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A Single-Parameter Model of the Immune Response
to Bacterial Invasion

Lester F. Caudill, Jr.

Department of Mathematics and Computer Science, University of Richmond,
Richmond, VA 23173, USA

Abstract The human immune response to bacterial pathogens is a remark-
ably complex process, involving many different cell types, chemical signals,
and extensive lines of communication. Mathematical models of this system
have become increasingly high-dimensional and complicated, as researchers
seek to capture many of the major dynamics. In this paper, we argue that,
in some important instances, preference should be given to low-dimensional
models of immune response, as opposed to their high-dimensional counter-
parts. One such model is analyzed and shown to reflect many of the key
phenomenological properties of the immune response in humans. Notably,
this model includes a single parameter that, when combined with a single set
of reference parameter values, may be used to quantify the overall immuno-
competence of individual hosts.

Key words immune response · mathematical model · differential equations
model · stability analysis · similarity parameter

1. Introduction

A healthy human body responds to invasion by non-resident bacteria
through a complex and well-orchestrated cascade of physical and biochemical
events and processes, collectively referred to as the immune response [?].
Such a response by the host’s immune system to bacterial invasion can only
end in one of three possible ways [?]:

1. Pathogen elimination. The invading bacteria is fully-eliminated from
the body of the host.

E-mail address: lcaudill@richmond.edu.
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2. Response failure. The host’s immune response fails to control the ac-
tions of the invading bacteria. This often leads to the death of the
host.

3. Endemicity. The bacteria’s growth is controlled (but not to the point of
elimination), and its activities regulated. In this outcome, the invading
bacteria is essentially incorporated into the host’s resident microflora.

As in many other areas of human (and non-human) health, mathematical
models of the immune response can play an important role in exploring poten-
tial strategies to prevent or control infections by bacterial pathogens. Models,
and their implementation as computer simulation tools, can provide valuable
insight, especially regarding questions whose empirical investigation is lim-
ited by time demands, expense, and potential danger to test subjects. One
example, of particular interest to the author, involves the rise and spread of
antibiotic resistance in bacterial pathogens, especially in hospital settings [?].
A number of control strategies for antibiotic resistance have been proposed in
the medical community, but many still await investigation, due to associated
cost and risk [??]. A useful mathematical model of this process, capable of
incorporating and testing proposed control strategies, must of necessity in-
clude, among many factors, the important impact of the immune response on
the infection dynamics [?]. In this setting, where the immune response is to
be included as one of several components in an overall host-pathogen interac-
tion model, one must compromise between realism and manageability. Given
the high level-of-complexity of the immune response, and the sheer number
of different cells, proteins, and chemical signals involved, any mechanistic
model (i.e. a model that seeks to simulate the dynamics of the underlying
interactions between the different immune components and the pathogen)
must of necessity be large and complex. Such models have proven useful in
investigating some immune-related questions, but become unmanageable in
settings such as the current one, where the immune response is but one of
several (similarly complex) components which comprise the overall model.
In such cases, one may look to lower-dimensional models that are considered
more phenomenological, that is, they seek to accurately capture the overall
effects of the immune response, without the level-of-detail of the mechanistic
models.

The goal of the present work is to present the development and anal-
ysis of a low-dimensional phenomenological model of the immune response
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to a replicating bacterial pathogen. The ideal would be a two-dimensional
model, in which one dependent quantity represents the invading pathogen,
and the other dependent quantity represents some proxy (e.g. antibodies)
of immune system activity. The majority of existing immune response mod-
els are of the mechanistic type, involving large-dimensional model systems
with many model parameters [????????????????]. Such models, while im-
pressive in their level-of-detail, do not meet the needs of the present work.
A smaller number of existing models may be considered more phenomeno-
logical, including a number of low-dimensional models. Many of these low-
dimensional models can be viewed as extensions and improvements on the
predator-prey-inspired models of Bell from the early-1970s [?]. It is reason-
able to demand that, even for a low-dimensional model, all three possible
outcomes (pathogen elimination, response failure, and endemicity) be real-
izable for achievable parameter values. However, to the author’s knowledge,
few published low-dimensional models can achieve all three. Bell’s model
[?] can lead to failure or endemicity, but never elimination. Huang’s model
[?] can only achieve all three outcomes in the unrealistic case in which the
antibody population grows unboundedly. The model of Nowak, May, and
Sigmund [?] predicts endemicity, but neither elimination nor failure. Nowak
and Bangham [?] develop a four-dimensional model, which may be reduced
to two dimensions, and can realize elimination and endemicity, but not fail-
ure. More recently, the work of Chaui-Berlinck, Marzagao, and Monteiro [?]
features a model that can realize elimination and failure, but its ability to
display endemicity is less-clear. By contrast, De Boer and Boerlijst [?] and
Wodarz and Nowak [?] present models of immune response to a replicating
pathogen that are two-dimensional and four-dimensional, respectively. While
these models can realize all three possible outcomes, they are not suitable
for the present needs, because their structure makes them applicable only to
viral agents such as HIV.

As will be seen, the present model includes a total of eight parameters
(seven of which are dependent, at least in part, on the competency of the
host’s immune response), a significant reduction from the parameter counts
in the aforementioned mechanistic models, but still a large number, espe-
cially in the situation where multiple hosts, each with their own specific
seven-parameter immunocompetencies, are considered. To improve this situ-
ation, we introduce a dimensionless similarity parameter (which we will refer
to as the IC-parameter, λ) into our model. In this way, we realize the follow-
ing advance in practicality: Given a single pathogen species, we first fix the
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values of the original eight model parameters. Then, each host is assigned
its own specific value for λ, reflecting that individual’s immunocompetence
(with a larger value indicating a stronger immune response). For each host,
the relevant pathogen-immune dynamics are then modeled with the fixed
reference parameter values, combined with that host’s λ-value. Thus, for a
single pathogen species, our model requires only the eight reference parame-
ter values (regardless of the number of hosts), appended by one λ-value for
each host (hence, the “single parameter” reference in the title), a significant
reduction from the “eight parameter values per host” alternative.

The balance of this paper is organized as follows: In Section 2, our model
is developed and presented, and the IC-parameter λ is incorporated. In Sec-
tion 3, we state our main result, which establishes that our model is able,
under mild conditions on the model parameters, to realize all three possible
clinical outcomes (pathogen elimination, response failure, and endemicity),
as the value of λ varies over its domain. Section 4 contains numerical demon-
strations, while conclusions and final words comprise Section 5.

2. Immune Response Model

Our model consists of two initial-value problems, simulating the interac-
tions of a population p of a species of bacterial pathogen with a population i
of proxy cells (e.g. antibodies) for the immune response. The change in the
pathogen population over time τ is modeled by

dp

dτ
= ap− bpi

K + p
, p(0) = p0 . (1)

while the corresponding change in the proxy immune population is mod-
eled by

di

dτ
=

cp

B + p
+

di

M + i
− qi , i(0) = i0 , (2)

The three terms on the right-hand side of the second equation represent
immune system stimulation due to pathogen presence, additional immune
stimulation due to auto-stimulation, and natural breakdown of immune re-
sponders, respectively. The two terms on the right-hand side of the first
equation represent intrinsic growth of the pathogen population and the re-
moval of pathogen by the immune responders, respectively.
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In an effort to reduce the number of model parameters that must be
assigned to each individual host, we introduce a dimensionless similarity
parameter λ (called the IC-parameter), whose value will represent the overall
immunocompetence of the host with respect to the specific pathogen, with
a larger value representing a stronger (i.e. more-effective) immune response.
Following the logic established by Zuev and collaborators [???], we introduce
our IC-parameter via the mappings

• p 7→ λ−
3
2p , i 7→ λ−

3
2 i

• K 7→ λ−
3
2K , B 7→ λ−

3
2B , M 7→ λ−

3
2M

• a 7→ a

λ
, b 7→ b

λ
, c 7→ c

λ
, d 7→ d

λ
, q 7→ q

λ
,

resulting in the revised model

dp

dτ
=
a

λ
p− b

λ

pi

K + p
, p(0) = p0 . (3)

di

dτ
=

λ
1
2 cp

B + p
+

λ
1
2di

M + i
− q

λ
i , i(0) = i0 . (4)

The main result of this work addresses the long-term behavior of solutions
of (3)-(4), as λ progresses through a range of positive values.

Given that the IVP system (3)-(4) is intended to model the interaction
of two physical populations, it is important to verify that solutions of this
system cannot become negative.

Theorem 1 If p0 > 0 and i0 > 0, then the solution (p(τ), i(τ)) of the IVP

system (3)-(4) must satisfy p(τ) > 0 and i(τ) > 0 for every τ > 0.

Proof. Assume (by way of contradiction) that either p(τ) ≤ 0 or i(τ) ≤ 0 for
some τ > 0. Then, there exists a first τ -value, τ0, for which p(τ0)i(τ0) = 0.
Then, since p(τ) ≥ 0 and i(τ) ≥ 0 for 0 ≤ τ ≤ τ0, the functions

ψp(τ) ≡ a

λ
− b

λ

i(τ)

K + p(τ)
and ψi(τ) ≡ λ

1
2d

M + i(τ)
− q

λ
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are both continuous on 0 ≤ τ ≤ τ0, and have finite absolute minima Mp and
Mi, on this interval. So,

dp

dτ
=
a

λ
p− b

λ

pi

K + p
= ψp(τ)p ≥Mpp,

and

di

dτ
=

λ
1
2 cp

B + p
+

λ
1
2di

M + i
− q

λ
i =

λ
1
2 cp

B + p
+ ψi(τ)i ≥Mii .

Consequently, the Mean Value Theorem yields

p(τ0) ≥ p0e
Mpτ0 > 0 and i(τ0) ≥ i0e

Miτ0 > 0 ,

which contradicts the assumption that p(τ0)i(τ0) = 0. Thus, p(τ) > 0 and
i(τ) > 0 for every τ > 0.

3. Main Result

The main result of this work is the following:

Theorem 2 Let a, b, c, d, q, B, K, M > 0. If
adB

bcM

(
K

B
− 1

)
< 1, then

there exist constants L1 and L2, with 0 < L1 < L2 such that

• 0 < λ < L1⇒ system (3)-(4) has no stable equilibrium, and lim
τ→∞

p(τ) = +∞.

• L1 < λ < L2 ⇒ system (3)-(4) has a locally-stable endemic equilibrium.

• λ ≥ L2 ⇒ system (3)-(4) has a locally-asymptotically-stable elimination

(i.e. pathogen-free) equilibrium.
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Before presenting a proof of this result, we note that, by introducing the

dimensionless variables t =
d

K
τ , P =

p

K
, and I =

i

M
, the model system

(3)-(4) can be rewritten as

dP

dt
=

α

λ
P − β

λ

(
PI

1 + P

)
, P (0) = P0 , (5)

dI

dt
= λ

1
2γ
(

P

1 + δP

)
+

λ
1
2 I

1 + I
− φ

λ
I , I(0) = I0 (6)

where

α =
aM

d
, β =

bM2

dK
, γ =

cK

dB
, δ =

K

B
, φ =

qM

d
, P0 =

p0
K
, and I0 =

i0
M

.

The proof of Theorem 2 begins with an analysis of the nullclines of (5)-(6).
The P -nullclines are the straight lines

P = 0 and PR(I) =
β

α
I − 1 ,

while the I-nullclines are the curves that constitute the plot of the function

PG(I) =
σλ(I)

γ − δσλ(I)
, (7)

where

σλ(I) ≡ φλ−
3
2 I − I

1 + I
. (8)

In the next result, we collect some facts about the function PG(I) that
will aid in visualizing these I-nullclines. These facts are self-evident from the
formula (7), and are stated without proof.

Lemma 1 The function PG(I) defined by (7) has the following properties:

• Roots at I = 0 and I =
λ

3
2

φ
− 1.
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• Vertical asymptotes at the roots I− < 0 and I+ > 0 of the quadratic

equation

φI2 +
(
φ− λ

3
2

(
γ

δ
+ 1

))
I − γ

δ
λ

3
2 = 0 . (9)

• A removable singularity at I = −1.

• lim
I→±∞

PG(I) = −1

δ
.

• P ′G(I)



< 0, −
√

λ
3
2

φ
− 1 < I <

√
λ

3
2

φ
− 1

= 0, I = −
√

λ
3
2

φ
− 1 or

√
λ

3
2

φ
− 1

> 0, I < −
√

λ
3
2

φ
− 1 or I >

√
λ

3
2

φ
− 1

,

Lemma 1 suggests three possible plots for PG(I) (See Fig. 1.), depending

on the sign of
λ

3
2

φ
− 1.

I

P

I

P

I

P

Fig.1 Three possible plots of PG(I), depending on whether
λ

3
2

φ
− 1 is < 0 (left),

= 0 (center), or > 0 (right).

Next, we investigate the sign distributions of
dP

dt
and

dI

dt
. Beginning with

dP

dt
, we note that equation (5) can be rewritten as
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dP

dt
=
α

λ
P

(
P − PR(I)

1 + P

)
,

which leads to the sign distribution for
dP

dt
shown in Figure 2(a).

HaL
PRHIL

P=0

P=-1

+

-

-

+

+ -

HbL
PGHIL

I=
-

1

I=
I -

I=
I +

P=-1�∆

++

+

-

-

+

+ -

-

- -

+

Fig.2 Sign distribution plot for
dP

dt
(a) and for

dI

dt
(b).

For
dI

dt
, note that, by utilizing (7), equation (6) can be rewritten as

dI

dt
=
λ

1
2 (P − PG(I))(γ − δσλ(I))

1 + δP
. (10)

Further, it follows from the definition (8) that

γ − δσλ(I) =
−δ

(
φI2 +

(
φ− λ 3

2

(
γ
δ

+ 1
))
I − γ

δ
λ

3
2

)
λ

3
2 (1 + I)

,

which, in turn, factors into

γ − δσλ(I) =
−δφ(I − I−)(I − I+)

λ
3
2 (1 + I)

,

where I− and I+ are the roots of equation (9). Combining this with (10)
yields

dI

dt
=
−δφ(P − PG(I))(I − I−)(I − I+)

λ(1 + δP )(1 + I)
,
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which leads to the sign distribution for
dI

dt
shown in Figure 2(b).

At this point, to keep things manageable, we restrict our focus to the first
quadrant. In doing so, we obtain the sign distributions shown in Figure 3.

Α

Β

I

P
HaL

PRHIL

P=0

+ -

I+

I

P
HbL

PGHIL

I=
I +

-

+ -

Λ
3�2

Φ
-1 I+

I

P
HcL

PGHIL

I=
-

1

I=
I -

I=
I +

P=-1�∆

++ -

+

-

- -

-

Fig.3 First-quadrant sign distribution plots: (a)
dP

dt
, (b)

dI

dt
when

λ
3
2

φ
− 1 ≤ 0,

and (c)
dI

dt
when

λ
3
2

φ
− 1 > 0.

We will utilize these sign distributions in the sequel, to derive phase-plane
diagrams of (5)-(6) as needed.

We now investigate conditions under which the conclusion of Theorem
2 holds. We begin by considering how the phase-plane diagram of (5)-(6)

varies with λ. It is convenient to first consider the case where λ = φ
2
3 . The

key result in this case is the following.

Theorem 3 Consider (5)-(6) with λ = φ
2
3 . There exists ε > 0 such that, if

α

β
< ε, then (5)-(6) possesses exactly two equilibrium solutions (I1, P1) and

(I2, P2) for which 0 < I1 < I2 < I+ and P1, P2 > 0.

The proof of this result is facilitated by the following lemma:

Lemma 2 For
α

β
sufficiently small, the cubic polynomial

Q̂(I) = δI3 − α

β
(δ − 1)I2 − γI

has exactly one root in the interval 0 < I < I+.
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Proof. The fact that Q̂(I) has exactly one positive root follows from δ > 0,
Q̂(0) = 0, and Q̂′(0) < 0. Moreover, this positive root (which we denote by
ρ) is given by

ρ ≡
α
β
(δ − 1) +

√
α2

β2 (δ − 1)2 + 4γδ

2δ
.

Setting λ = φ
2
3 in (9), we obtain an explicit expression for I+:

I+ =
γ +
√
γ2 + 4γδ

2δ
.

By virtue of the fact that the function

F (x) ≡ x+
√
x2 + 4γδ

2δ

is strictly increasing for all x, we see that, by choosing
α

β
so that

α

β
(δ − 1) < γ,

we have

F

(
α

β
(δ − 1)

)
< F (γ) ,

so that

ρ < I+ .

So, ρ ∈ (0, I+).

We now proceed to a proof of Theorem 3:
Proof. We show that the equation

PG(I) = PR(I) (11)

has exactly two solutions in the interval (0, I+). Setting λ = φ
2
3 in equation

(7), equation (11) has the same positive solutions as the cubic equation

Q(I) ≡ Q̂(I) + γ
α

β
= 0 ,

where Q̂(I) is the cubic from Lemma 2. From Lemma 2, we know that Q̂(I)

has roots at I = 0 and I = ρ, and that ρ ∈ (0, I+) if
α

β
(δ − 1) < γ. A simple
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continuity argument yields the existence of an ε0 > 0 such that, if
α

β
< ε0,

then Q(I) has two distinct roots inside the interval 0 < I < I+. The proof is

completed by taking ε = min

{
γ

|δ − 1|
, ε0

}
, and noting that PG(I) > 0 for

every I ∈ (0, I+).

Combining Theorem 3 with the sign distributions in Figures 3(a) and

3(b), we obtain the phase-plane diagram, for λ = φ
2
3 , when

α

β
is sufficiently

small, shown in Figure 4(a). It is evident that (I1, P1) is a locally-stable
endemic equilibrium, while the remaining equilibria are unstable.

Α

Β

I1 I2 I+

I

P1

P2

P
HaL

Α

Β

Λ
3�2

Φ
-1 I1 I2 I+

I
P1

P2

P
HbL

Fig.4 Phase-plane diagrams for the system (5)-(6), when λ = φ
2
3 (a) and when

φ
2
3 < λ <

(
1 +

α

β

) 2
3

φ
2
3 (b). Circled arrows indicate direction of solution curves,

with increasing t, in each sector.

As the value of λ is increased from φ
2
3 , the qualitative structure of the

phase-plane diagram remains the same as in the λ = φ
2
3 case, with the excep-
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tion of the emergence of an additional (unstable) equilibrium at

λ 3
2

φ
− 1, 0

.

(See Figure 4(b).) This holds until λ =

(
1 +

α

β

) 2
3

φ
2
3 , at which point the

equilibrium (I1, P1) merges with the equilibrium

λ 3
2

φ
− 1, 0

, and the phase-

plane diagram takes the shape shown in Figure 5(a).

Λ
3�2

Φ
-1=

Α

Β

I2 I+

I

P2

P
HaL

Α

Β

Λ
3�2

Φ
-1 I2 I+

I

P2

P
HbL

Fig.5 Phase-plane diagrams for the system (5)-(6), when λ =

(
1 +

α

β

) 2
3

φ
2
3 (a)

and when λ >

(
1 +

α

β

) 2
3

φ
2
3 (b). Circled arrows indicate direction of solution

curves, with increasing t, in each sector.

At this value of λ, the equilibrium

λ 3
2

φ
− 1, 0

 becomes locally-asymptotically

stable, a property that it retains as λ is increased further. (See Figure 5(b).)

As the value of λ is decreased a small amount from φ
2
3 , the qualitative

structure of the phase-plane diagram, as illustrated in Figure 4(a), is retained,
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until a critical value λ = µ, is reached, at which point the equilibrium (I1, P1)
gets absorbed into (I2, P2), as illustrated in Figure 6(b). As a result, no stable
equilibria remain.The existence of this critical number µ follows from the fact
(which, in turn, follows from equation (9)) that

lim
λ↘0

I+ = 0 .

Consequently, there exists an ε > 0 for which λ < ε implies I+ <
α

β
. Since

PG(I) exists (in the first quadrant) only for 0 ≤ I < I+, it follows that PG(I)
and PR(I) cannot intersect in this interval. So, no endemic equilibrium exists
when 0 < λ < ε. A continuity argument then guarantees the existence of a
unique µ > 0 for which there is exactly one solution of equation (11) in the
interval 0 ≤ I < I+.

Α

Β

I2 I+

I

P2

P
HaL

Α

Β

I2 I+

I

P2

P
HbL

Fig.6 Phase-plane diagrams for the system (5)-(6), when 0 < λ < µ (a) and when

λ = µ (b). Circled arrows indicate direction of solution curves, with increasing t,

in each sector.

Finally, for 0 < λ < µ, the phase-plane diagram takes the form shown in

14



Figure 6(a).
Now, we are prepared to complete the proof of Theorem 2.

Proof. Considering the preceding analysis, the proof is completed by setting

L1 = µ (the λ-value corresponding to Figure 6(b)) and L2 =

(
1 +

α

β

) 2
3

φ
2
3 .

Taken collectively, the phase-plane diagrams in Figures 4-6 suggest a
bifurcation diagram of the form shown in Figure 7, which illustrates the
following: As λ increases from 0, no stable equilibrium exists (and P (t) grows
unboundedly), until λ reaches µ, when a locally-stable endemic equilibrium

appears. This continues through the bifurcation value at λ = φ
2
3 as λ is

increased further, until it reaches the third bifurcation value at

(
1 +

α

β

) 2
3

φ
2
3 ,

at which point the locally-stable endemic equilibrium is replaced by a locally-
asymptotically-stable elimination equilibrium. Thus, as λ increases, we pass
through the three possible outcomes delineated in the introduction: response
failure, endemicity, and pathogen elimination.

4. Numerical Host Comparisons

We continue our investigation of the properties of the immune response
model (5)-(6), and especially, the effects of differing values of the IC-parameter
λ, through a number of multiple-host numerical comparisons. The first sce-
nario compares three hosts, each of which has the same base parameter values
(See the caption to Figure 8.) with respect to the pathogen in question, but
with differing λ-values: For Host 1, λ = 0.5, for Host 2, λ = 1, and for
Host 3, λ = 2. Each of these hosts experiences an initial invasion (so I0 = 0
for each) by the same pathogen strain, and at the same level (i.e. the same
value for P0 in each case) but with different outcomes. Host 1, with the
smallest λ-value, experiences failure of its immune response to control the
pathogen, while Host 3, with the largest λ-value, is able to eliminate the
pathogen. The immune response of Host 2, with the intermediate λ-value,
can only achieve endemicity of the pathogen. These results, illustrated in
Figure 8, demonstrate the ability of the model (5)-(6), with a single set of
base parameter values, to reproduce each of the three possible outcomes of
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bacteria-immune interaction (failure, endemicity, and elimination), simply
by varying the value of the IC-parameter λ.

The second scenario is designed to explore the phenomenon known as
immunologic memory. It is known that, after initial exposure to a pathogen,
the human body is able to mount a faster, stronger, and more-effective im-
mune response upon subsequent re-exposure to this same pathogen. This
is thought to be due to the development of some B-leukocytes into memory
cells, whose activities permit the immune system to more-readily recognize
and respond to the invader [?]. To test our model’s ability to simulate this
phenomenon, we utilize two hosts, each with the same base parameters with
respect to the pathogen in question, and each with the same value for the
IC-parameter λ. (See the caption to Figure 9.) Initially, Host 1 experiences
invasion by a pathogen at initial level P01, while Host 2 does not. The im-
mune response of Host 1 is sufficient to eliminate the pathogen invaders, and
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Fig.8 Model results from the three-host experiment, illustrating treatment failure

for Host 1 (λ = 0.5, dotted), endemicity for Host 2 (λ = 1, dashed), and elimination

for Host 3 (λ = 2, solid). Model parameter values used: α = 1, β = 3
2 , φ = 1, γ =

2, δ = 1, P0 = 0.4.

leaves Host 1 with a residual level Ifinal of immune proxies. Later, both Host
1 and Host 2 are exposed to the same pathogen, but at a larger initial level
P02, when compared to the first infection of Host 1. The fact that this is
a second exposure in the case of Host 1, but a first exposure for Host 2, is
evidenced in the different initial I-values for each. Because of this difference,
Host 1 is able to clear the infection, while Host 2 is not, despite having iden-
tical model parameters, thereby demonstrating the impact of immunological
memory in this instance. These results are illustrated in Figure 9.

5. Discussion

We have presented a two-equation, eight-parameter model of the phe-
nomenological dynamics of interaction of a pathogen species with immune
system proxies (e.g. antibodies) of a human host. We have incorporated an
additional model parameter (the IC-parameter λ), to represent the overall
immunocompetence of the host, and have demonstrated that, as the value
of the IC-parameter increases, our model predicts a progression through the

17



I

P

H0,P01L

HIfin,0L

H0,P02L
HIfin,P02L

H0,P02L

Fig.9 Model results from the two-host experiment. The solid curve shows the

progression to elimination of Host 1’s initial infection, while the dotted curve shows

similar results from Host 1’s second infection. By contrast, the initial infection of

Host 2 (dashed curve) leads to treatment failure. Model parameter values used:

α = 1, β = 3
2 , φ = 1, γ = 2, δ = 1, λ = 2, P01 = 4, P02 = 6.

three possible clinical outcomes: from response failure through endemicity
and, finally, pathogen elimination. Additionally, we have demonstrated,
through numerical results, that our model reproduces the “immunologic
memory,” phenomenon, in which an initial pathogenic invasion, once elimi-
nated, strengthens the host against future invasion by the same pathogen.

The principal advantage of the IC-parameter λ is to permit us to repre-
sent, with a single parameter, the overall effectiveness of the host’s immune
response to bacterial invasion. This advantage becomes evident in the case
of multiple pathogens and multiple hosts, as we now demonstrate through a
comparison of the extensions of model (1)-(2) and model (3)-(4) to the case
of N pathogen species and H hosts. Noting that the N pathogen species give
rise to N different populations of immune responders, each specific to one of
the pathogen species, the model (1)-(2) extends naturally to the 2NH×2NH
system
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dpnj
dτ

= anjpnj −
bnjpnjinj
Knj + pnj

, pnj(0) = pnj,0 . (12)

dinj
dτ

=
cnjpnj

Bnj + pnj
+

dnjinj
Mnj + inj

− qnjinj , i(0) = inj,0 , (13)

for n = 1, . . . , N and j = 1, . . . , H. Here, pnj and inj indicate the pathogen
load and the corresponding immune responder population, respectively, for
pathogen n within host j. With this model, the eight model parameters must
account not only for differences between pathogen species, but also differences
in the immune system capabilities between the different hosts. Consequently,
a total of 8NH different parameters are required for this model system. By
contrast, the multi-pathogen, multi-host extension of (3)-(4):

dpnj
dτ

=
an
λj
pnj −

bn
λj

pnjinj
Kn + pnj

, pnj(0) = pnj,0 . (14)

dinj
dτ

=
λ

1
2
j cnpnj

Bn + pnj
+

λ
1
2
j dninj

Mn + inj
− qn
λj
inj , inj(0) = inj,0 . (15)

permits separation of the pathogen-dependent characteristics (embodied in
the eight parameters an, bn, Kn, cn, Bn, dn, Mn, and qn) from the host-dependent
characteristics (the IC-parameter λj). In this setting, modeling N pathogen
species and H hosts requires only 8N + H different parameters. So, even
a modest simulation involving, say, 12 hosts (a typical size − eight patients
and four health-care workers − for a hospital intensive-care unit) and five
pathogens, incorporating the IC-parameter will reduce the number of model
parameters by nearly 90%, from 480 to 52. This significant reduction in
model complexity will permit the inclusion of other factors, including an-
tibiotic effects and host-host interactions, without rendering the model too
complicated to be useful. Additionally, by incorporating this model into a
larger model of infection dynamics [?], this ability to assign each host a sin-
gle IC-parameter-value will permit investigation of the potential roles that
immunodeficiency may play in small-population infection dynamics, includ-
ing the rise and spread of antibiotic-resistant bacteria strains, where it has
been conjectured that immunodeficient individuals may serve as reservoirs
for antibiotic-resistant pathogens [?].
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