

CENTER FOR RESEARCH IN HUMAN MOVEMENT VARIABILITY

The Effects of Vibrations on the Light Touch Perception Threshold of Transtibial Amputees

Aaron Robinson¹, Jenny Kent¹, Shane R. Wurdeman², Adam L. Jacobsen³, Nicolas Stergiou^{1,4}, Kota Z. Takahashi¹ ¹Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182 ²Department of Clinical and Scientific Affairs, Hanger Clinic, Houston, TX USA ³Veterans Affairs Medical Center, Omaha, NE USA ⁴College of Public Health, University of Nebraska Medical Center, Omaha, NE USA

Introduction

Sensations deriving from the residual limb and the prosthetic socket interface may be important for mobility/balance following an amputation. One potential way to improve sensation in the residual limb-socket interface is the use of sub-threshold vibrations.

Purpose: To determine whether the use of sub-threshold vibrations can improve light touch sensation in transtibial amputees.

Hypothesis: The application of a sub-threshold pink noise vibration will improve an amputee's ability to perceive a light touch stimulus in the residual limb surrounding the area of amputation.

Varied from a diameter of 1.65mm to 6.65mm.

Diameter of 5.07 = protective sensory threshold².

Results

Methods

The light touch sensation threshold was significantly greater in amputees than healthy controls (p<0.001).

Methods

Groups	Total	Gender	Age(yrs)	Height(m)	Weight(kg)
Unilateral Transtibial Amputee	20	F=4 M=16	59.7±15	1.79±.06	100.2±15.9
Healthy Control	17	F=4 M=13	54.1±16	1.72±.09	85.5±18.8

Conditions

- 1) No vibration
- 2) White noise vibration
- 3) Pink noise vibration

The baseline and the three conditions were administered to the midthigh of the residual limb by a vibrating tactor. Figure 1: The application of vibrations (White and Pink Noise) had no significant effect on the perception of light touch in the residual limb (tibial crest) of individual with transtibial amputation (p=0.44).

Discussion

Our hypothesis was not supported, even though some interesting trends were present especially for the below protective sensation threshold amputees. We are currently testing whether sub-threshold vibrations can improve other functions, such as walking and standing using biomechanical analyses

Acknowledgements

This work was supported by NIH P20GM109090 and NIH R15HD08682.

References

Galica, A.M., et al. (2009) *Gait & Posture*, 30(3), 383
Wang, Fengyi, et al. (2017) *J Diabetes Res*, 1–12.

