid chromatography (Tomasz 

et al., 1988a,b). The proposed mechanism is diagrammed in Figure 3 and is outlined as 

follows: reduction of the quinone to the hydroquinone with elimination of the methoxy 

group, opening of the aziridine ring by an elimination process to yield a C-l quinone 

methide, nucleophilic addition of DNA to the quinone methide to give a monoalkylated 

adduct, followed by intramolecular SN2 displacement of the carbamate to form a second 

quinone methide at C-9, thereby yielding a cross-linked adduct (Moore & Czemik, 1981). 

After the sequential activation of the C-l and C-10 positions of MC, covalent bond 

formation is thought to be preceded by a noncovalent association, presumably of the 

intercalative type, between the MC semiquinone and DNA. Alkylation of DNA by MC has 

been demonstrated to be exquisitely specific, with determination of the alkylation site to be 

solely at the N2 position of guanine (Bizanek, 1993). According to these results, the ratio 







FIGURE 3. The Mechanism of Action of Mitomycin C 

The proposed mechanism of action is outlined as follows: reduction of the quinone to the 

hydroquinone with elimination of the methoxy group, opening of the aziridine ring by an 

elimination process to yield a C-l quinone methide, nucleophilic addition of DNA to the 

quinone methide to give a monoalkylated adduct, followed by intramolecular SN2 

displacement of the carbamate to form a second quinone methide at C-9, thereby yielding a 

cross-linked adduct. (Reprinted with permission, Tomasz et al, 1988). 
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of mono- to bi-functional adducts, previously determined to be in the order of 10:1 

(Tomasz et al., 1974), is largely dependent on the DNA base sequence. These 

investigators also report that the critical factor in determining this ratio appears to be 

reduction kinetics rather than redox potentials. Further analyses of MC binding to DNA 

have also suggested that the local DNA structure plays a critical role in determining the 

efficiency of cross-link formation (Basu et al., 1993; Cera & Crothers, 1989; Teng et al., 

1989). 

Iyer and Syzbalski showed that crosslinks between MC and DNA are formed and 

are stable during treatment with heat, alkali, formamide, and in a cesium chloride gradient 

(Iyer & Szybalski, 1964), but direct evidence for the existence of these complexes was not 

available for some time. There were several reasons for the difficulty in isolating the DNA- 

MC complexes, including the necessity for having to activate the compound in vitro and 

the fact that adduction of MC to DNA in vitro occurs at a rate of only one MC molecule per 

several hundred nucleotides (Weissbach & Lisio, 1965). However, the first direct proof of 

a DNA cross-link adduct with MC was reported in 1987, with isolation of two other 

adducts following immediately (Tomasz et al., 1987; Tomasz et al., 1988a,b). The 

structure of the bisadduct was determined by spectroscopic methods including proton 

magnetic resonance, differential Fourier transform infrared spectroscopy, and circular 

dichroism. Computer-generated models of the bisadduct incorporated into the center of the 

duplex synthetic B-DNA decamer d(CGTACGTACG)2 indicated the stereochemical fit of 

this adduct to be in the minor groove with minimal distortion of the DNA structure. 

Analysis of factors influencing monofunctional versus bifunctional activation again 

suggested that the critical factor is reduction kinetics, rather than reduction 

thermodynamics. There is continued evidence suggesting that one-electron reduction is 

sufficient to activate both electrophilic MC centers, at the C-l and C-10 positions. 
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The products which result from mitomycin C -DNA interaction have been identified 

in a subcellular system as 2 monoadducts and 2 bisadducts; the bisadducts reflect both 

DNA-interstrand and intrastrand crosslinks (Bizanek et al., 1992; Tomasz et al., 1988a,lr, 

Tomasz et al., 1987; Tomasz et al., 1986). Only recently have these entities been detected 

in vivo. A group in Japan has successfully synthesized [3H]-labelled MC, which was used 

by Bizanek and colleagues on EMT6 mouse mammary tumor cells in the isolation and 

identification of MC-DNA adducts in vivo (Bizanek et al., 1993). Analysis of these 

adducts indicated that the adducts found in living cells were identical to the ones which 

were previously isolated from chemical studies. 

Decarbamoyl Mitomycin C 

To further investigate the chemical mechanism of action of MC, analogues of MC 

with minor structural alterations have also been examined (Weiss et al., 1968). One of 

these is decarbamoyl mitomycin C [DMC], which differs from its parent compound in that 

the C-10" carbamate is replaced by a hydroxyl group. DMC is synthesized from MC by 

treatment with NaOH (Kinoshita et al., 1971). The structure of DMC is illustrated in 

Figure 4. 
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FIGURE 4. The Stucture of Decarbamoyl Mitomycin C 

The analogue decarbamoyl mitomycin C is structurally identical to that of MC except that 

the carbamyl group at the C-10" position of MC is substituted by a hydroxyl group, a 

nonalkylating substituent. The structure of mitomycin C is diagrammed in Figure 1. 
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Because of mounting interest in correlating the cytotoxicity of MC with its ability to 

form cross-links, its analogue DMC has been studied in various systems. Experiments 

performed on DNA from E. coli have suggested that DMC is not able to form cross-links 

(Otsuji & Murayama, 1972). The DNA lesions produced by DMC were also studied in 

Fanconi's anemia cells, as well as lymphocytes from Fanconi's anemia patients, and the 

results from alkaline sucrose profiles further support the monofunctional activity of DMC 

and its inability to form cross-links (Sasaki,1975; Fujiwara & Tatsumi, 1977). 

Further investigation was performed using the sister-chromatid exchange (SCE) 

assay, a sensitive and quantitative measure of genetic alteration which is determined by an 

increase in frequency of exchange when cells are exposed to mutagens or to carcinogens. 

Carrano and co-workers treated Chinese hamster ovary cells with either MC or with DMC 

and found that DMC was actually a more potent inducer of SCE than MC (Carrano et al., 

1979). After drug treatment, DNA samples from the cells were denatured and bound to 

hydroxyapatite chromatography; in those samples that were treated with DMC, essentially 

all radioactivity was recovered, indicating that only single-strand adducts, rather than 

double-strand crosslinks, were produced. 

The molecular reaction of DMC has also been analyzed through studies using DNA 

from Micrococcus lutueus and a chemical reduction system with sodium dithionite 

reduction. Once again DMC was observed to form strictly monoadducts from analysis of 

its products by high performance liquid chromatography (Tomasz et al., 1988). Data from 

these experiments suggest that displacement of the C-10" leaving group is a critical step in 

the bifunctional pathway, and that DMC lacks the bifunctional potential. If indeed the 

cross-linking ability of MC accounts for most of its cytotoxicity, then DMC should be less 

cytotoxic than MC. 





Materials and Methods 

Drugs 

Mitomycin C was provided without cost by Bristol Myers Squibb (Wallingford, 

CT). Lyophilized decarbamoyl mitomycin C was generously provided by Maria Tomasz 

(Department of Chemistry, Hunter College). The identity of DMC was reconfirmed by 

mass spectrophotometry at The Yale Comprehensive Cancer Center and the purity of the 

DMC sample was determined by TLC using a 5:1 mixture of acetoneichloroform solvent. 

The compounds were protected from light in order to prevent photodegradation. The drugs 

were dissolved in small volumes of sterile 70% ethanol to produce stock solutions of 

various drug concentrations which in the experiments were further diluted in culture 

medium. 

Cells 

In order to study the structure and properties of solid tumors, several model 

systems have been proposed and utilized for experimental oncology. The simplest of these 

are exponentially growing monolayer cultures of tumor cells. It has been known for some 

time that density-inhibited cultured cells (plateau phase) and populations of solid tumor 

cells in vivo share many properties. More specifically, both groups contain large fractions 

of out-of-cycle but potentially clonogenic cells which constitute a major obstacle to the 

successful treatment of many solid tumors (Hahn et al., 1968; Hahn & Little, 1972; Ray et 

al., 1973). Noncycling cells include those that cannot produce new cells and are therefore 

25 





considered to be clonogenically non-viable, as well as clonogenically viable cells, which 

can proliferate if stimulated by an environmental change. Quiescent cell populations are 

thought to occur in adequately perfused regions within tumors (Tannock, 1978), and have 

been shown to be less radiosensitive than their aerobic counterparts (Kallman et al., 1980). 

Because exponentially growing and plateau phase cultures have similar responses 

(Rockwell, 1983), only exponentially growing cultures were used in these studies. 

The development of the colony formation assay in 1955 has allowed for the 

measurement of the survival of cells treated in vitro with radiation, drugs, and other agents 

(Puck & Marcus, 1955). An ingenious system developed for experimental oncology is the 

in vivo-in vitro tumor system, which is based upon transplanted tumor cell lines that have 

been adapted to or selected for growth in cell culture. Unique to the in vivo-in vitro model 

is that it allows detailed examination of the effects of therapeutic agents on tumor cell 

populations in vivo and in vitro by colony formation assay with a quantitative precision that 

is not possible with older animal tumor models (Rockwell, 1977). This system therefore 

allows in vitro assaying of clonogenic cells suspended from tumors that are treated in vivo . 

The EMT6 in vivo-in vitro tumor system was developed by Dr. Rockwell using a 

mouse mammary tumor originally developed from mamary tumor KHJJ (Rockwell, 1977, 

1973). This system has been utilized in the past to study mitomycin C and its N-methyl 

derivative, porfiromycin [POR]. In the studies which are presented in this thesis, the first 

set of experiments analyzing MC and DMC, utilized this system. 

Further examination of the mitomycins was then performed on another set of cell 

lines derived from Chinese hamster ovary [CHO] cells. The wide use of CHO cells is 

mainly atttributed to the fact that these cells grow well and have a high plating efficiency 

(Hahn et al., 1968; Stewart et al., 1968; Hickson & Hands, 1988). To gain a better 
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understanding of the relationship between DNA damage and DNA repair, cell survival and 

mutation, a series of DNA repair-deficient mutants of Chinese hamster ovary cell lines has 

been developed and studied. The general approach in these studies has been to mutagenize 

the parent population with radiation or with an alkylating agent, to screen for isolates 

hypersensitive to a particular DNA-damaging agent, and to examine the hypersensitive 

sublines (Hickson & Harris, 1988). Hoy, Thompson, and other colleagues have identified 

DNA repair-deficient mutants from five genetic complementation groups isolated from 

Chinese hamster cells (Hoy et al., 1984; Hoy et al., 1985). From their studies they 

characterized and isolated two mutant strains with deficiencies in removal of mono- and bi¬ 

functional adducts; the UV4 mutant line has the lowest efficiency in removing cross-links, 

where the UV5 subline has intermediate efficiency. Testing of 22 different alkylating 

agents on these two mutant lines have suggested that sensitivity is determined by cross¬ 

links, and not by the monoadducts that are produced (Hoy et al., 1985). 

EMT6 mouse mammary tumor cells (suhline EMT6/Rw) 

The first set of experiments with mitomycin C IMC] and with decarbamoyl 

mitomycin C [DMC] was performed using EMT6 mouse mammary tumor cells (subline 

EMT6/Rw). Stock cultures of this line were seeded at a concentration of 1 x 106 cells and 

grown as monolayers in T-25 flasks (25 cm2 plastic tissue culture flasks. Falcon). This 

line was propagated in 10 ml of Waymouth's medium (Hazelton) which was supplemented 

with 15% fetal bovine serum (Gibco) and antibiotics (fungizone, gentamycin, penicillin, 

and streptomycin, all from Gibco). Cultures were grown in a 37°C incubator with a 

humidified atmosphere of 95% air/5% CO2. With a doubling time of 12-14 hrs (Rockwell, 

1977), these monolayers were subcultured every 3 - 4 days. 
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Chinese hamster ovary cell lines AA8. UV4. and UV5 

The next set of tissue culture experiments was on the AA8, UV4, and UV5 lines of 

Chinese hamster ovary [CHO] cells, which were obtained from Dr. Larry Thompson at 

Lawrence Livermore National Laboratory. Stock cultures of these lines were seeded at a 

concentration of 1 x 104 cells and grown as monolayers in T-25 flasks (25 cm2 plastic 

tissue culture flasks. Falcon). These lines were propagated in 10 ml of alpha-Minimum 

Essential Medium (a-MEM, Gibco) which was supplemented with 10% fetal bovine serum 

and antibiotics (fungizone, gentamycin, penicillin, and streptomycin, all from Gibco). 

Stock cultures were subcultured every 7 days and were grown in a 37°C incubator in a 

humidified atmosphere of 95% air/5% CO2. The doubling time of these monolayers was 

20 hours. 

Cell Culture Studies 

In setting up cells for the experiments which compared the sensitivity of fully 

aerobic and fully hypoxic cells in vitro to the drugs, the monolayers were washed with 5 

ml of 0.05% trypsin followed by trypsinization with 5 ml of the trypsin for about 10 

minutes. The proteolytic action of the enzyme was then neutralized with 5 ml of serum- 

supplemented medium, Waymouth for the EMT6 cells and a-MEM for the CHO cell lines. 

Cells were gently pipetted into single-cell suspensions and were counted using a Coutler 

Counter Model ZBI (Rockwell, 1977). Cultures were set up by plating 2 x 105 cells into 

glass milk dilution bottles; these flasks also contained 10 ml medium which had been pre¬ 

equilibrated for at least one hour in a 37°C humidified incubator to attain optimal pH and 

temperature for cell growth. Once the cells were seeded, they were allowed to grow for 3- 
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4 days in a humidified atmosphere of 95% air/5% CO2 at 37°C. On the day of drug 

treatment, the medium was replaced with 5 ml of fresh medium (Waymouth for the EMT6 

cells and a-MEM for the CHO cell lines). At this point, the flasks were divided into 2 

groups, one exposed to the drug in an aerobic environment and the other treated under 

hypoxic conditions. 

The hypoxic apparatus was set up such that a gas mixture of 95%N2/5%C02 

(containing < 10 ppm O2) was warmed and humidified by bubbling through a Corning 

humidifier containing degassed H2O. To eliminate all oxygen in the hypoxic apparatus, the 

system was flushed with the N2/CO2 gas mixture for one hour before treatment of the 

cultures. 

When the cultures were to be exposed to the hypoxic environment, the caps on the 

flasks were removed and the glass bottles were stoppered with tight-fitting rubber sleeves. 

One 13-gauge and one 18 gauge needle were inserted through the septum of each rubber 

stopper. The humidified mixture of 95%N2/5%C02 was made to flow through the flasks 

by attaching the plastic tubing of the hypoxic system to the 13 gauge needle as previously 

described (Kennedy, 1980; Rockwell, 1988). In this system, outflow from the gassed 

flasks was through 18-gauge needles connected to rubber tubing whose ends were 

submerged in degassed H2O. This allowed visual monitoring of gas flow by continuous 

bubbling of H2O, and it also prevented backflow of air into the culture flasks. Previous 

studies have shown that this method produces severe hypoxia after 1 hour (Kennedy, 

1980; Rockwell, 1988). Cultures for the experiments presented in this thesis were gassed 

with N2/CO2 for 2 hours prior to drug treatment. 

The cell cultures were treated with graded doses of drug for 1 hr. Cells which were 

exposed to the aerobic environment were treated with the drug at 37°C. To treat the 
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cultures in hypoxia, the drugs at various concentrations were injected through the septums 

of the rubber stoppers while maintaining an anaerobic environment; this procedure did not 

introduce sufficient oxygen to alter the radiosensitivity of the hypoxic cells and did not alter 

the pH of the culture medium (Rockwell, 1988). 

At the end of the drug treatment, the medium which contained the drug was 

removed, and the cells were washed with 5 ml of 0.05% trypsin and trypsinized with 5 ml 

of the trypsin for about 10 minutes. Following neutralization with 5 ml of medium, the 

single cell suspension was then counted on the Coulter Counter Model ZB I (Rockwell, 

1977). Three to four dilutions were made and plated at low densities in quadruplicate in 60 

mm2 plastic tissue culture dishes (Costar). These dishes contained 5 ml medium which had 

been pre-equilibrated in a 37°C incubator overnight. After plating, the culture dishes were 

returned to the 37°C incubator for colony formation assay to assess cell viability. 

Cell Survival Studies 

The EMT6 cell culture experiments were incubated for 14 days and the CHO cell 

lines for 7 days at 37°C to allow viable cells to grow into macroscopic colonies. On day 14 

and day 7 for the EMT6 and CHO cell line experiments, respectively, the growth medium 

was removed and the cultures were washed with 0.9% saline solution. The colonies were 

fixed and stained for 20 minutes with a solution of crystal violet in formyl methanol. Only 

colonies containing more than 40 cells were counted; the number of colonies per plate was 

calculated from the average of the colony counts of the set of four dishes that had been 

seeded in quadruplicate. Surviving fractions for treated cultures were calculated using 

plating efficiencies of untreated controls assayed on the same day. Vehicle-treated controls. 
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subjected to all of the experimental conditions and treated with maximal concentrations of 

sterile 70% ethanol, were also included in each experiment and were used to assess and to 

correct for any cytotoxic effects from the experimental manipulations. 





Results 

The effects of mitomycin C [MC] and decarbamoyl mitomycin C [DMC] were 

examined under hypoxic and aerobic conditions using the EMT6 cell line, and subsequently 

the Chinese hamster ovary cell lines AA8, UV4, and UV5. Survival curves were generated 

in order to: (1) compare the cytotoxicity of DMC to the various cell lines, (2) evaluate the 

relative cytotoxicity of DMC to aerobic and hypoxic cells, and (3) compare the cytotoxicity 

of DMC to that of its parent compound MC. All of the studies using DMC were performed 

under similar conditions, with one hour drug treatments at varying drug concentrations. 

Although the major focus of this thesis is on the analysis of the effects of DMC on cell lines 

deficient in DNA cross-linkage repair, data from these studies can also be used to compare 

the cytotoxicity of DMC with the effects of the other mitomycins. Previous studies on the 

MC toxicity in some CHO cell lines have analyzed MC at a given drug concentration with 

different times of drug exposure, and the results are reprinted in this thesis with permission 

(Hughes et al„ 1991). Although the experimental design differs slightly from the studies 

conducted for this thesis, comparisons can be made with previous results given the fact that 

antecedent studies have demonstrated that the most important parameter in determining the 

overall cytotoxicity of MC is the concentration times the duration of drug exposure 

(Hughes et al., 1991; Marshall & Rauth, 1988). 

Effects of MC and DMC on EMT6 Cells 

The results from exposure of EMT6 cells to DMC under aerobic and hypoxic 

conditions at the time of drug exposure are graphed in Figure 5. Figure 6 compares the 

response of the EMT6 cells to MC and to DMC under aerobic and hypoxic conditions at the 







FIGURE 5. Survival of EMT6 Cells After Treatment With DMC Under 

Aerobic and Hypoxic Conditions. The EMT6 cell line was exposed to one hour drug 

treatment with DMC at various concentrations. Each point represents the mean of three to 

five independent determinations +/- SEMs (standard errors of the mean). Key: closed 

circles represent aerobic conditions, and open circles represent hypoxic conditions. 
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FIGURE 6. Survival of EMT6 Cells After Treatment With MC and DMC 

Under Aerobic and Hypoxic Conditions. Each point represents the mean from two 

to five independent determinations. SEMs are shown for points based on three or more 

determinations. Key: closed symbols represent aerobic conditions and open symbols 

represent hypoxic conditions. The triangles repesent MC treatment and the circles represent 

DMC treatment. 
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time of drug exposure. Data obtained from treatment of this cell line with MC in these 

experiments are similar to those reported in earlier studies (Kennedy et ah, 1980, Keyes et 

ah, 1984, 1985; Rockwell, 1983, 1986). The toxicity of DMC is surprisingly similar to 

that of MC, as suggested by the similarity in the survival curves. Furthermore, both 

compounds appear to confer preferential cytotoxicity towards hypoxic cells. 

The Effects of MC and DMC on the CHO Cell Lines 

Because the identity of the toxic lesion(s) could potentially vary with the cell line 

and the cellular environment (Keyes et ah, 1984, 1985 a,b\ Lown et ah, 1976; Tomasz, 

1979; Underberg & Lingeman, 1983), MC and DMC were also tested on another cell line, 

the Chinese Hamster Ovary [CHO] cell line AA8. This particular CHO cell line was 

chosen due to the availability of several mutant sub-strains which possess specific defects 

in DNA repair (Hoy 1984; Hoy et ah, 1985). The AA8 cell line was therefore an important 

system to study, because comparisons between AA8 and the mutant strains would facilitate 

in elucidating the cytotoxic lesions that are produced by DMC and MC. Figure 7 shows 

the results from treatment of the wild type AA8 CHO line with DMC under aerobic and 

hypoxic conditions. In comparing the data from the AA8 line with those from the EMT6 

cells (see Figure 6), the cytotoxic effects of DMC appear to be similar on both cell lines. 

The effects of MC on the AA8 cell line are graphed in Figure 8 with permission. 

Comparing the graphs in Figures 7 and 8 suggest that MC and DMC have similar effects on 

the AA8 cell line. 
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FIGURE 7. Survival of AA8 Cells After Treatment With DMC Under 

Aerobic and Hypoxic Conditions. The AA8 cell line was exposed to one hour drug 

treatment with DMC at various concentrations. Each point represents the mean from two to 

five independent determinations +/- SEMs. Key: closed circles represent aerobic 

conditions, and open circles represent hypoxic conditions. 
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FIGURE 8. Survival of AA8 Cells After Treatment With MC Under 

Aerobic and Hypoxic Conditions. The AA8 cell line was exposed to one hour drug 

treatment with MC at various concentration. Each point represents the mean of three to five 

independent determinations +/- SEMs. Key: filled triangles represent aerobic conditions, 

and unfilled triangles represent hypoxic conditions. 
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The DNA repair-deficient sub-strains UV4 and UV5, derived from the AA8 line, 

were used to examine more closely the cross-linking ability of the mitomycins. Results 

from treating the UV4 mutant line with DMC are shown in Figure 9, and results from 

treatment with MC are presented in Figure 12. Data from treatment with MC have been 

reprinted with permission from Dr. Christine Hughes (Hughes et al., 1991). Previous 

studies indicate that the UV4 strain is very sensitive to MC under aerobic and hypoxic 

conditions. The current results suggest that DMC exerts cytotoxicity similar to that of MC 

on the UV4 cells. However, the sensitivity of these cells to DMC is more pronounced 

under hypoxic conditions. It should be noted that the concentrations of both MC and DMC 

used to treat the UV4 line were diluted 10-fold lower than the concentrations to which the 

wild type cells were exposed. 







FIGURE 9. Survival of UV4 Cells After Treatment With DMC Under 

Aerobic and Hypoxic Conditions. The UV4 cell line was exposed to one hour drug 

treatment with DMC at various concentrations. Each point represents the mean of two to 

four independent determinations. SEMs are shown for points based on three or more 

determinations. Key: filled squares represent aerobic conditions and unfilled squares 

represent hypoxic conditions. 
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DMC was tested on the other DNA repair-deficient mutant line, UV5, and the results are 

graphed in Figure 10. Data from treatment of this mutant strain with MC are reprinted in 

Figure 12 for comparison (Hughes et ai, 1991). Previous studies with MC on the UV5 

line indicate intermediate sensitivity to the effects of this alkylating agent, and futhermore 

no real differential toxicity between drug exposure under aerobic or hypoxic conditions has 

been observed. Interesingly enough, DMC also appears to exert intermediate cytotoxic 

effects on this particular mutant strain, with no obvious preferential hypoxic cell kill. The 

magnitude of the hypoxic/oxic differential for both MC and DMC thus appears to be much 

lower in the UV5 line than in the AA8 and UV4 lines. 
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FIGURE 10. Survival of UV5 Cells After Treatment With DMC Under 

Aerobic and Hypoxic Conditions. The UV5 cell line was exposed to one hour drug 

treatment with DMC at various concentrations. Each point represent the mean of two to 

five independent determinations. SEMs are shown for points based on three or more 

determinations. Key: filled diamonds represent aerobic conditions, and unfilled diamonds 

represent hypoxic conditions. 
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To facilitate the comparison of the effects of decarbamoyl mitomycin C on the mutant 

strains relative to its cytotoxicity to the AA8 cell line, the combined results from treatment 

with DMC on the AA8, UV4, and UV5 cells are graphically depicted in Figure 11. 

Similarly, the effects of MC on these same lines are illustrated in Figure 12. 
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FIGURE 11. Survival of AA8, UV4, and UV5 Cells After Treatment With 

DMC Under Aerobic and Hypoxic Conditions. Graphs from figures 7, 9, and 10 

are plotted together in order to facilitate in comparing the effects of DMC on the wild type 

AA8 cell line to its effects on the mutant lines UV4 and UV5. Key: open symbols 

represent aerobic conditions, and closed symbols represent hypoxic conditions. 
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FIGURE 12. Survival of AA8, UV4, and UV5 Cells After Treatment With 

MC Under Aerobic and Hypoxic Conditions. The effects of MC on the CHO line 

AA8 and on its substrains UV4 and UV5 are represented in this graph. Key: open symbols 

represent aerobic conditions, and filled symbols represent hypoxic conditions. The data on 

the UV4 and UV5 lines are reprinted from Hughes et al, 1991. 
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Chemical Analysis of the Compound DMC 

DMC was chemically synthesized from mitomycin C, and the purity of the sample 

was analyzed by mass spectrophotometry and by thin-layer chromatography [TLC]. Using 

the electrospray method, the mass spectrophotometry readout indicated a peak at 262 

consistent with the molecular weight of DMC. There were two other peaks of much higher 

molecular weight; these were too high to correspond to mitomycin C, but their identity 

remains unknown. One possibility is the dimerization of DMC. The major concern was 

possible contamination with MC, which would have produced a peak at 360; however, the 

results demonstrate that the sample was free of MC. The author wishes to thank Mr. 

Walter McMurray for running the sample through the mass spectrophotometer. 

Further analysis on the purity of the compound was performed by thin-layer 

chromotography. Using the solvent system containing 5:1 acteonexhloroform, the average 

Rf ratios obtained were : 6.0 for DMC, 5.5 for DMC:MC mixture, and 5.0 for MC. There 

was no evidence for MC contamination in the DMC sample. The author wishes to thank 

Dr. Juliang Zhu for helping set up the TLC system. 





Discussion 

Analysis of the effects of decarbamoyl mitomycin C on several cell lines have 

yielded intriguing results which serve as a reminder of the complex nature not only of the 

chemistry of the mitomycins but also of the cellular response to such perturbations. 

Results from these experiments, particularly those with the DNA repair-deficient CHO 

strains, provide additional insight into the action of the mitomycins. This section of the 

thesis will integrate data from the DMC experiments with the current understanding of the 

antineoplastic effects of the mitomycins. 

Decarbamoyl mitomycin C is structurally identical to mitomycin C except for its 

lack of an alkylating group at the C-10" position. A strong correlation between interstrand 

crosslinks and cytotoxicity has been observed in dose-response studies with MC on 

various cell lines (Keyes et al., 1991; Dorr, 1985; Kohn, 1981; Kinoshita el al., 1971). 

The cytotoxic effects of mitomycin C have been attributed to its ability to crosslink DNA; 

hence the analogue DMC, previously shown to be incapable of forming bisadducts in 

chemical systems, was predicted to be less cytotoxic. Results from these experiments 

performed on four cell lines, EMT6, AA8, UV4 and UV5, suggest otherwise. 

Initial experiments with DMC have been performed on the wild type EMT6 and 

AA8 strains. Comparison of survival curves for DMC with those for MC suggest that 

DMC possesses activity similar to its parent compound, and demonstrate that DMC is 

preferentially cytotoxic to hypoxic cells. Because these results came as a surprise, there 

was concern for the possibility that DMC might be contaminated with MC. The DMC 

sample utilized in the experiments was therefore verified by mass spectrophotometry and 

by TLC methods to be free of MC. The outcome of these experiments raises several 

questions. First, with the prediction that DMC is less potent than MC, how is the 
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decarbamoyl analogue able to kill cells with similar efficacy as its parent compound? Also, 

could it be that lesions other than bisadducts, i.e. monoadducts, play a significant role in 

the production of cellular toxicity? Finally, is it possible that DMC produces crosslinks in 

vivo which have yet to be identified? 

To examine the possible relationship between monoalkylation and cytotoxicity, the 

cell lines UV4 and UV5, which possess deficiencies in DNA crosslink repair, were 

exposed to DMC. The mutant CHO line UV4 lacks the ability to remove DNA crosslinks 

and bulky DNA monoadducts, whereas the UV5 strain is not capable of removing bulky 

monoadducts, but still has an intact DNA-DNA crosslink repair mechanism (Hoy, 1984, 

1985). In the studies reported here, the results with the UV4 cells suggest that this mutant 

strain is very sensitive to both MC and DMC. It should be noted that the concentrations of 

the drugs used to treat this cell line were much lower than those used to treat the wild-type 

AA8 strain. While MC appears to exert similar effects on the aerobic and hypoxic UV4 

cells, sensitivity to DMC is more pronounced under hypoxic condtions. If the assumption 

holds that DMC is not capable of forming crosslinks in DNA, the implication is that a 

monoadduct of DMC is responsible for the cytotoxicity of this compound, and that more of 

these lesions are generated under hypoxic conditions. 

The UV5 cells exhibited intermediate sensitivity towards both MC and DMC. 

Because the UV5 strain is capable of repairing crosslinks, but not removal of large 

monoadducts, the data reported here support the theory that monoadducts play an important 

role in cell killing. Its intermediate response can be interpreted as partial recovery by its 

ability to repair crosslinks. Nonetheless, the fact that both the UV4 and UV5 lines, two 

substrains which have the inability to remove bulky monoadducts, have demonstrated 

increased sensitivity to DMC when compared to the wild-type strain AA8, strongly 





suggests that another lesion, most likely a monoadduct, contributes to the lethal activity of 

the mitomycins. 

Furthermore, in these four cell lines treatments with either MC or DMC have 

resulted in similar outcomes, providing additional support for the hypothesis that the 

crosslinks themselves may not solely account for the cytotoxic nature of the mitomycins. 

In fact, after Iyer and Szybalski hypothesized that the mitomycins were bifunctionally 

masked alkylating agents, there was speculation as to whether or not the aziridine ring and 

the carbamoyl groups were essential to account for their biological activity. Kinoshita and 

colleagues have analyzed and compared the 10-acyloxy derivatives of the 

decarbamoylmitosane and decarbamoylmitosene to the mitosane and mitosene containing 

the carbamoyl group (Kinoshita et al., 1981). Their data indicate that these compounds 

exhibit substantial antibacterial activity, suggesting that the carbamoyl group at the C-10" 

position of mitomycin C is not of significance, at least with respect to the antibacterial 

activity of the compound. 

Two other research groups have reported results which further question the 

importance of the cross-linking action of the mitomycins. First, a critical experiment by 

Carrano and co-workers used Chinese hamster ovary cells to compare the ability of MC 

and DMC to induce sister-chromatid exchanges [SCEs], a sensitive and quantitative assay 

used to measure genetic alteration. DMC was actually found to be more effective than MC 

in inducing SCEs, leading to the proposal that the DNA-interstrand crosslink is not the 

major lesion responsible for inducing SCEs in CHO cells but may in fact confer lethality 

beyond that from monofunctional alkylation (Carrano et al., 1979). Doit and his 

colleagues have also investigated the relationship between interstrand crosslinks and 

cytotoxicity in dose-response studies using MC. They raise the possibility that MC's 

impressive ability to produce cross-links could potentially prevent the detection of DNA- 
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strand breaks which are produced simultaneously by mechanisms involving quinone¬ 

generated oxygen free radicals, but which are not identifiable by current methods (Dorr et 

al., 1985). 

Due to the short-lived existence of the active form of MC, the DNA-drug complex 

has been difficult to isolate. As a consequence, identification and isolation of the lesions 

produced has been done primarily through manipulation of chemical systems. In their 

earlier studies on the bifunctional alkylating ability of mitomycin C, Tomasz and co¬ 

workers found that the initial monofunctional step of DNA binding consistently occurs at 

the C-l position of MC (Tomasz et al., 1988). The bifunctional activation of MC has been 

proposed to subsequently occur at the C-10 position, and the product distribution between 

monofunctional and bifunctional adduct formation is thought to depend on the rate of 

product formation rather than on the redox potentials. Although preferential crosslinking 

by MC in hypoxia would have been an attractive model to account for the differential 

toxicity in aerobic and anaerobic environments, current studies in cellular systems reveal 

that fully bifunctional activation of MC can also occur under aerobic conditions (Tomaz et 

al., 1987; Chowdary & Tomasz, 1987). This further supports the possibility that, 

although MC is capable of crosslinking DNA, other entities may also produce toxic effects. 

Several adducts have successfully been isolated from additional chemical studies. 

One monoadduct, interestingly, has been reported to be common in the pathways by which 

both MC and DMC appear to exert their cytotoxic effects (Tomasz et al, 1988a,b). 

Furthermore, both DMC and MC have been shown to exhibit the same 5'-CG specificity in 

DNA interaction (Kumar et al, 1992; Tomasz et al., 1988b). Crosslinks generally have 

been considered to be more lethal than the monofunctional adducts, because crosslinkage 

results in an irreversible block to DNA replication. However, it has also been hypothesized 

that perhaps after the monoalkylation step, the specific orientation of the monoadduct. 





namely with the C-10" position extending in the 5'-direction, may be critical in inhibiting 

DNA synthesis (Kumar et al., 1992; Small et al., 1976; Mercado & Tomasz, 1972; 

Kinoshita et al., 1971). In their studies using synthetic oligonucleotides reacted with 

mitomycin C under chemical conditions which restrict MC to monofunctional alkylating 

activity, Kumar and colleagues have shown that there is site selectivity in the 

monoalkylation of guanine, particularly in the 5'-GCG sequence. It is currently thought 

that this specificity is related to thermodynamic stability. Molecular modeling has 

supported the notion of specificity in the orientation of the compound, and from these 

observations one can hypothesize that perhaps the initial alkylation of MC, which appears 

to be identical to the action of DMC, plays a more significant role in damaging the structural 

integrity of DNA than was previously thought. 

Tomasz and colleagues have recently been working with site-specifically modified 

oligonucleotides which were synthesized to contain either of the two identified MC-DNA 

monoadducts. Interestingly, their data suggest that the monoadducts of MC are strong 

enough blocks of replication to be potentially lethal lesions in vivo (Basu et al., 1993). 

Molecular modeling studies indicate that a MC monoadduct fits snuggly into the minor 

groove of the duplex B-DNA, but it has also been postulated that the unique noncovalent, 

hydrogen-bonding capacities of the mitomycin-DNA interaction creates a 

thermodynamically stable, distorted structure at the replication fork, resulting in a 

polymerase block and hence termination of DNA synthesis. More specifically, the two 

polar functional groups of the bound MC, i.e. the 2"-NH3 and 10"-carbamate, have been 

identified as the main interactive elements. Experiments on DMC reveal that its 10"-OH 

group possesses similar properties. It is now known that both MC and DMC produce a 

common monoadduct, and it is tempting to speculate that this product could in fact be 

responsible for the cytotoxicity of the mitomycins. 
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Recently, the availability of [6-CH3-3H]-mitomycin C has made it possible to 

follow the processing of MC in cellular systems. This is considered to be the most direct 

method for detecting and identifying DNA adducts formed in intact cells. The lesions that 

have been isolated, both mono- and bis-adducts, were identified to be identical to the ones 

found in the chemical systems (Bizanek et al., 1993). When radiolabelled DMC becomes 

available, this will undoubtedly aid in determining whether the lesions produced by DMC 

in cellular systems correspond to those found in chemical systems. In addition, more 

extensive comparisons can be made between the lesions produced by MC and DMC /;7 

vivo. 

It is also necessary to evaluate the biological response triggered by these structural 

modifications. One consideration is the possibility that DMC may form crosslinks in 

biological systems which have not been producible under chemical conditions. Due to the 

complex nature of the cellular environment, it is reasonable to postulate that certain cellular 

components, i.e. enzymes and cofactors, could facilitate the formation of crosslinks which 

have yet to be found with chemical reaction systems (Bizanek et al., 1993; Rockwell, 

1986). Vos and Hanawalt have developed a system, referred to as the RAGE technique, 

that can been used to detect DNA crosslinks in cellular systems. This technique has been 

utilized to study psoralen, a furocoumarin which is known to intercalate DNA and to form 

covalent adducts with pyrimidine bases when exposed to near-ultraviolet light (Vos & 

Hanawalt, 1988; Misra & Vos, 1993). After exposure of the DHFR gene in cultured 

human cells with 4'-hydroxymethyl-4,5',8-trimethylpsoralen [HMT], the DNA is rapidly 

denatured and electrophorectically separated on agarose gel. Southern hybridization is then 

performed in order to quantify the level of cross-linking in the DNA samples. This method 

is presently being modified for use in investigating the possibility of crosslink formation by 

DMC in EMT6 cells (P. Glazer, personal communication). The results of this study will. 





hopefully, provide further insight into the mechanisms by which the mitomycins produce 

their cytotoxic actions. 
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Clinical Use of Mitomycin C 

Regions within tumors have transient or persistent deprivation in perfusion, 

resulting in the development of hypoxia, acidity, and nutritional deficits (Rockwell, 1992; 

Thomlinson & Gray, 1955). It has been well established that solid tumors in experimental 

animal tumors contain hypoxic cells which limit their curability (Kennedy et al., 1980). 

Recent advancements in laboratory techniques combined with the ever increasing fund of 

knowledge have resulted in providing more direct evidence for hypoxia in solid tumors, 

particularly in human neoplasms (Rockwell, 1992). Unlike chemotherapy, which can 

confront resistance and tumor recurrence from the cytogenetic alterations produced after 

drug treatment, radiotherapy does not appear to be dramatically affected by genetic changes 

(Rockwell, 1992; Deacon et al., 1984). The cellular environment, however, does 

markedly alter neoplastic response to radiation, with hypoxia inducing resistance to this 

treatment modality (Rockwell, 1992; Vaupel, 1989). 

Due to the existence of radio-resistant cell populations in solid tumors, there has 

been substantial interest by laboratory and clinical investigators in developing agents which 

circumvent the protective effect of hypoxia. Oxygen, even at low concentrations, has been 

demonstrated to act as a radiosensitizer (Gray et al., 1953). The half-maximum for 

radiosensitization occurs at about 3 torr, and the curve plateaus at oxygen tensions (PO2) of 

approximately 20-40 torr, which is the oxygen tension found in venous blood. Because 

normal tissue is usually well aerated, most normal tissues are fully, or almost completely, 

sensitive to radiation. With the rationale to enhance the effects of radiotherapy on hypoxic 

cells in solid tumors while minimizing its effects on normal tissue, the use of hypoxia- 

directed drugs such as mitomycin C have been studied both in the laboratory as well as the 

clinical research settings. 





Mitomycin C was first used as an adjunct to radiotherapy in head and neck cancer 

treatment at the Yale Comprehensive Cancer Center (Weissberg et al., 1989). In their first 

randomized clinical trial of 120 patients with biopsy-proven squamous cell carcinoma of the 

head and neck, the 5-year acturarial local recurrence-free survival was significantly better in 

the radiation therapy plus mitomycin C group as compared to the group treated with 

radiation alone (87% and 66%, respectively, p < 0.02). Hence the use of this alkylating 

agent appears to improve local tumor control in patients with tumors of the oral cavity, 

oropharynx, larynx, hypopharynx, and nasopharynx, thereby producing therapeutic gain. 

More recently, clinical trials in Toronto using mitomycin C as an adjunct to 5- 

fluorouracil plus radiotherapy in the treatment of carcinomas of the cervix and the anal canal 

have demonstrated improvement in local control with MC, as compared to treatment 

without mitomycin in the regimen (Rockwell, 1992; Thomas et al., 1990). Other clinical 

applications of mitomycin C are also underway. 





Conclusion 

Mitomycin C is an interesting compound in many respects. It is capable of 

exhibiting antimicrobial as well as antitumor activity. Activation is required before it can 

produce lethal effects. Furthermore it possesses the ability to cross-link DNA in addition to 

forming monoadducts. The precise mechanism of its ability to produce cytotoxicity, 

however, remains to be solved. Studies on its analogue decarbamoyl mitomycin C, 

reported here, seem to indicate that the primary cytotoxic lesion may in fact be a 

monoadduct. 

The mitomycins have been regarded as a challenging structure-activity problem. In 

cellular systems, factors such as oxygenation, pH, and cell proliferation patterns need to be 

taken into account (Rockwell, 1983), as well as the state of differentiation of cells, growth 

fraction, and intracellular communication (Sutherland et al., 1970). Other factors that need 

to be taken into account include the rate of transport, the intracellular location of activating 

enzymes, the rate of drug inactivation, intracellular pH, and the cellular capacity to repair 

drug-induced damage (Sartorelli, 1988). The issue of physiologic, metabolic, and 

environmental alterations which accompany hypoxia in solid neoplasms also needs to be 

addressed (Kennedy et al., 1980). 

Thus studying the cytotoxic effects of the mitomycins requires acknowledging the 

complexity in the interaction between mitomycin C and cells. New avenues have been 

considered which in the future may facilitate the elucidation of the mechanism of action of 

this drug. Studies using the RAGE technique to separate chemically cross-linked and un¬ 

cross-linked fragments of DNA are presently under way. In the future radiolabelled 

decarbamoyl mitomycin C could also provide useful information in understanding the 

mechanism of action of the mitomycins. 
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