
The purpose of layered solutions is to give the ability of an institution to use
layered commercial products to deliver access to their critical data while
maintaining security. Traditionally, government devices were designed and
certified to be used to access their most sensitive data. This is extremely
costly and time consuming. Recently, the government has been reviewing
proposals which would utilize commercial devices to deliver the same results
as the government devices. To increase the government’s assurance, it is
attempting to ascertain if the use of multiple or layered solutions will provide
the level of assurance that a government device would deliver.

This task will attempt to determine the security benefit of using layered
solutions in an institution and if it affords any advantages. The two layers
being investigated will be enterprise VPN solutions. It will be prudent to
research the National Vulnerability Database and the Common Vulnerabilities
and Exposures database in order to create a timeline of vulnerabilities for
enterprise solutions over the years at varying code levels. It will be important
to distinguish between the time the vulnerability is known and the time
when the patch is released. There is also another aspect to take into account.
It cannot be assumed that when the patch is released, that this will be the
time that the institutions devices would be patched. There will need to be a
patch window, in which, an institution would review, test, and assign the
patch to a change management request. The research will need to be limited
to only vulnerabilities that could possibility compromise a security layer. The
timeline will be developed to aid in displaying overlapping vulnerabilities of
the layered solutions selected, if they exist.

It will be also important to ascertain the possibility of an adversaries' ability
to compromise layered solutions that do not have overlapping timelines. This
would involve an adversary's ability to compromise one layer and then wait
until the other solution has a new vulnerability known to it. History has
shown, in many cases adversaries will gain some access and sit and wait until
another opportunity presents itself.

Lastly, it will be important to research how long it takes an exploit to be
created once the vulnerability is known. This information will be easily
identified as the timeline is created with vulnerabilities, patches and available
exploits of VPN solutions. It will be important to also point out if there have
been successful exploits of these vulnerabilities, not just hypothesized
exploits that should be possible.

This is type of research is extremely important to all institutions to help
protect sensitive data and mitigate the adversaries' ability to breach their
network. By compiling all of this data and creating a timeline to analyze this
data, the hope is to provide useful information to confirms or denies the
advantage of introducing layered solutions into an institutions network
security posture.

The Impact of Known Vulnerabilities on a Layered Solution

Network containing
highly sensitive data

Network containing
less sensitive data

Figure 4: Simplified Diagram of Layered VPN Vulnerabilities

User enters the blue VPN (layer 1) to access the general network
and perform tasks. To perform tasks that require highly sensitive
data or systems, the user must connect to the red VPN (layer 2) in
order to access the next level.

Our research is focused on determining what benefits a setup like
this would bring. Our goal is to identify timelines where both
layers have known vulnerabilities that can be exploited thus
eliminating any benefits of the multi-layered solution.

Additionally, we are also looking for situations where an attacker
could exploit the outer layer and establish a permanent
“residence” in that layer and simply wait for the second layer to
become vulnerable. For the purposes of our research, we are
assuming there are no active countermeasures during an
intrusion. We are also assuming the setup is using two different
VPN solutions from different providers.

The dotted areas indicate potential vulnerabilities an attacker
could leverage to exploit the VPN.

Layer 1 Layer 2

Figure 5 (Above): An analysis with a timeline demonstrating vulnerability windows of layered solutions

The timeline above is a rough example of what we hope to create by the end of our research. We plan to examine 10 enterprise VPN
solutions and their vulnerabilities in order to create a web app which would allow a user to select the vendors they wish to use for a
layered VPN solution. The web app would then output a timeline that shows how long both solutions were vulnerable individually and
together as a layered solution.

The above graph is what an exploitation curve might look like. It’s intuitive,
but not accurate for all situations. Once the flaw is discovered, some
exploitations happen and the vulnerability may be passed around the dark
corners of the internet. Once the vulnerability is disclosed, you see a large
increase in number of exploitations, which makes sense as the flaw is now
completely public. Once the patch is released, you don’t see an immediate
fall off since not many organizations can deploy a patch immediately. Once
patching begins however, we see an the number of exploitations fall, but not
quite as quickly as they rose. Towards the end you see that the number of
exploitations never bottom out at zero because some systems never get
patched.

To the right, we see four different cases measuring the number of attacks per
day. Case 1 looks at vulnerabilities that were disclosed, but never patched.
Case 2 shows vulnerabilities that were disclosed and then had a patch
released shortly after. Case 3 looks at vulnerabilities that were never officially
disclosed before being patched. Finally, case 4 shows a situation where the
vulnerability was disclosed and a patch was released on the same day. Do
note this data is limited by the fact it was a relatively small sample of
honeypot systems.

We plan on performing our own mathematical analysis to determine an
average time between disclosure, patch availability, and patch deployment.
We may allow users of the web app to change these variables to reflect
different situations if we are confident in our initial results.

Graph Sources:
A. Arora, R. Krishnan, A. Handkumar, R. Telang, Y. Yang, "Impact of Vulnerability Disclosure and Patch Availability – An Empirical Analysis" H. John Heinz III School of Public Policy

and Management, Carnegie Mellon University, April 2004.
Browne, H.K, Arbaugh, W.A, McHugh, John, Fithen, WL, “A trend analysis of exploitations”. Security and Privacy 2001.

Sensitive Data Availability in High-Level Language Applications
PURPOSE

As information systems continue to expand in availability and capability, enterprises invest
larger sums of money into development and maintenance of these systems. Increasingly, these
systems are being developed with high-level (if not interpreted) languages, taking advantage of
these languages’ increased readability and maintainability. In May of 2017, it was estimated that
over fifty percent of enterprise applications were developed using high-level programming
languages {1}.

Java (winner of the “Programming Language of 2015” award {2}) is used by an estimated 9
million developers {3} and is touted as a, “write once, run anywhere” solution. It’s adaptability
and maintainability have solidified its use in enterprise applications throughout the world {4}.
One of Java’s touted benefits is its, “garbage collection,” a series of algorithmic memory-
management functions employed by the Java Runtime Environment (JRE) to remove memory
allocation concerns from the developer. Ideally, memory is reserved on an as-needed basis, and
memory allocations that are no longer used by the application are freed to the operating
system.

However, Java’s automated and abstracted memory management poses large cybersecurity
concerns. As developers continue to learn and practice in high-level languages, concepts
regarding memory management are no longer considered. Though Java (as of Java Standard
Edition version 8 [Java SE 8]) includes methods for handling user secrets (such as passwords) {5},
sensitive information is frequently handled using potentially insecure methods.

This research is to determine what, if any, vulnerability exists in an average enterprise
application developed in Java for sensitive-but-unprotected data (e.g. home addresses, social
security numbers, banking details, etc.). Specifically, this research is into 1) the duration of
vulnerability (how long does sensitive data occupy memory after its use), 2) the most common
causes for sensitive data exposure, and 3) the minimum viable solution for reducing the
likelihood of sensitive data persisting within memory beyond its usefulness.

Keep it Simple, Keep it Safe – Cybersecurity Research on Impacts of Increasing Complexity of Modern Enterprise Solutions

Vulnerable Beneath the Source Code: Increasing Vulnerability by Decreasing Perceived (and Increasing Actual) Complexity - Shawn Ware

Patch Delays: Researching the Threat of Unpatched Systems Reducing Security on Layered Security Solutions - David Phillips

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

2013 2014 2015 2016 2017

P
e

rc
en

ta
ge

 o
f M

ar
ke

t

Year

Java 6

Java 7

Java 8

Figure 2 (Left):
A comparison between JVM memory usage (shown in
blue) when running a well-programmed application (top)
versus an application that uses resources inefficiently
(bottom), and thus does not properly dispose of memory
objects once they’re no longer useful.

The bottom image resembles the focus of this research;
objects persist in memory despite being no longer
useful, and are thus prone to being acquired. However,
not all applications with memory management issues
would graph equivalently; there are multiple types of
memory management and object reference mistakes,
and each causes a different version of the bottom graph.

Figure 3 (Right):
A history of Java version utilization by percentage, from
2013 through 2017. Since Java 8's release in 2013, it did
not become the majority version until 2016 (and a major
majority until 2017).

Left Image Credit: (Šor, Vladimir. 2017)
Right Data Credit: (Salnikov-Tarnovski, Nikita. 2017)

METHODS & ASSUMPTIONS

It is assumed that the enterprise application’s source code is available for analysis. This
assumption allows the team to provide detailed feedback on the insecure data-handling
practices most likely to result in sensitive data persistence.

It is assumed that the application does not implement stringent authentication within the
application. This assumption prevents unnecessary difficulty during research and analysis. As
most authentication platforms are third-party and/or separate applications entirely, any proof-
of-concept applications used during research will not implement strict authentication.

It is assumed that the performance and/or latency penalty incurred by the debugging processes
is minimal. This assumption allows for data collected regarding garbage collection performance
to be analyzed without caveat.

Research into the vulnerability of sensitive data began using a Virtual Private Server (VPS) leased
by one of the researchers through OVH Hosting, running Debian 9 64-bit {6}. Installed on the
server is Oracle’s Java Development Kit (JDK) version 8, update 161 (JDK 1.8.0_161){7}. Apache
Tomcat (version 8.5.14) {8} is installed and configured to manage Java Web Applications (WARs).
The VPS supports SSH, and the Java installation has been configured to enable verbose
debugging, as well as remote (console) debugging.

A proof-of-concept Java WAR is being developed to allow extensive testing of Java’s memory
allocation, management, and object availability post-use. The application features text entry,
database object retrieval (through Java’s standard database APIs {9}), and data processing and
storage. The application will follow best practices when handling data entry, validation,
sanitization, and storage. The application will follow best-practices when available, unless best
practices is superseded by code readability or maintainability as appropriate (to believably
simulate developer preference for code legibility over performance).

The application will be hosted on the VPS and interacted with through a standard web browser
by researchers. Various debugging and benchmarking applications (including JVisualVM, Jrocket,
and others) will be attached (remotely connected to) the Java Virtual Machine (JVM) responsible
for running the application, and relevant metrics (including memory allocation by the JVM,
object lifecycles, and garbage collection performance statistics) will be collected periodically as
needed during, before, and after interaction with the application by a user.

Additional time will be invested for research into alternative solutions for handling of sensitive
(but not secret) information in higher-level languages, including object-clearing (explicit
overwriting of variable values), interception (invocation of explicit procedures or functions when
triggered by an external event), and other methods to reduce sensitive data availability.

REFERENCES & RESOURCES

{1}: TIOBE. (2018, February). “TIOBE Index for February 2018". The software quality company. Retrieved from
https://www.tiobe.com/tiobe-index/

{2}: Iyer, Kavita (2017, March 11). “Top 20 most popular programming languages in 2017”. TechWorm. Retrieved from
https://www.techworm.net/2017/03/top-20-popular-programming-languages-2017.html

{3}: “charm” (2010, May 11). “Number of Java Developers”. Infomory.com. Retrieved from
http://infomory.com/numbers/number-of-java-developers/

{4}: Wilson, Breanne (2016, June 20). “Why is Java the most popular programming language?”. Oracle Blogs. Retrieved from
https://blogs.oracle.com/oracleuniversity/why-is-java-the-most-popular-programming-language

{5}: Oracle (n.d.). “PBEKeySpec (Java Platform SE 8)”. Oracle. Retrieved from
https://docs.oracle.com/javase/8/docs/api/javax/crypto/spec/PBEKeySpec.html

{6}: See https://www.ovh.com/world/vps
{7}: See https://www.oracle.com/technetwork/java/javaee/downloads/index.html
{8}: See https://tomcat.apache.org/tomcat-8.0-doc/
{9}: See https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

Figure 1 (Above):
A simplified map of Java’s memory allocations. The arrows represent the references between the object’s memory location stored in the stack (left) with the object
and any child objects within the heap (right).

Image credit: (Marian, Constantin. 2018)

RESEARCH TIMELINE

A large amount of research remains to be completed. As the Cybersecurity Capstone course proceeds, work will continue at a
steady pace. Currently, the VPS and requisite frameworks are in place and preliminary research into enterprise Java
applications is underway. Development of the sample application has begun, and team members are contributing towards
documentation and development of methodologies for research. This initial work will be completed by March 5, 2018.

Exploratory research is expected to begin March 5 and proceed through March 31, 2018. During this time, the sample
application will be heavily utilized, as will various open-source and commercial debugging utilities. Work will initially be focused
on automation of site interaction through frameworks such as Cypress.io, and experimentation with options and utilities
provided by the debugging applications. Some time is reserved for debugging and optimization of the application. After
automation of interaction has reached a stable point, more time will be devoted towards collection of data for analysis. The
application will be tested in various situations and under various configurations (all documented and repeated). Dedicated
team members will be responsible for collection of debugging information and compilation of research data. Other team
members will continue with their earlier research, and develop a functionally identical application using discovered techniques
for sensitive data. If time permits, the second application will be deployed on the remote server and similarly tested, with data
collected separately for comparison.

Analysis and reporting of any findings or recommendations is expected to begin April 1 and proceed through April 22, 2018.
During this time, the data collected through earlier efforts will be compiled and analyzed. Further time may be devoted to
further, narrow research on any findings for which the team determines may be particularly relevant. Any relevant information
will be transferred into written and graphic presentation materials to prepare for Capstone presentations, which are presently
set for April 23 and 25, 2018.

PURPOSE

RESEARCH TIMELINE & METHODOLOGY

	sware_dgphillips_Poster-Backup.vsdx
	Page-1

