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Abstract 

The dynamic interactions between heart rate and blood pressure are 
studied, under normal physiological conditions, using new methods to 
extract information from noisy feedback-control systems. Given only 
measurements of spontaneously fluctuating heart rate and blood pressure 
and no interventions, the effect of spontaneous changes in blood pressure 
on heart rate (which are mediated primarily by the arterial baroreflexes) 
are separated from the effect of spontaneous changes in heart rate on 
blood pressure (which are mediated primarily by the mechanical properties 
of the left ventricle and the arterial system). Finite impulse response 
and rational transfer function models for the arterial baroreflex and for 
the combined mechanical properties of the left ventricle and arterial 
tree are identified in closed-loop in the conscious dog during normal 
sinus rhythm and in the anesthetized dog during electrically-induced 
atrial fibrillation. In normal sinus rhythm, an impulse response model 
for the baroreflex is identified which has a negative gain and a dominant 
time constant of approximately one second. Heart rate fluctuations 
during normal sinus rhythm, however, are not sufficiently rich at 
frequencies less than 0.5 hertz to identify a similar impulse response 
describing the effect of perturbations in heart rate on blood pressure. 
Nevertheless, electrically-induced atrial fibrillation enriches the 
variability of heart rate and blood pressure below 0.5 hertz such that 
causal, rational transfer functions may be identified in closed-loop in 
each of the two directions between heart rate and blood pressure. During 
atrial fibrillation the linear effects of fluctuations in heart rate on 
blood pressure are identified as a system with a positive gain, a corner 
frequency of approximately 0.1 hertz, and a time constant of 
approximately 1.6 seconds. This system may provide a minimally-invasive 
estimate of the combined properties of the input impedance of the aorta 
and the mechanical properties of the left ventricle. The effect of 
fluctuations in blood pressure on ventricular rate in atrial fibrillation 
is identified as a system with a negative gain, a corner frequency of 
approximately .25 to .3 hertz, and a time constant of approximately 0.6 
seconds. This result is consistent with the impulse response model 
identified for the baroreflex during normal sinus rhythm and suggests 
that the arterial baroreflex modulates AV nodal conduction during atrial 
fibrillation for blood pressure changes that are slower than about 0.3 
hertz. These investigations suggest that the mutual effects of two 
fluctuating hemodynamic variables on each other may be separately 
identified if appropriate closed-loop, stochastic identification methods 
are employed. These methods require no experimental interventions, and 
thus may provide new noninvasive methods to study hemodynamic control 
systems, with simple measurements of fluctuating hemodynamic variables, 
in a variety of clinical settings. 
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Chapter 1 

INTRODUCTION 

Heart rate, blood pressure, and respiration have long been known to 

fluctuate on a beat-to-beat and breath-to-breath basis [3]. In 1733, 

Stephen Hales documented this variability in hemodynamic parameters with 

the first quantitative measurements of arterial blood pressure [41, 3]. 

He noted a correlation between interbeat interval, blood pressure, and 

the respiratory cycle [41, 3]. Figure 1-1 illustrates this beat-to-beat 

variability (from top to bottom) in recordings of atrial electrogram, 

breathing movement, and arterial pressure in a healthy conscious dog. 

This correlation of interbeat interval with the respiratory cycle is 

often considered a sign of health. It may be absent in congestive heart 

failure or absent in fetal distress during labor. The correlation of 

blood pressure with the respiratory cycle, when there is a marked 

decrease in arterial pressure with each breath, is known as pulsus 

paradoxus and has long been recognized as an important clinical sign 

which may indicate cardiac tamponade. 

In addition to the periodic fluctuations of instantaneous heart rate 

and arterial blood pressure that correlate with the respiratory cycle, 

there are well known periodic fluctuations that are slower than 

respiration. They were first documented in arterial blood pressure soon 

after the introduction of the recording manometer in the mid 19th century 

by L. Traube [84], E. Hering [42], E. Cion [19], and S. Mayer [61] (see 

Figures 1-2 and 1-3). They were documented later in heart rate by 





-6- 

Respiration (middle), and Systemic Arterial ( 

Blood Pressure (bottom) in a conscious, healthy dog. 

Frederick in 1882 [27] and Fleisch in 1932 [26] (see Figure 1-4), in 

systemic venous pressure by Golwitzer in 1929 [34] and also in arterial 

blood flow by Golenhofen in 1957 [33] and Kenner in 1972 [53]. 

Fluctuations in individual hemodynamic parameters have since been 

studied extensively by many investigators [3, 50, 67, 75, 45, 54, 71] and 

a number of theories exist to explain their origin, yet there have been 

few efforts to mathematically characterize interactions between two or 

more fluctuating cardiovascular signals. Since heart rate and blood 
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A) STANDING 

B) SUPINE 

Figure 1-4: Slow Waves in Heart Rate Induced by Standing (a), 

(compare with sitting (b)) [67] 





-9- 

pressure both spontaneously exhibit similar fluctuations and therefore 

continuously perturb the mechanisms that act to control them, 

characterization of interactions between these two fluctuating signals 

may reveal information about the hemodynamic mechanisms that regulate 

them under normal physiological conditions. 

This study attempts to characterize interactions between 

fluctuations in heart rate and blood pressure during normal sinus rhythm 

and during electrically-induced atrial fibrillation. 

Since the mechanisms by which perturbations in heart rate affect 

blood pressure (i.e. ventricular and arterial mechanics) are physically 

distinct from the control reflexes by which perturbations in blood 

pressure modulate heart rate (i.e. arterial baroreceptors), we must 

employ methods that will be able to separate the directional effects 

between these two variables. Such methods are those that are required to 

identify the parameters of a system that is operating in closed-loop 

(i.e. with feedback control). These methods are reviewed in [40] and 

also in a longer version of this thesis submitted as a doctoral thesis in 

electrical engineering [52]. Methods based on Fourier spectra, as used, 

for example, in [94, 64, 25] to study interactions between heart rate, 

blood pressure, and respiration, are inherently limited in their ability 

to separate directional interactions, for they violate a fundamental 

condition for the identifiability of a closed-loop system. By 

identifying transfer functions directly in the frequency domain, they 

confuse the effects of future and the past events. We will use time- 

domain methods to identify strictly-causal, parametric models that 

inherently avoid confusion about the direction of time and therefore 

prevent confusion about directional effects between signals. 
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This thesis will examine the feasibility and limitations of 

employing closed-loop identification* to stndy how heart rate and blood 

pressure interact as they fluctuate spontaneously under normal 

physiological conditions. Advantages of these methods are that they 

1. rely on minimal ly-invasive measurements of heart rate and 

blood pressure, 

2. require no exogenous test signals to excite the control 

systems under study since they rely on small, spontaneous 

hemodynamic perturbations, 

3. do not require the interruption of any feedback paths, and yet 

they are able to estimate the behavior of the system as if 

there were no feedback. 

Disadvantages are that 

1. only partial information may be obtained about a control 

reflex if it is only partially stimulated by spontaneous 

physiological perturbations, 

2. some conditions for the identifiability of closed-loop systems 

have to be assumed and are not checkable. 

These methods have been used successfully in industrial and 

aerospace applications [65, 63, 20] but rarely in medicine [83]. Thus, in 

an effort to both demonstrate their applicability to medical problems and 

to outline their limitations, this study will attempt to separately 

identify, during both normal sinus rhythm and atrial fibrillation, 

linear, diserete-time, models for 

^Systems identification may be defined as follows. Given a physical 

system and a class of models for that system, identification is the 

process by which a particular model within that class is chosen such that 

it best describes the physical system with respect to a criterion. 

Identification is performed in closed-loop when the open-loop 

characteristics of a system are estimated using measurements that were 

obtained while the system was operating in closed-loop. 





1. the effect of fluctuations in heart rate on blood pressure, 

which may contain information about both ventricular and 
arterial dynamics, and 

2. the effect of fluctuations in blood pressure on heart rate, 

which may contain information about the arterial baroreflex. 
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Chapter 2 

METHODS 

2.1 Experiments 

Recordings of electrocardiogram (ECG), arterial blood pressure, 

central venous pressure, and respiration in conscious, unanesthetized 

dogs, with chronically implanted arterial and venous catheters and atrial 

epicardial electrodes, were recorded continuously on FM magnetic tape 

while the dog rested quietly. Stationary segments of steady-state data at 

least 5 minutes long were recorded at the beginning of each experiment 

and during the administration of one or more of the following drugs: 

propranolol (a beta-sympathetic blocker), glycopyrrolate (a peripheral 

parasympathetic blocker), phentolamine (an alpha-sympathetic blocker), 

and angiotensin converting enzyme inhibitor (a blocker of the renin- 

angiotensin system). Experiments were also performed with atrial pacing. 

Only the baseline data with no interventions will be discussed in this 

preliminary report. 

2 
Additional experiments were performed with anesthetized dogs, where 

atrial fibrillation was induced by electrical stimulation of the right 

atrium via epicardial electrodes. Electrocardiogram, femoral arterial 

pressure, and breathing movement by inductive plethysmography were 

recorded continuously on FM tape for episodes of at least five minutes. 

^by Ronald D. Berger 
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2.2 Data Preprocessing 

Stationary, steady-state epochs of data (i. e. electrocardiogram, 

breathing movement, and arterial blood pressure) at least 5 minutes in 

length were sampled by an analogue-to-digital converter. The 

electrocardiogram was sampled at 360 hertz while arterial blood pressure 

and breathing movement were sampled at 4 hertz after passing through a 

four-pole anti-aliasing analogue filter. The electrocardiogram was 

analyzed by a pattern recognition routine implemented on a microprocessor 

which detects the time of occurrence of each R-wave [76]. A sequence of 

R-R intervals resulted. Four estimates of instantaneous heart rate per 

second were obtained by counting the number of heart beats within a 1/2 

second window that is shifted over the sequence of R-R intervals. This 

sequence of instantaneous heart rate values, sampled at 4 hertz, was 

aligned in time with the band-limited measurements of arterial blood 

pressure and respiration which also were sampled at 4 hertz. 

2.3 Numerical Methods 

2.3.1 Autospectra and Coherence 

The autospectra for instantaneous heart rate, arterial blood 

pressure, and respiration were estimated using a windowed periodogram 

method. Epochs of stationary data sampled at 4 hertz for 256 seconds 

were used to compute the spectra and coherences in the frequency band 

0.02 to 2.0 hertz. Regions in this frequency band where the coherence 

between heart rate and blood pressure is high are the regions where the 

following estimates of transfer functions will be most reliable. 
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2.3.2 Closed-loop Identification 

Heart Rate 
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Figure 2-1: Symmetric Closed-Loop Model 

Given measurements of spontaneously fluctuating heart rate and blood 

pressure, a symmetric closed-loop model, figure 2-1, in which the 

feedforward path represents the arterial baroreceptor reflex and the 

feedback path represents the mechanical properties of the left ventricle 

and the arterial tree was identified using five minute epochs of 

stationary data during normal sinus rhythm and during atrial 

fibrillation. The direct method of closed-loop identification [40, 52] 

was implemented using a prediction error algorithm to estimate the 
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3 
parameters in the following coupled, linear , autoregressive-moving 

average models with exogenous known inputs and unknown colored noise, 

i.e. ARMAX(p,q,r) models of the following form: 

W- (z) 
A,(z) Y(z) = B..(z) X(z) + 1- 

1 1 Cj(z) 

W- (z) 
A~(x) X(z) - B,(z) Y(z) + -- 
^ 2 C2(z) 

where Y =(instantaneous heart rate - mean heart rate) and X =(arterial 

blood pressure - mean blood pressure). A^(z), B^(z), C^(z) and A^z), 

B2(z), C2(z) are polynomials in z~* of orders p^, , r^ and p2, q2, r2 

respectively (i.e. A^(z) = a^(i)z-^ ) with aj(0)= a2(0)= c^(0)= 

c2(0)=l and bj(0)= b2(0)=0. W^(z) and W2(z) are independent zero-mean 

white noise processes. Distinct feedforward and feedback transfer 

functions, B^,/A^, and B2/A2, are directly identifiable from closed-loop 

data if 

- the inputs to each path are independent of present and future 

values of the output disturbances in each path, and 

- the output disturbances in each path are independent of each 

other. 

These conditions are assumed by the above closed-loop model. Each path 

is identified separately from closed-loop data using a recursive 

generalized least squares estimator. The recursive estimator employs a 

UDU* factorization of the parameter error covariance. The model orders 

3 
Since blood pressure and heart rate fluctuate only by small amounts 

about their steady state mean values, it may not be unreasonable to 

assume that the systems that respond to and generate these fluctuations 

operate within linear regimes in the neighborhood of an equilibrium 

point. 
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are estimated using a modified AIC information criterion derived in [52]. 

Two classes of models were identified 

1. discrete-time, finite impulse response models, B(z x) for 

i=l,2,...,q, corresponding to ARMAX(l,q,r) equations with all 

autoregressive coefficients set to zero except for a(0)=l. In 

this case for an impulse input (i.e. x^=l for i=0 and zero 

otherwise) the output, y^, is the impulse response and equals 

the moving average coefficients, y^= b^. 

2. discrete-time, rational transfer function models, 

B(z-1)/A(z •*) for i=l,2,...,q and j=0,l,...,p, corresponding 

to ARMAX(p,q,r) equations with p+1 nonzero autoregressive 

coefficients and q nonzero moving average coefficients. The 

roots of A(z-1) are estimates of the poles and the roots of 

B(z 1) are estimates of the zeros of the transfer function. 
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Chapter 3 

CLOSED-LOOP IDENTIFICATION RESULTS 

3.1 Normal Sinus Rhythm 

Figure 3-1 shows typical time series and spectra for instantaneous 

heart rate, arterial blood pressure, and respiration that have been low- 

pass filtered such that they only contain frequencies below 2 hertz. 

Note that the spectra for heart rate and blood pressure primarily contain 

power in a narrow frequency band near the mean breathing rate, .35 hertz, 

in this example. In figure 3-2 the coherence between heart rate and 

blood pressure is highest between approximately 0.1 to 0.7 hertz. This 

is the frequency region where there is a high correlation between heart 

rate and blood pressure fluctuations. It is the best region in which to 

attempt to identify dynamic relationships between heart rate and blood 

pressure. 

Spontaneously fluctuating heart rate and arterial blood pressure 

were used to identify a finite impulse response model for the arterial 

baroreflex in closed-loop in the conscious dog during normal sinus 

rhythm. Figure 3-3 shows the mean impulse response for the effect of 

small, spontaneous changes in blood pressure on heart rate. It was 

computed from 6 experiments in 4 dogs. Each impulse response was scaled 

such that the absolute value of the its minimum point was normalized to 

unity. This impulse response has a negative gain and a first-order time 

constant of approximately one second, suggesting that a step increase in 





TRERT 

tS O* to 

HEART RATE 
T0528A 

BLOOD PRESSURE 
T052BA 

1.493 
E*01 

7.2« 
£♦00 

0. WO 

TRERT 

j[ 
or J.40 1 iso br t?r TM to 

VENTILATION 
TOS20A 
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Figure 3-2: Typical Coherence and Phase between 

Heart Rate and Blood Pressure During Normal Sinus Rhythm 

Figure 3-3: Baroreceptor Impulse Response 

during Normal Sinus Rhythm 
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blood pressure results in a bradycardia that exponentially approaches a 

lower mean heart rate with a time constant of one second. This result is 

consistent with the response of the arterial baroreflexes and will be 

discussed in section 4.1. The absolute gain of this response was not 

estimated in these experiments but may be computed subsequently using the 

blood pressure calibration signals that were recorded with each 

experiment. 

During normal sinus rhythm, heart rate variability is not 

sufficiently rich^ for frequencies less than 0.5 hertz to identify a 

similar relationship between heart rate fluctuations and blood pressure. 

Figures 3-4 and 3-5 display estimates of two different functions that 

characterize the effect of fluctuations in heart rate on blood pressure. 

They are the finite impulse response and transfer function, respectively. 

However, in this example, the energy of heart rate and blood pressure 

fluctuations is concentrated in a narrow frequency band (see figure 3-1), 

and thus little information may be obtained from these estimates. In 

figure 3-4 the impulse response demonstrates little more than a spurious 

oscillation about zero which may mask any information that might underlie 

it. Similarly the transfer function in figure 3-5 shows spurious peaks. 

These spurious peaks correspond to the spurious oscillations in the 

impulse response. They are artifacts that may occur when the heart rate 

signal's spectrum is close to zero in regions where the blood pressure 

4 
Sufficiently rich is a technical term which refers to a signal that 

has energy that is significantly greater than zero in the frequency band 

in which the system identification is being performed (see [52]). 





0.139527E+01 S5-APR-83 

V0801A HR—>BP 
\ 

j-' tPOINTS= 1400. ARHAX( 0,40) AIC1= -5378.79 AR( 7) AIC2= -4873.31 

-0.157B07E+01 

Figure 3-4: Impulse Response for the Effect of 

Fluctuations in Heart Rate on Blood Pressure 

During Normal Sinus Rhythm 

1.142 
EH* 

1.000 
E-01 

-1.142 
EH* 

OPODTIS* 1050. «WI 0, 7) UC1« -4410.00 «( I) «C2- -4224.70 

\ 
--SFFnW 

1 M i ( i.3J3E-02 I.IOOE-Ol i.do7t+oe 'i.S6k«U- 
T0928A HR—>BP PHASE TF 

Figure 3-5: Transfer Function for the Effect of 

Fluctuations in Heart Rate on Blood Pressure 

During Normal Sinus Rhythm 





-22- 

signal's spectrum has peaks. This may occur when heart rate fluctuates 

only over a very limited frequency band and when the blood pressure 

signal has not been adequately prefiltered to remove its frequency- 

modulated components.^ It may be possible to circumvent this problem 

during normal sinus rhythm by limiting the identification to a narrow 

frequency band and appropriately prefiltering both heart rate and blood 

pressure.** Another way to circumvent this problem is to enrich the 

fluctuations of heart rate such that they contain energy over a broader 

frequency band as occurs during atrial fibrillation. 

Thus, during normal sinus rhythm, it was possible to identify an 

impulse response describing the effect of small, spontaneous changes in 

blood pressure on heart rate. However, it was not possible, with this 

set of data, to estimate a nonzero relationship in the opposite 

direction, i.e. relating small, spontaneous changes in heart rate to 

changes in blood pressure. 

3.2 Atrial Fibrillation 

Electrically-induced atrial fibrillation in the anesthetized dog 

enriches the variability of heart rate and blood pressure below 0.5 hertz 

such that causal, rational transfer functions may be identified in 

The spectra of modulated cardiovascular signals are discussed in 
detail in [52]. 

°See [52] for a more complete discussion of partial identification with 
suboptimally rich signals. 
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closed-loop in each of the two directions between heart rate and blood 

pressure. Compare the spectra of heart rate and blood pressure during 

atrial fibrillation, figure 3-6, to those during normal sinus rhythm, 

figure 3-1. Note that during atrial fibrillation the signals have a 

broader bandwidth and tend to have more energy at frequencies below 0.5 

hertz. Note also that the coherence between heart rate and blood 

pressure during atrial fibrillation is highest in this frequency band, 

figure 3-7. 

During atrial fibrillation a transfer function is identified for the 

linear effects of slow fluctuations in heart rate on blood pressure (see 

figure 3-8). Estimates are quite similar for several experiments in two 

dogs, see figure 3-8. The frequency response of this transfer function 

rolls off rapidly with a corner frequency at approximately 0.1 hertz. 

This corner frequency corresponds to a time constant of approximately 1.6 

seconds. The phase begins at zero in most examples and is consistent 

n 
with a positive gain. This transfer function may describe combined 

properties of the input impedance of the aorta and the mechanical 

properties of the left ventricle. It will be discussed in section 4.2. 

During atrial fibrillation a transfer function is also identified 

n 
'Note that we have only examined these transfer functions for 

frequencies up to 0.5 hertz even though the ARMAX estimates actually 

compute them up to 2 hertz. Figure 3-10 demonstrates that there is a 

large artifact near 2 hertz that is due to the different filters used to 

preprocess heart rate and blood pressure. This artifact virtually 

precludes accurate estimates of finite impulse response models directly 

because in the time domain this artifact appears as a large oscillation 

that masks the low frequency effect that is visible in the frequency 

domain below 0.5 hertz. 
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Figure 3-7: Coherence between Heart Rate and Blood Pressure 

During Atrial Fibrillation 

which characterizes the effect of small, spontaneous changes in blood 

pressure on ventricular rate. Estimates again are quite similar for 

several experiments in two dogs, see figure 3-9. This transfer function 

rolls off at a higher frequency than the transfer function for the effect 

of heart rate on blood pressure. It has a corner frequency of about 0.25 

to 0.3 hertz which corresponds to a time constant of about 0.6 seconds, 

figure 3-9. It's phase, in most examples, begins at n suggesting that 

the gain has a negative sign, figure 3-9. Both the negative gain and the 

time constant of approximately 0.6 seconds are consistent with the 
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negative gain and time constant of approximately one second identified in 

section 3.1 for the baroreceptor impulse response during normal sinus 

rhythm. It suggests that the arterial baroreflex may modulate atrio¬ 

ventricular conduction during atrial fibrillation. 

Thus estimates for the dynamic effects of small changes in blood 

pressure on heart rate have been identified during normal sinus rhythm 

and during atrial fibrillation. In addition, estimates in the reverse 
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direction, i.e. for the dynamic effects of small changes in heart rate on 
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blood pressure, have been identified during atrial fibrillation but not 

during normal sinus rhythm. The significance of these results will be 

discussed in the following chapter. 

3.3 Summary of Results 

1. Finite impulse response models relating fluctuations in blood 

pressure to heart rate are identified during normal sinus 

rhythm. They are consistent with the response of a first- 

order linear system with a negative gain and a time constant 

of approximately one second. This result may describe the 

arterial baroreceptor reflex. 

2. During normal sinus rhythm, heart rate variability is not 

sufficiently rich below 0.5 hertz to identify the effect of 

perturbations of heart rate on blood pressure. 

3. Atrial fibrillation enriches the spectrum of heart rate and 

blood pressure below 0.5 hertz and allows the identification 

of a transfer function relating the effect of perturbations of 

heart rate on blood pressure. This transfer function has a 

positive gain and a corner frequency of approximately 0.1 

hertz. This result is similar to estimates of arterial input 

impedance obtained in open-loop by Ringo e_t. a_l. [69], but 

may, in addition, contain information about the mechanical 

properties of the left ventricle. 

4. During atrial fibrillation a transfer function is identified 

for the effect of blood pressure perturbations on heart rate. 

It has a negative gain, a corner frequency at approximately 

.25 to .30 hertz, and a time constant of approximately 0.6 

seconds. This result is consistent with the finite impulse 

response model obtained for the arterial baroreflex during 

normal sinus rhythm. 



\ 
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Chapter 4 

DISCUSSION 

4.1 The Effect of Small Changes in Blood Pressure on Heart Rate 

The time course of the effect of small changes in systemic arterial 

blood pressure on instantaneous heart rate have been quantified. During 

both normal sinus rhythm and during atrial fibrillation an increase in 

blood pressure results in a decrease in heart rate with a characteristic 

time course. The dominate component of this time course is exponential 

with a time constant of approximately one second. This may represent the 

time course of the combined vagal and sympathetic effects of the arterial 

baroreflexes on heart rate. To a first approximation, this result is 

consistent with the time course by which changes in vagal firing affect 

heart rate. Changes in vagal firing have been shown to affect heart rate 

with a time constant on the order of one second, whereas changes in 

sympathetic activity usually take on the order of several seconds to 

affect heart rate [73, 81, 48, 49, 88, 89]. The estimated time constant 

of approximately one second suggests that, in our young healthy dogs, 

baroreflex control of heart rate is dominated by the vagus, suggesting a 

relatively high level of parasympathetic tone. A time constant on the 

order of several seconds might suggest that sympathetic control of heart 

rate predominated, such as would be expected in congestive heart failure. 

The frequency response estimates for the effect of small changes in 

blood pressure on ventricular rate during atrial fibrillation suggest 
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that fluctuations in blood pressure up to approximately 0.3 hertz are 

able to modulate ventricular rate. This result also is consistent with a 

predominance of parasympathetic, rather than sympathetic, modulation of 

ventricular rate since autonomic-blocking studies of heart rate 

variability suggest that the sympathetic nervous system is not able to 

modulate heart rate at frequencies much faster than 0.1 hertz, whereas 

the parasympathetic system may 13, 67, 50]. 

The absolute gain of the arterial baroreflex was not estimated in 

this initial study, however the sign of the gain was reproducibly 

estimated as negative. This would be expected since, for an increase in 

blood pressure, the arterial baroreflex results in a decrease in heart 

rate. Estimates of the absolute gain may easily be obtained from this 

data by calibrating the blood pressure signals with calibration data that 

is stored on the recordings of each experiment. An estimate of the 

baroreflex gain that could be obtained in closed-loop from simple 

measures of heart rate and blood pressure, might be of great clinical 

interest in the study of hypertension and congestive heart failure, two 

conditions where there is evidence that baroreflex sensitivity is 

reduced [22, 39, 66, 43], The gain of the effect of fluctuations in 

blood pressure on heart rate may also be used as a quantitative estimate 

of parasympathetic and/or sympathetic control of heart rate in situations 

where one or the other is known to predominate. 
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4.2 The Effect of Small Changes in Heart Rate on Blood Pressure 

During normal sinus rhythm we were not able to estimate a nonzero 

time course for the effect of small changes in instantaneous heart rate 

on systemic arterial blood pressure. The reason for this is that the 

fluctuations in heart rate during normal sinus rhythm were not 

sufficiently rich over a broad enough frequency band to result in 

detectable changes in blood pressure. Thus an important concept in 

systems identification has been illustrated; in simple terms, one can not 

obtain information about how a system responds to inputs if sufficient 

inputs are not applied to excite the system. Our methods require no 

exogenous inputs, but they will only work if adequate spontaneous inputs, 

i.e. fluctuations, are available. 

Ringo e£. al_. [69] point out that important cardiovascular control 

actions occur in the arterial input impedance spectrum at frequencies 

lower than about 0.5 hertz and that some type of low frequency 

enhancement is ordinarily needed to observe this region of the impedance 

spectrum. He notes that Kenner [53] used low frequency oscillations in 

flow to estimate renal artery input impedance. Taylor [82] and 

Rubenstein [74] used pseudorandom excitation to estimate frequency 

dependent cardiovascular parameters. Ringo e_t. a_l. computed arterial 

input impedance from the effect of arterial flow on arterial pressure. 

He enriched the low-frequency fluctuations of arterial flow by frequency 

modulating heart rate with a pacemaker. His measurements were obtained 

in open-loop because changes in blood pressure could not in turn affect 

heart rate since the heart rate was controlled by a frequency-modulated 
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pacemaker. We, however, enriched the low-frequency fluctuations of heart 

rate by inducing atrial fibrillation which results in a pseudorandom 

distribution of RR intervals. Our estimates differ from those of 

Ringo et^. aj^. in that we estimated the frequency-dependent effects of 

heart rate on blood pressure rather than the frequency-dependent effects 

of flow on blood pressure, and thus our results should represent the 

combined mechanical properties of, not only the arterial system, but also 

the left ventricle. 

N - 

l-ie. 9. The magnitude and phase of the low-frequency arterial input 

impedance calculated from the transformed flow and pressure data. 

The solid line is drawn through those data points computed trom the 

first and third harmonics of the 10 and 20 s modulated data. The 

error bars indicate the range of values associated with different 

modulation indexes These results are contrasted with the impedance 

values computed lrom the unmodulated How and pressure data which 

exhibit large amounts of scatter for multiple data sets. 

Figure 4-1: Magnitude and Phase of Arterial Input Impedance 

from Ringo e_t. al_. [69] 

The estimate of arterial input impedance obtained by Ringo e_t. a_l. is 

shown in Figure 4-1. It is, to a first approximation, consistent with 

the estimates obtained for the lumped mechanical properties of the left 

ventricle and the aorta shown in Figure 3-8. Thus, during atrial 
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fibrillation, we were able to estimate a nonzero transfer function 

relating small changes in heart rate to changes in blood pressure. This 

transfer function may provide an approximate estimate of aortic input 

impedance, and perhaps, may also be used to study the mechanical 

properties of the left ventricle in patients with atrial fibrillation. 

All of the above results are preliminary, and further experiments 

are needed reproduce and validate them. Nevertheless, they are exciting 

because they were obtained without any interventions except those 

required to record blood pressure and heart rate. 

In summary, these investigations suggest that the mutual effects of 

two fluctuating hemodynamic variables on each other may be separately 

identified under certain circumstances if appropriate closed-loop 

identification methods are employed. They suggest that information about 

hemodynamic control systems may be extracted from the dynamic 

interactions of spontaneously fluctuating hemodynamic variables. Closed- 

loop identification of interactions between fluctuating cardiovascular 

variables thus may provide new noninvasive methods to study hemodynamic 

control systems in a variety of clinical settings. 

g 
See [52] for a technical discussion of the precise 

to identify a feedback-control system in closed-loop. 
conditions required 
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