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ACTIVATION OF 5’AMP-ACTIVATED PROTEIN KINASE KINASE IN THE 
ISCHEMIC MYOCARDIUM. 

Suzanne Baron, Ji Li, Raymond R. Russell III, & Lawrence H. Young. 

Section of Cardiology, Department of Internal Medicine, 

Yale University School of Medicine, New Haven, CT. 

The 5’-AMP-activated Protein Kinase (AMPK) is a heterotrimeric serine- 

threonine protein kinase that becomes activated during physiological stress and acts to 

conserve ATP by modulating a variety of cellular energy pathways. The activation of 

AMPK has been directly linked with phosphorylation by AMP-activated protein kinase 

kinase (AMPKK) at a site deemed Threonine 172 (Thr172) on the a catalytic subunit of 

the protein. Nevertheless, the role that AMPKK plays in regulating AMPK activity has 

remained unclear as recent research has suggested that AMPKK may be constitutively 

active. Therefore, we isolated AMPKK in ischemic myocardial tissue induced by either 

in vivo regional ischemia or by in vitro low-flow ischemia in isolated working hearts and 

evaluated AMPKK activity, as measured by phosphorylation of Thr172 on synthetic 

AMPK oti subunits or on recombinant heterotrimeric AMPK proteins. We found that 

levels of phosphorylated Thr on endogenous AMPK were increased 2-fold (p < 0.03) 

during in vivo ischemia and 2.6-fold (p < 0.01) during in vitro ischemia when compared 

to control conditions. Furthermore, Thr phosphorylation of recombinant AMPK 

proteins was increased after incubation with AMPKK isolated from ischemic tissue (p < 

0.15 for in vivo ischemia and p < 0.04 for in vitro ischemia with recombinant AMPK cq 

subunits; p < 0.04 for in vivo ischemia and p < 0.01 for in vitro ischemia with 

recombinant heterotrimeric AMPK). These results demonstrate that ischemia increases 

cardiac AMPKK activity, thereby suggesting that Thr172 phosphorylation and AMPK 

activity is modulated by upstream kinases as opposed to phosphatase actions. 
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Introduction 

Energetic stress on the heart can result from different physiologic and pathologic 

situations, including exercise, hypertension and coronary artery disease. As a person 

exercises, the skeletal muscle requires more oxygen and nutrients, thereby requiring the 

heart to increase cardiac output, both by increasing stroke volume and by increasing heart 

rate. Hypertension causes an increase in the afterload on the heart, thereby leading to an 

increase in the work that the heart must do to continue meeting the metabolic needs of the 

body. Myocardial oxygen delivery is decreased in patients suffering from coronary 

artery disease and the heart responds by operating in such a way so as to utilize the 

limited oxygen in the most efficient way possible. 

When cardiac stress continues over a long period of time, the heart responds with 

anatomical and metabolic renovation. The heart responds to ischemia through a 

phenomenon termed hibernation. When oxygen delivery to the heart is compromised as 

occurs in coronary artery disease, the heart has been found to demonstrate decreased 

contractility along with decreased energy metabolism (1). Researchers have found that 

the ischemic, hibernating myocardium has a higher chance of recovery when normal 

coronary blood flow is restored (2), indicating that the heart acts to protect itself by 

modulating cardiac activity during ischemia. 

Hypertrophy of the heart is a common response to both exercise and hypertension. 

The increase in cardiac work, caused by exercise and hypertension, results in an increase 

in the tension across the ventricular wall. A formula derived from the law of Laplace 

suggests that the myocardial wall tension is inversely proportional to the thickness of the 

ventricular wall (3). Accordingly, several studies have found that there is an increase in 
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myocardial cell size within hours of an increased myocardial workload (4) (5). By 

increasing the size of the myocardial cell and thereby the thickness of the ventricular 

wall, the heart is attempting to decrease the myocardial wall tension and thus compensate 

for the increased cardiac workload induced by exercise and hypertension. 

Signaling Pathways in the Heart 

Receptor-mediated signaling pathways 

On a molecular level, the heart responds to energetic stress through many, 

different signal transduction pathways. Some of these signaling pathways, of which two 

primary ones are the Pi-adrenergic pathway and the Angiotensin II pathway, are 

mediated via the binding of ligands to receptors in the plasma membrane. When the body 

senses physiologic stress, catecholamines are released and produce effects by binding to 

adrenergic receptors, of which there are 4 classes (oci, 0C2, Pi, P2). Pi-adrenergic receptors 

are the adrenergic receptors that are predominant in the heart, located specifically in the 

sinoatrial node, the atrioventricular node and the ventricular tissue. When a stimulatory 

ligand (catecholamines in this case), binds to the Pi-adrenergic receptor, a G protein, Gs, 

is activated. Gs subsequently activates adenylate cyclase, and increasing levels of the 

second messenger, cyclic AMP (cAMP). Increased levels of cAMP result in the 

activation of protein kinase A (PKA). PKA directly phosphorylates the L-type Ca2^ 

channel located on the plasma membrane, thereby increasing the entry of calcium into the 

myocardial cell (6). This increase in calcium current activates the release of calcium 

from the sarcoplasmic reticulum, resulting in greater myocardial contractility (7). 

Besides activating PKA, cAMP has also been implicated in directly activating ion 
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channels present in pacemaker cells (8), thereby resulting in an increase in the rate of 

phase 4 depolarization in pacemaker cells and thus an increase in heart rate. 

Not only can energetic stress induce the activation of (31-adrenergic receptors, but 

stress can also result in the release of Angiotensin II. Acting via Angiotension II 

receptors (ATRs) present in cardiac tissue (9), Angiotensin II has been associated with 

hypertrophy and remodeling of the myocardium in response to pathologic stress, such as 

heart failure and myocardial infarction (10) (11) (12) (13) (14). Like the Pi-adrenergic 

receptors, the ATRs are also associated with a G protein, Gq in this case. After 

stimulation of the ATR, Gq activates phospholipase C, which cleaves phosphatidyl 

inositol bisphosphate (PIP2) into the second messengers inositol-1,4,5-triphosphate (IP3) 

and 1,2-diacylglycerol (DAG). IP3 and DAG act together to activate protein kinase C 

(PKC) (15). PKC has been implicated in the regulation of gene transcription via the 

activation of the activator protein-1 complex (AP-1) (7), a protein that enhances the 

transcription of several genes, including the genes coding for atrial natriuretic factor and 

for myosin light chain (16) (17). Furthermore, PKC has been implicated in activating c- 

Raf, which in turn activates the Mitogen-activated-protein-kinase (MAPK) cascade, a 

protein kinase system that is involved in regulating cell growth (18). 

Researchers also have found that some of the effects of Aargiotensin II are 

independent of Gq and PKC. Indeed, recent studies have shown that activation of the 

ATR results in the stimulation of the STAT (Signal Transducers and Activators of 

Transcription) pathway, another signaling pathway involved in the regulation of cellular 

growth as well as with the inflammatory response (19) (20) (21). Although the exact 

mechanism by which the ATR activates the STAT pathway is still unknown, it has been 





4 

theorized that the ATR may interact with soluble protein tyrosine kinases and/or with the 

Janus Kinase Family (JAKs), both of which have been shown to directly activate the 

STAT pathway (21) (22) (23). Taken together, it appears that Angiotensin II utilizes 

multiple mechanisms, including PKC and STAT activation, to exert a significant effect 

on the growth of the myocardial cell. 

Non-receptor-mediated signaling pathways 

Unlike the [31-adrenergic and the Angiotensin II pathway, other stress-activated 

signaling pathways in the heart are not dependent upon activation via a plasma membrane 

receptor, but instead exert effects by other sensing mechanisms. Mechanical stretch of a 

cell, as caused by volume overload, has been determined to be a potent activator of 

multiple different signaling pathways, all of which are intimately involved with the 

regulation of cell growth. Indeed, stretch can directly activate specific ion channels (so- 

called stretch-activated ion channels) (24) as well as activate the G protein, Gq (25), 

which stimulates PKC and thus affects the transcription of cell growth through the 

MAPK cascade as detailed above. The G protein Ras, which activates the MAPK 

cascade, as well as phospholipase C were both found to be activated following stretch of 

integrin-associated cell adhesions in cardiac fibroblasts (26) (27). Furthermore, 

researchers have discovered that several humoral molecules involved in cardiac 

remodelling are released following stretch, including Angiotensin II (see above 

discussion), (28) and insulin-like growth factor, a molecule involved in the normal 

growth of the heart (29) (30). Cytokines of the IL-6 family are also released following 

stretch and act to stimulate the JAK-STAT pathway via gp!30 (31) (32). Clearly then, 





5 

mechanical stretch serves as a powerful stimulant of several diverse signaling pathways 

associated with cellular growth. 

Studies have convincingly identified hypoxia as another condition, which is 

capable of activating several different non-receptor mediated signaling pathways in the 

attempt to maintain function. Hypoxia-inducible factor l(HIF-l) is a transcription factor 

that is upregulated in situations of low oxygen pressure (33) (34). Once HIF-1 is 

activated, it increases the transcription of multiple genes, including erythropoiten (35), a 

hormone that stimulates erythropoiesis, vascular endothelial growth factor (36), which is 

involved in angiogenesis, the glucose transporter GLUT1 (37) and lactate dehydrogenase 

(38), an enzyme involved in the anaerobic process of glycolysis. By upregulating the 

expression of all of these genes, HIF-1 acts to increase oxygen delivery to peripheral 

tissues and to keep the cell well-supplied with glucose and the enzymes necessary to 

produce energy in an anaerobic manner. 

Hypoxia has also been shown to stimulate other transcription factors, such as 

nuclear factor kB (NF-kB) and heat shock factor-1 (HSF-1) (39) (40) (41) (42). Hypoxic 

stimulation causes NF-kB to increase the expression of cytokines, especially IL-8, (43) 

and intracellular adhesion molecules (ICAMs) (44). Both the cytokines and ICAMs are 

involved in attracting neutrophils and other inflammatory cells to a site of hypoxic injury. 

Hypoxia increases levels of HSF-1, which is a molecule involved in modulating the 

expression of heat shock proteins (HSPs). HSPs are a family of proteins that facilitate the 

folding of newly synthesized proteins and have been implicated in protection of the 

ischemic myocyte (45) (46). Thus, as the myocardial cell is exposed to the toxic stress of 
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hypoxia, the gene expression of immediate and long-term protective proteins are 

upregulated through multiple signaling pathways. 

Changes in whole body substrate metabolism and circulating substrate levels can 

also trigger the activation of cardiac metabolic pathways through a variety of 

mechanisms. A well-studied set of transcription factors that is regulated by shifts in the 

level of free fatty acids is the peroxisome proliferator-activated receptor family (PPARs). 

Studies have demonstrated that PPARa is involved in upregulating genes associated with 

several steps of fatty acid [3-oxidation (47) (48) (49) (50). Following even short-term 

starvation, fatty acid uptake into the myocyte increases as the cell readies itself to call 

upon fat stores to continue vital energy-consuming processes. Accordingly, medium and 

long chain fatty acids have been identified as directly-binding ligands of PPARa (51). 

Recent studies involving transgenic mice, deficient in PPARa, concluded that PPARa 

activation was absolutely necessary for the increased expression of fatty acid (3-oxidation 

enzymes observed during short-term starvation and thus for survival (52). Such a study 

indicates the necessity of tight regulation of cardiac energy metabolism, to which the 

PPAR family contributes. Another signaling system that is exquisitely sensitive to 

changes in cardiac metabolic homeostasis and responds with both acute and chronic 

adjustment of energetic processes is centered around the AMP-activated protein kinase, 

which is the topic of this investigation. 
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The AMP-Activated Protein Kinase 

The Structure of AMPK 

AMPK is a heterotrimeric serine/threonine protein kinase, consisting of a catalytic 

a subunit, a regulatory y subunit and the |3 subunit, responsible for connecting the a and y 

subunits. Different isoforms of each of the subunits of AMPK have been identified and 

specific isoforms have been associated with specific tissue distribution and varying levels 

of activity. The a subunit (63 kDa) is composed of three domains. The kinase domain of 

the a subunit (amino acids 1-312) is located near the N terminus and is responsible for 

the catalytic activity associated with the a subunit (53). Researchers have determined 

that phosphorylation of a threonine residue (Thr ) located within this kmase domain is 

necessary for AMPK activity. Indeed, site-specific mutagenesis of Thr to an alanine 

residue has been found to result in an inactive catalytic subunit (53) (54). Adjacent to the 

kinase domain of the a subunit lies an amino acid sequence (termed 312-392) that has 

been shown to serve as an autoregulatory sequence. Truncation of the a subunit to amino 

acid 392 (1-392) results in a complete loss of catalytic activity, while further truncation to 

amino acid 312 (1-312) results in a protein kinase fragment that is no longer dependent 

on the allosteric activation of AMP, and thus is constitutively active (53). Taken 

together, these findings suggest that the 312-392 sequence acts as an automhibitory 

domain. Lastly, the C-terminus of the a subunit (392-548) is responsible for binding the 

P and y subunits, as demonstrated by a loss of (3-y binding when the C terminus of the a 

subunit is removed (53). 

The a subunit is present in two different isoforms (ai and 0,2). While the ct] 

subunit seems to be more prevalent in the lung, kidney and testis (55), high levels of the 





a2 subunit have been demonstrated in the heart and skeletal muscle (55) (56). 

Furthermore upon activation, the ot2 subunit has been associated with greater kinase 

activity in skeletal muscle (57) (58) (59) and in heart (60). 

The [3 subunit (38 kDa) provides a scaffold for the catalytic a subunit and the 

regulatory y subunit to assemble. The C-terminus of the P subunit contains an 84 amino 

acid domain, which serves to bind the a and y subunits (61) (62). The rest of the P 

subunit is comprised of a sequence that has been shown to bind glycogen, thereby 

facilitating an interaction between AMPK and glycogen stores (63). Two isoforms (Pi 

and p2) have been identified for the p subunit of AMPK, with the p2 subunit being highly 

expressed in skeletal and cardiac tissue and the Pi subunit showing high levels primarily 

in the liver (62). 

The final subunit (y) of AMPK is thought to be responsible for much of the 

molecular and physiologic regulation of AMPK. The y subunit consists of four repeats of 

the CBS domain, a structural protein motif that is involved in the allosteric regulation in 

numerous other proteins, most notably in cystathione P-synthase (64). Similarly, the 

CBS domains of the y subunit of AMPK also seem to be involved in allosteric regulation 

of the kinase, as shown by labeling studies, which have demonstrated that the AMP 

analogue, 8-azido-[3~P]AMP, binds directly to the y subunit (55). Furthermore, mutations 

within the CBS domains of the y subunit of AMPK result in a defective kinase that is no 

longer activated by AMP (65). 

Researchers have isolated three isoforms (yi, y2, y3) of the y subunit of AMPK. In 

most tissues (lung, liver, heart, kidney, pancreas and skeletal muscle), yi is the most 
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prevalent isoform, accounting for 80-90% of the AMPK seen in the tissues, while the 

remaining 10-20% of AMPK is formed using 72, with y3 making a very minor 

contribution to AMPK activity (55) (66). In the testis and the brain, 72 and y3 presence 

were found to be significantly increased, especially in the brain where the three y 

isoforms were present in almost equal amounts (55). Each of the y isoforms also affected 

the degree to which AMP stimulated the heterotrimeric AMPK complex. Indeed, AMPK 

proteins containing the 72 subunit showed the greatest dependence on AMP, followed by 

yi and then y3, which had a markedly lower dependence on AMP than either of the other 

two y isoforms (55). 

The Activation of AMPK 

AMPK has been characterized as part of a highly sensitive protein kinase cascade. 

Within this cascade, AMPK is activated via phosphorlyation by AMP-activated protein 

kinase kinase (AMPKK) (67). The high-energy phosphate group is subsequently 

removed by protein phosphatase 2C (PP2C) (68), thereby returning AMPK to an 

inactivated state. This cycle of phosphorylation and dephosphorylation is commonly 

seen within other protein kinase families, especially the mitogen-activated protein (MAP) 

kinase family (69). Many researchers have speculated that the reason for this cyclical 

arrangement of protein kinase cascades is related to the increased sensitivity of a cascade 

to activating factors (70) (71). Modeling of the AMPK system demonstrated that the 

cascade was indeed exquisitely sensitive to activating nucleotides such that a 6-fold 

increase in AMP resulted in a change of AMPK activity from 10% to 90% maximal 

activity (72). Thus, the arrangement of AMPK within a protein kinase cascade serves to 
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increase the responsiveness of the protein to the factors in charge of regulating its 

activity. 

The AMPK cascade is regulated by the energy status of the cell, as determined by 

levels of adenine nucleotides. Almost all energy-requiring cellular reactions are 

associated with the breakdown of ATP to ADP. Since cells require ATP to function, the 

cell has developed mechanisms such that depleted stores of ATP are recognized and 

replaced extremely rapidly via the reaction 2ADP ATP + AMP, catalyzed by 

adenylate kinase. The cell’s rapid response to a depletion of ATP results in the 

maintenance the ratio of ADP to ATP within a very narrow limit. The minimally 

changing ratio of ADP to ATP suggests that anabolic processes are almost exactly 

balanced by catabolic processes within the cell by a system that monitors the depletion of 

ATP and then subsequently adjusts catabolic and anabolic reactions as needed (73). 

Since ATP can be degraded to either ADP (by ATPases) or to AMP (by ligases), 

the question arises as to whether the cell responds to the AMP:ATP ratio of the 

ADP:ATP ratio. Upon examination of the reaction 2ADP <--> ATP + AMP at 

equilibrium, researchers have determined that the AMP:ATP ratio varies as the square of 

the ADP:ATP ratio (74). For example, if the ADP:ATP ratio were to rise by a factor of 

3, the AMP:ATP ratio will increase 9-fold. Such an example clearly demonstrates the 

increased sensitivity of AMP levels in indicating the energy status of the cell. Thus, it 

stands to reason that AMP levels as opposed to ADP levels are most likely to serve as the 

molecule that is responsible for regulating catabolic and anabolic processes (73) (74). 

Multiple studies have demonstrated the activating effects of an increased 

AMP:ATP ratio on the AMPK cascade. Indeed, AMP has been shown to not only 





11 

increase the activity of AMPK 5-fold (75) (76), but also to increase the activity of the 

upstream kinase, AMPKK (77) (78). Furthermore, the binding of AMP to AMPK affects 

the ability of other proteins (i.e. AMPKK and PP2C) to interact with it. Indeed, 

inactivation of AMPK by PP2C is almost completely inhibited by the binding of AMP to 

AMPK (68), while the AMP-AMPK complex (78) increased AMPKK activity. 

Environments that serve to decrease the AMP:ATP ratio also affect the activity of the 

AMPK cascade. The dephosphorylating activity of PP2C on AMPK was increased and 

the phosphorylating activity of AMPKK was decreased in the presence of extremely high 

concentrations of ATP (68) (78). Clearly then, the AMPK cascade is affected at multiple 

steps by an increased AMP:ATP ratio in the surrounding environment. 

Physiological regulation of AMPK occurs in situations when the cell is under 

energetic stress and the AMP:ATP ratio is thereby affected. Often, pathological 

conditions, such as ischemia, are responsible for energetic stress. Indeed, AMP levels are 

dramatically increased following global ischemia in rat heart, and correspondingly, both 

the phosphorylation of AMPK and AMPK kinase activity were also found to be increased 

(79) (80) (81). Since ischemic conditions result in both a hypoxic environment and an 

environment characterized by low extracellular glucose, researchers have studied the 

separate effects of each of these physiological conditions on AMPK. Low glucose levels 

in pancreatic cell lines was found to increase the AMP:ATP ratio, while consequently 

increasing AMPK activity (82). Furthermore, skeletal muscle cells incubated in buffers 

containing 95% N2-5% C02 were also found to increase AMPK activity 7-fold (83). 

Physiological stress, such as exercise, has been shown to activate AMPK as well 

as pathological stress. Using different methodologies, several researchers have shown 





12 

that contraction of skeletal muscle fibers result in an increase in the AMP:ATP ratio in 

muscle and in an increase in AMPK activity. Rats, who were exercised on a treadmill, 

showed increased AMPK activity in muscle removed from the leg (84) (85). Repeated 

electrical stimulation of the sciatic nerve also resulted in a rise in AMPK activity in the 

gastronemius muscle as well as in an increase in free AMP levels (86). Furthermore, in 

vitro contraction of isolated muscle fibers also serves to increase the activity of AMPK 

significantly (83) (85) (87). Recently, exercise has been shown to increase the AMPK 

activity and AMPK phosphorylation in the heart as well as in skeletal muscle. Rats were 

exercised on a treadmill at different intensities and researchers discovered that as exercise 

intensity increases, AMPK activity in the heart increases proportionately (60). 

AMPK has been also been found to be stimulated pharmacologically. Certainly, 

many studies have utilized the drug 5-aminoimidazole-4-carboxmide-riboside (AICAR) 

in the study of AMPK. AICAiR is a nucleoside that is converted into ZMP by adenosine 

kinase (88). ZMP has been shown to act as an AMP analog and thus allosterically 

activate AMPK as well as enhance the activation of AMPK by AMPKK (88) (89). More 

recently, two classes of drugs, metformin and the thiazolidinediones, used to treat type 2 

diabetes mellitus have been found to activate AMPK. Metformin acts to lower blood 

glucose levels by increasing muscle glucose uptake (90) and by decreasing glucose 

production in the liver (91). Incubation of muscle cells with metfonmn resulted in a 

significant increase in AMPK activity (92). Furthermore, activation of AMPK has been 

implicated in the mechanism by which metformin acts to lower blood glucose levels (93). 

The thiazolidinediones are also used to treat type 2 diabetes by increasing insulin 

sensitivity in peripheral tissues through their actions on the transcription factor 
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peroxisome proliferator-activated receptor y (94) (95) (96). AMPK phosphorylation and 

kinase activity was found to increase with time following incubation of rosiglitazone, a 

thiazolidinedione, with muscle cells (92). Thus, AMPK can be activated 

pharmacologically as well as during physiologic and pathologic stress. 

The Actions of AMPK 

Just as there are many activating environments for AMPK, AMPK has many 

targets of action once activated. Since the ultimate goal of AMPK is to return the 

ADP:ATP ratio back to physiological equilibrium, it follows that AMPK generally acts to 

turn on catabolic processes and switch off anabolic processes in multiple areas of 

metabolism. Several of the first AMPK targets to be identified were in the areas of lipid 

and sterol metabolism and include both hydroxymethylglutaryl-CoA (HMG-CoA) 

reductase, acetyl-CoA carboxylase (ACC), malonyl-CoA decarboxylase (MCD), 

hormone sensitive lipase (HSL) and glycerophosphate acyltransferase (GPAT). HMG- 

CoA reductase catalyzes the regulatory step that converts hydroxymethylglutarate to 

mevalonic acid in the synthesis of sterols, such as cholesterol. Researchers discovered 

that activated AMPK phosphorylates a serine residue (Ser 871) on the catalytic subunit of 

HMG-CoA reductase, thereby inhibiting the enzyme and decreasing sterol synthesis (88) 

(97) (98). 

Regulation of fatty acid synthesis and oxidation by AMPK occurs primarily 

interactions with acetyl-CoA carboxylase (ACC) and malonyl-CoA decarboxylase 

(MCD). ACC is responsible for catalyzing the committed step in fatty acid synthesis, in 

which acetyl-CoA is converted into malonyl-CoA. When ACC is inhibited, not only is 
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fatty acid synthesis decreased, but fatty acid oxidation is also increased. The rate limiting 

step of fatty acid oxidation, the transport of fatty acids into the mitochondria by camitine- 

palmitoyl transferase I (CPT1), is inhibited by high levels of malonyl CoA (99). By 

inhibiting ACC, malonyl-CoA levels decrease, thereby lifting the inhibition on CPT1 and 

allowing fatty acid oxidation to proceed. Multiple studies have shown that activated 

AMPK inhibits acetyl-CoA carboxylase in liver, heart and skeletal muscle via 

phosphorylation, thereby producing decreased malonyl CoA levels (84) (88) (98) (100) 

and resulting in the inhibition of fatty acid synthesis and the stimulation of fatty acid 

oxidation. Malonyl-CoA levels are also affected by MCD, which is involved in 

degrading malonyl-CoA. Researchers have determined that AMPK activates MCD in 

skeletal muscle, liver and adipose tissue, thereby decreasing the amount of malonyl-CoA 

in cells and further stimulating fatty acid oxidation (101) (102). Chronic AMPK 

activation has also been linked with a decrease in the gene expression of ACC and fatty 

acid synthase, an enzyme responsible for catalyzing several of the reactions involved in 

fatty acid synthesis (103). 

AMPK is also intimately involved in the regulation of triglyceride formation and 

degradation. Glycerophosphate acyltransferase (GPAT) is involved in catalyzing the 

synthesis of triacylglycerols. AMPK was found to inhibit GPAT in muscle, liver and 

skeletal muscle, resulting in the decreased formation of triglycerides (102) (104). 

Hormone-sensitive lipase (HSL) is an enzyme involved in the breakdown of triglycerides 

into fatty acids and glycerol in adipocytes. Cyclic AMP-dependent protein kinase (PKA) 

activates HSL by phosphorylation at a serine residue (Ser-563) (105). AMPK acts to 

inhibit HSL by phosphorylating the protein at a serine site (Ser-565) that is nearly 
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adjacent to the phosphorylation site of PKA, thereby preventing PKA from 

phosphorylating the activating site (Ser 563) (106). In congruence with these findings, 

researches have found that when cells from adipose tissues are incubated with AICAR, an 

AMPK activator, lipolysis is decreased. This finding may seem inconsistent with the 

notion that AMPK is usually involved in switching on catabolic processes, as opposed to 

decreasing these processes as seemingly is the case with HSL and lipolysis. 

Nevertheless, scientists have speculated that by decreasing lipolysis in adipose tissue, 

AMPK is attempting to conserve ATP, an action consistent with AMPK’s general goal of 

replacing depleted energy stores. Unused fatty acids are recycled back into triglycerides 

and cholesterol esters in an energy-consuming process. By decreasing lipolysis, AMPK 

may be working to ensure that the rate at which triglycerides are broken down does not 

exceed the rate at which fatty acids are consumed, thereby reducing the amount of ATP- 

depleting fatty acid recycling (106). 

The effects of AMPK on glucose transport into the cell have also been widely 

studied. An increase in glucose uptake into the cell is usually associated with the 

translocation of GLUT4 transporters to the sarcolemma, so as to facilitate the movement 

of glucose across the plasma membrane. Insulin is commonly associated with 

stimulating the movement of GLUT4 transporters to the sarcolemma and exerts this 

effect via the activation of phosphatidylinositol 3-kinase (107) (108). Ischemia, hypoxia 

and contraction of skeletal muscle have all been associated with the translocation of 

GLUT4 transporters via a mechanism that is independent of insulin-associated 

phosphatidylinositol 3-kinase activation (108) (109) (110). Initial studies utilizing 

AICAR found that glucose uptake into skeletal and cardiac muscle increased 2-fold in 
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association with an increase in AMPK activity (111) (112) (113). Using a transgenic 

mouse that expressed a dominant-negative kinase-dead AMPK, researchers found that 

hypoxia was unable to stimulate glucose uptake or increase GLUT4 translocation in 

either in the heart (113) or in skeletal muscle (114). Furthermore, chronic activation of 

AMPK by long-term AICAR administration has been shown to result in an increase in 

GLUT4 gene expression (115). Taken together, these findings strongly suggest that 

AMPK stimulates glucose transport via increased expression and translocation of GLUT4 

transporters by a mechanism that is not related to the insulin-linked phosphatidylinositol 

3-kinase pathway. 

Once glucose has been taken into the cell, AMPK is able to exert both acute and 

chronic control over the storage, breakdown and synthesis of glucose. Excess glucose is 

often stored as glycogen, an energy-requiring process that is mediated by the enzyme 

glycogen synthase. Glycogen synthase is de-activated by phosphorylation at a site (Ser- 

10) by casein kinase-1 (116). AMPK has been shown to phosphorylate glycogen 

synthase at a serine residue (Ser-7) (117), which serves to promotes the phosphorylation 

of Ser-10 by Casein kinase-1 and thereby results in the inactivation of glycogen synthase 

(116). Glucose is broken down through the process of glycolysis, during which 2 net 

molecules of ATP are made. A potent regulator of glycolysis is fructose 2,6- 

bisphosphate, a molecule that stimulates 6-phosphofructo-l -kinase, which is the enzyme 

that mediates the rate-limiting step of glycolysis. Fructose 2,6-bisphosphate is made 

using the enzyme 6-phosphofructo-2-kinase (PFK-2). AMPK has been shown to 

phosphorylate heart PFK-2 at Serine-466, thereby leading to the stimulation of fructose 

2,6-bisphosphate production and thus, the stimulation of glycolysis (118) (119). Over the 
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Ions term, researchers have determined that chronic stimulation of AMPK results in the 

change in gene expression of several gluconeogenic enzymes. AMPK leads to decreased 

expression of glucose-6-phosphatase (120) (121), pyruvate kinase (122) (123), and 

phosphoenolpyruvate carboxykinase (120), all enzymes involved in the key steps of 

gluconeogenesis. All in all, the effects of AMPK on glucose metabolism serve to 

increase the energy stores available to the cell by stimulating catabolic processes and 

inhibiting anabolic processes. 

In addition to carbohydrate and lipid metabolism, AMPK has been implicated in 

regulating protein metabolism through effects on p70 ribosomal protein S6 kinase 

(p70S6K) and eukaryotic elongation factor 2 kinase (eEF2K). Once activated, p70S6K is 

involved in the synthesis of proteins in the liver (124). Several researchers have found 

that activated AMPK is associated with the inhibition of p70S6K, although the specific 

mechanism of this inhibition remains elusive (125) (126) (127). Eukaryotic elongation 

factor 2 (eEF2) is another enzyme involved in protein synthesis in the liver. Upon 

hypoxic stimulation, eEF2 becomes phosphorylated, which serves to inhibit the enzyme 

and thus inhibit protein synthesis. Upon further study, it was determined that AMPK was 

responsible for activating the upstream protein, eEF2 kinase, thereby promoting the 

inhibitory phosphorylation of eEF2 (128). Thus AMPK serves to inhibit hepatic protein 

synthesis by at least two different mechanisms. 

Recently, researchers have discovered that AMPK interacts directly with 

transcription factors in order to regulate gene expression. Hepatocyte nuclear factor 

(HNF) 4a is associated with regulating the expression of genes involved in glucose and 

triglyceride metabolism, including pyruvate kinase, Apoprotein B and Apoprotein C III 
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(129). HNF4a has been identified as a substrate for AMPK, which has been shown to 

phosphorylate HNF4a on a serine residue both in vitro and in cell lines. Researchers 

have speculated that the phosphorylation of HNF4a results in the degradation of the 

transcription factor (as evidenced by the disappearance of the protein) and the resulting 

reduction of gene transcription (130) (131). Carbohydrate-response-element-binding 

protein (ChREBP) is another hepatic transcription factor that is involved in regulating 

genes encoding metabolic enzymes, including pyruvate kinase, fatty acid synthase and 

acetyl-CoA carboxylase. AMPK has been shown to phosphorylate ChREBP, thereby 

inhibiting ChREBP from binding to DNA (132). Inhibition of ChREBP could serve as 

another way that AMPK is able to regulate anabolic processes, specifically by interfering 

with the expression of gluconeogenic proteins. The transcription cofactor, p300, has also 

been identified as a substrate for AMPK (133). Researchers have found that p300 is 

involved in regulating the transcriptional activity of peroxisome-proliferator-activated- 

receptors (PPARs), which are transcription factors involved in the differentiation of 

adipose tissue (134) (135). PPAR-y activity has been found to be inhibited when 

activated AMPK is present, and recent studies suggest that this effect may stem from the 

decreased activity of p300, due to phosphorylation by AMPK (133). Although the exact 

mechanisms of the effect of AMPK on gene transcription still need to be further studied 

and elucidated, it seems clear that AMPK exerts an effect on gene expression by 

interacting with nuclear transcription factors. 
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The AMP-activated Protein Kinase Kinase 

As mentioned above, the primary molecular activator of AMPK is the upstream 

kinase, AMP-activated protein kinase kinase (AMPKK). Indeed, AMPKK has been 

shown to produce a 50-fold increase in AMPK activity (88) through phosphorylation. 

Early studies identified the primary site phosphorylated by AMPKK as Thr1'2 on the 

catalytic subunit (67), a site that has been deemed necessary for AMPK activity as 

demonstrated by the lack of AMPK activity in Thr " deficient proteins (53) (54). 

Clearly then, AMPKK is an important player in the AMPK cascade. 

In order to further understand the regulation and activity of AMPKK, researchers 

have made attempts to elucidate the structure of the kinase. AMPKK purification from 

rat liver demonstrated a molecule quite similar in structure to AMPK (67). Indeed, 

AMPKK possesses a catalytic subunit of weight 58 kDa, quite similar to the a subunit of 

AMPK, which weighs 63 kDa. Overall molecular mass of the kinases were also similar 

with AMPKK measuring in at 195 kDa as compared to the 190 kDa weight of AMPK. 

Seeing as the structure of the two kinases is quite similar, studies have 

investigated the likely possibility that similar molecular and physiologic environments 

might activate AMPK and AMPKK. Since AMPK was found to be significantly 

activated by AMP and inhibited by high concentrations of ATP (75) (76), researchers 

have examined the effects of AMP and ATP on AMPKK activity. Indeed, an elegant 

study was performed in which it was found that the addition of AMP resulted in a 1.5 

fold increase in the phosphorylation of the catalytic subunit of AMPK after incubation 

with AMPKK purified from rat liver (78). Similarly, other researchers found that AMP 

addition resulted in increased AMPK activity after AMPK was incubated with purified 





20 

rat liver AMPKK (77). Furthermore, studies found that high concentrations of ATP 

could completely inhibit the activation of AMPK by AMPKK (67). Such findings lend 

credence to the notion that the kinases are similarly regulated. 

Despite similar stimulation by adenosine molecules, recent work has found that 

AMPKK may not be subject to the same physiologic regulation as AMPK. Since AMPK 

is activated by hypoglycemia, hypoxia and AICAR, it was expected that AMPKK would 

show increased activity under these conditions as well. Experiments using a bacterially 

expressed recombinant .AMPK cti subunit demonstrated no change in AMPKK activity in 

insulinoma cells after AICAR stimulation or exposure to a hypoglycemic environment 

(136). This finding has led scientists to conclude that AMPKK may be constituitively 

active. Such results are puzzling in light of the apparent similarities between AMPKK 

and AMPK both in structure and in response to AMP. 

In order to fully understand the AMPK cascade, it is necessary to elucidate the 

role that AMPKK plays in the regulation of AMPK activity. Clearly, some studies have 

suggested that AMPKK may not be an important player in modulating the actions of 

AMPK, and that instead, AMPK activation may be modified by proteins other than 

AMPKK (136). Further research is needed to understand the regulation of AMPKK 

activity, so as to better understand the effects of AMPKK on AMPK activity and the 

entire AMPK cascade. 
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Specific Aims of Study 

This research seeks to further clarify the physiologic regulation of AMPKK and 

the role of AMPKK in the AMPK cascade. The first aim was to develop methods that 

could enrich AMPKK and could be used to measure AMPKK activity. The second aim 

was to assess the suitability of different substrates as tools for investigating AMPKK as 

well as to assess the kinetics of the AMPKK reaction in order to optimize the assay. The 

third aim was to utilize these newly developed methods to address the specific 

physiological effects of in vitro global or in vivo regional ischemia on AMPKK activity 

in myocardial tissue. 
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Methods 

Male Sprague-Dawley rats (250-350g) were housed in an animal facility and 

given standard chow and water before experiments. All procedures were approved by the 

Yale University Animal Care and Use Committee. 

In Vitro Ischemia Protocol 

An in vitro model of global ischemia was used to assess the effects of ischemia on 

AMPKK activity. The in vitro ischemic model is a simple model in which the degree of 

ischemia is able to be controlled and other potentially confounding variables, such as 

hormones and neurosympathetic activation, which may have some effect on AMPK and 

AMPKK activation, are able to be excluded. 

Rats were anesthetized using an intraperitoneal injection of pentobarbital sodium 

(60 mg/kg) and were heparinized with 300 units intraperitoneally. Hearts were excised 

and placed in Krebs-Henseleit bicarbonate buffer at 4° C. The aorta was then cannulated 

and the heart perfused anterogradely with Krebs-Henseleit buffer (2.5 mM Ca2+) 

containing glucose (5 mM) in order to wash out any remaining blood. Subsequently, a 

cannula was inserted into the pulmonary vein and the hearts were perfused in the working 

heart mode (138) at 37° C with Krebs-Henseleit bicarbonate buffer containing 1% BSA 

(fraction V, fatty acid free), oleate (0.4 mM), glucose (5 mM), calcium (2.5mM) and 

bubbled with 95% O2 /5% CCb. Control hearts were subjected to 40 minutes of perfusion 

with a preload of 15 cm H2O and an afterload of 100 cm H2O. Ischemia heart perfusion 

protocol went as follows : during the first 20 minutes, hearts were perfused with a preload 

of 15 cm H2O and an afterload of 100 cm HiO; during minutes 20-40, hearts were 
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perfused with a preload of 15 cm fLO and an afterload of 30 cm H2O to produce a flow 

that was 15% of control flow. After 40 minutes, the hearts were freeze-clamped and 

stored at -80° C. The heart perfusion procedures were performed by Monica Palmieri 

under the supervision of Raymond R. Russell III M.D. to provide myocardial tissue for 

these experiments. 

In Vivo Ischemia Protocol 

An in vivo model of regional ischemia was also utilized during these experiments 

in order to further apply these findings to syndromes seen in clinical practice. Since 

coronary artery disease is a phenomenon of regional ischemia caused by coronary artery 

occlusion, it was appropriate to investigate the effects of regional ischemia produced in 

vivo. Furthermore, the in vivo model includes other factors which may have an effect on 

AMPK and AMPKK activity, such as varying intracardiac pressures and circulating 

neurohormonal influences, thereby making the in vivo ischemic model an appropriate and 

useful tool for investigation. 

Rats were anesthestized using an intravenous injection of pentobarbital sodium 

(60 mg/kg IP). The rats were subsequently intubated and ventilated at 80 breaths/min 

and a tidal volume of 2.5 cc with 100% oxygen. A left lateral thoracotomy was 

performed and the proximal left anterior descending artery was ligated with a 6.0 silk 

suture (137). After 10 minutes, the heart was excised and freeze-clamped with aluminum 

tongs, which were cooled in liquid nitrogen. Control rats underwent the same 

procedures, excepting that the left anterior descending artery was not occluded. The 
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hearts were stored at -80° C. The surgical procedure was performed by Xiaoyue Hu M.D 

under the supervision of Dr. Lawrence H. Young to provide cardiac tissue for this study. 

Tissue Homogenization 

All procedures occurred at 4° C. Heart tissue was homogenized for 60 seconds in 

homogenization buffer (125mM Tris, ImM EDTA, ImM EGTA, 250mM Mannitol, 

50mM NaF, 5mM NaPPi, ImM DTT, ImM Benzamedme, 0.004% Trypsin Inhibitor, 

3mM NaN3, pH 7.5). The homogenate was then centrifuged at 10,900 RPM (14,400g) on 

a SS34 Rotor for 30 minutes. The pellet was discarded and the supernatant was saved. 

25% Polyethylene Glycol (PEG) was added to each supernatant volume to a final 

concentration of 2.5% PEG. The samples were then agitated for 10 minutes and 

subsequently centrifuged at 9,200 RPM (10,000g) for 10 minutes. Again, the pellet was 

discarded and the supernatant was placed into a separate set of test tubes. 25% PEG was 

added to each sample to a final concentration of 6% PEG. The samples were agitated for 

10 minutes and then centrifuged at 9,200 RPM (10,000g) for 10 minutes. The pellet (2.5- 

6% PEG precipitate) was resuspended in homogenization buffer. The supernatant was 

collected and placed into another set of test tubes. Again, 25% Polyethylene Glycol 

(PEG) was added to each sample to a final concentration of 10% PEG. The samples were 

shaken for 10 minutes and centrifuged at 9,200 RPM (10,000g) for 20 minutes. The 

pellet (6-10% PEG precipitate) was resuspended in homogenization buffer and the 

supernatant was collected (>10% supernatant). 





25 

Protein Concentration Assay 

Preparation of reagents: BioRad reagent was diluted 1:4 in distilled water. 

Bovine serum albumin (BSA) was prepared at a concentration of 1 mg/lml and then 

diluted 1:10 in distilled water. Sample protein was diluted 1:20 in distilled water. 

Determination of protein concentration: 8007. of diluted BioRad reagent was 

added to each test tube. For the BSA standards: 07. of diluted BSA was added for the 

zero standard, 257. of diluted BSA was added for the 2.5pg standard, 507. of diluted BSA 

was added for the 5.0 pg standard and 757. of diluted BSA was added for the 7.5pg 

standard. 20X of diluted protein extract was added to each sample test tube. Distilled 

water was then added so as to bring the total volume in each test tube to lml. All 

conditions were run in duplicate. Standards and samples were then transferred to 

cuvettes and placed in a spectrophotometer with wavelength set at 5957. in the 

absorbance mode. The zero standard was set as reference and the samples and standards 

were subsequently read. The BSA standard curve was determined using Microsoft Excel, 

and sample protein concentrations were ascertained based on the standard curve using 

linear regression. 

Recombinant AMPK Phosphorylation by cellular AMPKK 

10 pg of PEG precipitated protein (6-10% fraction) was incubated with 10 pmol 

of a recombinant AMPK cp subunit, which consisted of a/'312 with an N-terminal 

maltose binding protein (gift from Dr. Lee Witters) (136) or 5 pmol of recombinant 

heterotrimeric (cp-Pi-yi) AMPK (gift from Dr. Diebert Neumann) (139) (140) in 25 pi of 

incubation buffer (20mM Tris, 5mM MgCD, 0.2mM ATP, 0.5mM DTT, 0.1% Tween, 
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1 mg/ml BSA, pH 7.5) for 10 minutes at 30° C. The reaction was stopped by a 2-fold 

dilution with Laemelli Sample Buffer (20% glycerol, 2% SDS, lOmM Tris, 1.2% 

Mercaptoethanol, 5% Bromethylene Blue, pH 6.8). Samples were boiled for 10 minutes 

prior to gel electrophoresis on an 8% gel. 

Gel Electrophoresis and Immunoblotting 

The running gels were made by combining 8% bis-Acrylamide, 0.375M Tris, 

0.1% SDS, 0.045% APS and 0.004% TEMED, adjusted to a pH of 8.8. After the running 

gel had set, the stacking gel (4% bis-Acrylamide, 0.125M Tris, 0.001% SDS, 0.001% 

APS, 0.001% Temed, pH 6.8) was added. 40 pg of PEG-precipitated protein (2.5-6% 

fraction) was combined with Laemelli Sample buffer and boiled for 10 minutes. 20k of 

sample was loaded into each lane and then subjected to electrophoresis (200V) for 75 

minutes in electrode buffer (19.3mM Tris, 18.6mM Glycine, 5mM SDS). The proteins 

were subsequently transferred to methanol-soaked PDVF membranes in transfer buffer 

(19.2mM Tris, 192.2mM glycine, 0.2% methanol) at 200 mAmps for 90 minutes. 

Membranes were then blocked overnight with specific buffers to prevent non-specific 

binding. Membranes to be blotted for pThr172 AMPK were blocked with TBS-T milk 

buffer (15mM Tris, 137mM NaCl, 5% nonfat dry milk, 0.1% Tween-20, pH 7.6). 

Membranes to be blotted for total AMPK were blocked with 5% Tris milk buffer (lOrnM 

Tris, 500mM NaCl, 5% nonfat dry milk, 1% Tween-20, pH 7.4). 

pThr17~ Immunoblotting: The membrane was incubated with the primary antibody, 

anti-pThr172 AMPK (Cell Signaling, Beverly, MA), at 1:5,000 dilution in 10ml of 

primary antibody dilution buffer (15mM Tris, 137mM NaCl, 5% BSA, 0.1% Tween-20, 
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pH 7.6) for 1 hour. Membranes were subsequently washed 3 times for 10 minutes each 

with wash buffer (15mM Tris, 0.137M NaCl, 0.1% Tween-20, ph 7.6). A 60-minute 

incubation with the secondary antibody, HRP-conjugated goat-antirabbit IgG (Zymed, 

San Francisco, CA) followed. Membranes were then washed 6 times for 15 minutes each 

with wash buffer. 10ml of ECL (company name) was incubated with the membranes for 

1 minute. After membranes were blotted dry, they were placed in a plastic sheet 

protector and exposed to autoradiographic film. 

Total AMPK Immunoblotting: The membrane was incubated with the primary 

antibody, anti-pan-a AMPK (gift from Dr. M. Bimbaum), at 1:20,000 dilution in 10ml of 

5% tris milk buffer for 1 hour. Membranes were subsequently washed 3 times for 10 

minutes each with 5% tris milk buffer. A 60-minute incubation with the secondary 

antibody, HRP-conj ugated goat-antirabbit IgG (Zymed, San Francisco, CA) followed. 

Membranes were then washed a total of 6 times - 2 times for 15 minutes each with 5% 

tris milk buffer, 2 times for 15 minutes each with PBS and 2 times for 15 minutes each 

with distilled water. Membranes were visualized as described above. 

AMPK Assay 

10p.g of heart homogenates (2.5-6% PEG fractions) or 0.16 pmol of recombinant 

heterotrimeric AMPK were added to 25Z AMPK kinase assay buffer (0.8mM DTT, 

0.2mM AMP. 0.048M Hepes-NaOH ph 7.0, 0.096M NaCl, 9.5% Glycerol, 0.96mM 

EDTA) with or without 0.2mM of the AMPK substrate, SAMS peptide 

(HMRSAMSGLHLVKRR; see (79) (113)). All samples, both with and without SAMS, 

were run in duplicates. A set of blanks, in which no protein was added, was also included 
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in the assay. 3X of an ATP solution (5mM MgCf, 0.2mM ATP, [32P]ATP (New England 

Nuclear, Boston, MA)) was added to the kinase assay mixture. The assay continued for 

10 minutes at 37° C. Aliquots (15A) of the reaction mixture were then spotted on 

Whatman filter paper (P81) and the filter papers were dropped into cold 150mM 

phosphoric acid to stop the reaction. The filter papers were washed 4 times for 10 

minutes each with cold 150mM phosphoric acid and then once for 20 minutes with 

acetone. After the filter papers had dried, they were placed into scintillation vials with 

5ml scintillation fluid and subjected to scintillation counting. 

Statistics 

Results were determined using the student’s t test and are presented as means + SEM. 
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Results 

Enrichment of AMPK in PEG precipitated fractions: In order to partially enrich 

AMPK in heart homogenates, protein from each PEG precipitated fraction (2.5-6%, 6- 

10% and the 10% supernatant) was immunoblotted for total AMPK (see Figure 1A). A 

28-fold increase in AMPK levels was seen in the 2.5-6% PEG fraction as compared to the 

6-10% PEG fraction and the 10% supernatant PEG fraction (p < 0.0005 vs. 6-10% PEG 

fraction and p < 0.0005 vs. 10% supernatant PEG fraction). These findings suggest that 

the majority of AMPK is present in the 2.5-6% PEG-precipitated fraction with only 

minor amounts appearing in the remaining PEG fractions. 

Enrichment of AMPKK activity in PEG precipitated fractions: In order to enrich 

AMPKK in heart homogenates, protein from each PEG precipitated fraction (2.5-6%, 6- 

10% and the 10% supernatant) was incubated with recombinant ai AMPK subunit. 

Incubation samples were then immunoblotted for pThr1/2 and total AMPK (Figure IB). 

A 22-fold increase in Thr “ phosphorylation of the recombinant a-1 AMPK subunit was 

seen when the 6-10% PEG fraction is included in the incubation as compared to the 2.5- 

6% PEG fraction and the 10% supernatant PEG fraction (p < 0.0005 vs. 2.5-6% PEG 

fraction and p < 0.0005 vs. 10% supernatant PEG fraction). These results clearly suggest 

that the majority of AMPKK is present in the 6-10% PEG-precipitated fraction. 
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Effects of time and concentration on AMPKK activity: We next examined the effects 

of time and concentration on AMPKK activity in order to obtain the optimal conditions 

under which to assess the effects of ischemia on AMPKK activity. In the investigation of 

the time dependence of AMPKK activity, 6-10% PEG precipitated heart protein was 

incubated with recombinant heterotrimeric AMPK for 10, 20 and 60 minutes. Incubation 

samples were then immunoblotted for pThr and total AMPK (Figure 2A). As 

incubation time increased, pThr “ levels on the recombinant heterotnmenc protein also 

increased, with the steepest part of the curve appearing between 10 and 20 min, thereby 

suggesting that experiments involving AMPKK would be best performed at times within 

this range. 

Subsequently, the concentration dependence of AMPKK activity was examined 

by incubating recombinant heterotrimeric AMPK with 5 pg, 10 pg, and 25 pg of 6-10% 

PEG precipitated heart protein and then immunoblotting the incubation samples for 

pThr172 and total AMPK (Figure 2B). As the concentration of 6-10% PEG precipitated 

protein increased, the level of pThr “ increased as well in a nearly linear fashion. It was 

determined that 10 pg was an optimal concentration at which to perform further AMPKK 

studies since it was in the linear part of the curve, it produced adequate phosphorylation 

at the Thr172 site, and it did not require excessive amounts of protein. 
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Effects of in vitro ischemia on AMPK phosphorylation and activity in the heart: 

AMPK activity has been recently shown to be cardioprotective during ischemia (150), 

although the mechanism for this effect and the role that AMPKK plays remains unclear. 

Having obtained a basic understanding of some of the characteristics of AMPKK activity, 

we were now able to investigate the effects of global low-flow ischemia on the level of 

AMPKK activity as measured by phosphorylation of Thr . In order to provide an index 

of AMPK activity in the intact heart during in vitro ischemia, we compared the degree of 

endogenous AMPK phosphorylation at Thr as well as endogenous AMPK activity 

during both control and ischemic conditions. Our results demonstrated a 2.6-fold 

increase (P < 0.002) in pThr ‘ levels in the ischemic heart (Figure 3A) and a 3.4 fold 

increase (p < 0.01) in AMPK activity as measured by the SAMS kinase assay (Figure 

3B). Increased Thr “ phosphorylation of AMPK may reflect either increased AMPKK 

activity, or decreased phosphatase activity during ischemia. 
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Kinetics of AMPK activation during in vitro ischemia: Having determined that 

ischemia does indeed activate AMPK, we next examined the effects of varying time 

courses of in vitro ischemia on the degree of AMPK Thr " phosphorylation and kinase 

activity. Hearts were subjected to 1 or 20 minutes of control perfusion or to 1, 2, 5, 10 or 

20 minutes of global low-flow ischemia, before being homogenized and precipitated into 

PEG fractions. The 2.5-6% PEG fraction, containing endogenous AMPK, was then 

immunoblotted for pThr17' and total AMPK levels (Figure 4A) and the SAMS kinase 

assay was performed to assess for AMPK activity (Figure 4B) (SAMS kinase assay was 

performed by Ji Li PhD.). Global ischemia resulted in a significant increase in Thr172 

phosphorylation (p < 0.05) with maximal Thr phosphorylation observed after 5 

minutes (Figure 4A). Endogenous AMPK activity was also found to be increased 2- to 3- 

fold (p < 0.01) during global ischemia, with maximal activity observed after 5 minutes, 

thereby mirroring the observed increase in Thr172 phosphorylation (Figure 4B). Based on 

these experiments, it was determined that AMPKK activation was very rapid in this 

ischemic model. 
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Effects of in vitro ischemia on AMPKK activity: In order to directly examine the 

possibility that AMPKK activity is increased by in vitro ischemia, 6-10% PEG- 

precipitated protein from both control and ischemic tissue was incubated with either the 

recombinant ai AMPK subunit or recombinant heterotrimeric AMPK (Figure 5A, 5B). 

The incubations were then lmmunoblotted for pThr and total AMPK. Under ischemic 

conditions, Thr “ phosphorylation was increased 1.5-fold (P < 0.04) on the recombinant 

a-1 AMPK subunit (Figure 5A) and 2-fold (P < 0.00002) on the recombinant 

heterotrimeric AMPK (Figure 5B) during ischemia as compared to control conditions. 

Together, these results indicate that in vitro global ischemia acts as a physiological 

activator of AMPKK. 
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Effects of in vivo ischemia on AMPK and AMPKK activity: The same experiments 

were performed using tissue from hearts subjected to regional ischemia by left coronary 

occlusion. We first examined endogenous AMPK Thr phosphorylation as well as 

endogenous AMPK activity in control and ischemic homogenates. We found that there 

was a 2-fold increase (p < 0.03) in pThr levels in the ischemic heart (Figure 6A) and a 

3-fold increase (p < 0.01) in AMPK activity (Figure 6B). Subsequently, we incubated 

AMPKK protein from the 6-10% PEG fraction with either the recombinant oq AMPK 

subunit or the recombinant heterotrimeric AMPK (Figure 7A, 7B). Our results 

demonstrated an insignificant increase (p < 0.15) in Thr1/2 phosphorylation of the 

recombinant a-1 AMPK subunit (Figure 7A); however there was a 1.3-fold increase (p < 

0.04) in pThr172 on the recombinant heterotrimeric AMPK (Figure 7B) during ischemia in 

comparison to control hearts. These results suggest that regional ischemia produced via 

ligation of the left coronary artery serves to increase AMPKK activity, although to a 

lesser extent when compared to the increase in AMPKK activity observed during in vitro 

ischemia. 
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Discussion 

The overall aim of this study was to examine the effect of ischemia on the 

AMPK-AMPKK cascade in the heart. Our initial results demonstrated that ischemic 

conditions resulted in increased Thr phosphorylation along with increased kinase 

activity of AMPK, thereby reaffirming previous research that ischemia acts as an 

activator of AMPK (79) (80) (81). This finding is consistent with the notion that AMPK 

is activated by physiological environments associated with metabolic stress, including 

exercise (60), hypoglycemia (82), hypoxia (83), and heat shock (98). 

While it has been presumed that the activation of AMPKK, the upstream kinase of 

AMPK, is responsible for the phosphorylation of AMPK during metabolic stress, the 

scientific literature on this subject has been limited and has not supported this theory. 

Indeed, initial studies have indicated that AMPKK was constitutively active in 

insulinoma cell lines (136), liver (146) and skeletal muscle (147). In order to study the 

question of the regulation of AMPKK, we developed a novel enzymatic assay with which 

we were able to show a significant increase in AMPKK activity during in vitro and in 

vivo ischemia in myocardial tissue. Our results represent the first demonstration, in any 

tissue, of the activation of AMPKK by a physiological stimulus, thereby suggesting that 

increased AMPK phosphorylation during metabolic stress is due to the increased activity 

of AMPKK as opposed to the inhibition of phosphatase activity, or to changes in the 

structure of AMPK that may have led to an increased ability of the protein to become 

phosphorylated, or to autophosphorylation by AMPK itself. 
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Development of an AMPKK Assay 

There were several experimental parameters that needed to be considered when 

devising an AMPKK assay, such as enriching the kinase from myocardial homogenates, 

establishing the concentration and time dependence of the enzyme, understanding the 

kinetics of the AMPK-AMPKK reaction in the heart, and determining appropriate 

substrates to use in the assay. Early research that had examined liver AMPKK found that 

AMPKK activity could be enriched using protein fractionation methods with 

polyethylene glycol precipitation (67), thereby providing a starting point for the 

development of the AMPKK assay detailed herein. Our results clearly demonstrated that 

heart AMPKK was enriched in the 6-10% PEG fraction. Furthermore, the virtual 

absence of AMPKK activity observed in the 2.5-6% PEG fraction and the 10% PEG 

supernatant suggests that we were able to enrich AMPKK without losing AMPKK 

activity in other PEG fractions during the enrichment process. It should also be noted 

that AMPK was found to be present exclusively in the 2.5-6% PEG fraction. The fact 

that AMPK and AMPKK activity were enriched in different PEG fractions was 

important, since it guaranteed that endogenous AMPK would not be present and thereby 

would not introduce background signal during experiments that used the recombinant 

heterotrimeric AMPK as a substrate. There was no possibility of overlap with 

endogenous AMPK signal using the other substrate, the recombinant cci AMPK subunit, 

since it migrated more slowly during SDS-PAGE because of a higher molecular weight. 

After achieving the enrichment of AMPKK, it was next necessary to detail the 

optimal experimental conditions for the assay. Specifically, we studied the effects of the 

duration of the assay as well as the effects of the amount of AMPKK protein on AMPKK 





44 

activity. Our results allowed us to choose parameters that ensured a linear relationship 

between these variables (amount of AMPKK or the time course of the assay) and the 

observed AMPKK activity, as well as confirming that the substrate would not be a 

limiting factor for the assay. 

Further experiments were performed in order to examine the time course of 

AMPK activation during low-flow ischemia in the heart. Our results clearly 

demonstrated that AMPK is activated early on during ischemia and remains significantly 

activated after 20 minutes, thereby indicating that a relatively short duration of ischemia 

is sufficient to produce AMPK activation. Such results would suggest that AMPKK 

activity is rapidly activated in a similar fashion; however, the question arises as to 

whether AMPKK follows a prolonged course of activation similar to that of AMPK, or 

whether AMPKK may instead experience a transient peak of activation at an early time 

point during ischemia and then return to baseline levels of activity at later time points. 

Recent research from our laboratory has reported significant AMPK activation after 30 

minutes of ischemia that persists during 30 minutes of reperfusion in perfused mouse 

hearts (150). These findings would suggest that AMPKK activity is consistently as 

opposed to briefly elevated during ischemia. Additional experiments performed in our 

laboratory by Dr. Ji Li have confirmed this theory by demonstrating early and persistent 

activation of AMPKK after 20 minutes of ischemia (Appendix A - Figure 1) (141). 

An important component of an assay examining enzymatic activity is the 

utilization of an appropriate substrate. We were fortunate to be able to obtain two 

different recombinant AMPK substrates through scientific collaboration with researchers 

at Dartmouth University and from Zurich. This study initially utilized a recombinant aj 
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AMPK subunit, which is a truncated synthetic version of the ai subunit containing amino 

acids 1-312 with a N-terminal maltose binding protein, that had been used in other 

studies in order to assess AMPKK activity in insulinoma cells (136). Since this truncated 

recombinant ai subunit contained the Thr phosphorylation site, we believed that it 

might be a suitable substrate with which to assess AMPKK activity as a measure of 

Thr172 phosphorylation. Initial experiments demonstrated that this substrate was readily 

phosphorylated by AMPKK. We then obtained a more physiologic substrate, a 

recombinant heterotrimeric otiPiyi AMPK protein. Since AMPK is a heterotrimeric 

protein, it was highly possible that AMPK phosphorylation by AMPKK is affected by the 

tertiary structure of the AMPK heterotrimeric complex. Subsequent experiments were 

performed using the recombinant heterotrimeric ctipiyi AMPK protein. While the 

findings were largely similar in experiments using the recombinant heterotrimeric oti J3iyi 

AMPK protein and the recombinant oq AMPK subunit, the experiments involving the 

recombinant heterotrimeric aiPiyi AMPK protein produced more consistent results. 

One additional possible explanation for the observed difference in results is that 

the presence of the regulatory y subunit in the recombinant heterotrimeric AMPK protein 

may have resulted in the steric hindrance of phosphatases, thereby leading to a decreased 

susceptibility of the catalytic a subunit to dephosphorylation. Without such steric 

hindrance, the recombinant oq AMPK subunit may have been more vulnerable to 

phosphatase activity, thus leading to less consistent results. If this hypothesis were 

accurate, we would have expected to see less Thr “ phosphorylation across both control 

and ischemic samples during experiments using the recombinant cti AMPK subunit as 

compared to experiments using the recombinant heterotrimeric aiPiyi AMPK protein. 
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172 Nevertheless, overall level of Thr phosphorylation was comparable between 

experiments using either the recombinant oti AMPK subunit or the recombinant 

heterotrimeric aiPiyi AMPK protein, thereby suggesting that variable results obtained 

using the recombinant cti AMPK subunit were not likely due to phosphatase action. 

Certainly, the presence of the |3 and y subunits may have been responsible for the 

more consistent results seen during experiments utilizing the recombinant heterotrimeric 

aiPiyi AMPK protein. In particular, the y subunit has been implicated in binding AMP, 

which results in a conformational change of the kinase that leads to greater Thrl/2 

phosphorylation (55), probably due to the fact that an AMP-AMPK complex provides a 

better substrate for AMPKK (78). With the heterotrimeric AMPK protein, AMP may 

have been able to complex with AMPK to produce a better site of action for AMPKK, 

thereby magnifying the effects of the activated AMPKK. While this is a theoretical 

explanation for the observed effects, the experiments were performed in the absence of 

AMP in that no AMP was added to the incubation buffer and carry over of AMP from 

heart homogenate in the 6-10% PEG fraction was likely minimal, thereby making this 

hypothesis less likely. 

With regards to the recombinant heterotrimeric aiPiyi AMPK protein as a 

substrate for the AMPKK assay, it should be noted that multiple isoforms of AMPK 

subunits exist. In fact, the gli isoform is predominant in myocardial tissue. Thus, 

although the recombinant heterotrimeric aiPiyi AMPK protein was an excellent substrate 

for the AMPKK assay, it should be noted that findings related to this recombinant 

heterotrimeric aiPiyi AMPK protein are slightly limited as it is not the dominant isoform 

in heart (55). A recombinant heterotrimeric a2Piyi AMPK protein has since become 
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available, and recent studies in our laboratory, performed by Dr. Ji Li, have demonstrated 

results using the recombinant heterotrimeric 0C2P1Y1 AMPK protein that are similar to the 

results described herein using the recombinant heterotrimeric ctiPiyi AMPK protein 

(Appendix A - Figure 2) (141). 

Thus, this study was able to develop an effective assay with which to examine 

AMPKK activity. This assay should serve as a useful research tool in the further study of 

AMPKK regulation in the heart as well as in other tissues. 

Ischemia is an activator of AMPKK 

The predominant mechanism responsible for the increased level of Thr172 

phosphorylation on heart AMPK observed during ischemia has been previously 

unknown. The results presented herein suggest, for the first time, that ischemic 

conditions do increase AMPKK activity as measured by increased levels of Thr1,2 

phosphorylation and increased kinase activity of the recombinant heterotrimeric protein, 

thereby challenging the prior notion that AMPKK is constitutively active (136). 

Two different experimental ischemia preparations were used in this study. We 

utilized in vivo regional ischemia in order to examine AMPKK activity under integrated 

physiologic conditions; however, while using the in vivo protocol, we found that control 

tissues sometimes displayed increased baseline AMPKK activity. Such findings led to 

the speculation that AMPKK is extremely labile, such that even a short course of 

ischemia, as produced during the time when the control heart was excised and frozen, 

would lead to increased AMPKK activity. Therefore, it was determined that it would be 

advantageous to utilize an in vitro tissue preparation protocol in which the tissue could be 
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immediately frozen when the control and ischemic protocol ended. Furthermore, our 

laboratory has recently demonstrated that AMPK plays a critical role in preventing 

myocyte apoptosis after in vitro low-flow ischemia (151), thus increasing our interest in 

using this experimental ischemic model to assess AMPKK activity. 

There are several limitations that need to be recognized when making 

generalizations using results from in vitro experiments about AMPKK activity. First, 

global as opposed to regional ischemia is produced during the in vitro protocol, which 

does not mimic the typical clinical situation of coronary artery disease. Also, the 

neurohumoral activation and influence of other substances, such as catecholamines or 

angiotensin II that may affect cardiac energy metabolism in vivo, are absent in an in vitro 

tissue preparation. Lastly, a heart perfused under in vitro conditions experiences a lower 

workload than a heart in vivo, thereby reducing the need for increased energy metabolism 

and subsequently potentially decreasing the degree of AMPK activation. In order to 

circumvent the issue of a decreased workload, the working heart model was utilized as it 

produces a greater workload than the Langendorf model of in vitro retrograde perfusion. 

The findings presented herein, that AMPKK activity is increased by ischemia, are 

directly contradictory to the previous belief that AMPKK is constitutively active (136). 

This discrepancy may be explained by the differences in experimental methodology 

employed by Hamilton et al (136) and this current study. Firstly, Hamilton et al (136) 

employed an insulinoma cell line as opposed to the whole heart tissue preparation used in 

this study. Certainly, in a whole tissue preparation, multiple factors, including cell-to-cell 

interaction and synchronous contractility, can influence energy metabolism, and these 

additional factors may be involved in regulating AMPKK activity. Also, Hamilton et al 
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(136) incubated the synthetic AMPK substrate with crude cell lysate as opposed to 

enriching AMPKK through PEG fractionation. It is unknown what other proteins, 

specifically phosphatases, may have been present in the cell lysate and how those 

proteins might have affected the levels of Thr phosphorylation observed. Furthermore, 

Hamilton et al (136) used only the recombinant ai AMPK subunit as a substrate, which is 

likely not the optimal substrate to study the subtle differences in AMPKK activity under 

control and experimental conditions as has been previously discussed. 

This study raises the question of how ischemia activates AMPKK on a molecular 

basis. Initial experiments had suggested that increased levels of AMP, such as those 

produced during ischemia (79), might serve to activate AMPKK (78). Using the 

methodology developed in this study, subsequent experiments, performed in our 

laboratory by Dr. Ji Li, were developed to address the effects of AMP on AMPKK 

activation during myocardial ischemia. The results of these experiments involving AMP 

have been subsequently published in conjunction with the experiments described herein 

(See Appendix B) (141). AMPKK was incubated with a series of substrates (the 

recombinant ai AMPK subunit, a recombinant heterotrimeric AMPK protein containing 

a y subunit with the R70Q mutation, which decreases the y subunit’s ability to bind AMP, 

and a recombinant wild-type heterotrimeric ctiPiyi AMPK protein) in the presence or 

absence of AMP. AMP had no effect on AMPKK activity as assessed by unchanging 

levels of Thr172 phosphorylation from both control and ischemic samples when the 

recombinant isolated ai AMPK subunit or the R70Q mutated AMPK was used as a 

substrate (Appendix A - Figures 3 and 4) (141). However, similar experiments using the 

recombinant heterotrimeric oiiPiyi AMPK protein as a substrate, demonstrated increased 
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179 

levels of Thr ‘ phosphorylation by AMPKK in the presence of AMP (Appendix A - 

Figure 5) (141). These results suggest that AMP acts to make AMPK a better substrate 

by interacting with the y subunit, but has no direct effect on AMPKK activity. 

Interestingly, when AMPKK activity was studied in the presence of ATP, there was no 

change in AMPKK activity when the recombinant oti AMPK subunit was used as a 

substrate; however, when the recombinant heterotrimeric ciiPiyi AMPK protein was used 

as a substrate, AMPKK activity was found to be decreased by increasing levels of ATP, 

thereby suggesting that ATP acts to indirectly inhibit AMPKK activity by transforming 

AMPK into a less suitable substrate for phosphorylation (See Appendix A - Figure 6) 

(141). These results, when taken together, suggest a model of the AMPK-AMPKK 

cascade, in which ischemia activates AMPKK through an AMP-independent mechanism 

and AMP and ATP function to either promote or inhibit respectively the ability of AMPK 

to be phosphorylated by AMPKK in the heart (Figure 8). 

Ischemia 

p' ''A 
Increase Glucose Uptake Decrease Myocyte Apoptosis and Injury 

Figure 8: Model of AMPKK and AMPK activation by Ischemia: Ischemia increases AMP levels 

and decreases ATP levels. AMP then binds the y subunit of AMPK, leading to an AMPK-AMP 
complex. The AMPK-AMP complex is a more suitable substrate for AMPKK to phosphorylate at the 
Thr1"2 site, thereby leading to the activation of AMPK. Ischemia also acts to activate AMPKK by a 
mechanism that is independent of AMP. 
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Recent research, published in January 2005, has also demonstrated that AMPKK 

activity is increased during myocardial ischemia (142), and serves to further confirm the 

findings of this thesis. Methodology similar to the methods described here was 

employed, although a 5% PEG supernatant (that may have contained endogenous AMPK 

activity) as opposed to a 6-10% PEG precipitant was utilized for AMPKK enrichment 

and only the recombinant cp subunit was used as a substrate (142). These authors also 

suggested that heart AMPKK was activated by ischemia in the absence of changes in 

AMP concentration (142). This conclusion was based on cardiac tissue analysis of the 

cellular content of AMP using high performance liquid chromatography (HPLC). Since 

most AMP is bound to cellular proteins, the free cytosolic AMP is present at much lower 

concentrations than the total AMP (i.e. pM versus near mM), and is also likely 

responsible for regulating AMPK activity. Furthermore, studies have shown that AMPK 

is activated in the intact heart by minor changes (i.e. lpM) in the concentration of free 

AMP (151). Since HPLC measures total levels of AMP, it seems likely that the methods 

used by these authors were not sensitive to support the conclusion that AMP 

concentrations do not change in the ischemic heart. Thus, while the study by Altarejos et 

al (142) confirm our results that AMPKK is activated by myocardial ischemia, they do 

not provide convincing proof that the mechanism by which AMPKK is activated is 

independent of AMP. 

Other physiologic activators of AMPK that do not appear to rely on AMP as a 

molecular mediator do exist. Researchers have found that hyperosmotic stress and 

metformin both result in an increase in Thr " phosphorylation and increased AMPK 

activity in the absence of any detectable change in AMP levels (92). Further studies 
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revealed that neither phosphatidylinositol 3-phosphate kinase, protein kinase C, mitogen- 

activated protein (MAP) kinase kinase, nor p38 MAP kinase were involved in the 

activation of AMPK by hyperosmotic stress (92). The here-to-uncharacterized AMP- 

independent mechanism by which hyperosmotic stress and metformin activate AMPK 

may or may not be the same mechanism by which AMPKK is activated. Further research 

is needed to identify and characterize the mechanisms responsible for AMPKK activation 

in the heart. 

Other Phosphorylation Sites on AMPK 

This study concentrated on the phosphorylation of Thr172, which is the critical 

activating site on the a catalytic subunit of AMPK (53) (54). Recent research has found 

that there are two other sites (Thr , Ser ) besides Thr present on the a subunit (143), 

as well as multiple sites on the (3 subunit (Ser24/25, Ser108, Ser182) that are phosphorylated 

by upstream kinases (152). Site specific mutagenesis of Thr258 and Ser485 revealed no 

difference in AMPK activity, thereby suggesting that these sites are not important for 

activation of AMPK. Furthermore, examination of the amino acid sequence surrounding 

Thr258 and Ser487 reveals sequences significantly different from that surrounding Thr172, 

leading researchers to speculate that two separate upstream kinases are responsible for 

phosphorylating Thr172 and Thr258/Ser485 (143). Thus, it seems likely that ischemia has a 

primary effect on the AMPKK that is primarily responsible for regulating Thr172 

phosphorylation, while other upstream kinases, which are not involved in Thr172 

phosphorylation, may not be similarly affected by ischemia or other enviromnents 

involved in modulating AMPK activity. 
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Other Upstream Kinases of AMPK 

This study focused on the physiologic activation of upstream kinase activity of 

AMPK, which has been generically termed AMPKK; however, the molecular identity 

responsible for the kinase activity observed in this study is still unknown. Early studies 

in liver have shown that Ca" /calmodulin (CaM)-dependent protein kmase I kinase 

(CAMKIK) is able to activate AMPK, although this study clearly demonstrated that other 

proteins besides CAMKIK existed with greater specificity and activity for AMPK 

activation (78). 

More recent research in yeast has identified three upstream kinases, Paklp, Tos3p 

and Elmlp, responsible for phosphorylating and activating Snfl kinase, the yeast 

analogue of AMPK (144). Such findings led to the identification of a mammalian 

relative of Paklp, Tos3p and Elmlp, known as LKB1, a kinase that shares a similar 

catalytic domain as the three upstream yeast kinases (144). LKB1 is a tumor suppressor 

protein involved in the inhibition of cellular propagation. Mutations in the LKB1 gene 

have been found to cause Peutz-Jeghers syndrome, an autosomal dominant condition 

associated with hamartomatous polyps of the colon and small intestine, melanotic 

nodules of lips and hands as well as an increased risk for malignancies in the stomach, 

breast and ovary (145). When isolated, LKB1 was found to phosphorylate AMPK at 

Thr172 and activate the protein kinase (144) (146). Furthermore, when LKB1 was 

removed from purified extracts of rat liver containing AMPKK activity, the extracts were 

no longer able to phosphorylate and activate AMPK (146). 
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The role of LKB1 in the heart is unclear at this time. Recent preliminary studies 

in our laboratory have shown that, although LKB1 is present in the heart, it is found in 

PEG fractions that do not demonstrate AMPKK activity (unpublished data). 

Furthermore, additional research has demonstrated that, while AMPKK activity is 

increased during ischemia, there is no difference in immunoprecipitated LKB1 activity in 

ischemic myocardium as compared to control tissue (142). Taken together, these 

observations seem to suggest that another protein besides LKB1 is responsible for the 

AMPKK activity observed during cardiac ischemia. Nevertheless, it has been difficult to 

assess the activity of LKB1 in vitro due to the dissociation of LKB1 from STRAD and 

M025, which are two modifier proteins that form a functional complex with LKB1 (146) 

and may be necessary for LKB1 activity. 

While it seems likely that LKB1 may not be responsible for the AMPKK activity 

described herein, LKB1 does seem to share the characteristic with heart AMPKK of 

being unresponsive to AMP. Studies have demonstrated that skeletal muscle LKB1 was 

unaffected by AICAR or exercise (147) and that liver LKB1 activity was unaltered by 

AMP (146). These results regarding LKB1 activity are consistent with findings that 

AMP does not increase AMPKK phosphorylation of either the recombinant oti subunit or 

of a recombinant AMPK with the R70Q mutation in the y subunit (141). Further 

investigation is needed to understand the physiological environments responsible for 

activating LKB1 as well as to define the role of LKB1 in the heart. 
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Conclusion 

In summary, this study is the first to demonstrate that AMPKK is not 

constitutively active, but is indeed activated by ischemia, thereby suggesting that the 

regulation of Thr phosphorylation of AMPK is mediated by upstream kinases. Further 

experiments are needed to define the molecular identity of heart AMPKK and to study 

the molecular mechanism by which AMPKK is activated. By elucidating the regulation 

of AMPKK, a greater understanding of AMPK activation can be obtained 

As research continues into the upstream regulation of AMPK, scientists have been 

investigating the large-scale physiological role of AMPK through the utilization of mice 

genetically engineered to be deficient in AMPK. AMPK-deficient mice demonstrate 

multiple defects in metabolism, including glucose intolerance, decreased sensitivity to 

insulin in muscle, decreased glycogen in skeletal muscle (148) and increased 

catecholamine production (149). The variety of metabolic irregularities produced in an 

AMPK-deficient organism illustrate the complex role that AMPK plays in the regulation 

of metabolic processes. Future research, employing genetically altered mice and other 

technological advances, will serve to further clarify AMPK’s function as a cornerstone in 

the regulation of metabolism and perhaps point to possible treatments for diseases of 

metabolic dysfunction and the ischemic heart. 
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Control Ischemia 

Perfusion Time (rrin) 

p-AMPK 
(Thr1?2) 

AMPKa 

Om 20m 1m 2m 5m 10m 20m 

Perfusion Time (rrin) Orn 20m 1m 2m 5m 10m 20m 

Control Ischemia 

Figure Al; Kinetics of AMPKK activation in the in vitro ischemic heart: 
AMPKK activities were assessed in the working heart model after control or 

low-flow ischemic perfusions, cqfjf^ rAMPK (5pmol) was incubated with 

heart AMPKK (10 pg) for 10 minutes and then immunoblotted withpThi172 

and pan-a AMPK antibodies to measure AMPKK activity. Immunobbts 

were quantified using densitometry. (* p < 0.05 vs 1 minute control; + p < 

0.01 vs 20-minute control). Values are means + SE for 3 independent 

experiments. 
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Control Ischemia 

Control Ischemia 

(n=3) (n=3) 

Figure A2: AMPKK activation in the in vitro ischemic heart using 
recombinant heterotrimeric AMPK protein as substrate. Rat hearts 
were perfused using the working heart model under control (ri=3) and tow- 
flow (15%) ischemic conditions (n=3). Recombinant heterotrimeric 
AMPK were incubated with control and ischemic heart AMPKK from the 6- 
10% PEG precipitate for 10 minutes in 25 pi of kinase buffer. Incubations 
were then immunob lotted with pThr172 and pan-coAMPK antibodies and 
quantified using densitometry. Values are means + SE for 3 independent 
experiments (* p < 0.01 vs control). 
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Appendix B: Reprint of Journal Article 





Dual Mechanisms Regulating AMPK Kinase Action in the 

Ischemic Heart 

Suzanne J. Baron,* * Ji Li,* Raymond R. Russell III, Dietbert Neumann, Edward J. Miller, 
Roland Tuerk, Theo Wallimann, Rebecca L. Hurley, Lee A. Witters, Lawrence H. Young 

Abstract—AMP-activated protein kinase (AMPK) is emerging as an important signaling protein during myocardial 

ischemia. AMPK is a heterotrimeric complex containing an a catalytic subunit and /3 and y regulatory subunits. 

Phosphorylation of Thr172 in the activation loop of the a subunit by upstream AMPK kinase(s) (AMPKK) is a critical 

determinant of AMPK activity. However, the mechanisms regulating AMPK phosphorylation in the ischemic heart 

remain uncertain and were therefore investigated. In the isolated working rat heart, low-flow ischemia rapidly activated 

AMPKK activity when measured using recombinant AMPK (rAMPK) as substrate. The addition of AMP (10 to 

200 jtimol/L) augmented the ability of heterotrimeric ct,/3,-y 1 or a2^,yl rAMPK to be phosphorylated by heart AMPKK 

in vitro, whereas physiologic concentrations of ATP inhibited rAMPK phosphorylation. However, neither AMP nor 

ATP directly influenced AMPKK activity: they had no effect on AMPKK-mediated phosphorylation of rAMPK 

substrates lacking normal AMP-binding y subunits (isolated truncated a/'312 or a^yl rAMPK containing an R70Q 

mutation in the y{ AMP-binding site). Regional ischemia in vivo also increased AMPKK activity and AMPK 

phosphorylation in the rat heart. AMPK phosphorylation could also be induced in vivo without activating AMPKK: 

AICAR infusion increased AMPK phosphorylation without activating AMPKK; however, the AMP-mimetic AICAR 

metabolite ZMP enhanced the ability of heterotrimeric rAMPK to be phosphorylated by AMPKK. Thus, heart AMPKK 

activity is increased by ischemia and its ability to phosphorylate AMPK is highly modulated by the interaction of AMP 

and ATP with the heterotrimeric AMPK complex, indicating that dual mechanisms regulate AMPKK action in the 

ischemic heart. (Circ Res. 2005;96:337-345.) 

Key Words: AMP-activated protein kinase a AMPK kinase u ischemia 

AMP-activated protein kinase (AMPK) regulates energy 

generating metabolic and biosynthetic pathways during 

physiologic and pathologic cellular stress. AMPK activation 

stimulates fatty acid oxidation,1 promotes glucose trans¬ 

port,2-3 accelerates glycolysis,4 and inhibits triglyceride5 and 

protein synthesis.6 By increasing ATP synthesis and decreas¬ 

ing ATP utilization, AMPK functions to maintain normal 

cellular energy stores during ischemia. Chronic activation of 

AMPK also phosphorylates transcription factors altering gene 

expression7 and modulates muscle mitochondrial biogenesis.3 

AMPK is a heterotrimer consisting of an a catalytic 

subunit and (5 and y regulatory subunits. The primary 

mechanism responsible for AMPK activation involves phos¬ 

phorylation of the Thr172 residue located within the activation 

loop of the a catalytic subunit.9 Additional phosphorylation 

sites have been identified on the a and |3 subunits, but their 

functional roles remain uncertain.10-11 Activation of AMPK 

during myocardial ischemia,'-12 exercise,13 hypoglycemia,14 

and hypoxia15 is associated with ATP breakdown and in¬ 

creases in intracellular AMP. However, AMPK is also phos¬ 

phorylated through AMP-independent pathways during os¬ 

motic stress16 and metformin17 or leptin18 stimulation. 

Activation of AMPK is very sensitive to an increase in the 

intracellular concentration of AMP, which promotes its allo¬ 

steric activation and phosphorylation.19-20 Phosphorylation of 

the a subunit Thr'72-activadng site is mediated by one or more 

upstream kinases, termed AMPK-activating protein kinases 

or AMPKK(s).21 AMP increases liver AMPKK(s) activity 

through binding to the AMPK y subunit, which renders 

AMPK a better substrate for AMPKK, and by direct activa¬ 

tion of AMPKK by AMP.22 However, recent findings chal¬ 

lenge the notion that AMP has a direct effect on AMPKK23 

and have also raised the possibility that AMPKK is constitu- 

tively active.24 

The physiological mechanisms responsible for the regula¬ 

tion of AMPKK in the heart remain uncertain. The aims of 

this study were to assess whether AMPKK is activated by 

ischemic stress and the extent to which AMP and ATP 
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modulate heart AMPKK action. The results indicate that heart 

AMPKK is activated by ischemia, but that it is not directly 

affected by either increases in AMP or decreases in ATP 

concentration. Instead, AMP augments and ATP inhibits the 

action of AMPKK to phosphorylate and activate the AMPK 

a subunit by interacting with the heterotrimeric AMPK 

complex. 

Materials and Methods 
Male Sprague-Dawley rats (250 to 350 grams; Charles River 

Laboratories, Inc, Wilmington, Mass) were given standard chow and 

| water before experiments. All procedures were approved by the Yale 

University Animal Care and Use Committee. 

In Vitro Low-Flow Ischemia 
Rats were anesthetized with pentobarbital sodium (60 mg/kg intia- 

peritoneal) and heparinized (300 U intraperitoneal). Hearts were 

excised and anterogradely perfused in the working mode with 

Krebs-Henseleit buffer containing 1% bovine serum albumin. 

0.4 mmol/L oleate, and 5 mmol/L glucose, and equilibrated with 

95% CK/5% C02 at 37°C.25 Control hearts were perfused at a preload 

of 15 cm H20 and an afterload of 100 cm H20 for 40 minutes. 

Ischemic hearts were perfused normally for 20 minutes and then flow 

was reduced to 15% of control (by decreasing afterload pressure to 

30 cm ILO) for I to 20 minutes. Hearts were freeze-clamped in 

liquid nitrogen and stored at — SO^C. 

In Vivo Regional Ischemia 
Anesthetized rats were endotracheally intubated and ventilated with 

a small animal respirator, and drey underwent thoracotomy to ligate 

the proximal left coronary artery for 10 minutes. Control rats 

underwent sham thoracotomy. Hearts were then rapidly excised and 

freeze-clamped in liquid nitrogen. 

In Vivo AICAR Infusion 
The AMPK-activator 5-amino-4-imidazolecarboxamide (AICAR) 

(Sigma, St. Louis, Mo), which is converted to the monophosphory- 

lated metabolite ZMP that is an AMP mimetic, was administered 

intravenously (100 mg/kg bolus and 10 mg/kg per minute infusion 

for 60 minutes) to chronically catheterized rats.1 Control rats 

received saline infusions. Plasma glucose was maintained constant 

with a variable infusion of 20% dextrose to prevent hypoglycemia, as 

previously described.1 At the end of the infusion, rats were anesthe¬ 

tized with intravenous pentobarbital (50 mg/kg), and tire hearts were 

rapidly excised and freeze-clamped in liquid nitrogen. 

Tissue Fractionation 
Heart tissue was homogenized in buffer containing 125 mmol/L Tris. 

1 mmol/L EDTA, 1 mmol/L EGTA, 250 mmol/L mannitol, 

50 mmol/L NaF, 5 mmol/L NaPPi, 1 mmol/L DTT, 1 mmol/L 

benzamedine. 0.004% trypsin inhibitor, and 3 mmol/L NaN, (pH 

7.5).13 After centrifugation at I4 000g for 20 minutes, the superna¬ 

tant was fractionated by the sequential addition of polyethylenegly¬ 

col (PEG) into 2.5% to 6% and 6% to 10% precipitants and >10% 

supernatant. Fractions were resuspended in homogenizaiton buffer 

without mannitol. Protein concentrations were determined using the 

Bradford assay (BioRad reagent). 

Immunoblotting 
Proteins were diluted in Laemmli sample buffer before SDS- 

PAGE.13 After transfer to polyvinylidine difluoride membranes, 

proteins were immunoblotted with pan-a (a,/a2) AMPK antibody at 

1:10 000 dilution (kind gift from Dr M. Bimbaum) and anti-pThr172 

AMPK antibody at 1:5000 dilution (Cell Signaling, Beverly, Mass). 

Proteins were detected with enhanced chemiluminescence and auto¬ 

radiographs were quantified using densitometry. 

AMPKK Assay 
Heart AMPKK activity was assessed by measuring the AMPKK- 

induced Thr172 phosphorylation of rAMPK substrates in vitro. Initial 

experiments demonstrated that AMPKK activity was present almost 

exclusively in the 6% to 10% PEG fraction (see Results). To assess 

AMPKK activity, protein (10 jug) from the 6% to 10% PEG fraction 

was incubated with 10 pmol of truncated a,1"2 fusion protein 

(N-terminal maltose binding protein),34 or 5 pmol of a£,/3,-yI rAMPK 

containing an R70Q mutation in the y, AMP-binding site, wdd-type 

01,13,71, or a2j3,yl rAMPK.26 Incubations were performed in 25 ju.L 

of AMPKK assay buffer (20 mmol/L Tris, 5 mmol/L MgCL, 

0.2 mmol/L ATP, 0.5 mmol/L DTT, 0.1% Tween, 1 mg/mL bovine 

serum albumin; pH 7.5). In experiments designed to assess the 

effects of nucleotides on AMPKK activity, AMP (0 to 200 p.mol/L), 

ATP (400 /rmol/L tolO mmol/L), and ZMP (0 to 1000 /umol/L, 

Sigma, St. Louis, Mo) were added to the incubation mixture. 

Samples were diluted with Laemmli buffer, subjected to SDS-PAGE, 

and immunoblotted with anti-pThr172 AMPK and pan-a AMPK 

antibodies. 

AMPK Activity Assay 
Endogenous heart AMPK activity, as well as the catalytic activity of 

rAMPK incubated with AMPKK, were assessed with a kinase assay 

measuring the incorporation of [y-12P|-ATP into the SAMS pep¬ 

tide.13 Endogenous AMPK activity was measured using 10 p.g of 

2.5% to 6% PEG fraction protein prepared from heart homogenates. 

The activity of a,1'312 fusion protein or heterotrimeric rAMPK used 

as AMPKK substrates was measured after isolation with a Ni-NTA 

kit (Qiagen, Valencia, Calif), which bound the epitope-tagged 

recombinant proteins via their polyhistidine sequences. 

Statistics 
Results were analyzed using Student t lest and are presented as 

means±SEM. Results were significant at P<0.05. 

Results 

AMPK and AMPKK Fractions 
We initially evaluated whether AMPK and AMPKK might be 

separately enriched using PEG precipitation of heart homog¬ 

enates. Immunoblots demonstrated that endogenous AMPK 

was present predominantly in the 2.5% to 6% PEG fraction 

(Figure 1A), whereas AMPKK activity was almost exclu¬ 

sively in the 6% to 10% fraction (Figure IB). Conditions for 

optimizing the AMPKK assay were then established. 

AMPKK activity was found to be linear for 20 minutes 

(Figure 1C), using up to 25 jug of 6% to 10% PEG- 

precipitated protein from ischemic hearts (Figure ID), so that 

AMPKK assays were subsequently performed with 10 /ug 

protein for 10 minutes. 

AMPK and AMPKK Activity During In 

Vitro Ischemia 
We next assessed whether ischemia activated AMPK and 

AMPKK activity in perfused working rat hearts. Endogenous 

AMPK Thr172 phosphorylation (Figure 2A) and activity (Fig¬ 

ure 2B) increased 2- to 3-fold (P<0.01) after low-flow 

ischemia. Incubation of the AMPKK fraction with heterotri¬ 

meric a,/3,yl rAMPK as substrate demonstrated a 4- to 5-fold 

(P<0.01) increase in AMPKK activity in ischemic hearts 

(Figure 2C). The increase in ischemic heart AMPKK activity 

was very rapid, increasing 3-fold after 1 minute and reaching 

maximal activity by 5 to 20 minutes. The accumulation of 

phosphorylated AMPK was less rapid (P<0.05), but also 

significant, during the first 2 minutes of ischemia, and was 
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Figure 1. Enrichment of AMPK and 
AMPK kinase (AMPKK) activity in heart 
homogenate fractions. A, Ischemic heart 
homogenates were fractionated using 
PEG precipitation and immunoblotted 
with pan-a AMPK antibody (*P<0.01 vs 
both 6% to 10% and >10%). B, PEG 
fractions (25 pig protein) were incubated 
with 10 pmol a,1'312 fusion protein for 10 
minutes, a-,1'312 was then immunoblotted 
with pThr'72 and pan-a AMPK antibodies 
to measure AMPKK activity (*P<0.01 vs 
both 2.5% to 6% and >10% fractions). 
C, AMPKK (10 pig protein from 6% to 
10% fraction) from ischemic hearts was 
incubated with 5 pmol a,j6,y1 rAMPK 
(*P<0.01 vs 0 minutes). D, AMPKK was 
incubated with 5 pmol a,^yl rAMPK for 
10 minutes. rAMPK was then immuno¬ 
blotted with pThr172 and pan-a AMPK 
antibodies to measure AMPKK activity 
(*P<0.01 vs 5 pig AMPKK). Values are 
means±SE for 3 independent 
experiments. 

maximal after 5 to 20 minutes. Because AMPK was not 

present in the AMPKK fraction, there was no detectable 

endogenous phosphorylated Thr1,2 AMPK in the incubations. 

Effects of In Vivo Ischemia on AMPK and 
AMPKK Activity 
To determine whether AMPKK was also activated by regional 

ischemia in the intact rat in vivo, we measured AMPK and 

AMPKK activity after coronary occlusion. Regional ischemia 

stimulated endogenous AMPK phosphorylation (Figure 3A) and 

increased AMPK activity 3-fold (P<0.01) (Figure 3B). Re¬ 

gional ischemia also stimulated AMPKK activity: phosphoryla¬ 

tion ofa,|3,yl rAMPK increased significantly (P<0.05) (Figure 

| 3D), and the phosphorylation of the a/'312 also tended to be 

| greater after in vivo ischemia (Figure 3C). 
I 
! 

A 

Effects of AMP on Heart AMPKK Activity 
In Vitro 
To determine whether heart AMPKK is activated directly by 

AMP, perfused heart AMPKK was incubated with varying 

concentrations of AMP and either the a,1 312 fusion protein or 

a,)3iyl rAMPK containing an R70Q mutation in the y, AMP 

binding site. These substrates enabled assessment of the 

direct effects of AMP on AMPKK, without the potentially 

confounding effect of AMP interacting with the heterotri- 

meric complex to render the substrates more effective targets 

for AMPKK. With the addition of physiologic concentrations 

of AMP (10 to 200 /amol/L) found in the ischemic heart,20-27 

there was no augmentation of AMPKK-stimulated Thr1 2 

phosphorylation (Figure 4A and 4B) or the catalytic activities 

(Figure 4C and 4D) of these rAMPK substrates. 

Figure 2. Kinetics of AMPK and AMPKK 
activation in the in vitro ischemic heart 
AMPK and AMPKK activities were assessed 
in the working heart model after control or 
low-flow ischemic perfusions. A Endoge¬ 
nous heart AMPK was immunoblotted with 
pThr172 and pan-a AMPK antibodies. B, En¬ 
dogenous AMPK activity was measured in 
the 2.5% to 6% PEG fraction of heart ho¬ 
mogenates using the SAMS peptide as a 
substrate (*P<0.01 vs 1-minute control; 
tP<0.01 vs 20-minute control). C, a,/3iy1 
rAMPK (5 pmol) was incubated with heart 
AMPKK (10 jug) for 10 minutes and then 
immunoblotted with pThr172 and pan-a 
AMPK antibodies to measure AMPKK activ¬ 
ity (*P<0.05 vs 1-minute control; fPcO.OI vs 
20-minute control). Values are meansiSE 
for 3 independent experiments. 
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Figure 3. AMPK and AMPKK activation in 
the in vivo ischemic heart. Heart AMPK and 
AMPKK activity after sham operation (n=7) 
or regional ischemia (n=6) for 10 minutes in 
vivo. A, Endogenous heart AMPK was im- 
munoblotted with pThr172 and pan-a AMPK 
antibodies. B, AMPK activity was measured 
in 2.5% to 6% PEG fractions using the 
SAMS peptide assay (*P<0.01 vs control). C 
and D, AMPKK (10 /ug) activity was 
assessed with a,1'312 fusion protein (10 
pmol) or rAMPK (5 pmol) substrates 
that were immunoblotted with pThr172 and 
pan-o AMPK antibodies. The relative 
amount of phosphorylated substrate is 
quantified in the bar graphs (§P<0.15, 
tP<0.05 vs control). Values are meansiSE. 

In contrast, the addition of AMP did enhance the action of 

heart AMPKK to phosphorylate (Figure 5A and 5B) and 

increase the catalytic activity (Figure 5C and 5D) of rAMPKs 

containing intact AMP-binding domains (a,/3,yl or a:/3,yl). 

AMP clearly augmented the ability of ischemic heart 

AMPKK to activate the a,j3,yl and a2j3,yl rAMPKs (Figure 

5). Although AMP had little discernible effect to increase 

rAMPK Thr172 phosphorylation (Figure 5Aand 5B), it did 

slightly and significantly increase the ability of control heart 

AMPKK to stimulate rAMPK activity (Figure 5C and 5D). 

Taken together, these observations suggest that AMP inter¬ 

action with rAMPKs containing functional y subunits renders 

the a subunits better substrates for Thr12 phosphorylation, 

particularly by ischemic heart AMPKK. 

Effects of AICAR Infusion and ZMP on Heart 

AMPKK Activity 
To further examine the physiological importance of nucleo¬ 

tide interaction with the y subunit in mediating AMPK 

phosphorylation by heart AMPKK, we assessed the mecha¬ 

nisms by which AICAR activates AMPK in the heart.3 

AICAR is converted to the AMP mimetic compound ZMP28 

and is known to activate heart AMPK activity in vivo.3 

AICAR infusion increased heart AMPK Thr1 2 phosphoryla¬ 

tion (Figure 6A) but had no effect on heart AMPKK activity, 

as assessed in vitro with either the a,1-312 fusion protein or the 

a,j3,yl rAMPK (Figure 6B and 6C). Interestingly, ZMP had 

no effect to stimulate AMPKK phosphorylation of the trun¬ 

cated a,1'312 fusion protein (Figure 6B), but it clearly in¬ 

creased the ability of heterotrimeric a,/3,yl rAMPK to be 

phosphorylated by AMPKK (Figure 6C). These results sug¬ 

gest that the AMP mimetic ZMP potentiates AMPKK action 

through interaction with the y subunit, rendering AMPK a 

better substrate for the upstream kinase. In the absence of 

AMPKK activation, this physiological mechanism appears to 

account for AICAR-stimulated AMPK phosphorylation in the 

heart in vivo. 

Effects of ATP on Heart AMPKK Action 

ATP concentrations also decrease during ischemia:12-27 there¬ 

fore. we examined the hypothesis that normal physiologic 

concentrations of ATP might inhibit AMPKK directly or 

inhibit the ability of AMPK to be phosphorylated by heart 

AMPKK. Heart AMPKK was incubated with varying ATP 

concentrations and either the truncated a,1'312 fusion protein 

or heterotrimeric a1/3,yl rAMPK (Figure 7). ATP (5 to 

10 mmol/L) had no effect on AMPKK-mediated phosphory¬ 

lation of the a,1'312 fusion protein (Figure 7A) but did 

significantly inhibit the ability of AMPKK to phosphorylate 

ai/3,yl rAMPK (Figure 7B). These results indicate that 

physiologic intracellular concentrations of ATP indirectly 

inhibit the action of heart AMPKK through interaction with 

the heterotrimeric AMPK complex. 

Discussion 
These results elucidate the dual mechanisms regulating the 

phosphorylation and activation of AMPK by upstream AMP- 

KK(s) in the ischemic heart. First, AMPKK activity per se is 

increased by both low-flow ischemia in vitro and regional 

ischemia in vivo. Second, AMP and ATP interactions with 

the heterotrimeric AMPK complex reciprocally modulate its 

suitability as a substrate to be phosphorylated by heart 

AMPKK. The findings suggest that the increases in AMP and 

decreases in ATP concentrations that occur in the ischemic 

heart12-20-27 have an indirect influence on AMPKK action, 

rather than a direct effect on AMPKK activity. In addition, 

the results of the AICAR/ZMP experiments further demon¬ 

strate that the interaction of nucleotides with heterotrimeric 

AMPK are important and sufficient to increase AMPK Thr172 

phosphorylation in vivo, even in the absence of direct heart 

AMPKK activation. 

Both in vitro and in vivo myocardial ischemia caused 

significant increases in AMPKK activity in these experi¬ 

ments. In contrast, previous studies in noncardiac tissues and 

cells have observed greater AMPK phosphorylation and 
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Figure 4. Effect of AMP on heart AMPKK phosphorylation of rAMPK substrates lacking AMP-binding capacity. Heart AMPKK activity 
after control or low-flow ischemic perfusions was measured as the phosphorylation of a,1-312 fusion protein (A) or a,/3,-yl rAMPK con¬ 
taining an R70Q mutation in the yi AMP-binding site (B) in the absence or presence of AMP (10 to 200 pmol/L). After incubations with 
AMPKK, substrates were immunoblotted with pThr172 and pan n-AMPK antibodies and their relative phosphorylation was quantified in 
the bar graphs. The activities of the isolated a!1’312 fusion protein (C) and R70Q mutated a-ifay 1 rAMPK (D) were then measured using 
the SAMS peptide as a substrate. The AMP concentration in panels C and D refers to that present during incubations with AMPKK. 
Values are means±SE for 3 independent experiments (*P<0.01 vs control group). 

activation in the absence of increased AMPKK activity. 

Hypoglycemia increased Thr172 phosphorylation and AMPK 

activity without altering AMPKK activity in INS-1 cells.24 

Similarly, in situ contraction increased AMPK phosphoryla¬ 

tion in skeletal muscle without increasing the activity of 

LKB1,29 a recently identified AMPKK.23 30 Although these 

Findings raised the possibility that AMPKK might be consti- 

tutively active, this does not appear to be the case in the heart 

during ischemic stress. 

The mechanisms by which AMPKK action is increased 

in the ischemic heart were elucidated through the use of 

different substrates to measure AMPKK activity. Both the 

a,1'312 fusion protein24 and heterotrimeric rAMPKs26 were 

effective substrates for the heart AMPKK assay in vitro. 

Measurement of AMPKK activity in the absence of AMP 

demonstrated intrinsic AMPKK activation in the ischemic 

heart. The use of rAMPK substrates without normally 

functional AMP-binding sites (a,1'312 fusion protein and 

OijSiyl rAMPK R70Q mutation) in the AMPKK assays 

also enabled us to demonstrate that AMP has no direct 

effects to increase AMPKK activity. AMPK activation in 

the absence of measurable changes in the AMP concentra¬ 

tion has been implicated in the response of noncardiac 

tissues to leptin,18 osmotic stress,16 and metformin,16-17 but 

AMPKK activity has not been assessed in these experi¬ 

ments and the specific mediators of presumed AMPKK 

activation in these settings remain unknown. 

In contrast, when AMP was added to ischemic heart 

AMPKK incubated with intact heterotrimeric a./Tyl or 

a2/3,yI rAMPK, we observed an increase in a subunit Thr172 

phosphorylation and AMPK activity. These results, taken 

together with the a, fusion protein and R70Q a,jB, yl rAMPK 

findings, are consistent with the hypothesis that AMP-binding 

to the y subunit induces a conformational change in the 

heterotrimeric AMPK complex, which renders the a subunit 

more susceptible to phosphorylation by AMPKK.223132 In¬ 

terestingly, we found less striking effects of AMP to render 

AMPK a better substrate for nonischemic heart AMPKK, 

raising the possibility that activated AMPKK from the ische¬ 

mic heart may better-recognize the change in AMPK confor¬ 

mation induced by AMP-binding to the y subunit. Although 

these studies were not designed to assess protein phospha¬ 

tases in the ischemic heart, it is possible that AMP binding to 

the y subunit may also decrease the susceptibility of a 

subunit pThr172 to dephosphoryladon by heart protein phos¬ 

phatases, as previously shown in liver.19 

In the ischemic heart, inhibition of oxidative metabolism 

causes ATP breakdown and leads to the formation of AMP 
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Figure 5. Effects of AMP on the action of heart AMPKK to phosphorylate intact heterotrimeric rAMPK. Heart AMPKK activity after con¬ 
trol or low-flow ischemic perfusions was measured as the phosphorylation of a,/3iy1 (A) or a2/3iy1 (B) rAMPK substrates in the absence 
or presence of AMP (10 to 200 /xmol/L). After incubations with AMPKK, substrates were immunoblotted with pThr172 AMPK and pan 
a-AMPK antibodies (upper panels) and their relative phosphorylation was quantified in the bar graphs (lower panels), a^/Tyl rAMPK (C) 
or a2/3iy1 rAMPK (D) were isolated and their activities measured using the SAMS peptide as a substrate. The AMP concentration in 
panels C and D refers to that present during incubations with AMPKK. Values are means±SE for 3 independent experiments (*P<0.01 
vs control group, tP<0.05 vs 0 /rmol/L AMP). 

through the action of adenylate kinase.33 Our results indicate 

that the decline in ATP concentration, which occurs in the 

ischemic heart,12-27 may also contribute to the phosphoryla¬ 

tion and activation of AMPK. The concentrations of ATP (5 

to 10 mmol/L) present in heart under nonischemic condi¬ 

tions12-27 clearly inhibited AMPKK phosphorylation of 

rAMPK substrate that contained an intact y subunit AMP 

binding site. However, these same concentrations of ATP had 

no discernible effect to inhibit AMPKK activity directly, as 

assessed using the a,1'312 fusion protein as substrate. Thus, 

these findings suggest that AMP and ATP interact with the 

AMPK complex in a reciprocal fashion to modulate its 

suitability as an AMPKK substrate, rather than acting directly 

on AMPKK. 

This study focused on AMPKK phosphorylation of the 

critical a subunit Thrl7:-activating site. The a subunits 

contain additional phosphorylation sites, Thr258 and Ser485 

(a,)/Ser491 (a,), but they do not appear to be important 

determinants of AMPK catalytic activity.32 The amino acid 

sequences surrounding the Thr258 and Ser483 residues are 

significantly different from those surrounding Thr,172 suggest¬ 

ing that distinct upstream kinases are responsible for their 

phosphorylation.32 In addition, glycogen may modulate 

AMPK activity through interaction with the j8 subunit glyco¬ 

gen binding domain.34 The (3 subunit also contains several 

phosphorylation sites,10-32 including Ser108, which may be 

autophosphorylated by the a subunit.32 Whereas this study 

provides insight into the ischemic regulation of Thr172 phos¬ 

phorylation by AMPKK, the physiologic regulation and role 

of these additional AMPK phosphorylation sites in the heart 

remain to be determined. 

AMPK is activated in the ischemic heart1 and increases 

glucose transport by stimulating GLUT4 translocation to the 

sarcolemma3 and activates phosphofructokinase-2, which ac¬ 

celerates glycolysis.4 Recent results indicate that transgenic 

mice, expressing a dominant-negative AMPK catalytic sub¬ 

unit. have impaired ischemic12 and postischemic glucose 

uptake.12-35 AMPK-deficient hearts demonstrate poor recov¬ 

ery of left ventricular function, increased necrosis, and 

myocyte apoptosis after low-flow ischemia and reperfusion,12 
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Figure 6. Effects of AICAR infusion in vivo and ZMP in vitro on heart AMPKK action. After AICAR or saline infusions in vivo, heart 
AMPK phosphorylation and AMPKK activity were assessed. A, Phosphorylated and total endogenous heart AMPK were immunoblotted 
with pThr172 and pan-a AMPK antibodies, respectively. Heart AMPKK activity was measured as the phosphorylation of af-312 fusion 
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the bar graph. Values are meansiSE for 3 independent experiments (*P<0.05 vs 0 /xmol/L ZMP; fPcO.OI vs 0 /xmol/L ZMP). 

suggesting that AMPK may have a cardioprotective role in 

the heart during ischemia-reperfusion. These results highlight 

the importance of further understanding the upstream path¬ 

ways involved in AMPK activation in the ischemic heart. 

Recent studies have identified the tumor suppressor LKB 1 

to be an upstream AMPKK in the liver.23-30 Although we have 

observed that the heart AMPKK fraction contains LKB1, 

LKB 1 is also present in PEG fractions that have no detectable 

AMPKK activity (unpublished data, 2004). The latter obser¬ 

vation may be attributable to dissociation of LKB1 from 

STRAD and/or M025, two modifier proteins that form a 

functional complex with LKB1 and potentiate its Thr172 

phosphorylation activity.23 Further investigation is needed to 

delineate the role of LKB1, STRAD a/(3, and M025 a/(3 in 

modulating AMPKK activity in the heart. However, liver 

LKB 1 does not appear to be AMP-responsive,23 consistent 

with our findings that AMP did not directly increase heart 

AMPKK activity. 
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Although we found detectable baseline AMPKK activity 

and endogenous AMPK Thr172 phosphorylation in vivo and in 

vitro in the heart, AMPKK is clearly not fully activated in the 

nonischemic heart. The effects of anesthesia or the few 

seconds required to excise and freeze-clamp the hearts might 

have contributed to the baseline AMPKK activity observed in 

vivo in sham-operated rats and to some extent led to under¬ 

estimation of the degree of activation of AMPKK during 

regional ischemia. These effects together with the inherent 

variability of sampling in the regional model of ischemia may 

explain in part why the degree of activation of AMPKK in the 

ischemic isolated perfused hearts was greater than in the in 

vivo hearts. 

Since the initial submission of this manuscript, Altarejos et 

al have presented evidence that AMPKK is activated in the 

ischemic heart without a measurable increase in AMP con¬ 

centration or change in LKB1 activity.36 These observations 

are consistent with and complement our results, further 

supporting tire conclusion that AMPKK activation is AMP- 

independent in the ischemic heart and highlighting the need 

to identify additional AMPKK(s) in the heart and the mech¬ 

anisms activating these upstream kinase(s). 

In conclusion, this study demonstrates that there are dual 

mechanisms operative in the ischemic heart that regulate 

AMPKK-mediated phosphorylation and activation of AMPK. 

Further understanding the molecular identity of AMPKK(s) 

in the heart will be important as AMPK emerges as a critical 

signaling pathway in the ischemic heart. 
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