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INTRODUCTION 

Alcoholic ketoacidosis is a clinical entity with a 

significant morbidity (1-5). It is apparently rare, considering the 

small number of reported cases and the large population of alco¬ 

holics, but its incidence is probably underestimated. The nitroprus- 

side test (Acetest tablets), which is the common method of testing 

serum and urine for ketones, measures acetoacetate but not B-hydroxy- 

butyrate. Alcoholic ketoacidosis is characterized by a relatively 

high ratio of B-hydroxybutyrate to acetoacetate (3). Thus alcoholics 

who present with severe acidosis and a large anion gap may have 

markedly elevated B-hydroxybutyrate and total ketones, but only 

insignificant or moderate amounts of ketones in their urine and serum 

when tested with Acetest tablets. Consequently, the acidosis may then 

be attributed to lactate or an exogenous anion (3). 

The fact remains, however, that a minority of non-diabetic 

alcoholics develop ketoacidosis, while most do not. The answer to this 

can only be found when the pathogenesis of alcohol-induced ketosis is 

understood. Controlled animal studies are consequently needed in which 

dietary protocols and patterns of alcoholic ingestion parallel the usual 

clinical picture of alcoholic ketoacidosis (i.e. fasting with repeated 

ingestion of large doses of ethanol). 

The current study was undertaken as an attempt to establish 

an animal model of alcoholic ketoacidosis, and then study free fatty 
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acids, insulin, and glucose levels associated with the alcohol- 

induced hyperketonemia in order to begin to understand the pathogenesis 

of this disorder. 
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LITERATURE REVIEW 

I. Case Reports of Alcoholic Ketoacidosis 

The first documented cases of non-diabetic acidosis 

attributable to increased ketones in individuals, with a history of 

chronic ethanol ingestion, were reported in 1940 by Dillon (1). Since 

that time, a total of fifteen cases have been presented in the litera¬ 

ture (2-5). The latest report by Cooperman et al (5) suggests that 

alcoholic ketoacidosis may be considerably more common than is 

generally appreciated, and that as many as one out of five cases of 

ketone body acidosis in the Beth-Israel hospital population are diag¬ 

nosed as non-diabetic alcoholic ketoacidosis. Dillon in 1940 observed (1) 

"If the combination of liver damage and food deprivation, occurring 

most frequently in association with acute alcoholism, can cause such 

severe ketone acidosis as we have described, the question naturally 

arises as to why this state is not more frequently observed. To this 

we have no answer, except that we have diagnosed such cases more frequent¬ 

ly since being aware of their existence." 

Certain historical features, physical findings and laboratory 

data are present often enough in the reported cases (1-5) to be con¬ 

sidered helpful in making the diagnosis of alcoholic ketoacidosis. 

Other data, although present in all cases in a particular report, do 

not prove to be consistent features of alcoholic ketoacidosis throughout 

the rest of the literature. 

Sixteen of twenty-two reported cases in the literature were 
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females and more than half of these were younger than forty. Cooperman 

reported one case of a pregnant thirty-one year old with documented 

episodes of alcoholic ketoacidosis at twenty-eight and thirty-two weeks 

of gestation (5). Of the six males, four were over the age of fifty. 

The average age of all patients was forty-two with a range of twenty- 

six to sixty-nine. Five patients had more than one admission for non¬ 

diabetic ketoacidosis (1-3,5), and one had seventeen episodes of alco¬ 

holic ketoacidosis over a period of seven years (2). 

All patients gave a history of chronic ethanol ingestion. 

Most described an increase in alcohol consumption for a period of days 

or weeks which was terminated by anorexia, nausea and vomiting with 

decreased food intake for a period of twenty-four to seventy-two hours 

prior to admission. Three patients reported an ethanol "binge" followed 

by decreased food intake without nausea or vomiting (3,4). Although 

most patients had not consumed any alcohol for at least twenty-four hours 

prior to admission, a few had continued drinking up until the time 

of admission (3,4,5). None of the patients reported a definite personal 

or family history of diabetes. One indiviudal had a history of glucosuria 

only when pregnant (2). The most common reasons for seeking medical 

attention were abdominal pain, usually epigastric, nausea and vomiting 

with decreased food intake, and weakness. Several patients complained 

of shortness of breath and one individual came to the emergency room 

because of a transient episode of blurred vision (3). Three patients 

presented in deep coma which proved to be secondary to hypoglycemia 

in two of the three patients (1). Despite the severe pH abnormalities, 
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all other patients were conscious on admission. Many, however, exhibited 

variable degrees of confusion and disorientation. Review of physical 

exams revealed no uniformly present findings. Those findings that 

were present in many, but not all, individuals included: poor skin 

turgor and other evidence of dehydration, rapid respiration, often of 

the Kussmaul type, odor of acetone on breath, tender epigastrium, and 

an enlarged liver. All subjects for whom pH, pCO^ and bicarbonate were 

measured demonstrated a partially compensated metabolic acidosis with 

pH's ranging from 6.96 to 7.29, pCC^'s from less than 10 to 32 and 

bicarbonates from 5 to 19. Urine and serum tested with Acetest tablets 

for ketones, frequently did not reflect the degree of ketosis as determined 

by specific assays of B-hydroxybutyrate and acetoacetate (3,5). In some 

instances ketones were not detected in undiluted serum or urine, or were 

only weakly positive. As was mentioned earlier, this can be explained 

by the increased ratio of B-hydroxybutyrate to acetoacetate in alcoholic 

ketoacidosis. Cooperman (5) found that the B-hydroxybutyrate to aceto¬ 

acetate ratio was inversely proportional to the pH; and the mean B-hydroxy- 

butyrate to acetoacetate ratio was 5.2, with a mean B-hydroxybutyrate of 

8.7 meq./l., and a mean acetoacetate of 2.1 meq./l. In Levy's series (3), 

the mean B-hydroxybutyrate to acetoacetate ratio was 7.2, with a mean 

B-hydroxybutyrate of 10.8 meq./l. and a mean acetoacetate of 2.5 meq./l. 

Admission glucoses generally showed mild hyperglycemia, but they ranged 

from 20 to 330. The majority, however, were between 120 and 200. Only 

three patients had admission glucoses less than 30 and two of these were 

in Dillon's original series (1). Initial serum insulin concentrations 
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have been less than 12 uunits/ml. [6.4 uunits/ml. (simultaneous glucose 

of 145 mg./100ml.), 12 (190), 6 (25), 6 (202), 7 (194), and less than 

5 uunits/ml. in two cases with a mean glucose of 143 mg./100ml.] These are 

appropriate for the normal fasting state but in all, except the individual 

with a glucose of 25 mg%, they are inappropriately low for the correspond!'ngly 

elevated glucoses. Cortisol was measured in six patients (3,5) and was 

markedly elevated in all (71 to 115 ug./100ml.). Growth hormone, in the 

same patients, was also generally increased, but, was more variable (2.8 to 

29 ng./ml.). Serum free fatty acid concentration was measured in six 

cases (3,5), and was extremely elevated in all (1,808 to 3,789 ueq./l.). 

Plasma lactate was very high in only one case (3) and normal in several 

others. Patients generally had evidence of some liver disease with at 

least one abnormal liver function test, but none had evidence of severe 

disease. Although some patients had evidence of pancreatitis with elevated 

amylases, 50% had normal values. 

In 1940, Dillon (1) recognized that non-diabetic ketoacidosis 

in alcoholics was as effectively treated without insulin as with it, 

but that glucose was essential. This has been borne out in subsequent 

reports. The acidosis is usually corrected in twelve to twenty-four hours 

by intravenous glucose and water. Sodium bicarbonate is usually adminis¬ 

tered in relatively small amounts, considering the severity of the 

acidosis; and, there are instances with favorable outcomes where it has 

not been used at all. In Cooperman's series (5), the mean bicarbonate 

administered was 133 meq. with a range of 44 to 272 meq. All patients 

survived, and were discharged from the hospital except for two patients, 

in Levy's series (3), who died several days after the acidosis had been 
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corrected of causes not directly related to the ketoacidosis. 

Several patients were tested for glucose tolerance a few days 

to weeks after their acidosis had been corrected. Cooperman (5) reported 

that serum glucose and/or two hour post cibum glucose values were normal 

in all patients during convalescence. Levy (3) found that patients 

that were hyperglycemic on admission had normal or equivocal glucose 

tolerance tests or two hour post-prandial glucoses several days to 

months after the episode of acidosis. Jenkins (2) found that all three 

of his patients had abnormal glucose tolerance tests when tested within 

a week of admission, but that the abnormality decreased with increasing 

time interval from the hospital admission. Dillon (1) reported normal 

glucose tolerance tests in some of his patients while others had evidence 

of "chemical diabetes". Thus, an abnormal glucose tolerance test, when 

performed after the acidosis is corrected and the patient is clinically 

stable, is present in some cases, but does not seem to be an absolute 

prerequisite for the development of ketoacidosis. 

Two patients with multiple episodes of alcoholic ketoacidosis 

(1,2) were challenged with ethanol, after a period of abstinence, in 

order to see if ketoacidosis could be induced in these susceptible 

individuals in a controlled setting. Dillon (1) administered small 

doses of whiskey for four days along with a high fat diet and he 

induced 3+ ketonuria on day two and three. Jenkins (2), however, found 

that starvation ketosis was not enhanced by the administration of two 

doses of 100 ml. of alcohol during a sixty hour fast. The ethanol also 

had no significant effect on free fatty acids or glucose. 
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In summary, alcoholic ketoacidosis should be suspected in an 

individual with a partially compensated metabolic acidosis, who has a low, 

normal, or mildly elevated blood glucose, no glucose in the urine, and 

positive ketones by Acetest tablets in urine and undiluted serum (although 

initially this test may be negative). The patient will usually be conscious 

despite the severity of the acidosis, he will give a history of chronic 

ethanol ingestion with a recent increase in intake, and he will often 

describe nausea, vomiting and anorexia for one to two days or longer prior 

to admission. He will frequently complain of abdominal pain and may des¬ 

cribe shortness of breath of recent onset. Further laboratory studies 

will reveal normal to only moderately elevated lactate with markedly 

elevated B-hydroxybutyrate and acetoacetate and an increased B-hydroxybuty- 

rate to acetoacetate ratio. The acidosis is rapidly corrected by 

intravenous glucose and water. Relatively small amounts of bicarbonate may 

also be administered, but insulin is not required. The patient may have an 

abnormal glucose tolerance test several days after the acidosis has been 

corrected, although many will have an entirely normal response to a glucose 

load without evidence of a metabolic derangement. Some individuals will go 

on to have recurrent episodes of non-diabetic ketoacidosis with a history 

and course similar to the initial episode. 

II. Pathogenesis and Regulation of Ketone Body Formation 

The following series of reactions comprises the main pathway 

for ketogenesis (7-10): 

2 Acetyl CoA ketothiolase_+ Acetoacetyl-CoA + CoA 

Acetoacetyl-CoA + Acetyl CoA -^roxymethylglutaryl-.CoA.Synthase^ 

Hydroxymethylglutaryl-CoA + CoA 
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Hydroxymethy 1 g 1 utary 1 -CoA P:^r2>!y;B:methyl3Iutaryl;CoAJyase4 

Acetoacetate + Acetyl-CoA 

Acetoacetate + NADH + H+ -l^roxybutyrate .dehydrogenase^ 

B-hydroxybutyrate + NAD+ 

High levels of B-hydroxy-B-methylglutaryl-CoA-synthase, which is the 

rate limiting enzyme of this sequence (7), is unique to the liver (11). 

This provides a biochemical basis for the liver's role as the primary 

ketogenic organ. Further evidence for the liver's central role in 

ketogenesis is that functional hepatectomy will result in a rapid de¬ 

crease in circulating ketones to undetectable levels and will abolish 

interconversion of acetoacetate and B-hydroxybutyrate (12). 

The overall pathway for the generation of ketone bodies can be 

broken down into steps. Each one represents a potential regulatory 

point in ketogenesis: 

1. Fatty acid release from adipose tissue and uptake 
by the liver. 

2. Transfer of free fatty acids into the mitochondria 
and oxidation to acetyl CoA. 

3. The entry of acetyl CoA into the hydroxymethylglu- 
taryl-CoA pathway producing B-hydroxybutyrate and 
acetoacetate. 

4. Peripheral utilization of ketone bodies. 

In order to determine regulatory sites in ketogenesis each step must 

be examined. 

It is well known that free fatty acids, mobilized from the 

periphery, are a necessary substrate for ketone body production and 

that depletion of fat stores results in decreased ketogenesis (7, 13). 

Ontko (16) was able to increase serum ketones in diabetic and fasting 
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animals by infusing corn oil and heparin which increased serum free 

fatty acid levels. It has been demonstrated by Bieberdorf (14), however, 

that increasing plasma free fatty acid concentration by infusing 

chylomicrons and heparin into animals not already in a state of enhanced 

ketogenesis does not lead to increased ketone body formation. In the 

same study, insulin infusion decreased ketogenesis in the presence of 

a sustained high plasma free fatty acid concentration. McGarry (21) 

found that rats starved for six hours showed no significant increase 

in plasma ketone concentration even though their plasma free fatty 

acids had doubled in this time. Thus, although an adequate supply of 

free fatty acids is necessary for ketogenesis, there must also be a 

change in the metabolic set of the liver before there will be an increase 

in ketone body synthesis (15). 

Once the fatty acid is taken up by the liver it can either 

enter the mitochondria via acyl-carnitine transferase and undergo 

B-oxidation, or it can remain in the cytoplasm and be esterified. McGarry 

and Foster (17) demonstrated that isolated livers from fed and fasted 

rats removed similar quantities of oleic acid from the perfusate, but 

that the fate of the oleate was different. It was converted primarily 

to ketones in the fasted rat liver, and triglycerides in the fed rat 

liver. It had been the thesis of many investigators that the rate 

of free fatty acid incorporation into triglycerides in the liver de¬ 

termined the rate of free fatty acid oxidation by controlling the availa¬ 

bility of substrate, and thereby regulated the rate of ketogenesis (18). 

According to this thesis, normal rats had a lower rate of ketogenesis 

than starved rats because of the greater capacity of the former to 
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esterify incoming fatty acids (17). The observation that the ketosis of 

fasting is associated with decreased triglyceride synthesis in the liver 

and that its reversal is accompanied by increased free fatty acid esteri¬ 

fication (17) is consistent with this view. It was felt that the rate 

of triglyceride synthesis was in turn regulated by the concentration of 

free sn-glycero-3-phosphate (19,20). McGarry (17,20) has questioned 

this View, however, on the basis of the following experimental obser¬ 

vations: 

1. Despite previous reports to the contrary, whole liver 
concentrations of sn-glycero-3-phosphate were elevated 
in fasted animals (17). This is in accordance with the 
observations of Veech (22). 

2. Perfusion of livers from normal and starved rats with 
oleic acid led to a five fold greater rate of esteri¬ 
fication in the former, with similar levels of sn-glycero- 
3-phosphate in both sets of rats (17). 

3. No correlation has been found between the reversal of 
starvation ketosis by various compounds and their effects 
on the levels of sn-glycero-3-phosphate in liver (17,23). 

4. The development of diabetic ketoacidosis is associated 
with increased hepatic triglycerides. This is a 
consequence of increased hepatic triglyceride synthesis 
from incoming free fatty acids (24). This finding is 
incompatible with the thesis that a decrease in triglyceride 
synthesis from incoming free fatty acids is necessary 
for an increase in B-oxidation and ketogenesis to take 
place. In addition, the increased ketosis occurs prior 
to a significant change in liver triglyceride content (24). 
This is evidence against the theory that the initial 
event is an increase in the esterification pathway with 
an increase in ketosis occurring only when there is spill¬ 
over of free fatty acid into the mitochondria secondary 
to a saturation of the triglyceride synthesis pathway. 

5. Additional evidence against the theory that a defect 
in the triglyceride synthesizing machinery in the liver 
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is necessary for increased ketogenesis to occur came 
with McGarry, Meier and Foster's work with decanoyl- 
carnitine (21). This is an inhibitor of long chain 
acyl-carnitine transferase, which is the enzyme involved 
in transporting long chain free fatty acids into the 
mitochondria for oxidation. When (+)decanoyl-carnitine 
was used to block fatty acid oxidation in livers of fasted 
rats, all of the oleic acid taken up from the perfusate 
was-esterified. This occurred in the absence of any 
added precursor of sn-glycero-3-phosphate. Thus, there 
was no apparent primary defect in the esterification 
pathway in livers from fasted rats. 

In light of these observations, McGarry and his group have suggested 

that the rate of triglyceride synthesis is dependent upon the rate of 

free fatty acid uptake into the mitochondria for oxidation and not vice 

versa (7,17,21,24). Thus, in the starved state, ketogenesis is enhanced 

because of the activation of the oxidative sequence and the free fatty 

acids are channeled away from triglyceride synthesis. They suggest 

that in diabetic ketoacidosis this same sequence occurs initially, but 

because of the increased free fatty acid load presented to the liver, 

the oxidative pathway is saturated. This results in an increase in 

esterification as well as oxidation. 

If the enhancement of ketone body production induced by starvation 

and diabetes is due primarily to activation of the oxidative sequence, 

it would be unlikely that the B-oxidation pathway itself is involved 

in the regulation (7,17,21,24). McGarry and Foster (26) found that 

octanoic acid, which bypasses the acyl-carnitine transferase reaction, 

is oxidized at similar rates in livers from diabetic, starved and normal 

rats even though the fate of the acetyl CoA generated was different. 

McGarry's group suggests that the site of control is probably 

the transfer of long chain fatty acyl groups into the mitochondria which 
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is catalyzed by acyl-carnitine transferase (7,17,21,24,25). Williamson 

(25) demonstrated that decanoyl-carnitine completely blocked the rise 

in acetyl CoA produced by perfusion of livers with oleic acid. McGarry 

and Foster (15) showed that decanoyl-carnitine could produce a rapid 

reversal of severe ketosis in alloxan diabetic rats in situations where 

large doses of insulin had little effect. They have also demonstrated 

that decanoyl-carnitine reverses starvation ketosis in vitro (21). Thus, 

by use of this specific blocker, Williamson and McGarry have shown that 

the acyl-carnitine transferase reaction is an obligatory step in pro¬ 

ducing starvation and diabetic ketosis. Norum (27), in 1965, provided 

suggestive evidence of a role for acyl-carnitine transferase in keto- 

genesis by developing a specific assay for carnitine palmityl-transferase 

and measuring levels of this enzyme in the liver. He found significantly 

increased activity in livers from fat-fed, diabetic and fasted rats 

when compared with the activity in normal rat livers. The increase was 

not blocked by inhibitors of protein synthesis suggesting that the increase 

in activity was not due to de novo synthesis, but was caused by activation 

of preformed enzyme. This data, along with the aforementioned work 

with decanoyl-carnitine, as well as the experiments with octanoic acid, 

provides strong evidence of a role for acyl-carnitine transferase in 

the regulation of the amount of long chain free fatty acids that undergoes 

B-oxidation. Presumably, the enzyme is inhibited in the normal fed state 

resulting in the shunting of free fatty acids into the esterification 

pathway; and it is activated in the starved and diabetic state resulting 

in an increased oxidation of free fatty acids with a secondarily increased 

generation of acetyl CoA and ketone bodies. 
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The regulation of ketogenesis is not only a function of the 

rate at which the liver generates acetyl CoA, but also is determined by 

the rate of disposal of acetyl CoA in nonketogenic pathways. The three 

routes acetyl CoA can take within the liver are: 

1. Combination with oxaloacetate and subsequent oxidation 
to CO^ within the tricarboxylic acid cycle 

2. Fatty acid synthesis 

3. Ketone body formation 

In order for ketone body synthesis to take place, the acetyl 

CoA to CoA ratio must be high since the initial reaction in the synthesis 

of acetoacetate and B-hydroxybutyrate (2 Acetyl CoA <--- Acetoacetyl CoA + 

CoA) is strongly displaced to the left (9). The rates of the reactions 

in the tricarboxylic acid cycle and in fatty acid synthesis will determine 

levels of available acetyl CoA and thus, affect the rate of ketone body 

formation. McGarry and Foster (26) studied this aspect of ketogenesis 

by using octanoic acid which does not serve directly as a substrate for 

triglyceride formation (28) and is not dependent on acyl-carnitine trans¬ 

ferase for its oxidation (25). They perfused livers from normal, starved 

14 
and diabetic rats with octanoate 1- C and found: 

1. Approximately equal amounts of labelled octanoate was 
taken up in all three groups of livers; however, con¬ 
siderably more radioactivity appeared in ketones and CCL 
in the diabetic and starved groups than in the normal z 
group. 

2. The incorporation of isotope into phospholipids and 
triglycerides was markedly decreased in the livers from 
fasted and diabetic rats compared to the normal group. 
This diminished flow of acetyl CoA into fatty acid 
synthesis was of a magnitude sufficient to account for 
most of the increased flux of acetyl CoA into ketone 
bodies in the starved group. 



v 



15. 

3. The increased flux of acetyl CoA into ketone bodies 
could not be accounted for by decreased flow through 
the tricarboxylic acid cycle. 

4. The total recovery of radioactivity in ketones, CCL 
and lipids was essentially identical in all three groups, 
suggesting that the rate of oxidation itself does not 
vary with a constant flow of free fatty acid substrate. 

The important conclusion from this study is that decreased 

lipogenesis from acetyl CoA can account for increased ketogenesis in 

certain instances, and that increased rates of ketone body synthesis 

do not always require a concomittant depression in tricarboxylic acid 
* 

cycle activity. 

Although lipogenesis was inhibited to an equal extent in livers 

from fasted and diabetic rats, total ketone levels were higher in the 

latter group. Thus,when acetyl CoA levels are markedly elevated, as 

in the diabetic group, the contribution of decreased lipogenesis to ketone 

body production is not nearly as significant as in the starved rat, where 

lower levels of acetyl CoA are present (26). 

It is apparent that the regulation of ketone body production 

is a function of more than one step in the ketogenic pathway. It depends 

upon free fatty acid delivery to the liver, ability of the liver to 

oxidize the incoming free fatty acid to acetyl CoA, and its ability to 

dispose of the acetyl CoA through nonketogenic pathways. 

An additional factor that may be significant in the development 

★ 

The secondary importance of decreased tricarboxylic acid cycle activity 
in ketogenesis was emphasized by Engel and Amatruda in 1963 (8). Spencer 
(29) reported that citrate levels in diabetic and starved rats were not 
depressed when compared to levels in normal rats. Cahill (30), however, 
in his discussion of human starvation, emphasized the importance of de¬ 
creased tricarboxylic acid cycle activity in the increased ketogenesis of 
starvation. 
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of ketosis, is the rate of utilization of ketone bodies by peripheral 

tissues. Garber (31) demonstrated that ketone output by the liver in 

humans, after three days of starvation, was the same as that noted after 

a five to six week fast, but the degree of hyperketonemia was three 

times greater after the longer fast. This suggests that a decrease in 

peripheral utilization of ketones in a prolonged fast plays an important 

role in the increased ketosis of that state. McGarry, Guest, and Foster 

(12) studied ketone turnover rate in starved and alloxan diabetic rats. 

They found a 1.6 times greater turnover rate in the diabetic rats 

compared to the starved rats, but the plasma total ketone concentration 

was 3.4 times greater. Thus, the increased rate of ketogenesis does 

not totally explain the difference in the degree of ketosis. They pos¬ 

tulated that in the diabetic state, the peripheral utilization mechanisms 

are saturated, so that small differences in production result in large 

differences in plasma ketone concentration. 

The effects of insulin on ketogenesis are extensively studied 

and discussed in the literature. A widely accepted theory is that with 

fasting, insulin falls secondary to decreasing glucose and this fall 

in insulin is a key factor in initiating ketone production (8,13,32). 

Engel and Amatruda, in their review of the hormonal aspects of ketosis 

(8), stated that during a prolonged fast in the rat, ketosis is maximal 

when the blood sugar is lowest, and declines as the blood sugar rises 

towards normal. The high point in ketosis corresponds with the expected 

minimum of insulin secretion. As gluconeogenesis increases, the glucose 

and insulin levels rise and the ketone level stabilizes, thereby pro¬ 

tecting the animal from developing severe ketosis. In the adrenalecto- 
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mized rat, gluconeogenesis is severely decreased and these rats develop 

progressive hypoglycemia and ketonemia. A minute dose of insulin admini¬ 

stered to the fasting, severely hypoglycemic and ketotic, adrenalectomized 

rat immediately lowers ketone levels without any effect on blood sugar. 

Wildinhoff (32) studied normal diurnal variations in ketone 

levels and found that they transiently drop, postprandially, coinciding 

with the rise in glucose and insulin levels. Ketones then begin to increase 

five hours postprandially, preceded by a decrease in glucose and insulin 

and an increase in free fatty acids. A constant glucose infusion wiped 

out this rise in ketones and free fatty acids. 

Potential sites for insulin exerting a regulatory role in 

ketogenesis are: 

1. Free fatty acid release from adipose tissue 

2. Relative rates of triglyceride synthesis and fatty acid 
oxidation in the liver 

3. Determination of the rates of reactions in the tricarboxylic 
acid cycle and in the pathway for free fatty acid synthesis, 
thereby controlling the availability of acetyl CoA for 
ketogenesis 

4. Peripheral utilization of ketones 

Bieberdorf (14) reported that insulin deprivation increased, 

and insulin ingestion decreased, the release of free fatty acids from 

body tissues. In the same study, he also found that insulin increased 

ketogenesis in the presence of sustained high free fatty acid concen¬ 

tration. Thus, insulin can apparently decrease ketogenesis by decreasing 

free fatty acid supply to the liver, and, indpenedent of that, by some 

change in the metabolic set of the liver. It has not been determined 
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where, in the liver, insulin acts to decrease ketogenesis (15). McGarry 

and Foster (15) found that (+)decanoyl-carnitine caused a rapid reversal 

of ketosis under conditions where large doses of insulin had little 

effect. A combination of the two agents, however, was more effective in 

lowering plasma ketone levels than (+)decanoyl-carnitine alone. This 

raises the possibility that insulin also effects the acyl-carnitine 

transferase reaction (15). Indirect support for this hypothesis is that 

increased levels of the enzyme are found in livers from diabetic and 

fasted rats- conditions associated with relatively low or absent insulin. 

Additional evidence, for insulin exerting its effect on ketogenesis 

at the acyl-carnitine transferase step, is provided by McGarry and 

Foster (26). They found that levels of insulin sufficient to reverse 

starvation ketosis in a rat, did not impair subsequent ketogenesis 

induced by infusion with octanoate, a fatty acid that bypasses the 

acyl-carnitine transferase step. 

It is well known that insulin inhibits gluconeogenesis, and 

some investigators have suggested that the rate of gluconeogenesis is 

directly related to the rate of ketogenesis (33). Thus, insulin would 

effect ketogenesis by influencing the rate of gluconeogenesis. Insulin 

also affects hepatic ketone production by affecting the balance between 

CO,, and ketoacid production from acetyl CoA (13). 

It has been postulated that insulin increases the rate of 

peripheral utilization of ketone bodies, and, thereby, lowers plasma 

ketone concentration (13). Balasse and Havel (34) showed that admini¬ 

stration of insulin and glucose to normal dogs increased peripheral 

uptake of infused ketones. 

Finally, ketone production may be regulated by ketone bodies 
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themselves (35-37). Mebane and Madison (35,36) have found that pan¬ 

creatic and venous insulin concentrations rise after peripheral venous 

or pancreatic arterial infusion of ketones. They suggest that this 

feedback on islet cells may be important in preventing progressive 

ketoacidosis in starvation. Other authors have refuted the idea 

of an effect of ketones on insulin release, and instead, postulate 

a direct inhibitory effect of ketones on 1ipolysis, hepatic glucose 

production, and on peripheral glucose utilization (38,39). 

It is obvious from this discussion of ketogenesis, that its 

initiation and regulation are complex, and not fully understood. Multiple 

factors are probably involved. The effect of ethanol on ketone body 

production will be discussed in a later section. 

III. The Metabolism of Ethanol 

Two to ten percent of ingested ethanol can be excreted through 

the kidneys and lungs. The remainder must be oxidized, and this occurs 

primarily in the liver (40). It is this organ specificity that helps to 

explain the significant degree of metabolic alteration that occurs with 

ethanol intake (40). 

The main metabolic pathway for ethanol metabolism involves 

alcohol dehydrogenase, an enzyme in the cytoplasm which catalyzes the 

conversion of ethanol to acetaldehyde with the reduction of NAD to NADH. 

The acetaldehyde is oxidized to acetate so that, from each molecule of 

ethanol, two molecules of NADH are formed (40-42). The acetate is re¬ 

leased into the circulation and mainly disposed of in extrahepatic 
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tissues (40,43). The human myocardium increases its uptake of acetate 

five fold during ethanol infusion with a concomittant decrease in fatty 

acid utilization (44). Skeletal muscle also uses a large amount of the 

acetate produced by ethanol metabolism (43). The reoxidation of the 

NADH, generated from ethanol, is the rate-limiting step for ethanol 

metabolism (42). This is effected primarily by the respiratory chain 

in the mitochondria. The mitochondrial membrane is impermeable to 

NADH and the malate/aspartate "shuttle" is the main means of transporting 

the NADH into the mitochondria. 

Approximately twenty to twenty-five percent of ethanol 

metabolism takes place in a microsomal ethanol oxidizing system (40,45). 

The importance of this pathway varies with the concentration of ethanol. 

There is increased activity at a high ethanol concentration because its 

Km is approximately four times that of alcohol dehydrogenase (40). The 

microsomal pathway utilizes reduced cofactors (CH^CH^OH + NADPH + H+ + 

02 -Uicrosomal.ethanoi.oxidizing.SYStem.. + NADP+ + 2 ^ arld thuSj 

may be another route for disposal of the hydrogen generated from the 

oxidation of ethanol by alcohol dehydrogenase (40,41). Chronic ethanol 

ingestion results in increased microsomal ethanol oxidizing system activity 

associated with a pro!iteration of the smooth endoplasmic reticulum and 

thus may, in part, explain the adaptation of alcoholics to ethanol (40,41). 

In addition, other drugs that stimulate microsomes (i.e. barbiturates) 

enhance the rate of ethanol clearance (40). 

In summary, the cytoplasmic alcoholic dehydrogenase is the 

main site of oxidation of ethanol, but, particularly with high doses of 

ethanol and chronic ingestion, the microsomal ethanol oxidizing system 
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plays a significant role in ethanol metabolism. 

IV. The Effects of Ethanol on Glucose Metabolism 

In the past several years, there have been numerous studies 

investigating the interactions of ethanol with carbohydrate metabolism. 

In the postabsorptive state, when liver glycogen stores are adequate, 

ethanol has been shown to cause an increase in serum glucose within one 

hour of ingestion (43). This effect can be prevented by ganglionic 

blockade, and it presumably results from adrenergic stimulation leading 

to increased glycogenolysis (43). 

There have been many case reports of hypoglycemia following 

ethanol ingestion (46,47), and these episodes generally occur in chronic 

alcoholics with poor dietary intake. The syndrome has been reproduced 

and studied in patients who have been admitted to the hospital for 

alcohol hypoglycemia (46,47) and in normal humans and animals (48-56). 

A decline in serum glucose can be produced by a decrease in 

hepatic glucose output, or by an increase in peripheral utilization. 

It is generally accepted that ethanol inhibits gluconeogenesis. Searle 

(50) demonstrated a sixty percent decrease in hepatic glucose production 

following ethanol infusion into fasted humans; and Field and Williams (48) 

found a fifty percent decrease in glucose and urea production in ethanol 

perfused livers from rats. In both of these studies, the decreased 

glucose production was presumably secondary to decreased gluconeogenesis 

(48,50). A decrease in gluconeogenesis will only result in diminished 

hepatic glucose output and hypoglycemia if the liver is depleted of 

glycogen. In the presence of adequate glycogen stores, the liver will 
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maintain its glucose output, via glycogenolysis (43,47-49,51,58). It 

has been repeatedly demonstrated in humans that ethanol will inhibit 

gluconeogenesis in the fed state (50,57,58). Hypoglycemia, however, 

cannot be induced by ethanol unless the individual has been fasted for 

a long enough period of time (usually at least twenty-four to forty- 

eight hours) to deplete his liver of glycogen (41,48,50,54). Decreased 

or absent hepatic glycogen has been found in liver biopsies from individuals 

presenting with the clinical picture of alcohol hypoglycemia (43). Additional 

evidence for absent glycogen stores in alcohol hypoglycemia is that the 

hypoglycemia does not respond to glucagon infusion (47). Ethanol's 

inhibition of gluconeogenesis is generally felt to be secondary to the 

increased ratio of NADH to NAD resulting from the metabolism of ethanol 

(48-57). Leevy (59) showed that the maximum increase in hepatic NADH 

occurred approximately four hours after ethanol ingestion, with a 

negligible increase when low doses of ethanol were administered (less 

than 3g./kg. in rats),and a large increase when high doses were given 

(greater than 6g./kg. in rats or 1.5g./kg. in humans). The NADH to NAD 

ratio began to return to pretreatment levels at twelve hours, but this 

was prolonged when there was evidence of mitochondrial damage or frag¬ 

mentation of the endoplasmic reticulum which occurred after chronic 

alcohol ingestion (59). The effects of an increased NADH to NAD ratio 

on NAD dependent steps in gluconeogenesis include (42,43,55): 

1. an increase in the lactate to pyruvate ratio resulting 
in a decreased availability of pyruvate for regeneration 
of glucose. Krebs (60) showed that a moderate intake 
of ethanol delayed post-exercise clearance of lactate, 
which he ascribed to decreased lactate conversion to glucose 
by the liver. 
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2. a decreased conversion of glutamate to -ketoglutarate by 
glutamic dehydrogenase 

3. a decreased conversion of -ketoglutarate to succinate and 
of malate to oxaloacetate, with the net effect of decreased 
oxaloacetate for glucose production via phosphoenolpyruvate. 
Madison, Lochner and Wulff (55) found that infusion of large 
amounts of -ketoglutarate and glutamate failed to increase 
hepatic gluconeogenesis that was already suppressed by 
ethanol. 

4. a decreased conversion of L- -glycerophosphate to dihydroxy- 
acetone-phosphate which decreases glucose production from 
glycerol 

If the increased NADH to NAD ratio is in fact the cause of the 

ethanol induced inhibition of gluconeogenesis, then an experimentally 

induced decrease in this ratio would be expected to stimulate gluconeogenesis. 

When Madison, Lochner and Wulff (55) infused methylene blue, a dye capable 

of oxidizing NADH to NAD, they reversed the ethanol-induced suppression 

of gluconeogenesis and restored hepatic glucose output to normal. They 

were also able to prevent a reduction in gluconeogenesis by administering 

methylene blue simultaneously with ethanol (55). 

Kreisberg (57) and Kalkhoff (54) have reported that an 

additional site, at which ethanol may inhibit gluconeogenesis, is at 

the level of alanine release from muscle. Alanine is the primary amino 

acid precursor in gluconeogenesis. It accounts for approximately fifty 

percent of amino acid uptake by the splanchnic bed, and the hepatic 

capacity, for glucose production from alanine, is greater than that 

for all other amino acids (61). Approximately thirty percent of the total 

amino acids released from muscle is alanine, but only seven to ten 

percent of protein amino acids in skeletal and cardiac muscle can be 
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ascribed to alanine. Thus, the majority of alanine released must come 

from de-novo synthesis, via transamination of pyruvate (61). Kreisberg 

(51) found a twenty-five percent decrease in plasma alanine concentration 

following ingestion of ethanol by humans. He postulated that the decrease 

in plasma alanine concentration was due to decreased alanine synthesis 

from pyruvate. This effect could be mediated by acetate and/or lactate 

arising directly or indirectly from the metabolism of ethanol. Both of 

these substances have been demonstrated to interfere with peripheral 

glucose utilization (57), which would decrease the availability of 

pyruvate for alanine synthesis. Thus, there is evidence that ethanol- 

induced hypoglycemia results from decreased substrate availability for 

glucose production, as well as from inhibition of intrahepatic path¬ 

ways of gluconeogenesis. 

An additional factor that could affect serum glucose concen¬ 

tration is the rate of peripheral utilization. Lochner (51) measured 

hepatic glucose output and peripheral uptake of glucose after an in¬ 

fusion of ethanol into fasted dogs with chronic end-to-side porta¬ 

caval shunts. He found a prompt sixty-five percent fall in mean hepatic 

glucose output and a twenty-five percent inhibition of peripheral glucose 

utilization. Not all of his dogs became hypoglycemic, because, in order 

for the serum glucose concentration to drop, the magnitude of the de¬ 

crease in hepatic glucose output had to exceed the magnitude of inhibition 

of peripheral glucose utilization (51). Other investigators have also 

reported that ethanol decreases peripheral glucose utilization (43,57, 

58). Phillips and Safrit (6) fed humans alcohol, and found a decreased 

glucose tolerance with an increased insulin response to glucose. This 
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suggests that ethanol resulted in a decreased ability to dispose of serum 

glucose despite adequate amounts of insulin (6). Searle, however, recently 

published a study (50) in which he found an increase in the rate of peri¬ 

pheral glucose utilization in individuals of normal weight who were 

fasted for three days and then received ethanol. In his obese subjects, 

who were treated in a similar fashion, he found a decrease in peripheral 

glucose utilization. The normal weight individuals showed a significantly 

greater rate of decrease in plasma glucose concentration following ethanol 

administration compared to the obese subjects. He explains this by the 

differences observed in the rate of peripheral glucose utilization. 

It can be concluded from this review that ethanol produces 

hypoglycemia in man and in certain animals after an appropriate fast. 

The mechanism for this seems to be an inhibition of intrahepatic gluco¬ 

neogenic pathways via an alteration in the redox state of the hepatocytes, 

secondary to the oxidation of ethanol. In addition, there is an apparent 

decline in peripheral alanine production after ethanol ingestion, resulting 

in a decrease in gluconeogenic substrate supply to the liver. Because 

of conflicting reports, no conclusion can be drawn about the role of 

peripheral glucose uptake in the production of ethanol hypoglycemia. 

V. The Effects of Ethanol on Insulin Release 

Ethanol has been reported to both increase (6,67-72) and 

decrease (62-66) insulin release via direct and indirect mechanisms. 

Ethanol-induced hypoglycemia is associated with a fall in serum insulin 
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levels (64-66). The decrease in insulin is not a direct effect of 

ethanol since there is no decline in insulin concentration when glucose 

is infused along with ethanol (64). There is also no decline in insulin 

concentration when normal, fed individuals are given ethanol (66). The 

fall in insulin, therefore, is probably mediated by the decline in plasma 

glucose induced by ethanol in fasted individuals. 

Malaisse (63) reported that ethanol had a direct inhibitory 

effect on insulin release from £ cells in vitro, and he postulated that 

this was secondary to an inhibition of a microtubular, microfilamentous 

system in the .0 cell involved in the insulin secretory process. Colwell 

(65) reported that infusion of ethanol alone into the pancreatic artery 

did not effect insulin release, but that ethanol blocked the immediate 

release of insulin that occurred when cyclic AMP was infused. 

Kuo (67), however, reported that pancreatic perfusion with a 

low concentration of ethanol (.05% V/V) stimulated islet adenylate cyclase. 

Metz (68), Siegal (71), Friedenberg (70), and Kuhl (72) all reported 

that, although ethanol alone had no effect on insulin release, prior 

ethanol infusion potentiated the glucose induced insulin response. Metz 

(68) reported a more rapid peripheral clearance of glucose with the 

potentiation of insulin release by ethanol, thereby improving glucose 

tolerance. Phillips (69), however, found a decreased glucose tolerance 

associated with increased levels of insulin in subjects fed ethanol. 

He suggested that ethanol led to decreased peripheral glucose utilization 

resulting in higher glucose levels after ethanol infusion. The increased 

insulin was, therefore, a result of the increased glucose, and not a 

primary effect of ethanol. 
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VI. The Effect of Ethanol on Cortisol Levels 

Single large doses of ethanol have resulted in elevated levels 

of corticosteroids (43,73-75). Jenkins (74) reported that ethanol had 

no effect on cortisol levels in patients with pituitary lesions, who 

had a normal response to exogenous ACTH, suggesting that ethanol's 

effect on cortisol levels is mediated through the pituitary (74). 

Myerson (75) reported that, in contrast to the increase in plasma cortisol 

levels seen following ethanol administration to normal humans, chronic 

alcoholics did not always manifest an acute elevation of cortisol after 

ethanol intake. Margraf (76), however, reported that plasma cortisol 

levels were significantly elevated in alcoholics when they were inebri¬ 

ated. He also found that alcoholics showed a diminished serum cortisol 

response to ACTH (76). 

VII. The Effects of Ethanol on the Mobilization of Free Fatty Acids 

from Peripheral Fat Deposits 

Ethanol has been reported to increase serum free fatty acid 

levels (56,73,77-79), decrease free fatty acid levels (80-81), and cause 

no significant change in free fatty acids (82-83). An analysis of these 

reports shows that the net effect on free fatty acid levels depends upon 

the balance between two indirect effects o^ ethanol on fatty acid release 

from adipose tissue (40-41,43,45). With low or moderate doses of ethanol, 

there is a decrease in free fatty acid mobilization. This is a result 
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of*the inhibitory effect of acetate, generated from ethanol metabolism, 

on lipolysis (40-41,43,45). Crouse (81) reported that sodium acetate, 

given orally to normal fasting humans, caused a significant fall in 

plasma free fatty acids. The plasma acetate levels were less than, or 

equal to, those reached after ethanol (81). With high doses of ethanol, 

there is an adrenergic response to intoxication, causing increased 

lipolysis and free fatty acid mobilization (40-41, 43,45,73,78,79). 

Mallov (78) reported that urinary excretion of epinephrine and norepi¬ 

nephrine were increased in ethanol intoxicated dogs. Brodie (73) found 

that he could prevent the rise in free fatty acids, following ethanol 

intoxication, by administering ganglionic blocking agents. Adrenal 

demedullation, however, did not prevent the increase in free fatty 

acids (73). Although the rise in free fatty acids is apparently medi¬ 

ated by catecholamines, it does not occur without an intact pituitary- 

adrenal axis (84). Maickel (84) found that the normal response in 

adrenalectomized rats could be restored by pretreatment with cortisone. 

In summary, with low to moderate doses of alcohol, the pre¬ 

dominant effect is one of inhibition of free fatty acid mobilization 

from adipose tissue. This is mediated by the increase in serum acetate 

produced by the metabolism of ethanol. With intoxicating doses, the 

catecholamine effect predominates and adipose tissue lipase is stim¬ 

ulated, resulting in increased serum free fatty acid levels. 

VIII. The Effect of Ethanol on Ketogenesis 

Studies of the relationship between ethanol and ketone metabolism 
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have yielded conflicting results. 

Ethanol has been referred to as an antiketogenic agent (17). 

In the preinsulin era, diminutions in glycosuria and ketonuria were 

found in ethanol treated diabetics (47). Arky and Freinkel (49) withheld 

food and insulin for twelve hours from juvenile diabetics and infused 

118 grams of ethanol over eight hours. They found that the ethanol 

arrested or dampened progressive ketonemia as well as the rise in glu¬ 

cose. In some recent studies, ethanol has been shown to decrease hepatic 

ketone production in vitro (17,85-87). Blomstrand (87), Ontko (86), and 

McGarry (17) have shown, with labelled long chain fatty acids, that 

ethanol inhibits ketogenesis and CC^ formation with enhanced recovery 

of label in triglycerides and phospholipids. 

There are several reports of ethanol decreasing free fatty 

acid oxidation and increasing triglyceride synthesis (40-41,45,73,82,82,88); 

both would be expected to decrease ketogenesis. Lieber (40,41), Felleni- 

us (85), Ontko (86), and Blomstrand (87) suggest that the mechanism for 

the inhibition of 3-oxidation is an increase in the intramitochondrial 

NADH to NAD ratio secondary to the production of reducing equivalents 

in the cytoplasm from the oxidation of ethanol. Since NAD is a necessary 

cofactor for 3-oxidation, a diminution in the NAD to NADH ratio would 

be expected to inhibit 3-oxidation. The competitive nature of the 

interaction between ethanol and free fatty acid oxidation is supported 

by the finding that ethanol oxidation is inhibited by oleate (85). The 

increased esterification of free fatty acids can be explained by increased 

availability of substrate secondary to the inhibition of 3-oxidation or 

by an accumulation of jc-glycerophosphate, which has been shown to occur 

following ethanol administration (89). 
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In contrast to the preceding reports, ethanol administration 

in several in vivo and in vitro studies has been shown to increase 

hepatic ketone production and serum ketone levels (45,89-96). Most 

investigators have reported that with acute single-dose ethanol admini¬ 

stration, B-hydroxybutyrate increased markedly, while acetoacetate 

increased only slightly or not at all (89,90,94-95). This would be 

expected from the shift in the redox state of the cell induced by ethanol 
★ 

metabolism. The explanation given for the increased ketogenesis following 

acute ethanol administration in vivo and in vitro is also based upon the 

shift in the NADH to NAD ratio induced by ethanol (89). Williamson (89) 

reported that, despite a thirty-seven percent inhibition of 3-oxidation 

following addition of ethanol to a liver perfusate containing oleate, 

ketogenesis was stimulated. He suggests that this is due to an inhibition 

of the citric acid cycle secondary to the decreased NAD to NADH ratio. 

This results in an increased availability of acetyl CoA for ketone 

production (89). The inhibition of the tricarboxylic acid cycle by 

ethanol has also been reported by other investigators (41,43,85-86,90,94). 

Ethanol has been shown to increase ketone production when 

administered chronically to humans and animals maintained on a high fat 

intake. The peak of ketogenesis occurred in the fasting state when 

alcohol had disappeared from the blood, and when its metabolic effect 

* Acetoacetate + NADH + H+ D-B-hydroxybutyrate + NAD+ 

An increase in NADH to NAD ratio shifts this reaction to the right, 
resulting in increased conversion of acetoacetate to B-hydroxybutyrate. 
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on the redox potential of the cell had disappeared, indicated by a 

normal B-hydroxybutyrate to acetoacetate ratio (93). Lefevre, Adler, 

and Lieber (93) administered ethanol in non-intoxicating doses, along 

with an adequate diet in which thirty-six percent of the calories were 

lipid. They found that after one week of alcohol, marked ketonuria 

and ketonemia developed, which was three times greater than that induced 

by a high fat diet alone, and thirty times greater than in the control 

group. This hyperketonemia was present in the postprandial period, 

but was most marked after an overnight fast, when ethanol was no longer 

detectable in the blood. Alcohol did not induce hyperketonemia, when 

given with a low fat diet (five percent of the total caloric intake). 

Similar findings were reported in their studies with rats who developed 

ketonemia after receiving subintoxicating doses of alcohol (3g./kg.) for 

three days. They also found that neither in vivo pretreatment with 

ethanol, nor in vitro addition of alcohol had a significant effect on 

uptake of acetoacetate by rat diaphragm. Thus, they provided evidence 

for a delayed effect of ethanol on ketone metabolism. This effect was 

not secondary to the immediate alteration of the cells' redox potential, 

and was most marked when ethanol was no longer present (93). Zoth (91) 

suggested that a mechanism for this delayed effect was mitochondrial 

damage from chronic ethanol ingestion, resulting in an alteration of 

fatty acid metabolism. He studied the oxidation of fatty acids in 

mitochondria, isolated from livers of rats fed a diet consisting of fat 

(thirty-five percent of the total calories), and carbohydrate or iso¬ 

caloric amounts of ethanol (thirty-six percent of the calories) for 

twenty-eight days. Zoth found that oxidation of fatty acids to CO^ 
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was decreased twenty to thirty-eight percent in mitochondria from ethanol 

fed rats, but that mitochondrial ^-oxidation was increased by thirty percent. 

The net result of this could be heightened ketogenesis from the higher 

levels of acetyl CoA generated from increased ^-oxidation of free fatty 

acids (91). 

The current study was undertaken to investigate further the 

effects of chronic ethanol ingestion on ketogenesis. 
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MATERIALS AND METHODS 

I. Animals 

Male, Sprague-Dawley rats weighing 200-300 grams were used 

in this study. The animals were kept in a controlled environment with 

a constant temperature of 75-80 degrees F. and with lighting from 7:00 a.m. 

until 7:00 p.m. For at least 3 days prior to beginning the experiment 

the animals were allowed water and food ad libitum. Their diet consisted 

of Purina Laboratory Chow which contained not less than 23% protein and 

4.5% fat. 

II. Experiments 

The rats were divided into two groups. One group was to 

receive ethanol by nasogastric tube, in a dose of 6 gms./kg. diluted 

1:1 (V/V) with tap water. Rats became grossly intoxicated at this dose. 

They were unable to maintain themselves in an upright position and were 

only weakly responsive to noxious stimuli. A similar volume of tap 

water was administered by nasogastric tube to a control group of rats. 

At 9:00 a.m., on day one of the experiment (0 hours), all 

rats were placed in individual cages and food was removed. Rats from 

both groups were allowed water ad libitum but received no food throughout 

the experiment. Tube feedings were administered at 3 hours, 27 hours, 

51 hours, and 75 hours into the fast. Five normal, untreated rats were 

sacrificed at 0 hours and five or six rats from the ethanol-fed group 

and a similar number from the water-fed group were sacrificed 27-31 hours 



. 



34. 

after each tube feeding, except for a final group of ten rats that were 

sacrificed six to eight hours after the last tube feeding. Only this final 

group contained rats that were intoxicated at the time of sacrifice. It can 

be assumed that the blood ethanol level was essentially zero in all other rats 

when they were sacrificed (93). Thus, rats that were sacrificed at 30-34 

hours received one dose of ethanol or water at 3 hours into the fast; rats 

sacrificed at 54-58 hours received a dose at 3 hours and at 27 hours; rats 

sacrificed at 78-81 hours were tube fed at 3 hours, 27 hours, and 51 hours; 

and rats sacrificed at 81-83 hours were tube fed at 3 hours, 27 hours, 51 hours 

and 75 hours. The table below is an outline of the experiment: 

Fed Group 
Rat# 1-5 

Day 1 

9a.m.-Ohrs. 

noon-3hrs. 

Day 2 

noon-27hrs. 

3p.‘m. -30hrs. 

Day 3 

noon-51hrs. 

3p.m. -54hrs. 

Day 4 

noon-75hrs. 

3p.m.-78hrs. 

6p.m.-81hrs. 

Ethanol Group Water Group 
6-11 12-17 18-23 24-28129-34 35-40 41-46 47-51 

+ 

+ + 

+ + 

+ + + 

+ + 

+ - tube fed 

* - sacrificed 
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At the time of sacrifice, the rat was placed in a jar containing 

ether, and was removed when he was lightly anesthetized. The abdominal 

cavity was then entered anteriorly, and a 22 gauge needle, attatched to 

a heparinized syringe, was placed into the aorta at its bifurcation. 

Blood was removed until the animal was exsanguine. Samples were put 

into separate tubes for insulin, glucose, free fatty acids and ketone 

analysis. The insulin and free fatty acids specimens were centrifuged at 

4 degrees centigrade, and the serum was removed and stored in the frozen 

state. Ketone samples were deproteinized by adding an equal volume of 

6% perchloric acid solution to the blood sample. This mixture was vor- 

texed and then centrifuged at 4 degrees centigrade. The supernatant was 

removed and stored frozen. All samples were assayed within one month of 

collection. Specimens for glucose measurement were collected in pediatric 

capillary tubes and were kept on ice for not longer than two hours before 

being assayed. 

III. Assays 

All glucose measurements were performed by the Yale-New Haven 

Hospital Clinical Chemistry Laboratory, using an automated glucose oxidase 

method. Acetoacetate and B-hydroxybutyrate were determined by the methods 

of Mellanby and Williamson (97-98). Insulin was measured by radioimmuno¬ 

assay employing talc to separate bound from free insulin (100). Free 

fatty acids were determined by the colorimetric method of Novak (99) 

with the following modifications: 

1. The chloroform-heptane solution was prepared in a ratio 
of 4 to 1 (V/V) instead of 5 to 1, in order to improve the phase separation. 
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2. All samples and reagent volumes were doubled through the 
second centrifugation to facilitate removal of supernatants. 

3. KpSCL solution was prepared by adding 12 grams of K9S0^ 
to luOcc. of distilled water at room temperature. The solution 
was stirred overnight and filtered in the morning. 

4. Na9S0„ solution was prepared by adding 15 grams of Na^SO^ to 
lOOcc: of distilled water at room temperature. 

IV. Statistical Methods 

The Student T-test was utilized for determinations of the 

significance of differences between means 

All values are reported as - standard error of the mean. 
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RESULTS 

The B-hydroxybutyrate, acetoacetate, and total ketone levels 

obtained in the water-fed and ethanol-fed rats are reported in Table 1 

and are depicted in Figures 1 and 2. All rats, except for the final 

group, received their last tube feeding 27-31 hours prior to sacrifice. 

The final group of rats, sacrificed at 81 hours, received their last 

intragastric dose of ethanol or water 6-8 hours prior to sacrifice. 

In the control group,B-hydroxybutyrate and acetoacetoacetate 

increased markedly from 0 to 30 hours of fasting. B-hydroxybutyrate 

increased ten fold, from 0.095 - 0.020 umol./ml. at 0 hours to 1.091 - 

0.091 umol./ml. at 30 hours. Acetoacetate increased eight fold, from 

0.021 - 0.005 umol./ml. to 0.164 - 0.022 umol./ml. Between 30 hours 

and 54 hours of fasting total ketones tended to level off with no 

significant change in B-hydroxybutyrate or total ketones. Acetoacetate 

levels, however, continued to rise, with an increase of approximately 

fifty percent (p<.02). From 54 to 78 hours, mean total ketones in the 

control group fell forty-two percent (p<.05) and the total decline from 

54 to 81 hours was fifty-nine percent (p<.001). Thus in the control group, 

total ketones increased markedly with 30 hours of fasting, peaked at 54 

hours of fasting and then declined throughout the remainder of the study. 

B-hydroxybutyrate and acetoacetate levels in the ethanol fed 

rats were not significantly different from the controls at 30 hours, 54 

hours and 78 hours, after receiving one, two or three prior tube feedings, 

respectively. A final tube feeding of ethanol at 75 hours, however, 
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TABLE 1 

Iota 1 
Ketones 
(umoles/ml) 

B-hydroxy- 
butyrate 
(umoles/ml) 

Acetoacetate 

(umoles/ml) 

Ratio of 
B-hydroxybutyrate 
to Acetoacetate 

Duration 
of Fast 
(hours) 

0 0.116 - 0.023 0.095 - 0.020 0.021 - 0.005 4.50 

30(control) 1.254 - 0.107 1.091 " 0.091 0.164 - 0.022 6.60 

30(ethanol) 1.119 " 0.130 0.972 - 0.124 0.147 - 0.024 6.60 

t-test (p) N.S. N.S. N.S. 

54(control) 1.574 - 0.255 1 .324 - 0.252 0.250 - 0.008 5.30 

54(ethanol) 1.244 - 0.178 1.025 - 0.163 0.218 - 0.020 4.83 

t-test (p) N.S. N.S. N.S. 

78(control) 0.910 - 0.131 0.758 - 0.119 0.152 - 0.032 4.99 

78(ethanol) 0.856 - 0.077 0.712 - 0.070 0.144 - 0.010 4.94 

t-test (p) N.S. N.S. N.S. 

8l(contro1) 0.648 - 0.066 0.562 - 0.069 0.086 - 0.011 6.53 

81(ethanol) 1.541 - 0.092 1.383 " 0.056 0.158 - 0.042 8.75 

t-test (p) p < .001 p < .001 .05 < p < .10 

All va1ues are 
+ 

S.E.M. 
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TIKE (hours) 

Figure 1- M|an serum.B-hydroxybutyrate C&) and acetoacetate (♦) levels 

(“S.E.M.) in water-fed rats (solid line) and ethanol-fed rats 
(broken line). At Si hours, ethanol produced a marked rise 

in B-hydroxybutyrate with no significant change in acetoacetate 
At all other times there was no significant difference between 
the two groups. 
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Figure 2- Mean total ketone body levels (-S.E.M.) in water-fed rats 

(solid 1 ine) and ethanol-fed rats (broken line). At 81 hours, 
ethanol produced a marked rise in total ketones. At all other 

times there was no significant difference between the two groups. 
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resulted in a marked rise in serum ketones 6 hours later. There was 

no significant change in total ketone levels in the control group 

during the same time period. The B-hydroxybutyrate in the ethanol rats 

increased from a mean level of 0.712 - 0.070 umol/ml. at 78 hours, to 

1.383 - 0.056 umol/ml. at 81 hours (p<.001). The B-hydroxybutyrate 

level in the control group decreased from a mean of 0.758 - 0.119 umol/ml. 

at 78 hours to 0.562 - 0.069 umol/ml. at 81 hours, but this decrease was 

not statistically significant. There was a two to three fold difference 

in B-hydroxybutyrate levels between the ethanol and water groups at 

81 hours (p<.001). The mean acetoacetate level did not change signifi¬ 

cantly from 78 to 81 hours in the ethanol-fed group (0.144 - 0.010 umol/ml. 

to 0.158 - 0.042 umol/ml.) and decreased in the water-fed rats from 

0.152 - 0.032 umol./ml. to 0.086 - 0.011 umol./ml. (.05<p<.10). There 

was a two fold difference in acetoacetate between the two groups (.05<p<. 10). 

Total ketones at 81 hours were 0.648 - 0.066 umol./ml. in the water-fed 

group and 1.541 - 0.092 umol./ml. in the ethanol group, which represented 

a two to three fold difference (pc.001). The ratio of B-hydroxybutyrate 

to acetoacetate at 81 hours was 8.8:1 in the ethanol group which was ele¬ 

vated compared to a ratio of 4.9:1 in the ethanol rats at 78 hours and 

6.5:1 at 81 hours in the control group. There was no significant difference 

in the B-hydroxybutyrate to acetoacetate ratio between the ethanol and 

control groups at 30 hours, 54 hours, or 78 hours. 

Free fatty acid levels in the ethanol and water rats at the 

various time periods studied, are reported in Figure 3 and Table 2. In 

the control group after 30 hours of fasting, free fatty acids rose three 
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TABLE 2 

Duration 
of Fast 
(hours) 

Total 
Ketones 
(umoles/ml) 

Free Fatty 
Ac i ds 
(umoles/ml) 

G1ucose 

(mg/100ml) 

1nsul in 

(uunits/ml) 

0 0.116 - 0.023 0.283 - 0.045 178 - 2.99 78.8 - 5.66 

30(control) 1.254 - 0.107 1.05b - 0.046 109 - 6.02 25.2 - 5.26 

30(ethanol) 1.119 - 0.130 0.974 - 0.029 116 - 6.66 30.0 - 5.81 

t-test (p) N.S. N.S. N.S. N.S. 

54(control) 1.57*1 ~ 0.255 1.121 - 0.043 141 - 5.58 22.7 1 3-79 

5^(ethanol) 1 .244 - 0.178 1 .229 - 0.035 154 - 5.64 36.6 - 6.13 

t-test (p) N.S. .05 < P <.10 N.S. N.S. 

78(control) 0.910 - 0.131 0.932 - 0.111 171 1 10.7 32.7 - 3.72 

78(ethano1) 0.856 - 0.077 0.973 " 0.098 164 - 1.87 29.9 - 4.65 

t-test (p) N.S. N.S. N.S. N.S. 

81(control) 0.648 - 0.066 0.777 1 0.134 163 - 6.06 32.3 - 6.85 

8l (ethanol) 1.541 - 0.092 0.896 - 0.054 168 - 16.5 37.0 - 3-84 

t-test (p) p < .001 N.S. N.S. N.S. 

All values are - S.E.M. 
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Figure 3~ Mean serum free fatty acid levels (-S.E.M.) in water-fed 

rats (solid line) and ethanol-fed rats (broken line). All 
rats were fasted for the entire study. There was no signifi¬ 

cant difference in FFA levels between the two groups at any 
time. 
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to four fold from 0.283 - 0.045 umol./ml. at 0 hours to 1.054 - 0.046 umol./ml. 

at 30 hours. From 30 to 54 hours of fasting there was no significant change 

in free fatty acids in the control group. Beyond 54 hours of starvation, 

free fatty acids tended to decline with the difference between the 54 hour 

and 81 hour level significant at the six percent confidence level (.OScpc'. 10). 

The mean free fatty acid level in the control group at 81 hours was 0.777 - 

0.134 umol./ml. which was still significantly elevated compared to the 

level at 0 hours (p<.01). 

The mean free fatty acid level in the ethanol group also rose 

markedly between 0 and 30 hours and the level at 30 hours was not signifi¬ 

cantly different from the control group. From 30 to 54 hours, free fatty 

acids increased from 0.974 - 0.029 umol./ml. to 1.229 - 0.035 umol./ml. 

(p<.001). The difference between mean free fatty acid levels in the ethanol 

and control group at 54 hours was small and of questionable significance 

(.05<p<. 10). Beyond 54 hours, the free fatty acids declined in the ethanol 

rats and there was no significant difference between the ethanol and 

control rats at 78 hours or 81 hours. Thus, despite the marked increase 

in ketone levels that occurred between 78 and 81 hours in the ethanol group, 

the free fatty acid level did not increase. 

Glucose levels are reported in Table 2 and are depicted in 

Figure 4. At no point in the study was there a significant difference 

in glucose levels between the ethanol-fed group and the control group. 

In both sets of rats, there was a thirty-five to forty percent decline 

in serum glucose concentration during the first thirty hours of the fast. 

Glucose in the water-fed rats fell from a pre-fasting level of 178 - 2.99 

mg./100ml. to 109 - 6.02 mg./100ml. at 30 hours (pc.001) and the level 
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Figure A- Mean serum glucose levels (-S.E.M.) in water-fed rats (solid 

1ine) and ethanol-fed rats (broken 1 ine). A11 rats were fasted 
for the entire study. There was no significant difference 
between the two groups at any time. 
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at 30 hours in the ethanol-fed rats was 116 - 6.66 mg./100ml. (p<.001). 

Beyond 30 hours of starvation, glucose increased in both the ethanol and 

water rats and approached pre-fasting levels by 78 hours. There was 

no significant change in either group between 78 and 81 hours. 

Insulin (Figure 5, Table 2) initially showed a marked decline 

from a 0 hour level of 78.8 -5.7 uunits/ml. to a 30 hour level of 30.0 - 

5.8 uunits/ml. in the ethanol rats (p<.001) and 25.2 - 5.3 uunits/ml. 

in the control rats (pc.001). There were no further significant changes 

noted in the mean insulin level in either group. In addition, there 

were no significant differences in mean insulin levels between the ethanol 

and control rats at 30, 54, 78, or 81 hours. The initial decline in insulin 

occurred during the same time period as the fall in glucose. The final 

rise in glucose, however, was net accompanied by a rise in insulin. This 

apparent abnormality in insulin responsiveness to an increase in glucose 

is present in both the water group and ethanol group, and, therefore, cannot 

be related to the relative hyperketonemia in the 81 hour ethanol rats. 

Repeated doses of ethanol had no effect on the percentage of 

the rat's initial weight that was lost after an 81 hour fast. Water-fed 

rats that were sacrificed at 81 hours were noted to have lost 24.5% of 

their initial body weight, and the ethanol-fed rats that were fasted for 

the same period of time had lost 24.4% of their initial body weight. Table 

3 shows the mean percentage of initial body weight lost in both groups at 

all time periods that were studied. 
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Figure 5“ Mean serum insulin levels (-S.-E.M.) in water-fed rats (solid 

line) and ethanol-fed rats (br oken line). All rats we re 
fasted throughout the study. There was no significant 
difference between the two groups at any time. 
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TABLE 3 

Duration 
of Fast 
(hours) 

0 

30 (control) 

30 (ethanol) 

54 (control) 

54 (ethanol) 

78 (control) 

78 (ethanol) 

81 (control) 

81 (ethanol) 

Percentage of 
Initial Body 
Weight Lost 

0 

14.3 " 1.20 

14.3 - 0.87 

21.1- 0.48 

17-9 1 0.76 

22.5 - 0.61 

24.8 - 0.49 

24.5 - 1.24 

24.4 - 0.74 

All values are - S.E.M. 
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DISCUSSION 

In the present study, fasted rats received intoxicating doses 

of ethanol in order to investigate two different aspects of the inter¬ 

action of alcohol with ketone metabolism. The first problem investigated, 

was the effect of daily doses of ethanol on the ketone level of rats when 

it was measured one day after the preceding dose of alcohol. It was felt 

that this experimental design would reproduce aspects of the usual clinical 

picture of patients with alcoholic ketoacidosis (i.e. chronic ingestion 

of large doses of ethanol associated with anorexia and decreased food 

intake for 24-72 hours prior to admission). In both the ethanol and 

control rats, the ketone levels rose to a peak at 55 hours and then 

began to decline. These findings are consistent with previous observations 

of ketone levels in rats during a prolonged fast (14,102). No effect of 

ethanol on serum ketone levels was noted when blood samples were taken 

27 hours after the last dose of alcohol. Thus, an effect of chronic 

ethanol ingestion on ketone metabolism, that would persist beyond the 

period when ethanol was still being metabolized, was not demonstrated 

in fasted rats. 

The second aspect of ethanol's interaction with ketone metabo¬ 

lism, investigated in this study, was the acute effect of a large dose 

of alcohol on a rat experiencing a prolonged fast and primed with daily 

intoxicating doses of ethanol. After 75 hours of fasting and daily 

doses of ethanol, a final intoxicating dose was administered. Blood 

was drawn 6 hours later and a marked rise in total ketones was demonstrated. 
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There was an increased B-hydroxybutyrate to acetoacetate ratio with a 

sharp rise in B-hydroxybutyrate and no change in acetoacetate. The total 

ketone level was significantly greater than the level found in rats 

starved 81 hours and tube fed water, but was similar to the peak starvation 

levels, which occurred at 54 hours of fasting. Despite the rise in ketones 

at 81 hours, the level reached was still several times less than the ke¬ 

tone concentrations found in alloxan diabetic rats (14,24). Thus, the 

ketosis induced by ethanol was significant, relative to the ketosis induced 

by 81 hours of fasting, but was no greater than the maximum ketone levels 

produced by starvation and certainly did not represent more than a minimal 

ketoacidosis (13). 

The only prior report in the literature, that investigated the 

in vivo effect of chronic ethanol ingestion on ketone levels in animals, 

was by Lefevre in 1970 (93). His rats were fed a calorically adequate 

diet and received subintoxicating doses of ethanol. He reported an 

increase in serum ketone levels shortly after ingestion of alcohol and 

the diet; and, in contrast to the present study, the hyperketonemia was 

more marked after an overnight fast when ethanol levels were zero. In 

a similar study carried out by Lefevre with human subjects (93), the delayed 

effect of alcohol on ketone metabolism was well documented. Ethanol 

led to an increased ketosis after chronic ingestion of subintoxicating 

doses, and the increase in B-hydroxybutyrate and acetoacetate was more 

marked fifteen hours after the last dose of alcohol was ingested. In rats, 

however, his data is less conclusive because only acetoacetate was measured. 

It has been well established that, following ethanol ingestion, there is 

an increase in the intracellular NADH to NAD ratio (48-57,59) which 
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causes an increase in the B-hydroxybutyrate to acetoacetate ratio (3,94). 

Therefore, as the redox potential of the cell returns to normal, during 

the fifteen hour period after ethanol ingestion, a rise in acetoacetate 

is consistent with no change or even a decrease in total ketonelevels 

since it may be associated with a decreasing B-hydroxybutyrate level. 

A comparable situation occurs during the correction of alcoholic ketoacido¬ 

sis (3,5). Thus, although Lefevre (93) has documented a post-ethanol rise 

in acetoacetate in rats, which persisted into the fasted state, he has 

not established that the magnitude of the ketosis is greater when the 

ethanol level is zero. In the current study, a delayed effect of ethanol 

on ketone metabolism was not found. Ketone levels, measured 27 hours 

after alcohol was administered, were no higher than in fasted controls. 

Although this contrasts with Lefevre's results, the two studies are not 

comparable. Rats in Lefevre's experiment received a high fat diet and 

were only fasted overnight. The rats in the current study received no 

food with their ethanol feedings and were fasted for 30 to 81 hours. 

It is possible that in the current study, the 27 hour period separating 

the administration of ethanol, and the collection of blood samples was 

too prolonged to detect a delayed but evanescent effect of ethanol. This 

can only be evaluated with further studies of fasted rats, that vary 

the length of time between ethanol feeding and sacrifice of the rat. 

In addition to the delayed effect of ethanol on ketone metabo¬ 

lism, reported by Lefevre (93), several investigators have demonstrated 

an acute effect of ethanol on hepatic ketogenesis with increased hepatic 

output of ketone bodies and increased serum levels of ketones (89-95). 

Most of these studies have explained the increased ketogenesis on the 
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basis of the increased NADH to NAD ratio induced by the metabolism of 

ethanol (described in the Literature Review earlier in this paper). In 

the current study, the effect of ethanol on two additional factors, that 

could influence ketone metabolism were studied- free fatty acids, and 

insulin. 

Free fatty acids are a necessary substrate for ketogenesis (7,13). 

An increase in free fatty acids, in a normal, well fed animal, will not 

increase ketone body formation (14), but a similar elevation in a fasting 

or diabetic animal will result in an increase in the serum ketone level 

of that animal (16). In the present study, serum free fatty acid levels 

paralleled the ketone levels at 30, 54, and 78 hours of fasting in both 

the ethanol-fed and control rats, with no significant difference between 

the two groups. These results are consistent with findings reported in 

other investigations of prolonged starvation in rats (14,102). In contrast, 

at 81 hours, which was shortly after the last dose of ethanol, ketones 

rose, but free fatty acids continued to fall. This suggests that the 

increase in ketones resulted from an effect of ethanol on hepatic ketogene¬ 

sis or on peripheral ketone utilization, and was not a result of increased 

mobilization of free fatty acids. The declining free fatty acid level, 

and the failure of an intoxicating dose of ethanol to increase free fatty 

acid levels, may have been due to depletion of peripheral fat stores, which 

is known to occur in rats after a three to four day fast (13). The declining 

serum ketone concentration, prior to the final dose of ethanol, may also 

have been a consequence of the decline in free fatty acid substrate for 

ketogenesis. The interplay between the serum free fatty acid level and 

the metabolic set of the liver, and the importance of both of these factors 
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in determining the level of ketogenesis, is highlighted by the results of 

the present study. The ethanol-induced rise in ketogenesis without an 

increase in serum free fatty acids, suggests that ethanol changed the meta¬ 

bolic set of the liver so that a greater proportion of incoming fatty acids 

were taken up by the mitochondria and oxidized; or that a greater pro¬ 

portion of the acetyl CoA, generated by the f3-oxidation of fatty acids, 

was diverted into ketogenic pathways. 

Insulin and glucose were also studied to determine if the acute 

ethanol-induced rise in total ketones, at 81 hours of fasting, was associ¬ 

ated with a change in the serum concentration of these substances. The key 

role of insulin in controlling the production and utilization of ketoacids 

is well established (8,13,22). Insulin can affect serum ketone levels by 

controlling adipose tissue 1ipolysis (14), by affecting the flow of acetyl 

CoA into ketogenic pathways (13), and by controlling the rate of peripheral 

utilization of ketones (13,34). In addition, insulin may effect the acyl- 

carnitine transferase step (15,26), and other, as of yet, undefined sites 

of regulation of hepatic ketone production. Because of insulin's signifi¬ 

cant role in the regulation of ketogenesis associated with starvation and 

diabetes, it is important to determine the effect of ethanol ingestion on 

insulin levels, particularly when the ethanol administration results in 

hyperketonemia. Ethanol has been reported to increase (6,67-72) and de¬ 

crease (62-66) serum insulin levels and islet cell release of insulin. 

The hypoglycemic effect of ethanol in the fasting state has been well 

documented and extensively studied (46-56), and has been associated with 

a fall in insulin concentration. In the present study, no significant 

effect of ethanol on insulin or glucose levels was demonstrated. The 



‘ 



54. 

final dose of ethanol, administered after 75 hours of fasting, was 

associated with a marked rise in total ketones, but there was no sig¬ 

nificant change in insulin or glucose levels. Failure to demonstrate 

an ethanol-induced decline in glucose and a secondary fall in insulin 

would seem to be inconsistent with previous studies of the effects of 

ethanol on carbohydrate metabolism (46-56). However, the in vivo studies, 

in which fasted subjects became hypoglycemic after ethanol intake, were 

done with humans or with animals other than rats; and there is evidence 

that the metabolic response of a rat to starvation is different from 

that of larger animals and humans. In humans, there is an initial fall 

in glucose followed by a maintenance of the glucose concentration at 

this lower level during a prolonged fast (103). Owens (102) found that 

in rats, the glucose fell during the initial forty-eight hours of a fast, 

but with continued starvation, it rose and approached values for fed 

animals. This observation is confirmed in the present study. Cahill (13) 

stated that gluconeogenesis, instead of becoming attenuated as in man, 

progressively increases during starvation in the rat since the non-obese 

rat has more calories in muscle nitrogen than in his limited supply of 

adipose tissue. Thus, prolonged starvation of a rat is characterized 

by hypergluconeogenesis relative to the response of normal man to fasting. 

There is evidence that heightened gluconeogenesis in fasted humans and 

dogs, is characterized by a resistance to the hypoglycemic action of 

ethanol. Freinkel (47) reported that administration of 75mg. of cortisone 

every eight hours to normal humans, as a means of activating gluconeo¬ 

genesis, prevented hypoglycemia when ethanol was ingested after a three 

day fast. A prolonged fast in a dog would also be expected to result 
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in an increase in gluconeogenesis, as fat stores were exhausted. It 

has been found that acute doses of ethanol, that elicited hypoglycemia 

in dogs fasted for three to six days, did not produce hypoglycemia in 

dogs fasted for 14 days (47). Therefore, the failure of ethanol, 

administered after a 75 hour fast, to induce hypoglycemia and hypo- 

insulinemia in the current study, may have been a result of the heightened 

gluconeogenesis which is present in a rat after a prolonged fast. 

Insulin levels remained low after their initial decline despite 

the rise in glucose that occurred in both groups after thirty hours of 

fasting. The failure of the animals to increase their serum insulin 

levels in response to the increase in glucose, may have been an effect 

of prolonged starvation. It was definitely not related to ethanol 

ingestion, since it was present to an equal extent in both the ethanol- 

fed and control rats. Cahill (103) reported that if normal humans undergo 

and eight day fast, they will have an abnormal glucose tolerance after 

the fast. Fasted subjects, however, still exhibited a brisk insulin 

response, but of a lesser magnitude than when tested prior to the fast. 

The present study has demonstrated that, although ethanol 

induces an acute rise in total ketones when administered after a prolonged 

fast, it does not produce a detectable increase in serum free fatty acids 

or a decrease in insulin to explain its hyperketotic effect. Ethanol 

did produce an increase in the B-hydroxybutyrate to acetoacetate ratio, 

implying a change in the redox potential of the hepatocyte. Prior studies 

have postulated that this increase in the NADH to NAD ratio inhibits the 

tricarboxylic acid cycle, and channels the acetyl CoA generated from 
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^-oxidation into ketogenic pathways (89-90). Another possible mechanism, 

for the increase in ketone levels, is that the acute administration of 

ethanol decreased peripheral uptake of ketones resulting in hyperketonemia 

without a change in hepatic ketogenesis. Lefevre (93), however, reported 

that neither in vivo pretreatment with alcohol nor in vitro addition of 

alcohol had any significant effect upon consumption of acetoacetate by 

rat diaphragm. A third possibility is that ethanol had an acute effect 

on mitochondrial pathways of fatty acid uptake and oxidation, possibly 

via an effect on acyl-carnitine transferase. Evidence for the importance 

of this enzyme in the production of starvation ketosis and diabetic 

ketosis has been provided (7,17,21,24,25), and similar studies are needed 

to evaluate its role in ethanol-induced ketosis. 

We have not demonstrated an effect of ethanol on the ketogenesis 

of a fasted rat, that persists beyond the period of metabolism of the 

ethanol. Further investigation into the delayed effect of ethanol is 

needed since this is particularly relevant to an understanding of the 

pathogenesis of alcoholic ketoacidosis. The effects of ethanol on the 

ketogenesis of a fasted rat could be studied after a period of days or 

weeks of ingestion of low doses of ethanol (3g./kg.) along with an adequate 

diet. Such an experimental design would hopefully modify the hepatocyte 

so that a ketogenic state could be induced that would not require the 

immediate presence of ethanol to sustain. It would then be possible to 

evaluate specific sites in the ketogenic pathway (i.e. use decanoyl car¬ 

nitine to evaluate the importance of the acyl-carnitine transferase step) 

in order to determine their role in the production of ethanol-induced 

ketosis. 
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SUMMARY 

1. Daily intoxicating doses of ethanol were administered to 

fasted rats to evaluate the pathogenesis of alcoholic ketoacidosis 

2. After three daily tube feedings of ethanol, a final dose 

of ethanol on the fourth day of fasting resulted, within six hours, in 

a two fold increase in B-hydroxybutyrate and total ketones. There was 

an increase in the B-hydroxybutyrate to acetoacetate ratio with no 

significant change in acetoacetate levels. Total ketones were two and 

one half times the level in control rats that were fasted for 81 hours. 

In animals studied at earlier points in the fast and at intervals of 

24 hours or more after ethanol intake, there was no ethanol-induced 

augmentation in ketogenesis. 

3. The increased ketone level, induced by ethanol, was not 

associated with a change in free fatty acids, insulin or glucose, and 

levels of these three substances were not significantly different in 

control rats that were fasted for the same period of time but did not 

receive ethanol. 

4. These data indicate that ethanol enhances starvation- 

ketosis independent of changes in 1ipolys is, insulin secretion or blood 

glucose, suggesting a direct effect on hepatic ketogenesis. 

5. This effect may be short-lived as it was observed only 

within six to eight hours of alcohol treatment. 
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