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Abstract 

Like other eukaryotic organisms, Toxoplasma gondii promoters feature both constitutive 

and life-stage regulated cis-elements. Using a transcriptomic microarray approach, a 

cluster of transcripts upregulated early during bradyzoite differentiation was identified. 

Computational analysis of the promoter regions of these “up-early” transcripts identified 

a shared upstream consensus motif, a putative transcription factor binding site. Using a 

dual luciferase assay adapted for recombinational cloning and reporter gene 

quantification by qPCR, we demonstrate developmental stage-specific expression of the 

luciferase reporter gene inserted downstream of the transcription factor binding site. 

The shared consensus motif was found to be an autonomous cis-element by conversion 

of a constitutive promoter into a bradyzoite growth condition-inducible promoter. A gel-

shift experiment showed the cis-element’s binding to bradyzoite nuclear proteins. Mass 

spectrometry of the shifted gel band identified a protein possessing an apicomplexan 

AP2 transcription factor domain. Much detail concerning the mechanism of 

differentiation is yet to be discovered and this work highlights the mediation of life cycle 

progression by bradyzoite differential gene expression. Taken together, these data 

demonstrate the control an early bradyzoite promoter element exercises on stage 

differentiation.  

 

Key Words: bradyzoite differentiation, gene regulation, gene expression, Toxoplasma 

gondii 
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Introduction 

Toxoplasma gondii is a single-celled, obligate intracellular parasite with a worldwide 

distribution, chronically infecting one third of the world’s population [1,2]. This 

apicomplexan pathogen is capable of infecting all nucleated mammalian cells, and is 

the etiologic agent of toxoplasmosis in humans [3]. Recrudescence of the chronic 

infection in immunocompromised patients (e.g. AIDS, cancer, and organ transplant 

patients) can cause fatal encephalitis [4,5]. Additionally, primary infection in otherwise 

healthy pregnant women can cause severe birth defects or spontaneous abortion of the 

fetus [6,7]. The wide distribution and significant public health impact of T. gondii 

highlight the critical need to further characterize the basic biology of this important 

parasite to discover novel biomedical solutions to it. 

The T. gondii developmental cycle includes the conversion from tachyzoite to bradyzoite 

– stages which give rise to acute and chronic infection, respectively [8]. While 

prophylaxis for acute infection with tachyzoites is available [9] and many promising 

experimental compounds are in development [10,11], the cyst-forming bradyzoite stage 

has no treatment or cure. Many apicomplexan transcriptome analyses have focused on 

developmental gene expression, as shown in the variety of microarray and RNA-Seq 

datasets investigating developmental stages found in the ToxoDB, PlasmoDB, and 

CryptoDB genomics resources [12–14]. Analyses of apicomplexan transcriptomes have 

shown differential expression of transcripts accompanying the progression of the 

parasite through life-cycle stages [15–17]. This is particularly true of Plasmodium, as 

staged transcription is observed in a large portion of mRNAs with limited shared 

expression among the life stages [18]. In T. gondii, serial analysis of gene expression 
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(SAGE) tags have been used to characterize the pool of transcripts expressed through 

development; it was shown that mRNAs which are stage-specific accounted for 18% of 

all SAGE tags identified [17]. The stage-specific nature of large subsets of 

apicomplexan transcripts as shown by microarray, RNA-Seq, and SAGE analyses lends 

support to the idea that apicomplexan development is, in part, driven by the ordered 

activation of the appropriate transcript subsets which correspond to the life stage being 

transitioned to. It appears that regulation at transcription initiation is a major mechanism 

by which gene expression is controlled in apicomplexans. 

In this work, we utilize a bradyzoite differentiation time series microarray dataset to 

identify a cluster of transcripts upregulated early during bradyzoite differentiation and 

use a computational analysis to extract a shared, consensus DNA motif from their 

promoter regions – a putative transcription factor binding site. An apicomplexan Apetala 

2 (AP2)-domain transcription factor is predicted to bind the identified motif by mass 

spectrometry analysis followed by peptide mass fingerprinting. It is further shown by a 

dual luciferase model adapted for recombinational cloning and quantitative PCR that 

this motif acts as an autonomous cis-element which regulates the expression of 

bradyzoite-specific transcripts and can convert a constitutive promoter into one which is 

chronic stage-specific. 
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Materials and Methods 

Cell culture. The Type II Prugniaud (Pru) strain shows robust bradyzoite differentiation 

and PruΔku80Δhxgprt was used to generate the transient transgenic strains. This strain 

was maintained by serial passage into confluent human foreskin fibroblast (HFF) 

monolayers cultured in D10 media containing Dulbecco’s modified Eagle’s medium 

(DMEM), 10% (v/v) fetal bovine serum, 2 mM L-alanyl-L-glutamine, 100 U/mL Penicillin, 

100 µg/mL Streptomycin, and 20 µg/mL Gentamicin at 37 °C with 5% CO2. Bradyzoite 

induction was accomplished by growth in capped flasks with CO2-depleted alkaline 

media containing Eagle’s minimum essential medium (MEM), 1% (v/v) dialyzed fetal 

bovine serum, 25 mM HEPES solution, 2 mM L-alanyl-L-glutamine, 100 U/mL Penicillin, 

100 µg/mL Streptomycin, and 25 µg/mL Gentamicin adjusted to pH 8.2 with NaOH. 

Promoter constructs. The Dest-p-firefly destination vector which carries the cassette B 

fragment (containing the ccdB toxic and chloramphenicol resistance markers) upstream 

of the firefly luciferase coding region was used for Gateway™ recombinational cloning. 

The Dest-p-renilla-α-tubulin was used as a transfection efficiency control, and both 

described plasmids were generous gifts from Michael White [19]. Promoter fragments of 

the well-documented, constitutive dihydrofolate reductase-thymidylate synthase (DHFR-

TS) gene [20] were designed to include the 5’-upstream genomic sequence, flanking 

attB sites, and the translational start site, designed such that the attB2 sequence would 

be translated in frame with the firefly luciferase CDS. These fragments were ordered as 

double-stranded gBlocks® Gene Fragments (Invitrogen). Promoter fragments were first 

cloned into the pDONR221 entry vector (Invitrogen) by an 18-hr incubation with the 

Gateway® BP Clonase™ II Enzyme (Invitrogen) to produce modified pDONR221 entry 



7 
 

clones. Following verification by Sanger sequencing, the promoter fragment from each 

entry clone was cloned into the Dest-p-firefly destination vector by an 18-hr incubation 

with the Gateway® LR Clonase™ II Enzyme (Invitrogen) to yield destination clones. The 

destination clones were also verified by Sanger sequencing to ensure successful 

recombination and correct orientation. Plasmids featuring the ccdB toxic marker (Dest-

p-firefly and pDONR221) were maintained in One Shot® ccdB Survival™ 2 T1R 

Escherichia coli cells (Invitrogen), and all other vectors were maintained in 10-beta E. 

coli cells (NEB). 

Dual Luciferase Assay by Quantitative PCR. PruΔku80Δhxgprt strain parasites were 

electroporated according to an amended protocol described previously [3,21] with 50 µg 

each of a promoter construct destination clone and the control Dest-p-renilla-α-tubulin 

plasmid. Transfections were performed in duplicate and each sample was transferred 

into one T25 cm2 flask each (one each for tachyzoite and bradyzoite growth conditions) 

and allowed to recover for 12 h at 37 °C with 5% CO2. After ~24 h, one flask was 

selected for bradyzoite induction by shifting to alkaline (pH 8.2), CO2-depleted media.  

To assay the level of transcription early in bradyzoite differentiation, infected 

monolayers were Dounce homogenized, filtered, and parasite RNA was isolated 16 h-

post induction from both tachyzoite and bradyzoite flasks with RNeasy Plus Mini 

reagents (Qiagen) and cDNA was produced from mRNAs with Maxima reverse 

transcriptase (Thermo Scientific) and a poly(T) primer according to manufacturers’ 

instructions. Quantitative PCR was used to measure transcript abundance of the dual 

luciferases and a constitutively-expressed housekeeping gene (histone H2B variant 

TGME49_009910) for each transfected life stage, using the primers listed in 
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Supplemental Table 1. Synthesized cDNA was mixed with the Luminaris HiGreen qPCR 

Master Mix (ThermoFisher Scientific) and the qPCR reactions were performed in 

triplicate for each promoter construct at 50 ˚C for 2 min, 95 ˚C for 10 min, and 40 cycles 

of 95 ˚C for 15 sec, 60 ˚C for 30 sec, and 72 ˚C for 30 sec. Reaction specificity was 

assayed by melt curve analysis.  

Relative quantification of transcript abundance was calculated using the ΔΔCt method 

[22], experiments were conducted on a Rotor-Gene Q 5plex HRM Platform (Qiagen), 

and data was processed using the Rotor-Gene Q Series software v2.3.1 (Qiagen). Fold 

expression of both firefly and renilla luciferase in both tachyzoites and bradyzoites were 

normalized to histone H2B variant expression; fold expression of firefly luciferase was 

then normalized to renilla levels by comparing the ratio of the firefly promoter construct 

expression to that of the α-tubulin-renilla promoter construct. 
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Results 

Induction of Bradyzoite-specific Expression by the DNA Motif. 

Previous work included microarray analysis of T. gondii expression in a 48-hour time 

course identified subsets of transcripts expressed at distinct timepoints during 

bradyzoite induction. A consensus DNA motif was also identified computationally in the 

promoters of 71 early-expression genes. The DNA motif was examined to assess 

whether it was an autonomous-acting cis-element by inserting the motif into a weak 

promoter upstream of the firefly luciferase reporter gene. DHFR-TS is known to be a 

constitutive, weakly-expressed transcript; the constitutive expression of this gene 

regardless of growth stage has been confirmed by microarray both by the dataset 

detailed in this study and by others (M.S. Behnke and M.W. White, ToxoDB). The 1000 

bp genomic fragment 5’ of the DHFR-TS gene [23] was selected for this experiment.  

The native DHFR-TS promoter and the promoter with three copies of the pyrimidine-rich 

DNA motif inserted 100 bp upstream of the major transcriptional start site at -369 bp 

[23] were designed and ordered as described (sequences are given in Supplemental 

Table 2). A promoter with three scrambled copies of the DNA motif was also designed 

to confirm that any observed impact on expression during bradyzoite induction was not 

sequence-specific and not simply an artefact of adding a pyrimidine-rich sequence or 

disrupting a repressor site. A diagram of the three promoter constructs cloned into Dest-

p-firefly destination vectors is shown in Figure 1. The introduction of the DNA motif cis-

element, but not the native or scrambled cis-elements, led to upregulation of the target 

gene in bradyzoite conditions. (Figure 2). This conversion was also seen to be specific 

to the period of early induction; following 7 days of induction, parasites transfected with 
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the construct with three copies of the DNA motif showed no significant difference in 

luciferase expression between tachyzoite and bradyzoite populations (data not shown). 

This data indicates that the identified DNA motif is autonomous, i.e., is sufficient to 

effect an increase in gene expression during bradyzoite induction.  

 

  

Figure 1. Diagram of Promoter Constructs. The three promoter constructs used in 

this study were designed and ordered as gBlocks™ from Invitrogen with attB1 and attB2 

sites flanking them, corresponding to the attP1 and attP2 sites on the Dest-p-firefly 

destination vector. 

The DHFR-TS promoter (-1000 bp) was modified to contain three copies of either the 

putative motif or scrambled versions of the motif, placed 100 bp 5’ of the major 

transcriptional start site (TSS). Each promoter construct was inserted into the 

destination vector by recombinational cloning, immediately upstream of the firefly 

luciferase coding region. 
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Figure 2. Induction of Expression During Bradyzoite Differentiation by the DNA 

Motif. The PruΔku80Δhxgprt strain was transiently transfected in duplicate and 

bradyzoite-condition flasks were induced for 16 h by pH 8.2, CO2-depleted media. 

Parasites were separated by homogenization and filtration, RNA was isolated, and 

quantitative PCR was performed in triplicate to assay the transcription of the dual 

luciferases and a housekeeping gene. Results of both luciferases were normalized to 

histone H2B variant and are reported as the fold expression of firefly luciferase relative 

to that of renilla luciferase driven by the α-tubulin promoter. No change in luciferase 

expression was observed in the tachyzoite stage for any of the constructs. In contrast, 
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induced parasites showed a marked increase in luciferase transcription in the construct 

with three copies of the DNA motif cis-element compared to the wild-type DHFR-TS 

promoter. 
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Discussion 

Utilizing the dual luciferase assay and alkaline bradyzoite induction models, we show 

that a putative transcription factor binding site identified in the 5’ promoter regions of a 

cluster of transcripts upregulated early during T. gondii bradyzoite differentiation is able 

to induce luciferase transcription under alkaline bradyzoite induction. This cis-element 

was identified as autonomous by its ability to induce greater expression during 

bradyzoite differentiation following insertion into the constitutive DHFR-TS promoter 

(Figure 2). A protein binding assay demonstrated the site-specific binding of nuclear 

proteins to this cis-element (previous data not shown), and mass spectrometry followed 

by computational analysis identified a small group of proteins predicted to bind the 

consensus DNA motif. These results confirm the concept that a major control 

mechanism of apicomplexan development is transcriptional initiation and this study is 

the first to examine the control of transcriptionally-active mRNAs which are specifically 

upregulated early in bradyzoite differentiation. 

The transcription factor which bound to the DNA motif was identified as the 

apicomplexan AP2-domain transcription factor, AP2III-3. The AP2 transcription factors 

are a well-documented family of transcription factors which have been implicated in 

stage-specific transcription [24–28]. While AP2III-3 has been identified in the literature 

as being upregulated ~200-fold during bradyzoite differentiation [27], it has otherwise 

not been characterized in the literature. It is conceivable that because this transcription 

factor activates the transcription of such a large subset of bradyzoite-initiating proteins, 

it is necessary for bradyzoite differentiation and cyst development. This expression 

analysis work will continue with a knock-out of AP2III-3 to examine whether the gene 
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knock-out impacts T. gondii’s ability to differentiate into the bradyzoite stage. If it is 

shown that deletion of this gene removes or severely inhibits T. gondii bradyzoite 

formation, thus reducing risk of chronic infection, an excellent live vaccine candidate 

strain will have been identified. Considering the serious public health issues that 

accompany lifelong chronic infection in immunocompromised individuals, the production 

of an efficacious vaccine is paramount. 
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Supplemental Data 

Primer 
# 

Primer 
Name 

Amplicon and 
Direction 

Sequence (5’ to 3’) 

BB09 qRen2-F 
Renilla luciferase 
forward 

GGGTGCTTGTTTGGCATTTCA 

BB10 qRen2-R 
Renilla luciferase 
reverse 

GGCAACATGGTTTCCACGAAG 

BB19 qLuc4-F 
Firefly luciferase 
forward 

CGTTCGGTTGGCAGAAGCTA 

BB20 qLuc4-R 
Firefly luciferase 
reverse 

CACTACGGTAGGCTGCGAAA 

BB33 qHis2b-F 
Histone H2B variant 
forward 

GCTTGGCTGATGAAGCAGTTCGTT 

BB34 qHis2b-R 
Histone H2B variant 
reverse 

AGTCGTGTACTTGGTCACTGCCTT 

 

Table S1. Oligonucleotides used for quantitative PCR. The qPCR reactions were 

performed using the described primers. To ensure specificity of the luciferase primer 

pairs, that is, having no T. gondii or human host cell targets, qPCR was also run on a 

mock transfected strain and the absence of either luciferase amplicon was confirmed. 
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Promoter 
Construct 

Sequence (5’ to 3’) 

Native 

DHFR-TS 

-1000 bp 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGTGCCACGACTTCTAAATCCGGCGACAGGC

TGGTCTTTTGTCTTACCACGTATTAGCCCGCGTGCGGATTTCTCGGAGCGCACCTGTTCAACA

CTAGAAAACGGAGTTTCCTGATCGAGAAGCCACCACCTTTCCAGAAGTTGAACGCTAGCATGT

CATTCGATTTTCACCCCCCGCGTAGTTCCTGTGTGTCATTCGTTGTCGAGACAACTCTGTCCC

GCCCCGGTGCTGTTCCATATGCGTGACTTTCCCGCAATTTTTTCAGACTTTCAGGAAAGACAG

GCTCCGGAACGATCTCGTCCATGACTGGTAAATCCACGACACCGCAATGGCCCCCAGCACCT

CTATCTCTCGTGCCAGGGGACTAACGTTGTATGCGTCTGCGTCTTGTCTTTTTGCATTCGCTTT

CCAAAAAAGAGAGCCATCCGTTCCCCCGCACATTCAACGCCGCGAGTGCGGTTTTTGTCTTTT

TTGAGTGGTAGGACGCTTTTCATGCGCGAACTACGTGGACATTAAGTTCCATTCTCTTTTTCGA

CAGCACGAAACCTTGCATTCAAACCCGCCCGGGGAAGATCCGATCTTGCTGCTGTTCGCAGT

CCCAGTAGCGTCCTGTCGGCCGCGCCGTCTCTGTTGGTGGGCAGCCGCTACACCTGTTATCT

GACTGCCGTGCGCGAAAATGACGCCATTTTTGGGAAAATCGGGGAACTTCATTCTTTAAAAGT 

ATGCGGAGGTTTCCTTTTTCTTCTGTTCGTTTCTTTTTCTCGGGTTTGATAACCGTGTTCGATG

TAAGCACTTTCCGTCTCTCCTCCGTGCTTTGTTCGACATCGAGACCAGGTGTGCAGATCCTTC

GCTTGTTGATCCGGAGACGCGTGTCTCGTAGAACCTTTTCATTTTACCACACGGCAGTGCTGA

GCACTGCTCTGAGTGCAGCAGGGACGGGTGAAGTTTCGCTTTAGTAGTGCGTTTCTGCTCTA

CGGGGCGTTGTCGTGTCTGGGAAGATGGCGGACCCAGCTTTCTTGTACAAAGTGGTGGGG 

DHFR-TS  

-1000 bp 

with DNA 

Motif 3x  

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGTGCCACGACTTCTAAATCCGGCGACAGGC

TGGTCTTTTGTCTTACCACGTATTAGCCCGCGTGCGGATTTCTCGGAGCGCACCTGTTCAACA

CTAGAAAACGGAGTTTCCTGATCGAGAAGCCACCACCTTTCCAGAAGTTGAACGCTAGCATGT

CATTCGATTTTCACCCCCCGCGTAGTTCCTGTGTGTCATTCGTTGTCGAGACAACTCTGTCCC

GCCCCGGTGCTGTTCCATATGCGTGACTTTCCCGCAATTTTTTCAGACTTTCAGGAAAGACAG

GCTCCGGAACGATCTCGTCCATGACTGGTAAATCCACGACACCGCAATGGCCCCCAGCACCT

CTATCTCTCGTGCCAGGGGACTAACGTTGTATGCGTCTGCGTCTTGTCTTTTTGCATTCGCTTT

CCAAAAAAGAGAGCCATCCGTTCCCCCGCACATTCAACGCCGCGAGTGCGGTTTTTGTCTTTT

TTGAGTGGTAGGACGCTTTTCATGCGCGAACTACGTGGACATTAAGTTCCATTCTCTTCTCTCT

TCTTCTCTCTTCCTTCTTTACTAGTCCTACTCTCTTCTTCTCTCTTCCTTCTTTTCGATGAGACG

CTCTCTTCTTCTCTCTTCCTTCTTTTTTCGACAGCACGAAACCTTGCATTCAAACCCGCCCGGG

GAAGATCCGATCTTGCTGCTGTTCGCAGTCCCAGTAGCGTCCTGTCGGCCGCGCCGTCTCTG
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TTGGTGGGCAGCCGCTACACCTGTTATCTGACTGCCGTGCGCGAAAATGACGCCATTTTTGG

GAAAATCGGGGAACTTCATTCTTTAAAAGTATGCGGAGGTTTCCTTTTTCTTCTGTTCGTTTCT

TTTTCTCGGGTTTGATAACCGTGTTCGATGTAAGCACTTTCCGTCTCTCCTCCGTGCTTTGTTC

GACATCGAGACCAGGTGTGCAGATCCTTCGCTTGTTGATCCGGAGACGCGTGTCTCGTAGAA

CCTTTTCATTTTACCACACGGCAGTGCTGAGCACTGCTCTGAGTGCAGCAGGGACGGGTGAA

GTTTCGCTTTAGTAGTGCGTTTCTGCTCTACGGGGCGTTGTCGTGTCTGGGAAGATGGCGGA

CCCAGCTTTCTTGTACAAAGTGGTGGGG 

DHFR-TS 

 -1000 bp 

with 

Scrambled 

Motif 3x  

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGTGCCACGACTTCTAAATCCGGCGACAGGC

TGGTCTTTTGTCTTACCACGTATTAGCCCGCGTGCGGATTTCTCGGAGCGCACCTGTTCAACA

CTAGAAAACGGAGTTTCCTGATCGAGAAGCCACCACCTTTCCAGAAGTTGAACGCTAGCATGT

CATTCGATTTTCACCCCCCGCGTAGTTCCTGTGTGTCATTCGTTGTCGAGACAACTCTGTCCC

GCCCCGGTGCTGTTCCATATGCGTGACTTTCCCGCAATTTTTTCAGACTTTCAGGAAAGACAG

GCTCCGGAACGATCTCGTCCATGACTGGTAAATCCACGACACCGCAATGGCCCCCAGCACCT

CTATCTCTCGTGCCAGGGGACTAACGTTGTATGCGTCTGCGTCTTGTCTTTTTGCATTCGCTTT

CCAAAAAAGAGAGCCATCCGTTCCCCCGCACATTCAACGCCGCGAGTGCGGTTTTTGTCTTTT

TTGAGTGGTAGGACGCTTTTCATGCGCGAACTACGTGGACATTAAGTTCCATTCTCTTTTCCTC

TCCTCTTTCTTCTCTTCTTACTAGTCCTATCCTTTTCCTTCCTTTCTCTCTTCTTCGATGAGACG

TCCTTTCTCCTTTCTTCTCTCTTCTTTTCGACAGCACGAAACCTTGCATTCAAACCCGCCCGGG

GAAGATCCGATCTTGCTGCTGTTCGCAGTCCCAGTAGCGTCCTGTCGGCCGCGCCGTCTCTG

TTGGTGGGCAGCCGCTACACCTGTTATCTGACTGCCGTGCGCGAAAATGACGCCATTTTTGG

GAAAATCGGGGAACTTCATTCTTTAAAAGTATGCGGAGGTTTCCTTTTTCTTCTGTTCGTTTCT

TTTTCTCGGGTTTGATAACCGTGTTCGATGTAAGCACTTTCCGTCTCTCCTCCGTGCTTTGTTC

GACATCGAGACCAGGTGTGCAGATCCTTCGCTTGTTGATCCGGAGACGCGTGTCTCGTAGAA

CCTTTTCATTTTACCACACGGCAGTGCTGAGCACTGCTCTGAGTGCAGCAGGGACGGGTGAA

GTTTCGCTTTAGTAGTGCGTTTCTGCTCTACGGGGCGTTGTCGTGTCTGGGAAGATGGCGGA

CCCAGCTTTCTTGTACAAAGTGGTGGGG 

 

Table S2. Promoter Constructs. Promoter constructs were designed and ordered as 

gBlocks™ Gene Fragments (Invitrogen). The bolded nucleotides (25 bp on each end) 

are the attB1 and attB2 sites used for recombination. In the second and third constructs, 
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the underlined nucleotides indicate either motif or scrambled motif sequences. The ATG 

start codon is bolded and underlined in each construct; translation starts at that location 

in the transcribed mRNA, and the attB2 site is translated in frame with the firefly 

luciferase coding region. 
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Appendix: Glossary of Terms 

AP2  = Apetala 2 

AP2III-3 = indicates the third (3) Apetala 2 transcription factor identified on T.       

   gondii chromosome III 

DHFR-TS = dihydrofolate reductase-thymidylate synthase 

Pru  = Prugniaud strain of T. gondii 

qPCR  = quantitative PCR 

SAGE  = serial analysis of gene expression 

TSS  = transcriptional start site 
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