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by 
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1984 

ABSTRACT 

Previous studies have attempted to correlate expression of 

certain surface antigens on human lymphocytes with functional 

properties of the ceils. The T cell marker OKT4, which in initial 

studies was shown to identify T cells containing helper activity, 

has more recently been shown to also react with cells that have 

both suppressor and cytotoxic activity. The OKT8 reactive cells, 

which originally were thought to contain cytotoxic and suppressive 

cells, have been shown to also contain cells which enhance B cell 

differentiation. In order to further define these functionally 

heterogeneous populations, experiments were performed with 

OKTIO, a monoclonal antibody reactive with an antigen present on 

all thymocytes and a small percentage of resting T lymphocytes, 

but expressed in varying proportions on activated T cells. 

Depletion of the OKTIO reactive T cell subset in normal resting T 

cells does not affect the ability of these cells to generate cytotoxic 

cells or to either enhance or suppress B cell differentiation. 

However, when unselected T lymphocytes were cultured for six (6) 
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days in mixed lymphocyte reaction and then depleted of OKTIO 

reactive cells, the ability of these cells to generate a cytotoxic 

response was eliminated. Also, depletion of the OKTIO reactive T 

cells from within the non-irradiated activated T8+ cell population 

did not affect the ability of these cells to suppress B cell antibody 

production. Experiments directed at studying the heterogeneity 

within the irradiated activated T8+ positive cells, which in 

previous studies have been shown to enhance B cell differentiation 

at sub and supra optimal levels of help but suppress B cell 

differentiation at optimal levels of help, revealed that the depletion 

of OKTIO reactive cells eliminated the suppression activity at 

optimal levels of help. 

These experiments provide evidence that the OKTIO antibody 

can be used to isolate functionally distinct populations of the OKT8 

reactive T lymphocyte subset. 
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I ntroduction 

Various types of cells participate in an immune response. 

The major groups are the lymphocytes, which until Cowans iden¬ 

tified them as important cells in the immune system (17), were 

considered mainly uninteresting and non-functional. Lymphocytes 

are divided into two major categories, T and B lymphocytes. B 

cells, the progenitors of antibody-forming cells, derive from bone 

marrow stem cells, through a process of antigen-independent 

maturation that takes place in the bursa of Fabricius in birds, but 

whose location has not been defined in humans. The T lym¬ 

phocytes responsible for regulating functions and cellular immunity 

derive in all species from bone marrow stem cells that go through 

a maturation stage in the thymus after which they are immune 

competent. 

T lymphocytes are essential for the full expression of immuni¬ 

ty due to their participation in various immune functions. T cells 

function as regulatory cells, modulating B cell differentiation and 

thereby affecting immunoglobulin production. This activity has 

been divided into helper function, whereby immunoglobulin (Ig) 

production increases or suppression function, where the ability of 

B cells to produce immunoglobulin is decreased. T cells are 

involved in cellular immunity reactions, which include reactions of 

delayed sensitivity, contact sensitivity, or resistance to certain 

infectious agents (i.e., viruses, intracellular bacteria). T cells 

are the major cells involved in transplantation immunity, which 

involves both rejection of allogeneic tissue and graft-verses-host 

reactions. Finally, T cells can act as cytotoxic cells whereby they 
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have the capacity to kill other cells. T cells have been thought to 

be able to generate these activities by their ability to recognize 

and interact with both antigens and autologous cells. 

A major question arose as to whether this diversity of T cell 

functions reflected a functional heterogeneity of T cells existing 

prior to antigen stimulation. This was addressed by Cantor and 

Boyse working with mice (18, 19), who asked "...is it possible to 

separate subclasses of T cells from non-immune animals, that are 

already determined to express respectively, helper activity or 

cytotoxic activity before they encounter antigen?" (18) 

Cantor and Boyse developed alloantisera that defined a panel 

of cell-surface differentiation components, called Ly antigens, 

which are expressed exclusively on the surface of thymocytes and 

T cells. They showed that unique combinations of these surface 

products are expressed by distinct subsets of T cells which have 

unique immunologic functions. Lyl cells could be activated by 

l-region incompatabilities (i.e. , differences in the "self" class II 

antigens) to generate helper activity (increased B cell differ¬ 

entiation). Ly2,3 cells accounted for virtually all T cell mediated 

cytotoxicity when stimulated by K/D differences (i.e., differences 

in "self" class I antigens) and were able to suppress the helper 

activity of Lyl cells. 

Jandinski, et al (20) extended these observations to T cells 

that were polyclonally activated by concanavlin A (Con A). After 

this non-specific activation, it was again shown that Ly2,3 cells 

suppressed antibody response and Lyl cells enhanced "helped" 

antibody response. With further study it was found that an 
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antigen defined by the L3T4 monoclonal antibody better defined the 

T cell subset that was exclusive of Ly2,3 cells and had class II 

MHC restriction (99). 

In studying T-cell ontogeny, it was found that the maturation 

from stem cell to thymocyte was associated with the acquisition of 

TL, Thyl , and Ly1,2,3 surface antigens. With further maturation 

a subset of thymocytes lose TL on their surface associated with a 

decrease in Thyl antigen and an increase in H2 antigen. In 

addition, a significant number of cells either lose Lyl or Ly2,3 on 

their surface, thereby forming Ly2,3+ and Ly1 + respectively. 

These peripheral subsets were noted to have the above functions. 

(31) Another population retained both the Lyl and Ly2,3 antigens 

and form a subset of Lyl,2,3 cells in the periphery which serve to 

modulate the immune response by either differentiating into Lyl 

helper cells or Ly2,3 suppressor cells (31). 

Investigators tried to determine if the functional heterogeneity 

of human T cells could be defined by differences in cell surface 

characteristics. Strelkauskas, et al (22) used sera from children 

with severe juvenile rheumatoid arthritis which contained antibodies 

reactive with 30% of peripheral human T cells in an attempt to 

separate T cells subsets. These autoantibodies were able to 

separate out a subclass of human T cells which was able to 

enhance B cell immunoglobulin production. (22) 

Moretta, et al (23) used the ability of T cells to bind differ¬ 

ent immunoglobulin classes to distinguish T cells with different 

functions. T cells with helper function could be localized in a 

subset of T lymphocytes bearing surface receptors for Fc portion 
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of IgM (T^+) while in contrast, suppressor activity was associated 

with a T cell subset which had a receptor for the Fc portion of 

IgC (Tq+ cells). 

Reinherz, et al then developed two rabbit anti-human T lym¬ 

phocyte heteroantiseras to define functional human T cell subsets. 

(14, 24-26). One heterologous anti-human T cell serum, TH^, 

reacted with 50% of peripheral T cells. Depletion of cells reactive 

with this antisera abolished the response in MLC and elaboration of 

mitogenic factor, but did not affect the proliferative response to 

soluble antigens. (14). They found that TH^, a second hetero- 

antisera, reacted with 20% of human peripheral T cells and tMs 

subset contained both the cytotoxic effector and Con A-inducife'ie 

suppressor cell population. In contrast, cells that did not react 

with TH2 provided helper function in a variety of systems and 

could modulate the generation of Con A inducible suppressor oafe., 

(25) 

The above studies, utilizing heteroantisera, spontaneous 

antibodies, and the ability to bind the Fc of immunoglobulins dem¬ 

onstrated that human T cells, which appeared relatively homoxpf- 

nous morphologically, consisted of subclasses of cells with differing 

functions that could be fractionated by differences in cell surface 

antigens. These techniques had limited clinical value due to the 

disparity of antibody preparations obtained, frequent low titers, 

and the multiple absorptions required for production of specific 

heteroantiserums. 

The hybridoma technique of Kohler and Milstein (27) allowed 

production of antibodies specific for a single antigen. The 
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technique involves immunizing BALB/CJ or CAF mice with human T 

cells, then harvesting the mice spleen and fusing these cells with 

myeloma cells. The fusion cells are selected in HAT 

(hypoxanthine-aminopterin-thymidine) supplemented medium and 

antibody producing hybrids were identified by a fluorescent la¬ 

belled goat anti-mouse antibody. A single clone of cells was then 

injected back into a mouse and a malignant ascites (containing 

monoclonal antibody) was harvested. Presently there are two 

series of monoclonal antibodies that have been extensively studied. 

The Leu series developed by Evans, et al (11) and the OKT series 

produced by G Goldstein and P.C. Kung. (7, 32). 

Reinherz and Schlossman have used the OKT series to study 

T cell maturation. In parallel to the murine work of Cantor and 

Boyse, they have shown that changes in cell surface antigens mark 

various states of human T cell ontogeny (28, 29). In human bone 

marrow, TdT+ lymphoid precursors have shown to react with 

OKTIO, but no other T cell antigens (30). In the thymus virtual¬ 

ly all thymocytes bear OKT 10, though major differences in other 

cell surface antigens are found on thymocytes in different stages 

of maturation. It appears 10% of thymocytes bear only OKTIO, 

while with further maturation they acquire a thymocyte distinctive 

antigen, OKT6, and concurrently express OKT4, OKT5, and 

OKT8. Cells with the above phenotype comprise 70% of 

thymocytes. With further maturation cells lose OKT 6 on their 

surface, but acquire OKT3 and OKT11. These cells also segregate 

into mutually exclusive subsets which display either OKT4 or 

OKT5/8 on their surfaces. This would seem to parallel the 
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distribution of the L3T4 and Ly2,3 antigens in the mouse system. 

Finally, the thymocytes that are exported into the periphery lose 

OKTIO on their surface. The above scheme of maturation is 

summarized in figure 1. Thus, peripheral lymphocytes are 

subdivided into two mutually exclusive groups, one bearing OKT3, 

OKT11, and OKT4 antigens, and the other bearing OKT3, OKT11, 

OKT5 and OKT8 cell surface molecules. 

Given the existence of two distinct subpopulation of T cells, 

studies were undertaken to see if evidence could be found, as it 

had been in the mouse system, correlating cell surface markers 

with distinct T cell function. 

Initial studies by Reinherz & Schlossman found that OKT4 

reacted with the same T cells which had not reacted with TH2 

heteroantisera (TH2 cells). These T cells represented 60% of 

peripheral blood lymphocytes (PBL). Functionally, the OKT4 

reactive cells (T4+) contained the entire proliferative capacity of 

the T cell population to soluble antigen. These cells also respond¬ 

ed to alloantigens and mitogens such as Con A and PHA. The T4+ 

subset developed a small amount of cytotoxic activity after 

activation, and were able to greatly increase the amount of cyto¬ 

toxicity developed by T4 cells when combined prior to sensi¬ 

tization. Importantly, T4+ positive cells were shown to greatly 

enhance B cell differentiation in both pokeweed mitogen (PVVM) 

driven and antigen-stimulated system (33,34). 

The ability of T4+ cells to increase B cell immunoglobulin (Ig) 

productions and to increase proliferation of all lymphocyte sub¬ 

classes was shown to be mediated by non-specific soluble "helper 
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factor(s)" (35). Thus, the T4+ subset of T cells in humans 

performed many of the same immune functions that Lyl cells per¬ 

formed in mice. 

T cells that did not react with 0KT4 were found to react with 

0KT5 and OKT8. These antibodies reacted with 30-40% of periph¬ 

eral T cells, all of which also reacted with TH2 heteroantisera. 

(36). OKT5 and OKT8 antibodies were found to react with differ¬ 

ent molecules, both of which were present on the same subset of T 

cells (37). The cells (T8+) were virtually unresponsive to soluble 

antigen, but proliferated well to the mitogen. Con A, and to 

alloantigens. (36). After activation by Con A, T8+ cells were 

able to suppress autologous T cell proliferative responses to 

alloantigens. This same T8+ subset also suppressed B cell 

immunoglobulin production (33). Moreover, the effector function 

for cell-mediated lympholysis was found to reside in the T8+ 

subset. (33,34,37). Thus, the human T cells reactive with OKT5 

and OKT8 (T8+) were functionally similar to the Ly2,3 cells in the 

murine system. 

Reinherz S Schlossman studied the correlation between the 

reactivity of OKT antibodies and that of prior methods of T cell 

fractionalization. As stated above, TH^ reactive cells were found 

to react with OKT5 and OKT8, while cells that didn't react with 

TH2 did react with OKT4. Studies that investigated the OKT 

antibodies in relation to receptors for the Fc portion of immuno¬ 

globulins were difficult to interpret due to the instability of the 

T.. and Tr phenotype. (39). 
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Concurrently with the work of Reinherz S Schlossman, Evans 

et al at Sloan-Kettering developed the Leu series of monoclonal 

antibodies. They produced Leu 2 (T8), an antibody that reacted 

with the same T cells as TH^, and Leu 3 (T4), which reacted with 

cells unreactive with TE^. In a parallel fashion, Gatenby & 

Engleman found the Leu 2 reactive subset of T cells was responsi¬ 

ble for cytotoxic/suppressor function while the Leu 3 cells were 

involved in helper/induced activity. (11,40). 

Utilizing the OKT series of monoclonal antibodies, along with 

gamma radiation, Y. Thomas and L. Chess further investigated the 

interactions of lymphocytes responsible for immune functioning. 

They found that in a PWM driven B cell differentiation assay, the 

helper function of T4+ cells was within a radiosensitive subset of T 

cells. They also found that T8+ suppressor activity was generated 

by a radiosensitive cell. Further, the suppression of B cell 

differentiation mediated by T8+ cells required the presence of a 

radiosensitive T4+ cell subset. (8). These findings were extended 

to T cells reactive to alloantigens, so that a radiosensitive subset 

-f- *f- 
of T8 cells was shown to suppress T4 response to stimulation by 

alloantigens. (41). Thomas and Chess were able to isolate super¬ 

natant, derived from T4+ cells, that enhanced B cell differ¬ 

entiation. Production of this "helper factor(s)" could be sup¬ 

pressed by T8+ cells, and the authors postulated this could be the 

mechanism by which T8+ cells mediated their activity on B cell 

differentiation. (41). 

During these studies it was noted that addition of greater 

numbers of T4+ cells to B cells did not result in a linear increase 
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in B cell differentiation (as measured by immunoglobulin producing 

cells), but instead a decrease was noted after an initial zenith. 

Thomas and Chess went on to show that addition of T4+ cells, 

which had been activated jin vitro by pokeweed mitogen (PWM), 

could suppress the helper effect of fresh T4^ cells in B cell dif¬ 

ferentiation. They showed that this was not secondary to the 

emergence of T8+ cells, but was mediated by a subset of 

radiosensitive T4+ cells. (13). 

The existence of T4+ suppressor cells was further defined by 

use of OKT 17 which was found to react with activated T4+ 

suppressor cells. (42). The ability of T4+ cells to suppress has 

since been shown with human cord biood (43), adult T cell leu¬ 

kemia cells (44), and most recently with alloreactive T cell clones 

(45). Thus, T4+ cells were shown to be capable of both 

suppressor and helper function in relationship to B cell differ¬ 

entiation . 

Other studies were undertaken to identify further heterogene¬ 

ity within the T4+ cells subset. Utilizing T cell clones, several 

investigators have shown that cytotoxic T cells can bear the OKT4 

cell surface marker. (46,47). Thus experimental evidence from 

several different groups have indicated that T4+ human T cell 

subset has the ability to perform a diverse range of immune 

functions. 

The OKT8 reactive cells have been shown by Reinherz & 

Schlossman to be responsible for the majority of cell mediated 

lympholysis (CML) and to be able to exert suppressor function on 

B cell differentiation. Recently, Thomas & Chess utilized PWM 
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activation and irradiation to further investigate the 

immunoregulatory effect of T8+ cells. They found that activated 

non-irradiated T8+ cells suppressed T4+ mediated B cell Ig 

production at all levels of Ig production. However, activated 

irradiated T8+ cells showed suppressor function only at optimal 

levels of Ig production. At supra or sub-optimal levels of T4+ 

mediated B cell differentiation, addition of activated irradiated T8+ 

cells enhanced Ig production (3). Thus, the T8+ T cell subset 

has also been shown to be heterogenious, containing cells capable 

of expressing 1) suppressor 2) cytotoxicity and, after activation 

3) amplifier activity in different systems. 

Similar findings of heterogeneity in what were thought to be 

well-defined T cell subsets have also been found in the murine 

system. (48-50). Both Lyl and Ly2,3 cells have been shown to 

appear on cytolytic T cell clones. (48,50). Subclones of a single 

cell clone have been shown to perform proliferative response, 

cytolytic activity, and allohelp reaction with B cells. (48). 

Cershon, et al (49) used an antisera directed at a poly¬ 

morphic gene product(s) controlled by the l-J subregion of the 

major histocompatibility complex (MHC) to help define the disparity 

in the murine T cell system. Lyl cells reactive with the anti-l-J 

serum (l-J+) were selective for their ability to induce suppressive 

activity in the Ly2,3 cells, while Lyl cells not reactive with an- 

ti-l-J serum (l-J ) were specialized in their ability to induce B 

cell differentiation. (51). 

Cershon used the l-J antisera to also look at Ly2,3 cell 

function. Ly2 T cells not reactive with l-J antisera (l-J ) were 





the effector cells that suppress Lyl helper T cell activity. The 

Ly2, l-J+ subset contained cells that interact with Lyl ,2 T cells to 

inhibit Ly2 mediated suppressor cell activity. This activity was 

termed contrasuppression and was thought to consist of a regu¬ 

latory loop controlling the level of suppression generated in an 

immune response which involved a Ly2 l-J+ cell that could induce 

an Lyl cell to "contrasuppress" Ly2 mediated suppression. This 

inducement of contrasuppression was mediated by a soluble factor. 

Thus, Gershon hypothesized four populations in the Ly2 T cell 

subset with distinctive functions: 1) killer; 2} suppressor; 3) 

cells that amplify suppressor activity; and 4) cells that induce 

contrasuppression. (49). 

Another approach towards investigating T cell subsets, as 

defined by cell surface antigens, involved attempts to block func¬ 

tions of known T cell subsets utilizing the antibodies directed to 

the surface antigens that defined these subsets. This approach 

addressed the issue of whether these molecules were involved in 

the functions exhibited by the T cells they appeared on. 

In the murine system, early studies investigated the effect of 

monoclonal antibodies directed towards the Ly2,3 molecular com¬ 

plex, in the absence of complement, on the cytolytic function of 

these cells. Disappointingly, some studies showed the antibodies 

could block the cytolytic activity (52,54) while others were unable 

to show an effect (53,55). Using clones of cytotoxic T cells, it 

was shown that there was heterogeneity within subclones in their 

ability to be effected by anti Ly2,3 antibodies. (56). 
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Similar experiments have been performed with OKT antibodies 

to human T cells. Early experiments studying the effect of OKT4 

without complement, on T cell function revealed that the antibody 

did not block proliferation to alloantigens, generation of cytotoxic 

T cells, or the effector cells of cytotoxicity (57). To further 

evaluate the role the molecule might be playing in T cell function, 

several monoclonal antibodies were produced to different epitopes 

of the OKT4 molecule. The OKT4A and OKT4B monoclonal 

antibodies were shown to prevent cytotoxic activity of T4+ CTL 

clones and this effect could be overcome by lectin binding. 

(58,63). Other monoclonal antibodies to the OKT4 molecule, 

OKT4C and OKT4D, were unable to prevent the cytotoxic activity 

of T4+ CTL clones. (63). 

The ability of this battery of antibodies to affect B cell 

differentiation enhancement by T41" cells was investigated by L. 

Chess, et al. OKT4A and OKT4E were found to inhibit the in¬ 

duction of B cell differentiation, while OKT4, OKT4B, OKT4C, and 

OKT4D had either no effect or inconsistent effects. (4,65). The 

above studies indicated that the OKT4 molecule was important in 

cellular recognition events. 

Studies were also conducted with the OKT8 antibody to study 

its effect on T cell function in the absence of complement. It was 

shown that OKT8, placed with CTL at the effector phase, 

diminished the cytotoxicity by 20-30% (59,60). The antibody could 

totally inhibit the cytotoxicity generated by T8+ clones CTL, and 

this effect was also overcome with lectin binding. (58). 
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To study the T8 molecules function in suppression of B cell 

differentiation, several monoclonal antibodies to different epitopes 

of OKT8 molecule were produced and tested for their effect on T8 

suppression of T4+ induced B cell differentiation. OKT8E and 

OKT8G were found to inhibit suppressor activities in the absence 

of complement, while OKT8B, OKT8C, OKT8D, OKT8F, and OKT8H 

did not affect this function (65). Thus, the OKT8 molecule was 

also felt to be involved in T cell antigen recognition. (58). 

Several groups have also studied the effect of OKT3, which 

reacts with 95% of peripheral T cells. In a group of experiments 

it was shown that placing the antibody with unselected T cells, 

without complement, prevented proliferation to soluble antigens and 

to cell surface alloantigens (57-59). OKT3 was also shown to 

prevent generation of cytotoxic T cells (57,60) and to prevent CML 

at the effector phase (58-60). This inhibition of CML could be 

overcome by culturing the CTL and target cells with lectin (58). 

These results indicated that OKT3 was not necessary for the 

physical act of cytotoxicity (58). Later studies revealed that 

OKT3 did not block cytotoxicity at a target-binding step, but 

inhibited a subsequent lytic step. (15). OKT3 was also shown to 

be mitogenic (61 ,60) and to increase production of / interferon by 

T cells (61). Further studies indicated that binding OKT3 

modulated the cell surface of T cells, resulting in shedding of the 

OKT3 molecule and resultant loss of the above functions. 

Reinherz, et al were able to correlate the reappearance of OKT3 on 

the surface of T cells with the reacquisition of T cell functions. 

(62). 
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Though early studies in both the murine and human systems 

showed that T cell subsets (isolated by depletion studies utilizing 

monoclonal antibodies and complement) had some general functional 

characteristics, later studies revealed the specificity of these 

correlations seemed less assured. Experiments exploring the 

function of the molecules themselves indicated that several were 

probably involved in T cell function. To further evaluate the 

physiologic role of different T cells , monoclonal antibodies to 

different activation antigens were studied. Activation antigens are 

those cell surface molecules that are expressed in a greater 

frequency on cells that are activated. 

Feeney and Hammerling produced antisera to Ala-1 , a murine 

alloantigen which was expressed only on activated peripheral 

murine B and T cells (66). Using depletion studies they noted 

that anti-Ala-1 was reactive with cytotoxic T cells, helper T cells, 

and IgM and IgC plaque forming colonies (B cells). (67). 

Kimura and Wigzell produced an alloantisera to a murine cell 

surface glycoprotein T145 which was absent on resting T 

lymphocytes but was found on killer T cells. Depletion of activat¬ 

ed cells by l-J and complement did not eliminate the T145 reactive 

cells, which the authors concluded was probable evidence that 

T145 was not present on suppressor cells (68). 

In the human system several different activation antigens 

have been identified by monoclonal antibodies. OKT9 reacts with 

thymocytes and some human T-ALL (T cell leukemia) cells, but not 

with normal T or B cells (29). In T cells, after activation by 

PHA, OKT9 reactivity was detectable in three (3) days. (69). 
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Greaves et al showed that OKT9 antibody bound to the transferrin 

receptor on human cells (69) and thereby showed that transferrin 

receptors were expressed on the surface of leukemic cells. 

Waldmann, et al produced a monoclonal antibody termed An- 

ti-Tac which did not react with fresh peripheral lymphocytes 

(PBL), but appeared on T cells activated by mitogen or allogeneic 

cells (70). They showed that Anti-Tac reacted with activated T 

cells mediating suppressor function, radioresistant helper function, 

and cytotoxic killer T cells. Cells unreactive with Anti-Tac con¬ 

tained helper cells. (71). Further study revealed that Anti-Tac 

reacted with the human membrane receptor for T cell growth factor 

(TCGF or interleukin-2). (72). 

The best studied activation antigen to date in the human 

system is that designated la, which is the product of the I region 

of the MHC in humans. Schlossman, et al developed a monoclonal 

antibody to la antigen which was reactive with B cells, monocytes, 

a sub population of null cells and leukemic blast cells, but was 

minimally reactive with peripheral T cells. (74). Upon activation 

by alloantigen la appeared on cytotoxic T cells. Depletion of the 

small number of la+ cells on fresh T cells did not eliminate the 

appearance following activation of cytotoxic cells bearing la. (73). 

Further investigations utilizing la indicated that cells activated 

with mitogen or tetanus toxoid expressed la on the inducer T cell 

population exclusively. (74). Studies using cloned cell lines 

revealed that cytotoxic T cells were detectable in both la reactive 

and non-reactive populations. (75). Experiments probing the 

ability of antibodies to affect cytotoxicity found that addition of la 
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antibody without complement had no effect on the generation of T 

cell mediated cytotoxicity. (57, 59). 

Several investigators have noted an elevated level of la 

positive T cells in various disease states. Among these are pre¬ 

sumed auto-immune diseases such as Grave's disease (76), rheu¬ 

matoid arthritis and systemic lupus erythematosus (77), type I 

diabetes mellitus (78), and graft vs. host reactions. (79). Elevat¬ 

ed levels are also seen in several infectious diseases such as 

infectious mononucleosis (80), and acute bacterial infections. (77). 

One monoclonal antibody OKTIO, which has previously been 

described in respect to its reactivity with human thymocytes has 

also been shown to react with an activation antigen (81). This 

molecule has been studied by several different investigators for its 

specificity to different stages of leukocyte differentiation. 

OKTIO was isolated by immunization of human thymocytes into 

BALB/CJ mice. The resultant monoclonal antibody was shown to 

react with greater than 95% of thymocytes. It was noted that the 

OKTIO was reactive with 5-10% of peripheral T cells and 

approximately 15% of peripheral E cells. (7). Reinherz, et al 

used the specificity of OKTIO for thymocytes to describe the cell 

surfaces changes during maturation of thymocytes. (28,29). 

While exploring the reactivity of bone marrow cells with the 

OKT battery of monoclonal antibodies, it was discovered that 

unlike the other antibodies, OKTIO reacted with bone marrow 

terminal transferase positive (TdT ) cells. (30,82). It was also 

found that the strongly OKT10+ cells composed 18% of the bone 

marrow population. These cells included not only TdT+ cells, but 
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they were almost all la , and some were bone marrow B 

lymphocytes. (30,82). Further, Janossy, et al, showed that 10% 

of bone marrow cells were weakly staining OKTIO^ large cells and 

had promyelocyte and myelocyte morphology. Mature myeloid cells 

and erythroid precursors (normoblasts) did not react with OKTIO. 

(30). Further evidence that OKTIO was reactive with early hema¬ 

topoietic stem cells comes from its reactivity with some non-T-ALL, 

AML, as well as the majority T-ALL cells. (83-84). 

As mentioned, OKTIO reacts with 5% of peripheral T cells and 

15% of peripheral E cells. Investigators showed that within the 

E cells, OKTIO reacted with 5-10% of peripheral B cells (28). 

Ortaldo, et al, studied natural killer (NK) cells and reported 60% 

of purified NK cells were reactive with OKTIO and that depletion 

of OKTIO reactive cells within this population eliminated lytic 

activity. Further, though 20% of NK cells were reactive with 

OKT8, depletion of T8+ cells did not eliminate lytic activity (85). 

Thus, OKTIO reacted with the effectors of NK cytoxicity. 

Because of its distribution on a variety of leukocytes, inves¬ 

tigators characterized the molecule which reacted with OKTIO. It 

was noted that the molecule was a glycoprotein of molecular weight 

45-46K associated with a smaller peptide of 12K, with a mobility on 

gel electrophoretic studies similar to that of B2-microglobulin 

(B^m). (86). Interestingly, FILA antigens in man are of similar 

size and are associated with 62m. Further study using immuno- 

precipitation revealed that this smaller peptide attached to OKTIO 

was distinct from B2m. (86,81). 
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Under non-reducing conditions the OKTIO antigen was found 

to have a molecular weight of 37K. This difference was thought to 

indicate the probable presence of stabilizing intrachain sulfhydryl 

bridges within the molecule. (81). Due to its ability to form 

protein micelles and to require detergent for its isolation, it was 

felt that the glycoprotein may contain hydrophobic regions and 

that it may be an integral membrane protein. (81). 

Further information on the relationship between OKTIO anti¬ 

gen and its membrane properties came from pertubation of the cell 

surface of intact cells. Greaves, et al, attempted to induce leu¬ 

kemic cell lines to differentiate in vitro by TPA, and then study 

changes in cell surface markers. They found that in these cells, 

with reduction in TdT reactivity (increasing differentiation) there 

was also a decrease reactivity with OKTIO. (83). 

Goldstein, et al studied T cell surface changes after modu¬ 

lation with OKT3 with and without cross-linking of the bound 

OKT3 antibody by a horse-anti-mouse antibody. They noted that 

both la and OKTIO reactivity greatly increased after cell perturba¬ 

tion triggered by the cross-linking of OKT3 antibodies. (87). 

The above findings that pertubation of T cell membranes 

could change the reactivity of the cells with OKTIO antibody are 

interesting in light of Schlossman's report that upon activation 

with Con A, the reactivity of peripheral T cells with OKTIO 

antibody increased from 5% to 50%. (81). 

The in vivo relevance of this phenomenon comes from studies 

of several pathologic states. Phenotypic studies of T cells in 

EBV-induced infectious mononucleosis revealed that acutely greater 
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than 50% of peripheral T cells react with OKTIO, and this reactiv¬ 

ity decreases with the resolution of the disease. (88). Similarly 

some AIDS patients have lymphocytes with a high percentage of 

OKTIO reactivity (Chess unpublished). 

The ability to study OKTIO reactive cells has been limited due 

to the inability of the antibody (IgG^) to bind complement. Re¬ 

cently, C. Goldstein has produced a new battery of monoclonal 

antibodies reactive with activation antigens. One of these, OKT20, 

was found to be an IgM (complement-binding) antibody that, by 

immunoprecipitation studies, reacts with different epitopes of the 

same molecule as OKTIO (C. Goldstein, et al unpublished). This 

monoclonal antibody renamed OKTIOA was utilized in this study to 

investigate the role of OKTIO reactive cells in functional T cell 

studies in an attempt to further dissect the heterogeneity found in 

peripheral T cell subsets. 
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Materials and Methods 

I. Lymphocyte Preparation and isolation of Human T and B 

Cells: 

Fresh peripheral blood lymphocytes (PBL) were isolated from 

consenting healthy human volunteers by utilizing the 

Ficoll-Hypaque density gradient centrifugation of Boyum (1). 

Lymphocyte sub-populations were then isolated by one of several 

different methods. 

Highly enriched populations of T and B cells were isolated by 

methods previously described (2,3). PBL were washed in minimum 

essential medium (MEM) (Grand Island Biological Co., Grand Is¬ 

land, N.Y.) containing 5% fetal calf serum (FCS) (Microbiological 

Assoc., Bethesda, Md.) and then separated into surface lg+ 

(Slg ) and surface Ig (SIg ) populations using Sephadex G200 

rabbit anti-human F (ab)^ columns in the presence of 2.5mM 

EDTA. The Sig+ populations were eluted with soluble Ig and 

subsequently further purified by complement (c) mediated lysis of 

residual T cells using OKT3 monoclonal antibody (5), thereby 

yielding purified B cells. The Slg population was further frac¬ 

tionated into highly purified T cell populations by the formation of 

E rosettes with sheep erythrocytes. (See, below). 

An alternative method was also utilized to isolate enriched T 

and B cells. PBL were fractionated by their ability to form E 

rosettes with sheep erythrocytes (SRBC; Colorado Serum, Denver 

6 
Co.). Cells were placed at a concentration of 20x10 cells per ml 

and were mixed with 5% SRBC and placed at 4°c overnight. 

Subsequent separation into E+ and E populations was achieved via 
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Ficoll-Hypaque centrifugation. E+ cells were freed of SRBC by 

incubation with 0.83% ammonium chloride, and were washed in 

media three times yielding unselected T cells. E cells were either 

used as stimulator populations or further purified into B cells by 

C-mediated lysis of residual T cells and macrophages using OKM1 , 

OKT3 and OKT11A monoclonal antibodies (4). (See, below). 

Functional evidence for B cell purity was obtained by lack of 

activation of these B cells by pokeweed mitogen (PWM) in the 

absence of added T cells. 

II. Characterization of the Monoclonal Antibodies, OKT3, OKT4, 

OKT8, OKT1Q, OKT1QA, OKT11, OKM1 , QKB1 : 

The monoclonal antibodies, OKT3, OKT4, OKT8, OKTIO, 

OKTIOA, OKT11A, OKM1 , OKB1 , were a gift of Drs. Patrick Kung 

and Gideon Goldstein, Ortho Pharmaceutical Corporation. The 

production and functional characterization have been previously 

described (58) except OKTIOA and OKB1 . The antibodies OKT3, 

OKT4, OKT8, and OKT11A all bind complement and are specific for 

human T cells. OKT3 is an lgG2 which reacts with 90% of 

peripheral E+ cells, OKT11A reacts with 100% of E+ cells . OKT4 

and OKT8 are both lgG2 antibodies and react with mutually 

exclusive population of peripheral E+ cells (OKT4+ reacts with 

50-60% of peripheral E+ cells while OKT8 reacts with 30-40%). 

OKM1 reacts with approximately 80% of PBL adherent cells and 

about 20% of non-adherent cells. OKB1 is an IgG specific for 

peripheral B cells (G. Goldstein, unpublished), and was utilized as 

a control in several experiments involving T cell function. OKTIO 

is an lgG1 (non-complement binding) which reacts with all 
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thymocytes, and a small number of peripheral T cells, B cells, and 

macrophages. OKTIOA is a new IgM (complement fixing) 

monoclonal antibody which reacts with the same array of cells as 

OKTIO, and by immunoprecipitation studies (G. Goldstein 

unpublished), has been shown to react to the same molecule as 

OKTIO. 

ill. Isolation of Lymphocytes Subsets by Complement (c) 

Mediated Lysis Utilizing Monoclonal Antibodies: 

The use of monoclonal antibodies and complement to isolate a 

subset of lymphocytes has been previously described (8). In 

0 
experiments to isolate T cell populations 50x10 unfractionated T 

cells were resuspended in 1 ml of ascitic antibody diluted 1 /250 in 

final media (except OKTIOA which was diluted 1/100) and incubat¬ 

ed for one (1) hour at room temperature. Fresh rabbit complement 

was added at a final dilution of 1:12 and the cells were incubated 

at 37°C for one hour. The cells were then washed three times in 

MEM wash and counted. Analysis of the resulting populations 

showed cells treated by OKT4 and complement contained greater 

than 90% OKT3+ cells, greater than 90% OKT8^ cells, and less than 

2% OKT4+ cells, whereas the OKT8 treated cells contained greater 

than 90% of OKT3+ cells, greater than 90% OKT4h cells, and less 

than 2% OKT8+ cells. We use the notation T4+ to identify cells 

treated with OKT8 and complement and T8+ to identify cells after 

treatment with OKT4 and complement. 

E+ cells treated by OKTIOA and complement are identified as 

E+10 cells. To eliminate T cells reactive with OKTIOA in the 

OKT4+ and OKT8+ populations, a second complement mediated lysis 
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was performed, and these cells are identified as T4 10 or T8 10 

respectively. 

IV. Functional Studies: 

A. Helper Function: - First Culture PWM Activation: 

Isolated E+ cells were activated with PWM (Grand Island - 

6 
Biological Co.) (lOug/ml) at a concentration of 2x10 cells/ml in 25 

2 
cm surface area tissue culture flasks (Falcon, Oxnard, CA) for 

72-96 hours at 37°C in a humid atmosphere containing 5% CO^. 

Cells v/ere then resuspended and washed extensively. Viability 

was then checked and the cells were fractionated into OKT4+ and 

OKT4410 subsets by complement mediated lysis (see below). Each 

subset was then split and half of each was irradiated with 1,250 

rads by using the Model M 38-1 gammator emitter (Isomedix, 

Parsippany, N.J.). Subsequently cells were added in graded 

numbers to appropriate secondary cultures. 

Second Culture (ASSAY): 

The ability of the PWM activated T4+ and T4+10 cells (first 

culture) to exert helper activity was determined by adding graded 

0 
numbers of these cells to 1x10 fresh autologous B cells. After 

five (5) days of in vitro sensitization in the presence of 10ug 

PWM, the cultures were harvested and assayed for plaque forming 

cells (PFC) activity using the reverse plaque assay (See, below). 

B. Suppressive Function: - First Culture PWM Activated: 

As above isolated E+ cells were activated with PWM for 72-96 

hours, whereupon cells were washed and fractionated into OKT8 

and OKT8+10 subsets by C-mediated lysis (see below). In some 

experiments, some of these cells were separated and irradiated (as 





24 

above). In experiments studying irradiated T8+ cell function the 

first culture PWM activation was for six (6) days in order to 

maximally increase OKTIO reactivity. 

Second Culture (ASSAY): 

The ability of PWM activated T8^ and T8+10 cells (first 

culture) to exert suppressor activity was assessed by adding 

6 
graded numbers of these cells to 1x10 fresh autologous B cells 

6 + 
and 0.05x10 fresh autologous T4 cells. After five (5) days of 

sensitization in the presence of lOug PWM, cultures were harvested 

and assayed for PFC activity. 

C. Reverse Hemolytic Plaque Assay for the Enumeration of 

Antibody-Secreting Cells: 

The assay for the measurement of total Ig producing hemolytic 

plaque forming cells (PFC) was described elsewhere (9,10). 

Briefly, on the day of assay, cells were thoroughly washed in 

RPMI 1640 medium and resuspended. 50-1 00 ul aliquots were 

added to 0.9 ml of 0.5% liquid agarose (Seakem Agarose, Marine 

Colloids, Rockland, ME) containing 100 ul of an 11% suspension of 

srbc coupled by the chromic chloride method (98) to rab- 

bit-anti-human immunoglobulin. This mixture was layered on a 60 

x 15 mm petri dish previously coated with 5 ml of 0.5% liquid 

agarose and allowed to gel. The dishes were incubated for one 

hour at 37°C, in a humid atmosphere containing 5% CO^, 95% air. 

One ml of a 1/100 dilution of rabbit anti-human IgG antisera was 

then added for an additional hour of incubation. Finally, the 

antisera was removed and 1 ml of a 1/10 dilution of absorbed 

guinea pig complement (Cedarlane Laboratories, Flicksville, NY) 
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was added for an additional hour. Plaques were enumerated in 

/T 

duplicate and the results expressed as the mean PFC/10 B cells in 

original culture. The standard error of the mean was always less 

than 20%. In addition, cell counts and viability (by dye exclusion) 

were performed on all cell cultures at the time of assay. 

D . In Vitro Sensitization: 

In vitro sensitizations were performed in sterile Linbro MR-2 

microplates (Linbro Scientific Co., New Haven, Ct) as previously 

described (11). Briefly, each microwell contained 2x10J responder 

5 
T cells and 2x10 irradiated allogeneic E stimulators suspended in 

0.2 ml of final medium. In experiments examining effects of anti¬ 

bodies on sensitization. Ascites, OKT8, OKTIO, or OKB1 antibodies 

were added to final medium (1/100 final dilution). Microtiter plates 

were incubated at 37°C in a 5% CO^ 95% air humid atmosphere for 6 

days. 

E. Proliferative Studies: 

Cells were sensitized as above in flat bottomed microtiter 

plates. All experimental groups were assayed in triplicate. After 

six (6) days cultures were pulsed for 8-15 hours with 0.2 uCi of 

3 
H thymidine, specific activity 1.9 Ci/mM (New England Nuclear, 

Boston MA) , harvested in the MASH II apparatus, and incorpo- 

3 
ration of H thymidine was measured by liquid scintillation count¬ 

ing. Data are expressed as counts per minutes ± SEM (12). 

F. Cell-Mediated Lympholysis: 

Experimental T cells were stimulated as above by irradiated 

allogeneic E cells. These experimental T cells were either 
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unselected E cells or in some experiments E celis depleted of 

OKTIO reactive cells by C mediated lysis. Effector cells were 

harvested after six (6) days, washed twice and then either used 

51 
in Cr release assay, or depleted of OKTIO reactive cells by 

antibody and C treatment and then used in the assay. Allogenic 

as well as autologous target cells were cultured in final medium 

and stimulated by PHA (GIBCO) at lOug/ml for the last four (4) 

days of the incubation. Before the assay 1x10^ target cells were 

pelleted and resuspended in 0.3ml of final media and labelled with 

51 
25uCi of sodium ( Cr) chromate (specific activity 200-500 mCi/mg 

of Cr, New England Nuclear) for 1 hour. The targets were then 

4 
washed three times and resuspended at 5x10 cells/ml. Graded 

3 
numbers of effector cells were then mixed with 5x10 target cells 

in round-bottom microtiter plates and centrifuged 500 RPMx5 min¬ 

utes and incubated for 5 hours at 37°C in a humid incubator with 

%5 CO^. Each sample was done in triplicate wells. In some exper¬ 

iments antibodies were added to effector cells for 1 hour prior to 

addition of target cells (final dilution 1/100). After incubation, 

the cells were centrifuged 1 ,000 RPMxlO minutes and 100 ul 

samples of supernatant were removed and radioactivities determined 

in a gamma counter. Percent cytotoxicity was determined by 51 Cr 

release as follows: 

Experimental release-spontaneous release ^ 
% Cytotoxicity = Maximal release-spontaneous release 

3 
Maximal release was determined by treating 5x10 of target 

cells with lOOul of 5% Triton X-100 for 5 hours at 37°C. Sponta¬ 

neous release was determined by incubating target cells in medium 





27 

alone for 5 hours at 37°C. Non-Specific killing was determined by 

51 
Cr release from autologous targets and this value was subtracted 

from total cytotoxicity to determine specific cytotoxicity. 

V. Cytofluorographic Analysis: 

Phenotypic analysis of all cel! populations was performed by 

indirect immunofluorescence using the monoclonal QKT antibodies 

and a fluorescein-conjugated goat anti-mouse Ig (G/M FITC) (Meloy 

Laboratories, Springfield, VA) utilizing a Model 30-H Cyto- 

5 
fluorograf (Ortho Instrument, Westwood, MA). In brief, 5x10 

cells were treated either with OKT3, OKT4, or OKT8 at 1:10,000 

final dilution, or OKT10 at 1:2,000 final dilution and incubated at 

4°C for 30 minutes. After washing, 0.1 ml of a 1:40 dilution G/M 

FITC was added to the cell pellet (1:80 final dilution), mixed well, 

and incubated at 4°C for 30 minutes. Following this, the cells 

were washed two times and resuspended in 1 ml of PBS with 0.1% 

sodium azide. Mouse ascites fluid was included as a negative 

control. The cells were analyzed on the Cytofluorograf; the 

intensity of fluorescence per cell was recorded cn the Cyto¬ 

fluorograf; the intensity of fluorescence per cell was recorded on a 

pulse height analyzer and those cells with fluorescence intensity 

greater than that of the ascites control were considered positive. 

VI. Media: 

WASH-Minimum essential medium (Grand island Biological Co., 

Grand Island, N.Y.) supplemented with 1% penicillin-streptomycin, 

6mM Hepes buffer, 5% heat-inactivated FCS, and 0.05% sodium 

bicarbonate (Microbiological Associates) . 
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Final-RPMI-1640 (Grand Island Biological Co.) supplemented 

with 1% penicillin-streptomycin, 200 mM L-glutamine, 12.5 mM 

Hepes buffer 0.05% sodium bicarbonate (Microbiological Associates, 

Walkersville, MD) and 12% heat-inactivated FCS. 
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Results: 

A. Functional Effects of Depletion of OKT1Q Reactive Cells 

Within Fresh T Cell Subsets: 

Experiments were undertaken to examine the functional 

heterogeneity of the T4+ and T8+ subsets by utilizing OKTIO. 

initial studies attempted to evaluate the effects of depletion of 

OKTIO reactive cells in fresh peripheral lymphocytes. PBL were 

isolated and fractionated into T4+ and T8+ subsets. Each subset 

was then divided into two populations, one of which was depleted 

of OKTIO reactive cells by antibody and complement. The T4+ and 

T4+10 cells were then assayed for the ability to enhance Ig pro¬ 

duction of PWM stimulated autologous B cells. As shown in Table 

IA depletion of OKTIO reactive cells have no effect on helper 

function in the T4+ cell subset. Similarly, the T8+ cells were 

isolated and split into two populations, one of which was depleted 

of OKTIO reactive cells. The T8+ and T8+10 cells were then 

assayed for their ability to suppress T4+ mediated enhancement of 

B cell immunoglobulin production. As shown in Table IB, de¬ 

pletion of OKTIO reactive cells within the T8+ subset had no effect 

on the ability of these cells to suppress Ig production. Thus, 

depletion of OKTIO reactive cells had no effect on the assayable 

immunoregulatory functions of fresh T4+ or T8+ T cell subsets. 

In Table II, the surface phenotypes of E+ cells used in these 

experiments are shown. Freshly isolated T cells contained 5% 

OKTIO reactive cells. After antibody and complement treatment 

with OKTIOA, the OKTIO reactive cells were totally depleted (as 

shown by a reactivity less then the control ascites1 non-specific 
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reactivity). Of interest is the change in surface phenotype after 

the cells have been cultured with PWM for 5 days. As noted 

before, unselected E+ cells activated by mitogen show a greater 

number of cells reactive with QKT10. Those same fresh E+ cells 

which have been depleted of their OKTIO reactive cells prior to 

culture with PWM also showed a greater percent reactivity with 

OKTIO. Figure 2 shows an example of the cytofluorograph display 

of the OKTIO reactive cells, as compared to the control ascites 

display. Thus, the activation of fresh T cells by PWM was shown 

to increase their OKTIO reactivity, and this increased reactivity 

was unaffected by prior depletion of OKTIO reactive cells from 

fresh T cells. 

B. Functional Effects of OKTIO Depletion on Activated Cells 

To further investigate the functional heterogeneity of 

activated T cells, a series of studies were undertaken to see what 

effects depletion of OKTIO reactive T cells after activation would 

have on T ceil regulation of B cell antibody production and on T 

cell mediated cytotoxicity. 

1 . Help and Suppressive Functions Within the T4+ 
Activated Subsets are Unaffected by Depletion of 
OKTIO T'Cells: 

In the following experiment, the effect of removal of 

OKTIO reactive cells within the activated T4+ population was 

studied. E+ cells were activated with PWM for 4 days. Study of 

the cell surface of these cells revealed that the % reactivity with 

OKTIO increased from 5% to 30% of the T4+ cells after activation. 

The cells were harvested and then fractionated into T4+ and 

T4+10 subsets with antibody and complement treatment. Graded 
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numbers of either T4 or T4 10 cells from the first culture were 

then added to a secondary culture containing PWM-driven auto¬ 

logous B cells. PFC activity was measured 5 days later and are 

shown in Figure 3A. 

As previously shown (8,13) at low ratios of T cells 

to B cells, T4+ cells increased B cell differentiation as measured 

by PFC. At high T cell to B cell ratios, addition of T4+ cells 

reduced the PFC response. The T4+ cells depleted of OKTIO 

reactive cells showed the same effect on B cell differentiation. 

In a parallel experiment, T cells were activated by 

PWM, and then fractionated into T4+ and T4+10 subpopulations. 

These cells were then irradiated and graded numbers placed in a 

secondary culture containing PWM-driven autologous B cells. PFC 

activity after 5 days was assayed and shown in Figure 3B. As 

previously reported (8,13), irradiated T4+ cells also induced B cell 

differentiation, but only at high ratios of T cells to B cells. This 

enhancement of PFC response by irradiated T4+ cells was unaffect¬ 

ed by depletion of OKTIO reactive cells within the T4+ population. 

Thus, depletion of OKTIO reactive cells from activated irradiated 

or non-irradiated T4+ cells did not affect their ability to regulate 

B cell immunoglobulin production. 

2. OKTIO Reactive Cells Responsible for Effector Phase 
of T Cell Mediated Cytotoxicity! 

The next set of experiments investigated the effect that 

depletion of OKTIO reactive cells had on T cell mediated 

cytotoxicity. E+ cells were sensitized by allogeneic E irradiated 

cells. After 6 days, the cells were harvested and divided into two 
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populations. One population was incubated with OKTIOA and 

treated with complement thus depleting the OKT10A+ cells. The 

other population was treated with complement alone. Both 

populations were then assayed for cytotoxic activity against 

allogeneic targets. As shown in figure 4B, the E+ cells depleted 

of OKT10+ cells do not mount a substantial cytotoxic response. In 

contrast, the E+ cells treated with complement alone do develop 

CTL activity. 

-f- -f- 
Prior to stimulation, the OKTIO population in the E cells 

was 5%. In the activated E+ population the percentage of cells 

that reacted with OKTIO rose to 23%. After treatment, with 

OKTIOA and C', almost all the OKT10+ cells were eliminated. 

In previous studies it has been shown that the precursors of 

T cell cytotoxicity are contained in the OKT8+ population. (14). 

Experiments were undertaken to determine if this precursor 

population was also reactive with OKTIOA. E^ cells were isolated 

from PBL and split into two populations. One population was 

treated with complement alone. Another population was depleted of 

OKT10+ T cells with antibody and complement. Both populations 

were stimulated by mixed lymphocyte reaction for six days in 

culture and then assayed for cytotoxic response. 

In Figure 4A, the cytotoxic activity of the two populations is 

shown. The population depleted of OKT10+ cells before stimulation 

has the same level of response as the control E+ population treated 

with complement alone. Prior to the stimulation, treatment of E+ 

cells with antibody and complement successfully depleted the 

respective T cell subset. After the six day mixed alloantigen 
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activation the phenotypic profile of the E+ cells change. In both 

populations there is an increase in the number of cells that react 

with OKTIO. The reactivity of these cells with OKT3, OKT4, and 

OKT8 does not change drastically. 

3. T8+ Suppression Unaffected by Depletion of OKTIO 
Reactive Cells: 

In the following experiments the effect of removal of 

OKTIO reactive cells on the suppressor function of T8+ cells was 

tested. E+ cells were isolated and activated with PVVM for 3-5 

days. The cells were harvested and then T8+ cells were isolated 

by treatment with OKT4 and complement. These cells were split 

into two populations, one of which was depleted of OKTIO reactive 

cells using antibody and complement. These two populations T8 + 

and T8+10 were then tested for their ability to suppress T4+ 

induced B cell differentiation. Graded numbers of T8+ and T8+10 

T cells were added to a fixed mixture of B cells and T4+ helper 

cells in the presence of PVVM. After 5 days, cultures were 

assayed for plaque-forming cells (PFC) activity. 

In Table III, the PFC responses of these populations 

are graphed as the % change (suppression) of B cell PFC re¬ 

sponse. In repeat experiments, T8+ cells were able to decrease 

T4+ induced PFC response. The T8+ cells depleted of OKTIO 

reactive cells (T8H10 ) also were able to decrease the number of 

PFC's formed. Thus, depletion of OKTIO reactive cells did not 

affect the suppressor function of non-irradiated T8+ cells. 

The surface phenotypes of these cells are shown in 

Table IV. E+ cells activated by PVVM were fractionated into T8 + 

and T8+10 subsets, then again activated by PVVM for 5 days and 
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reassessed for surface phenotypes. Due to the activated state of 

the cells non-specific binding of fluorescein-conjugated (Fab)^ goat 

anti-mouse IgG is high, as indicated by % reactivity with control 

ascitic fluid. Still, there is a significant subset of cells reactive 

with OKTIO in the T8+ population (approximately 20% over con¬ 

trol), while the cells depleted with OKTIO and C show no reactivi¬ 

ty above ascitic control. Interestingly, after reactivation with 

PWM, the T8+ cells again have a large OKTIO reactive population 

while the cells depleted of OKTIO reactive cells after the first PWM 

activation show no reactivity above ascitic control. Thus depletion 

of the OKTIO reactive cells from inactivated T8+ population 

eliminated the ability of the T cells to generate OKTIO reactive 

cells. 

4. Irradiated Activated T8+ Cells Depleted of OKTIO Reactive 
Cells Enhance B Cell 
Differentiation: 

Recent studies (3) have revealed that at some levels of helper 

activity mediated by fresh T4+ cells, irradiated activated T8+ cells 

amplify PFC response. To determine the effect of depletion of 

OKTIO reactive cells on this activity, E+ cells were activated for 6 

days by PWM. Cells were then fractionated into T8+ and T8+10 

populations by antibody and complement. Each of these popu¬ 

lations was then divided into two fractions, one of which was 

irradiated. Graded numbers of these four populations of T cells 

were then added to a mixture of B cells and fresh T4^ cells and 

cultured for 6 days, at which time PFC response was measured. 

As shown in Figure 5A, and described earlier in this paper. 
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non-irradiated, activated T8+ cells suppress B cell differentiation 

even after depletion of OKTIO reactive cells. 

Figure 5B shows the results of the experiments involving the 

irradiated test populations. The assay culture containing T4+ cells 

and B cells alone produced a high level of immunoglobulin produc¬ 

tion. At the level of help generated in this experiment activated, 

irradiated T8+ cells suppressed B cell differentiation. In contrast 

after depletion of the OKTIO reactive cells, T8+10 activated 

irradiated cells were unable to suppress a T4+ induced B cell 

differentiation at low T to B cell ratios. At high T to B cell 

ratios, the T8+10 cells resulted in a dramatic enhancement in the 

number of immunoglobulin secreting cells. Thus, at the level of 

T4+ induced B cell differentiation examined, activated irradiated 

T8+ cells depleted of OKTIO reactive cells did not suppress PFC 

response and enhanced this response at high T to B cell ratios. 

Previous results have demonstrated that irradiated activated 

T8+ cells do not function as direct inducers of B cell differ¬ 

entiation, but instead require the presence of T4+ fresh cells to 

mediate this effect. Experiments in which B cells were cultured in \ 

the presence of PWM with T8+ or T8+1Q activated irradiated cells 

without fresh T4+ cells showed no increased PFC activity over that 

of a control culture containing B cells with PWM alone. Thus, the 

enhancing properties of activated, irradiated T8+10 cells were 

dependent on the presence of fresh T4+ cells. 





36 

C. Functional Effects of OKT1Q Antibody in the Absence 
Of Complement: 

The possible functional role of the OKTIO cell surface 

molecule was studied by placing the antibody in functional assays 

in the absence of complement. 

1 . Lack of Inhibition of CML by OKTIO or OKTIOA in 
The Absence of Complement: 

In the following experiment the effect of OKTIO and OKTIOA 

antibodies at the effector phase of T cell mediated cytotoxicity was 

examined. E+ cells were sensitized in vitro to irradiated allogeneic 

E cells for 6 days after which the cells were assayed for CML 

activity in the presence of OKT3, OKTIO, OKTIOA, and control 

ascitic fluid. Results are shown in Figure 6. As previously 

reported (16), the OKT3 antibody blocked specific killing in the 

51 
CML assay as measured by Cr release. In contrast, the specific 

killing of cytotoxic T cells in the presence of OKTIO or control 

ascites is identical. The specific cytotoxicity in the presence of 

OKTIOA was identical to the control at a 40:1 ratio, though at 

lesser ratios the amount of CML was slightly higher in the 

presence of OKTIOA. Thus, neither OKTIO nor OKTIOA, in the 

absence of complement could block CML activity. 

2. Lack of Effect of OKTIO on In Vitro Proliferative 
Studies 

To assess whether OKTIO could affect alloantigen-triggered T 

cell proliferation E+ cells were sensitized in vitro to irradiated 

allogeneic E cells in the presence of antibody for 3 and 6 days, 

3 
and assayed for proliferation by H-thymidine incorporation. As 

shown in Table V, the proliferation in the presence of OKTIO was 

similar to that in presence of OKT8 and antibodies and to the 
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media control. 

Thus, OKTIO, 

proliferation to 

both at Day 3 and Day 6 of in vitro sensitization, 

in the absence of complement, did not prevent 

alloantigen. 

\ 





38 

Discussion 

In the above experiments, a pair of monoclonal antibodies, 

OKTIO and OKTIOA, were utilized to further define functional 

heterogeneity within T4+ and T8+ T cell subsets. Depletion of 

OKTIO reactive cells with antibody and complement treatment 

eliminated the cytotoxicity response of activated T cells to an 

allogeneic target. Similar depletion of OKTIO reactive T cells 

within the T8+ activated non-irradiated population failed to affect 

the suppression of T4+ induced B cell differentiation. In contrast, 

the depletion of OKTIO reactive cells from the T8+ activated irradi¬ 

ated population converted their suppressive effect on T4+ function 

to an enhancing effect of T4+ induced B cell Ig production. 

Taken together, this data illustrates that the multiple functions of 

the T8+ population of T cells are most likely performed by 

different subpopulations of these cells which are defined by their 

reactivity with the OKTIO antibody. 

In the cytotoxicity experiments, OKTIO depleted E+ popu¬ 

lations were shown to be able to generate a cytotoxic response 

after six days of stimulation in a mixed lymphocyte reaction. Such \ 

depletion of the OKTIO reactive population after stimulation elim¬ 

inated the cytotoxic effector cells within the T cell population. 

Study of cell surface phenotypes indicate these effectors of CML 

attain the OKTIO reactive molecule during allogeneic activation. 

Similar depletion of the OKT8+ T cell subset, either before or after 

activation, eliminates the cytotoxic response to T cells to allogeneic 

targets. (36,89). 
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In previous studies it had been shown that OKTIO antigen 

appears on the effectors of natural killer cell cytolysis (85). 

Given evidence of its presence of T cell killers, experiments were 

undertaken to ascertain if the OKTIO molecule itself was necessary 

for either generation of killer cells or for the killing function 

itself. The approach utilized was to attempt to block function by 

placing the antibody in culture in the absence of complement. 

Experimental results showed OKTIO was unable to block prolif- 

3 
eration to alloantigen as measured by H-thymidine incorporation 

after 5 days of stimulation. Similarly, neither OKTIO nor OKTIOA, 

(antibodies specific for different epitopes of the OKTIO reactive 

molecule) had a blocking effect on cytotoxic function. In contrast, 

the OKT3 molecule which in previous studies was able to block 

cytotoxic function at the effector phase (60) did decrease the 

killing seen in this experiment. 

Drawing conclusions from experiments attempting to block T 

cell function by placing antibodies in culture in the absence of 

complement is difficult for several reasons. As previous studies 

examining antibodies reactive with the OKT4 and OKT8 antigens 

have shown (37,64,65), there can be great variation in the effects 

that monoclonal antibodies specific for different epitopes of anti¬ 

gens, can exert on T cell function. Another difficulty studying 

the OKTIO antigen is the low level of its expression on the cell 

surface as observed on cytofluoragraph examination. Thus, the 

concentration of antibody used in blocking experiments might not 

have been sufficient to affect a significant number of cells. 

Therefore, though it is tempting to conclude that the OKTIO 
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molecule is not necessary for either proliferation to alloantigen or 

cytotoxic function, further study, with antibodies to other epitopes 

of the OKTIO reactive molecule, could better define this conclu¬ 

sion . 

Another set of experiments studied what function OKTIO 

reactive cells in the peripheral blood serve during T celi-driven B 

cell differentiation. Depletion of OKTIO reactive cells from fresh 

peripheral T cells had no effect on either T4+ helper functions or 

T8+ suppressive function. This was not surprising in light of the 

small percentage of fresh peripheral T cells reactive with OKTIO. 

In addition, we observed that after depletion of OKTIO reactive 

cells from peripheral T cells and reactivation in our assay system, 

there was a reemergence of OKTIO reactive cells. Thus, if the 

presence of the OKTIO molecule on the cell surface is a marker for 

a functionally defined T cell population, depletion of OKTIO reac¬ 

tive cells from fresh T cells and assay in a system utilizing PWM 

activation in the presence of B cells, does not offer an optimal 

experimental approach. 

Experiments were then directed at T cells polyclonally activat¬ 

ed by PWM, which by phenotypic studies showed an increase in 

the percentage of cells reactive with OKTIO in both the T4+ and 

T8+ populations. 

Previous studies with activated, non-irradiated T4+ cells have 

shown that addition of graded numbers o, these cells to B cells 

resulted in a leveling off of the enhancement in PFC response at a 

relatively low T4+ cell concentration, and a subsequent decline in 

PFC response with higher concentrations of T4+ cells (13). This 
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has been attributed to a regulatory loop within the T4+ population 

involving both suppressor and helper cells which help modulate 

immunoglobulin production. (13). 

In the experiments presented in this paper, depletion of 

OKTIO reactive cells within the T4+ activated non-irradiated T 

cells subset had no effect on the characteristic immunoregulation of 

B cell differentiation stated above. Nor, did depletion of OKTIO 

reactive cells have an effect on the radioresistant helper function 

mediated by activated, irradiated T4+ cells. 

Several experiments were performed studying the effect that 

depletion of OKTIO reactive cells had on suppressor function 

generated by non-irradiated activated OKT8+ cells. In none of 

these experiments was the suppression of T4^ induced B cell 

differentiation affected by depletion of OKTIO reactive cells. 

Though it is tempting to conclude that OKTIO reactive cells within 

the T8+ subset do not exert suppressor function, there are several 

problems inherent in a negative selection assay that must be 

addressed. 

The major concern with analyzing these results concerned 

whether the cell population labelled T8+10 were actually without 

cells reactive with the OKTIO antibody. This was of even greater 

concern given the above results of the antibody and complement 

studies with fresh T cells which revealed that the emergence of 

OKTIO reactivity with PWM activation was not a clonal expansion of 

OKTIO reactive cells that could be eliminated by depletion of 

reactive cells prior to activation. This was supported by the 

studies of Goldstein involving the pertubation of T cells which 
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revealed that the OKTIO molecule was probably present in an 

unexpressed form in resting T cells. (87). 

To investigate this problem, activated T8+ cells were depleted 

of their OKTIO reactive cells and then recultured with PVVM. 

Studies of cell surface phenotype after this second culture re¬ 

vealed that there had been no reemergence of OKTIO reactive cells 

after this depletion. This result is stated with some reservation 

due to the technical difficulty in phenotyping activated T cells. 

This is related to the emergence of a great deal of non-specific 

binding of the Fc portion of antibodies in these activated T cells 

as indicated by the 50% reactivity of the control ascitic fluid. In 

trying to control for this binding the cursor (threshold for the 

amount of fluorescein binding necessary to be assessed as positive 

reactivity) was raised. This accounts for the lowered reactivity of 

these T8+ cells with OKT3 and OKT8, revealed in Table IV, which 

on inspection of binding patterns on the cytofluoragraph revealed 

that all the cells were binding some antibody, but those cells 

expressing low quantities of these antigens were now being record¬ 

ed as negative reacting cells. This same technical aberration could 

cause some OKTIO reactive cells expressing low quantities of the 

antigen to be identified as non-reactive cells. 

A second difficulty in analyzing these experiments is that 

which is inherent to a negative resuit in a depletion study. If the 

amount of a function generated by a given cell population is in 

excess of that which an assay could measure, then depletion of a 

subset of these cells would not necessarily result in a measurable 

change in that function. Thus, even though activated T3+10 cells 
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still are able to suppress T4+ induced B cell differentiation, it is 

not necessarily true that the depleted OKTIO reactive cells do not 

have any suppressive activity. To try to minimize this problem, 

the studies were done using graded numbers of T cells in order to 

increase sensitivity to any changes in function caused by the 

depletion of the OKTIO reactive cells. 

Another approach to this problem is to select cells with 

OKTIO reactivity and use these "positive selected" cells in func¬ 

tional assays. This was attempted several times utilizing the 

rosetting technique of Strelkauskas (90), without success. These 

attempts were made with a goat antibody to mouse IgC, prior to 

the discovery that OKTIOA was an IgM antibody. 

Recent studies by Thomas, et al, have demonstrated ac¬ 

tivation of the OKT8+ subset results in the emergence of T cells 

with counter-balancing immunoregulatory properties (3). Activated 

irradiated T8+ cells suppress the generation of PFC only when the 

level of T4+ helper activity was optimal. However, when the level 

of help was either sub or supra-optimal these same activated 

irradiated T8+ cells amplified the PFC response. This amplification 

function of the T8+ cells was strictly dependent on the presence of 

fresh T4+ cells. The activated irradiated T8+ cells added to B 

cells alone had no effect on PFC response. 

In analyzing these results the authors offer three potential 

explanations: 

1. T8+ and T4+ cell populations rather than having 

distinct activities possess overlapping functions. 
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Evidence for this comes from recent studies by 

Schlossrnan's group, and others, (58, 91 ,92,93), that 

T4+ and T8+ subsets may have distinct functions 

depend'ng on cell-surface receptors for Class I or Class 

II HLA antigens. They have shown that T4+ cell clones 

which recognize Class II antigens can function as 

cytotoxic cells specific for Class II specificity, as well as 

helper function. (93,94). Analogous findings were seen 

with T8+ cytotoxic clones which had Class I HLA 

specificity. (91,92). 

2. A second model for these findings states that pre¬ 

cursors of functionally opposing subsets exists within 

both the T4+ and T8+ cell population. The authors draw 

analogies to the murine system where the Ly1,2,3 cell 

can be driven to differentiate along either helper or 

suppressor pathways. (19). 

3. The third possible explanation of the data infers that 

irradiated T8+ cells do not amplify B cell differentiation 

themselves, but are inducers of contrasuppression, an 

immunoregulatory phenomenon previously described in 

the murine system by Gershon. (49). The authors point 

out that the inducer of contrasuppression in the mouse 

is an Ly2 cell and the effector cell of this function bears 

the Lyl phenotype. Thus, the human findings of a T8+ 

cell being the inducer cell for this function and the T4+ 

fresh cell the effector of contrasuppression would seem 

analogous. 





45 

In an accompanying editorial, D. Green presents other evi¬ 

dence for contrasuppression in the human system. (97). Green 

further attempts to define the immunoregulatory effects seen in 

Thomas' experiments by proposing that an amplifier of suppression 

(a/k/a "level 2 suppression") which has been postulated in the 

murine system and also in the human system (95,96) might be 

responsible for the results. Thus, a radiosensitive T8+ cell which 

amplifies suppressive function may override the contrasuppressor 

effect of another T8+ cell. 

Utilizing the OKTIO antibody, experiments reported above 

focused on the immunoregulatory functions of activated T8+ cells. 

+ + 
Both T8 cells and T8 cells depleted of OKTIO reactive cells 

(T8 + 10 ), non-irradiated, suppressed B cells differentiation, but, 

at the level of T4+ induced B cell differentiation examined, the 

irradiated T8‘ cells still showed suppressive activity while the 

T8+10_ cells amplified B cell function. These effects were com¬ 

pletely dependent on the presence of T4+ fresh cells. 

These results are compatible with all three models of T8+ 

enhancing function proposed by Thomas, et al. The first model 

proposed that irradiation of activated T8+ cells eliminates a popu¬ 

lation of radiosensitive suppressor cells which allows the enhancing 

effect of another subset of T8+ cells to be expressed at sub or 

supra optimal levels of help, but not at optimal levels. The de¬ 

pletion of OKTIO reactive cells could be eliminating a population of 

radioresistant suppressor cells which then allows enhancing activity 

to be expressed at the optimal level of help, at which this experi¬ 

ment took place. 



v 
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The second model proposes that there is a precursor cel! 

within the T8+ cell population capable of differentiating into either 

a suppressor or helper cell. The depletion of OKTIO reactive cells 

could have either eliminated a subset of suppressor cells allowing 

enhancing activity to be expressed or it could have eliminated the 

precursor cell thus eliminating the generation of suppressor cells 

needed to regulate an already present T8 population with enhanc¬ 

ing properties. 

The third model proposes that there are T8^ cells capable of 

inducing contrasuppression activity of T4^ cells, and a subset of 

T8+ cells that can amplify suppressor activity. Thus, depletion of 

OKTIO reactive cells could have eliminated the cells capable of 

amplifying suppressor activity, allowing the contrasuppression 

function to be expressed. 

Irrespective of which model is correct, the experiments in 

this study indicate that depletion of OKTIO reactive cells within 

the T8+ activated irradiated T cell subset can change the effect of 

these cells on T4+ induced B cell differentiation from one of sup¬ 

pression to one of enhancement. 

Table VI lists different T cell subsets and the effect of 

depletion of OKTIO reactive cells from within these subsets on 

their immune function. These findings can be useful in several 

different modalities. Foremost, the antibody wii! be able to aid in 

the investigation of T cell immune function and will help to define 

the heterogeneity of T ceil subsets. 

Clinically, these findings can help define the pathophysiology 

of several immune related diseases. For instance, studies of 
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infectious mononucleosis have found peripheral T cells in these 

patients have a high percent reactivity with OKTIO, which these 

authors proposed was due to an increased level of immature T 

cells. (88). The finding that these cells are responsible for 

cytotoxic function and possibly inducement of suppression implicate 

different mechanisms of immune response to EBV infection of human 

B cells. Thus, T cells may be attempting to kill infected cells or 

in contrast, may be attempting to immunoregulate B cell Ig produc¬ 

tion. Hopefully, further definition of the role of OKTIO reactive 

cells can come with experiments either utilizing T cell cloning 

technology or improved techniques in positive selection. 
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Abbreviations 

C 

CML 

Con A 

CTL 

EDTA 

FCS 

HEPES 

>g 

MHC 

MLC 

MLR 

PBL 

PFC 

PHA 

PVVM 

SRBC 

complement 

cell mediated lympholysis 

concanavlin A 

- cytotoxic T lymphocyte 

ethylenediaminetetraacetic acid 

- fetal calf serum 

N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid 

immunoglobulin 

- major histocompatibility complex 

- mixed lymphocyte culture 

- mixed lymphocyte (leukocyte) reaction 

peripheral blood lymphocyte 

plaque forming colony (cells) 

- phytohemagglutin 

pokeweed mitogen 

sheep red blood cells 
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Table I: Functional Effects of Depletion of OKT10 Reactive Cells 
from Within Fresh T Cell Subsets. 

A. Helper Function: 

Number of T Cells T4+ Cells Added T4 10 Cells 
Added per culture* 

PFC/106 Cells 
Added 
PFC/106 Cells 

0 6 1,000 1,000 
0.05x10" 18,000 17,680 
0.lOxlO6 21,920 27,360 
0.20xl06 16,800 19,040 
0.50xl06 12,560 16,920 
1.00x10° 10,300 8,140 

B. Suppressor Function 

Number of T Cell 
Added per assay 
culture^ 

s T8 

PFC/10 

+ 

6 

Cells Added 

Cells %Suppression 

T8+10 Cells 
Added 

f) 
PFC/10 Cells %Suppressionr 

0.20xl06 
0.50xl06 
1.00x10° 

11,990 - 11,990 - 
9,790 18 7,050 41 
2,670 77 3,780 68 
2,010 83 2,300 81 

* Graded numbers of T Cells added to standard culture of 1x10 B cells 
and 10 ug PWM 

C Graded{numbers of T cells added to standard culture of 1x10 B cells, 
0.05x10° 0KT4+ T Cells, and 10 ug PWM. 

// %Suppression =r 1 - PFC (Experimental Culture) 
PFC (Standard Culture) 

x 100 
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Table II: Cell Surface Phenotypes of Isolated T Cell Subsets 

Before and After PWM Activation: 

Surface Phenotype 

% Reactivity with Monoclonal OKT Antibody 

Ascites OKT 3 0KT4 0KT8 OKTIO 

Fresh E+ Cells 

Ascites and C (E ) 1 88 44 42 5 

OKT1OA and C (E+10_) 3 88 44 40 1 

After 5 days PWM Activation (first culture) 

Ascites and C (E+) 9 93 66 47 27 

OKTIOA and C (E+10~) 7 95 61 11 36 

\ 
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Table III: Depletion of OKT10 Reactive 

Suppressor Functions. 

Cells Does Not Affect T8 

Number of Activated 

T Cells (first culture) T8+ Cells Added T8+10 Cells Added 

added to a Secondary 

Culture* , „ 

PFC/10 Cells %Suppression 
0 

%Suppression' PFC/10° Cells 

Expt. 1 

0 6 
27,0001700 — 27,0001700 - 

0.1x10° 6,7201180 75 4,8401560 82 

0.2x10 11,3601680 58 2,8401310 89 

0.5x10)? 4,5201800 83 1,6401140 94 

1.0x10° 4,0401140 85 8,6401560 68 

Expt. 2 

0 6 
33,34016924 - 33,34016924 - 

0. 1x10° 3,6801540 89 17,74012300 46 

0.2x10)? 7601100 98 13,28011720 60 

0.5x10^ 640140 98 5,5401200 83 

1.0x10° 840180 98 4,1401200 87 

Expt. 3 

0 6 
2,269139 — 2,269139 - 

0.2x10° 1,760137 22 1,911165 18 

0.5x10^ 963162 58 1,018- 55 

1.0x10 295- 87 330- 85 

* Graded numbers of activated T C^lls (first culture) were added to 

standard cultures containing 1.0x10 B Cells, 0.05x10 fresh T4 cells, 

and 10 ug PWM 

@ % Suppression = 1-PFC (Experimental Culture) 

PFC (Standard Culture ) 
] x 100 
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Table IV: Cell Surface Phenotypes of Activated T Cells after 

Initial Isolation and after Reactivation with PWM: 

Surface Phenotype 

% Reactivity with Monoclonal OKT Antibody 

Ascites OKT 3 OKT 4 OKT 8 OKT 10 

T Cells After 5 day PWM 

Activation: 

Treated w/0KT4 & C (T8+) 16 78 16 46 35 

Treated w/OKT4,OKT10 

6 C (T8+10~) 36 72 35 63 36 

T Cells After 5 days Reactivation: 

(T8+) 50 80 50 78 74 

(T8+10~) 50 80 50 68 51 
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Table V: Lack of Inhibition of Alloantigen - Triggered T Cell 

Proliferation by OKTIO Antibody. 

Monoclonal Antibody Day 3 MLR* Day 6 MLR* 

Media Control 

OKTIO 

0KT8 

OKB 

38,000±2300 

42,80011800 

64,7001510 

79,0001880 

63,000+840 

80,00014500 

* Results are expressed as counts of 

1 SEM 

[3 ]-thymidine incorporation 
H 

\ 
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Table VI: Summary of T Cell Subsets Isolated With 0KT4, 0KT8 and 

OKTIO Antibodies. 

Isolated Subset 

Fresh Cells 

T4+ 

T4*10 

T8+ 

T8+10 

Functions 

Help (Enhancement) Suppression of 

of B Cell B Cell 

Differentiation Differentiation 

+ 

+ - 

+ 

- + 

Cytotoxicity 

Activated Cells 

T4+ 

T4*10 

T4 irradiated 

T4 10 irradiated 

T8 + 

T8*10~ 

T8 irradiated 

T8+10 irradiated 

+ + 
+ + 
+ - 
+ - 

— + 
- + 
_* +* 
+* _* 

* At optimal 

+ Isolated 

- Isolated 

T4 induced B Cell IG production 

Subset Exhibits Function 

Subset Lacks Function 

\ 
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HUMAN T CELL DIFFERENTIATION 

THYMUS 

GLAND 

BONE MARROW 

CORTICAL 

THYMOCYTES 
80% 

MEDULLARY 

THYMOCYTES 
20% 

PERIPHERAL 

LYMPHOID 
(spleen, blood, 

lymph nodes) 

(0KT8* cells) 

30.35% 
(0KT4* cells) 

50.60% 

Figure 1 : Stages of T-Cell Maturation in Humans. 

Several stages of T cell development can be defined on the 
basis of reactivity with monoclonal antibodies. 
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Figure_2: Cytofluoragraph Display of OKTIO Reactivity of 
Activated T Cells. 

Fluorescence histogram of OKTIO on activated (by PWM for 4 
days) E cells (top), as compared with control ascitic fluid 
(bottom). Fluorescence intensity is a result of the number of 
monoclonal antibodies bound per cell. 
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ACTIVATED T CELLS (x I0* 6) ADDED TO IxlO6 B CELLS 

Figure 3: Depletion of OKTdO Reactive Cells does not Affect the 
Function of T4 Activated Cells. 

6 
The standard culture contained 1x10 B Cells and lOug of 
PWM. To this system v^ere added graded numbers of either 
T4 cells (©-•) or T4 10 cells (o-o) cultured with PWM 
during 96 hours of previous culture. These cells were either 
added to system directly (A) or first irradiated with 1250 
rads (B): After 5 days cultures were harvested and 
assayed for PFC activity. 
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KILLERS TO TARGET RATIOS 

Figure 4: Cytotoxic Effector but not precursor cells react with 
OKT10. Responder T cells, either before (A) or after (B) in 
vitro sensitization to irradiated ( 1 250 rad) allogenic stim¬ 
ulators were treated with C alone (»-@) or OKTIOA plus C 
(o-o). Viable cells from each treatment group were assayed 
at the killer-to-target ratjcjs indicated, in a 5-hour cellular 
cytotoxicity assay against Cr-labelled cells autologous to the 
stimulators. 





R
F

C
 x
 1

05
/I

0
b
 

B
 

C
E

L
L

S
 

70 

A B 

Figure 5: The immunoregulatory effect of T8 activated irradiated 
cells on T4 induced B cell differentiation is converted from sup¬ 
pressive to enhancement wi^h depletion of the OKTIO reactive 
population from within the T8 subset. 

(A) Graded numbers of non-irradiated T8+ cells (•-©) or T8+ cells 
depleted of OKTIO reactive cells (o-o) froigi first culture period 
weref added to standard culture of 0.05x10 fresh T4 cells and 
1x10 B cells in addition to 10ug PWM. 

(B) Graded numbers of T8+ cells (©-©) or T8+ cells depleted of 
OKTIO reactive cells (o-o) from first culture were irradiated with 
1 250 rads and- added to standard culture of 0.05x10 fresh T4 
cells and 1x10° B cells in addition to lOug PWM. In Both (A) and 
(B), cultures were harvested and assayed for PFC activity 5 days 
after addition of T cells. 
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Figure 6: OKTIO and OKTIOA Do Not Block T Cell Mediated 
Cytotoxicity. 

Responder T cells were sensitized in vitro to irradiated (1250 
rads) allogenic stimulators. Cells were then incubated with 
either OKTIO, OKTIOA, OKT3, (1/100) or ascitic control in 
the absence of complement for one hour, then assayed at the 
killer to^jiarget ratios indicated in a 5 hour cytotoxicity assay 
against Cr labelled cells autologous to the stimulators. 
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