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Abstract 1	

Stride-to-stride time intervals during human walking is characterised by predictability and 2	

statistical persistence quantified by sample entropy (SaEn) and detrended fluctuation analysis 3	

(DFA) which indicates a time dependency in the gait pattern. However, neither analyses quantify 4	

time dependency in a physical or physiological interpretable time scale. Recently, entropic half-5	

life (ENT½) has been introduced as a measure of the time dependency on an interpretable time 6	

scale. A novel measure of time dependency, based on DFA, statistical persistence decay (SPD), 7	

was introduced. The present study applied SaEn, DFA, ENT½, and SPD in known theoretical 8	

signals (periodic, chaotic, and random) and stride-to-stride time intervals during overground and 9	

treadmill walking in healthy subjects. The analyses confirmed known properties of the 10	

theoretical signals. There was a significant lower predictability (p=0.033) and lower statistical 11	

persistence (p=0.012) during treadmill walking compared to overground walking. No significant 12	

difference was observed for ENT½ and SPD between walking condition, and they were 13	

exhibited a low correlation. ENT½ showed that predictability in stride time intervals was halved 14	

after 11–14 strides and SPD indicated that the statistical persistency was deteriorated to 15	

uncorrelated noise after ~50 strides. This indicated a substantial time memory, where 16	

information from previous strides affected the future strides. 17	

 18	

 19	

Keywords: walking, dynamics, nonlinear behaviour, entropy, DFA, stride time fluctuations 20	

 21	
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Introduction 1	

The stride time pattern during continuous walking in healthy individuals has been shown to 2	

include stride-to-stride fluctuations exhibiting statistical persistence6,14. Thus, each stride 3	

depends on many previous strides with a stride-to-stride dependency that “decay in a scale-free 4	

(fractal-like), power-law fashion”12. Equally, stride length fluctuations during both treadmill and 5	

overground walking have been shown to exhibiting statistical persistence6,32. While stride speed 6	

fluctuations during treadmill walking have been shown to exhibit statistical anti-persistence6, 7	

statistical persistence has been observed during overground walking32.  8	

Reduced stride-to-stride persistence has been interpreted differently in relation to the function of 9	

the underlying motor control system. Loss of statistical persistence in stride time fluctuations has 10	

been observed in older adults13,16, different neurological patients11,13, and has been suggested to 11	

reflect a degraded motor control function10. However, reduced persistence observed in frail 12	

individuals has been suggested to potentially implicate an increased control effort to achieve a 13	

more cautious gait pattern6.  14	

These contradicting observations call for caution when linking loss of stride-to-stride persistence 15	

to either an impaired motor control function or enhanced motor control effort6. The 16	

aforementioned studies have applied detrended fluctuation analysis (DFA) to assess the presence 17	

and strength of statistical persistence in the investigated time series. However, DFA does not 18	

quantify the time dependency on an interpretable physiological or physical time scale. This 19	

means that even though existence of statistical persistence can be confirmed by DFA, the stride-20	

to-stride dependency cannot be quantified in terms of a specific number of previous strides that 21	

influences the current stride. Equally, DFA does not quantify for how long into the future in 22	

terms of seconds or minutes a completed stride will influence new strides.  23	
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In addition to DFA, sample entropy (SaEn) has been applied to both kinematic signals and stride 1	

time interval time series recorded during gait in order to quantify the predictability of the gait 2	

pattern1,9,18. SaEn is high in random white noise signals where no point-to-point dependency 3	

exists and the predictability is low. In contrast, in both chaotic and periodic signals, point-to-4	

point dependency does exist and they are characterized by relative low SaEn indicating high 5	

predictability (e.g. demonstrated in 33). However, the predictability is reported on a relative scale 6	

and cannot be translated into physical or physiological terms. Both DFA and SaEn quantify the 7	

time dependency of a time series but return outcome values not easily interpretable in relation to 8	

other physiological measurements (e.g. duration of muscle activity, latency in reflex 9	

measurements, reaction time).  10	

Inspired by multiscale entropy (MSE) and to overcome the aforementioned methodological 11	

limitation, entropic half-life (ENT½) was proposed by Zandiyeh and Von Tscharner34. ENT½ 12	

estimates the time until the predictability in a time series is halved. This is also a measure of how 13	

long data points remain related to one another. Applied to movement related variables, ENT½ 14	

could quantify how long time elapses before previously performed movements have substantially 15	

reduced their influence on future movements2.     16	

While DFA, SaEn, and MSE previously have been applied to characterize the stride-to-stride 17	

time dependency in human gait, ENT½ has to the best of our knowledge not previously been 18	

used to quantify time dependency in stride-to-stride time intervals. When applied to stride-to-19	

stride time interval time series, ENT½ will estimate how long (in terms of number of strides) it 20	

takes to deteriorate the predictability of the stride time intervals by 50 %. DFA could be used to 21	

quantify decay in time persistence of time series through an application similar in manner to 22	

ENT½.  23	



5	
	

In many gait experiments, the treadmill has been used instead of overground walking due to its 1	

advantages with respect to continuous data collection of motion capture, ground reaction forces, 2	

etc. The results and interpretation have often been extrapolated to overground walking even 3	

though substantial biomechanical differences have been observed between treadmill and 4	

overground walking20,31. The constraints of the constant speed and limited space of the treadmill 5	

have been suggested to induce a less persistent and more unpredictable walking pattern 6	

compared to overground walking31. 7	

The present study aimed at introducing two novel tools, ENT½ and SPD as methods to quantify 8	

time dependency in stride-to-stride time intervals during human gait. To validate the use of these 9	

methods, the present study included known theoretical signals (i.e., periodic, chaotic, and 10	

random) and stride time data recorded during overground and treadmill walking. With respect to 11	

the theoretical signals, it was hypothesized that the periodic signals would be characterized by 12	

high ENT½ and SPD, the random signal would be characterized by low ENT½ and SPD and the 13	

chaotic signals would be characterized by intermediate ENT½ and SPD.  14	

Further, experimental data from one-hour of walking overground and on a treadmill were used to 15	

verify the use of the methods. Based on previous observations of less statistical persistency and 16	

more unpredictability during treadmill walking31, we hypothesized that the time dependency 17	

during treadmill will be less pronounced indicated by lower ENT½ and SPD values compared to 18	

overground walking.  19	

As a secondary aim, the association between statistical persistence and predictability were 20	

investigated. If changes in the statistical persistence in stride-to-stride time intervals observed 21	

during human walking6,14 could explain changes in the predictability; it was hypothesized that 22	

the scaling exponent and SaEn in such time series would correlate. Furthermore, if changes in 23	
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the deterioration in statistical persistence in stride-to-stride time intervals could explain changes 1	

in the deterioration in the predictability, ENT½ and SPD values would also correlate. Such 2	

correlations could indicate that the underlying mechanisms for creating statistical persistence and 3	

predictability are regulated simultaneously.  4	

  5	
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Materials and Methods 1	

Theoretical Procedures 2	

To verify the interpretation of the outcome measure, twenty time series of four different 3	

mathematical signals of 2500 data points with different characteristics (periodic, chaotic, and 4	

random) were created using the colored noise generator function in Matlab (MathWorks 5	

R2011b). These signals included a brown noise signal (power spectrum of 1/f2) which was 6	

considered to be periodic, a signal derived from the second Lorenz differential equation (σ = 10, 7	

ρ = 28, and β = 8/3) which was considered to be chaotic, a pink noise signal (power spectrum of 8	

1/f) which also was considered to be chaotic, and a white Gaussian noise signal (constant power 9	

spectrum) which was considered to be random (figure 1). The periodic brown noise signal and 10	

the random Gaussian noise signal represented two extremes for each of the four applied analyses 11	

with the chaotic Lorenz attractor and pink noise as intermediate signals. 12	

Subjects 13	

Fourteen volunteers (seven males and seven females) with a mean (± SD) age of 25.0 years (± 14	

4.2), height of 170.8 cm (± 11.9) and body mass of 69.4 kg (± 16.9) participated in the present 15	

study. The participants had no diagnosed lower limb injuries within the past year. They were 16	

informed of the experimental conditions and gave their written consent to participate in the 17	

study. The study was approved by the by the Institutional Review Board of the University of 18	

Nebraska Medical Center, and it was carried out in accordance with the approved guidelines.   19	

Protocol 20	

The study consisted of two experimental sessions. During the first session the subjects completed 21	

a one hour overground walking trial on an elliptical indoor track (circumference ~ 201m) at their 22	

self-selected walking speed. The walking speed was not recorded and was allowed to fluctuate. 23	
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At the second session, the subjects completed a one hour treadmill walking trial at a constant 1	

self-selected walking speed. The walking speeds were not registered. During both walking trials, 2	

footswitches (Trigno™ 4-channel FSR Sensor, Delsys Inc., Natick, MA) placed under both heels 3	

recorded heel strikes at a sampling rate of 148 Hz. No objective measurement of fatigue was 4	

obtained during the trials. However, none of the subjects reported fatigue to influence their gait.  5	

Analysis 6	

The right heel strike data series from each walking trial was processed in Matlab (MathWorks 7	

R2011b) in order to create stride time interval time series (figure 1 and supplementary material 8	

1). Stride time was defined as the time from heel strike of one foot until the subsequent heel 9	

strike of the same foot. Each time series was cut to contain 2500 strides and were subjected to 10	

four different analyses: 1) SaEn, 2) ENT½, 3) DFA, and 4) SPD. 11	

Sample entropy 12	

SaEn was based on the algorithm by Richman and Moorman27 (equation 1). SaEn was defined as 13	

the negative logarithm for conditional properties that a series of data points within a certain 14	

distance, m, would be repeated within the distance m+127.  15	

Equation 1: 𝑆𝑎𝐸𝑛 𝑚, 𝑟, 𝑁 = − ln[.
/01 2
3/ 2

]  16	

Where A is the number of similar vector lengths (m+1) falling within a relative tolerance limit (r 17	

times standard deviation of the stride time intervals) and B is the number of similar vector 18	

lengths (m) falling within the tolerance limit33. The three parameters m, r, and N (time series 19	

length) should be selected prior to calculating SaEn and have been shown to have crucial 20	

importance for the SaEn value33. In order to control for parameter consistency, SaEn was 21	

calculated using m of 2 and 3 and r of 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3. Based on this analysis 22	
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(see supplementary material 2) m of 2 and r of 0.2 were used for both the SaEn and ENT½ 1	

analyses.  2	

Entropic half-life 3	

ENT½ is based on consecutive calculations of SaEn with increasing randomization of the stride 4	

time interval time series as described briefly below and in detail elsewhere2,34. Firstly, SaEn is 5	

calculated on the original time series. Secondly, the original time series is gradually randomised 6	

through successive reshaping according to the principle described in figure 2. In the present 7	

study, each reshaping resulted in an increased distance between two subsequent strides. The 8	

stride time interval time series was reshaped 100 times and SaEn was calculated for each of the 9	

reshaped time series. These reshaped time series would, in all cases, exhibit SaEn values 10	

between the SaEn of the original time series (lowest SaEn value) and the SaEn of a complete 11	

random time series (highest SaEn value). The SaEn of the reshaped time series were normalized 12	

to the difference between these two extremes according to equation 2: 13	

Equation 2: 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑆𝑎𝐸𝑛 = <=>?@AB<=>?C@
<=>?@DEB<=>?C@

 14	

where SaEnRS is the SaEn of the reshaped time series, SaEnOR is the SaEn of the original time 15	

series, and SaEnRAN is the average SaEn of 100 randomized time series created by a random 16	

permutation of the data points in the original time series. 17	

The normalized SaEn values were then plotted in a semi logarithmic plot as a function of the 18	

stride number (figure 2). The stride number corresponding to the first SaEn value above 0.5 was 19	

considered the stride number indicating a change in the characteristics of the reshaped time series 20	

from predictability to unpredictability and termed entropic half-life2,34.   21	

Detrended fluctuation analysis 22	



10	
	

The presence of statistical persistence or anti-persistence in the stride time interval time series 1	

was assessed using DFA. The correlations related to persistence or anti-persistence are part of 2	

the multifractal cascades that exist over a wide range of time scales14. DFA has the advantage of 3	

enabling detection of statistical persistence within noisy signals with embedded polynomial 4	

trends24. The applied DFA algorithm has been described in details elsewhere24 and briefly below. 5	

Using equation 3, the time series x(i) is first integrated by calculating the cumulated sum of the 6	

deviations of the mean 7	

Equation 3: 𝑦 𝑘 = [𝑥 𝑖 − 𝑥=IJK
L ]   8	

Next, the time series is divided into boxes of equal length, n and a least square line is fitted to 9	

each box. The y coordinate of the straight-line segments is designated by yn(k) and used to 10	

detrend the time series y(k) before the root mean square is calculated (equation 4).  11	

Equation 4: 𝐹 𝑛 = 	 N
O

[𝑦 𝑘 − 𝑦?(𝑘)]RO
KSN 	 12	

This procedure is repeated across the entire time series in order to establish a relationship 13	

between the average fluctuation, F(n), as a function of box size n. The fluctuations can be 14	

characterized by the scaling exponent, which is determined by finding the slope of the line 15	

relating log 𝐹(𝑛) to log 𝑛24. In the current study, a box size range of [2,N] and a scaling region of 16	

10 – 30 were used for the DFA as this range represented a linear section of the logF(n)-logn 17	

plot14. A scaling exponent greater than 0.5 indicated a presence of statistical persistence meaning 18	

that a deviation in stride time from the mean in one direction is more likely to be followed by a 19	

deviation in stride time in the same direction. A scaling exponent less than 0.5 indicated a 20	

presence of statistical anti-persistence, meaning that a deviation in stride time from the mean in 21	

one direction is more likely to be followed by a deviation in stride time in the opposite direction. 22	
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If the scaling exponent is 0.5, this indicated an uncorrelated white noise like pattern of the stride 1	

time interval time series6,13,14.  2	

Statistical persistence decay 3	

The reshaped time series used for ENT½ analysis were also used for SPD. For each reshaped 4	

time series, DFA was performed as described above with a box size range of [2,N] and a scaling 5	

region of 10 – 30. A critical limit was calculated following equation 5 (figure 3). 6	

Equation 5: 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑙𝑖𝑚𝑖𝑡 = 𝜇Z[=? + 2 ∙ 𝜎Z[=? 7	

Where µαRan is the averaged scaling exponent of 100 random time series created by a random 8	

permutation of the data points in the original time series and σαRan is the corresponding standard 9	

deviation. Thus, the critical limit is based on the upper 95% confidence limit (µ + 2σ) of the 10	

scaling exponent of the randomised time series. As the order of data points is changed with every 11	

rescaled time series, the statistical persistence is changed towards the critical limit. Any scaling 12	

exponent below the critical limit will not be significantly different from that of randomised 13	

patterns in the original time series. The number of strides required to reduce the scaling exponent 14	

below the critical limit is considered the SPD. Thus, SPD indicates a change in the stride time 15	

interval fluctuation from statistical persistence towards uncorrelated noise.  16	

Statistics 17	

Statistical difference in the analysis outcome measures (scaling exponent, SaEn, ENT½, and 18	

SPD) between the four mathematical signals were assessed using a one way ANOVA on ranks 19	

with signal types as independent factor and the outcome measures as the dependent measure. In 20	

case of an overall significant effect, a Turkey post hoc test was applied. 21	

Paired Student’s t-tests were applied to SaEn, ENT½, scaling exponent, and SPD to investigate if 22	

there was a statistical difference between the two walking conditions. To determine the nature of 23	
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the linear relationship between scaling exponent and SaEn and between ENT½ and SPD during 1	

both overground and treadmill walking, linear regression analyses were applied. For all statistical 2	

analysis the level of significance was set at 5%. All statistical calculations were performed in 3	

Sigmaplot (Systat Software, Inc. 2014, version 13.0, Germany).  4	

  5	
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Results  1	

Theoretic signals 2	

The scaling exponent, SaEn, ENT½ and SPD of the brown noise, Lorenz attractor, pink noise, 3	

and white Gaussian noise signals are presented in table 1. As known signals, the brown and 4	

Gaussian noise signals represented the two extremes (periodic and random, respectively) with 5	

the chaotic Lorenz attractor and pink noise signals as intermediate signals. The four analyses 6	

confirmed the known properties of the four theoretical signals. For all four analyses, there was a 7	

significant overall effect of the type of signal (p < 0.001 in all cases). The post hoc analyses 8	

revealed a significant difference between each signal type for the scaling exponent (p ≤ 0.034 in 9	

all cases). SaEn did not differ between brown noise and the Lorenz attractor but was significantly 10	

higher for pink and Gaussian noise (p ≤ 0.033 for all comparisons). ENT½ differed significantly 11	

between all signals (p ≤ 0.033 for all comparisons) except between pink and Gaussian noise. The 12	

SPD differed significantly between all signals (p ≤ 0.049 for all comparisons) except between 13	

Lorenz attractor and pink noise. While the brown noise signal had the strongest statistical 14	

persistence, lowest sample entropy, and the highest ENT½ and SPD, the random signal had the 15	

highest SaEn, and the lowest ENT½ and SPD. The Lorenz attractor and pink noise returned 16	

intermediate values for all four analyses.  17	

Treadmill and overground walking 18	

The SaEn was significantly greater (p=0.033) and the scaling exponent was significantly lower 19	

(p=0.012) during treadmill walking compared to overground walking (figure 4A and 4B). There 20	

was no significant difference between the two walking conditions for ENT½ (for overground 21	

walking: mean = 11.3 strides and median = 9 strides and for treadmill walking: mean = 14.6 22	

strides and median = 8 strides) and SPD (for overground walking: mean = 51.6 strides and 23	
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median = 65 strides and for treadmill walking: mean = 53.0 strides and median = 59.5 strides). It 1	

should be noted that large inter-subject variations existed for ENT½ and SPD (figure 4C and 2	

4D). Low non-significant correlations were observed both between SaEn and scaling exponent 3	

(for overground walking: R = 0.421, R2 = 0.177, Adj. R2 =0.109, p = 0.134; for treadmill 4	

walking: R = 0.103, R2 = 0.011, Adj. R2 = -0.072, p = 0.726) and between ENT½ and SPD (for 5	

overground walking: R = -0.064, R2 = 0.004, Adj. R2 = -0.079, p = 0.829; for treadmill walking: 6	

R = 0.502, R2 = 0.252, Adj. R2 = 0.190, p = 0.067) (figure 5).  7	

 8	

  9	
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Discussion 1	

The present study aimed at introducing two novel tools, ENT½ and SPD, as methods to quantify 2	

time dependency in stride-to-stride time intervals during human gait. To validate the use of these 3	

methods, the dynamic characteristics of known theoretical signals (periodic, chaotic, and 4	

random) were assessed by DFA and SaEn in addition to ENT½ and SPD. It was expected that 5	

the periodic signal (brown noise) with low SaEn (high predictability) and with a high scaling 6	

exponent above 0.5 (high statistical persistency) would be characterized with high ENT½ and 7	

SPD, while the random signal (Gaussian noise) with high SaEn (low predictability) and a scaling 8	

exponent close to 0.5 (uncorrelated pattern) would be characterized with low ENT½ and SPD. 9	

Chaotic signals (Lorenz attractor and pink noise) would be characterized by intermediate SaEn, 10	

scaling exponent, ENT½, and SPD values. This expectation was confirmed which indicated that 11	

the presented methods were able to assess the number of data points involved in creating the 12	

potential time dependency in time series.  13	

Furthermore, the present study applied ENT½ and SPD to the stride-to-stride time intervals 14	

recorded during treadmill and overground walking in healthy young adults. Significant lower 15	

predictability and lower statistical persistence were observed during treadmill walking compared 16	

to overground walking.  However, no significant difference was observed for ENT½ and SPD 17	

between walking condition.  18	

The present study is the first to estimate the time dependency of human gait in an interpretable 19	

scale. The predictability was halved within 11 and 14 consecutive strides during overground and 20	

treadmill walking, respectively, and the statistical persistence was deteriorated within ~50 strides 21	

during both conditions. This indicates a substantial time memory, where information from 22	

previous strides was included in the formation of future strides.  23	
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During the last twenty years, extensive research has addressed the time dependency and 1	

nonlinear dynamics of the inherent variability in human movements21,29. Both basic and applied 2	

research has acknowledged the functional role and importance of the observed movement 3	

variability22,25,29. In relation to human gait, variability has been discussed in relation to the 4	

fundamental motor control of walking7,14,31, the development of a mature walking pattern3,15, and 5	

the impairment following aging3,13,16, and pathology1,9,11,13,18. The increasing interest in gait 6	

variability has led to a number of different nonlinear tools applied to either kinematic data or 7	

stride characteristics quantifying different characteristics of the time series in question (e.g. 8	

largest Lyapunov exponent quantifying the rate of trajectory divergence or convergence in state 9	

space, approximate and sample entropy quantifying predictability, correlation dimension 10	

quantifying dimensionality, and detrended fluctuation analysis quantifying statistical persistence 11	

or anti-persistence)28. While these different tools acknowledge the time dependency in the 12	

investigated time series, they do not quantify this time dependency on an interpretable physical 13	

or physiological time scale. 14	

The characteristics and strength of this time dependency in movements observed during walking 15	

could be interpreted as the reliance of the motor control system on previous strides in order to 16	

perform future strides. The present study confirmed previous observations that stride time 17	

intervals during both overground and treadmill walking are characterised by statistical 18	

persistence, meaning that deviations in one direction are statistically likely to be followed by 19	

deviations in the same direction31. It has been emphasised that the statistical persistence should 20	

be interpreted within the context of the control process of the parameter in question, the 21	

influence of biomechanical, anatomical, and neuro-muscular redundancy and the task 22	

constraints6. Thus, the constraints imposed by the treadmill on the motor control system cause a 23	
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reduction of the statistical persistence which has been suggested to be linked to a tighter 1	

control6,31.  Furthermore, Terrier and Deriaz31 observed that a reduction in statistical persistence 2	

in stride time intervals was accompanied by a reduction in largest Lyapunov exponent of the 3	

centre of mass accelerations during treadmill walking. The authors interpreted this as an increase 4	

in gait stability during treadmill walking compared to overground walking. Interestingly, this 5	

proposed tighter control is accompanied by a lower predictability in the stride time intervals. 6	

Inducing further constraints through use of virtual reality environments with different optic flow, 7	

Katsavelis and colleagues19 observed an additional decrease in predictability (quantified by 8	

approximate entropy).  9	

Two alternative interpretations could be made based on this. It could be speculated that the 10	

tighter control during constraint walking (e.g. treadmill or virtual reality environment) increases 11	

the gait stability (decrease in largest Lyapunov exponent) through more usage of the available 12	

degrees of freedom (increase in sample/approximate entropy). This interpretation suggests that 13	

treadmill walking constitutes an optimal walking condition compared to overground walking. 14	

Alternatively, it could be speculated that the unconstrained overground walking is successfully 15	

performed through a more flexible control which relies on the self-organized interplay of the 16	

degrees of freedom within the body. This interaction creates a movement solution characterized 17	

by higher statistical persistence and a sufficient level of predictability enabling an adaptable 18	

walking pattern. This would furthermore indicate that the human locomotor control during 19	

unconstrained walking is more complex compared to constrained walking as suggested by Costa 20	

et al.5. Accordingly, constrained walking could be considered a more challenging task compared 21	

to unconstrained walking for the motor control system to solve which induces a more random-22	

like pattern in the stride-time intervals. As a consequent, tighter motor control reduces the rate of 23	
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divergence of the centre of mass accelerations to ensure a stable upper body motion. Although 1	

both explanations are valid, we consider the latter to be the most likely. In support of this 2	

explanation, Dingwell et al.7 observed that during treadmill walking stride speed fluctuations 3	

exhibited anti-persistence while stride time and stride length exhibited statistical persistence. It 4	

was suggested that while stride speed required a tighter motor control in order to stay in the 5	

middle of the treadmill belt, stride time and stride length was allowed to fluctuate more freely 6	

with more flexible control due to the redundancy of these two parameters7. Furthermore, Terrier 7	

et al.32 observed that during overground walking the stride speed as well as stride time and stride 8	

length exhibited statistical persistence and suggested that these parameters were allowed to 9	

fluctuate freely.  10	

In contrast to the scaling exponent and SaEn, the two walking conditions did not induce 11	

differences in ENT½ and SPD. This could indicate that while the constraints imposed by the 12	

treadmill may affect the observed statistical persistence and predictability, it does not seem to 13	

affect the rate at which this deteriorates. Furthermore, the present study investigated the 14	

relationship between SaEn and scaling exponent and between ENT½ and SPD, to assess the 15	

potential shared mechanisms behind the generation of statistical persistence and predictability 16	

observed in stride time intervals. The result showed low non-significant correlations between 17	

SaEn and scaling exponent and between ENT½ and SPD for both walking conditions indicating 18	

no relationship between the generation of statistical persistence predictability and between the 19	

rates of deterioration of the statistical persistence and gradually reduction in predictability. Based 20	

on this, it could be speculated that the sources of these characteristics in the gait patterns does not 21	

changes these parameter synchronously. It is well established that the motor cortex, corticospinal 22	

tract, and spinal cord are involved in the motor control of human locomotion23. Although 23	
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potentially involved in generating the observed time dependency in gait, the actual contribution 1	

from the nervous system is unknown. Furthermore, the need for involvement of higher cortical-2	

spinal structures in the formation of the statistical persistence observed in human gait has been 3	

questioned8. In addition, it has previously been established that the statistical persistence in stride 4	

time intervals is lower in patients of neurological diseases, elderly, and fall prone 5	

individuals10,13,16. Thus, pathological and age-related changes in both neurological 6	

musculoskeletal structures could contribute to altered temporal structure of the gait pattern8. 7	

However, whether the time dependency is affected in these types of individuals is a topic for 8	

future research.  9	

The present study only included walking at the preferred walking speed of the included subjects. 10	

Thus, the motor control was not challenged beyond what could be considered the less demanding 11	

walking task. Thus, it remains unknown if the time dependency of stride time intervals quantified 12	

with ENT½ and SPD exhibits the same walking speed relationship as previously shown for 13	

scaling exponent at walking speeds beyond and below the preferred walking speed17. Time 14	

dependency was only quantified in the stride-to-stride time intervals. Thus, it remains unknown 15	

if the observed results also apply to other gait characteristics (i.e., stride length, stride speed). 16	

Additionally, future studies should explore the potential of using ENT½ and SPD on lower limb 17	

joint angle trajectory data obtained during walking. Previous studies have applied various 18	

nonlinear analyses (e.g. largest Lyapunov exponent, correlation dimension1,4,26) to assess joint 19	

angles dynamics. Thus, difference the knee angle joint dynamics has been observed between 20	

young and elderly individuals4 and between the injured and healthy knee in ACL deficient 21	

patients30. It is likely that differences in the time dependency in joint angles during various 22	

locomotion tasks could be detected by ENT½ and SPD. The gait pattern of elderly individuals 23	
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has been observed to be more random compared to younger individuals4,10. This would 1	

potentially be characterized by a shorter ENT½ and SPD in the elderly group. However, future 2	

studies should investigate this topic. 3	

The present study introduced ENT½ and SPD as novel methods to quantify time dependency 4	

during overground and treadmill walking and were able to show that predictability in stride time 5	

intervals was halved after approximate 14 strides and that the statistical persistence was 6	

deteriorated to uncorrelated noise after approximately 50 strides. These observations were 7	

accompanied by a lower statistical persistence and lower predictability during treadmill walking 8	

compared to overground walking.  9	
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Legends 1	

Table 1: Mean ± SD of scaling exponent, sample entropy, entropic half-life and statistical persistence 2	
decay of twenty iteration of brown noise, Lorenz attractor, pink noise signal and white Gaussian noise. 3	
NOTE: a) indicates significant difference from brown noise signal, b) indicates significance different 4	
from Lorenz attractor signal, c) indicates significant difference from pink noise signal (p<0.05). 5	

 6	

Figure 1: Examples of the brown noise signal, Lorenz attractor signal, pink noise signal, and the white 7	
Gaussian noise signal (top four signals) and an example of the stride time interval time series for 8	
overground and treadmill walking (bottom two signals). One hundred data points or stride time intervals 9	
are depicted.  10	

 11	

Figure 2: Calculation procedure for ENT½ (see text for details). 12	

 13	

Figure 3: Calculation procedure for SPD (see text for details). 14	

 15	

Figure 4A-D: Boxplot including group mean (dashed line) and median (solid line) for SaEn (A),  scaling 16	
exponent (B), ENT½ (C), and SPD (D) for overground walking (OG) and treadmill walking (TM).  17	

 18	

Figure 5: Linear regression of SaEn and scaling exponent and of ENT½ and SPD for both overground 19	
and treadmill walking.   20	
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Table 1: Mean ± SD of scaling exponent, sample entropy, entropic half-life and statistical persistence 
decay of twenty iteration of brown noise, Lorenz attractor, pink noise signal and white Gaussian noise. 
NOTE: a) indicates significant difference from brown noise signal, b) indicates significance different 
from Lorenz attractor signal, c) indicates significant difference from pink noise signal (p<0.05). 

 Brown noise Lorenz attractor Pink noise Gaussian noise 

Alpha 1.40 ± 0.05 1.08 ± 0.03a 0.93 ± 0.06a,b 0.47 ± 0.03a,b,c 

SaEn 0.18 ± 0.08 0.22 ± 0.01 1.80 ± 0.05a,b 2.18 ± 0.01a,b,c 

ENT½ 43.30 ± 29.88 8.00 ± 0.00a 4.20 ± 0.83a,b 2.60 ± 0.82a,b 

SPD 68.65 ± 11.14 16.95 ± 15.10a 45.05 ± 18.59a 1.05 ± 0.22a,b,c 
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Supplementary material 1 

In this material the stride time interval time series for each subject during overground and 

treadmill walking is presented. The trials included 2500 strides and are presented in four figures.  

 

 

Figure S1.1: Stride time interval time series for subjects 1 – 7 during overground walking. 

  



 

Figure S1.2: Stride time interval time series for subjects 8 – 14 during overground walking. 

  



 

Figure S1.3: Stride time interval time series for subjects 1 – 7 during treadmill walking. 

  



 

Figure S1.4: Stride time interval time series for subjects 8 – 14 during treadmill walking. 



Supplementary material 2 

Introduction 

Sample entropy (SaEn) analysis of a time series require the determination of three parameters 1) 

r, the similarity criterion, 2) m, the length of data that will be compared and 3) N, the length of 

the time series prior to the calculation. As shown by Yentes and colleagues (2013), the selected 

parameters are crucial to the outcome of sample entropy (SaEn) calculations. Applying different 

parameters to the same time series will potentially change the outcome. To avoid this, the use of 

SaEn to time series should be accompanied by a test for parameter consistency. The purpose of 

the supplementary material was to investigate the parameter consistency for the time series in the 

present study.  

Method 

The present study used 2500 data point in each time series which is well beyond what is needed 

to achieve a consistent SaEn outcome (Yentes et al. 2013). Therefore, parameter consistency 

analysis was only performed for parameters r and m. SaEn was calculated for the stride time 

interval time series during both treadmill and overground walking using r = 0.5, 1, 1.5, 2, 2.5 and 

3 and m = 2 and 3. A two-way ANOVA for repeated measures was applied to evaluate the effect 

of different r and m values for both the overground and treadmill data. In case of significant 

effects, a Holm-Sidak post hoc test was completed. Level of significance was set at 5 %. 

Calculations were conducted in SigmaPlot (Systat Software, Inc. 2014, version 13.0, Germany). 

Results and Conclusion 

There was no significant effect of the different r values on the SaEn values (figure S1). The non-

significant decrease in SaEn at higher r values was similar for both the overground and treadmill 

walking data. There was a significant main effect of walking condition (p=0.029 for m=2 and 

p=0.036 for m=3) indicating that across r values the SaEn was significantly higher during 

treadmill walking compared to overground walking. There was a significant effect of the 

parameter m for both overground walking (p<0.001) and treadmill walking (p<0.001) (figure 

S1). Thus, SaEn was significantly higher with m=2 compared to m=3 for both walking 

conditions. It is noteworthy that the inter-condition relationship did not change with changes in r. 

Equally, the inter-parameter relationship of m did not change with changes in r. 



Based on these results (figure S2.1), it could be concluded that there in general was a satisfying 

parameter consistency for the tested parameters and that r = 0.2 and m = 2 was well suited for 

SaEn calculations of the data in the present study.  

 

Figure S2.1: Group mean ± SD of SaEn calculated for overground and treadmill walking with r 

values of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 and m values of 2 and 3.  
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