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Abstract 
TGF-p IS A CRUCIAL COUNTER-REGULATORY CYTOKINE THAT INHIBITS 

DNA SYNTHESIS AND FUNCTION OF CD4+ TH1 CELLS RESPONSIBLE FOR 

COLITIS IN MURINE MODELS OF CROHN'S DISEASE. Andrew S. Resnick and 

Bjorn R. Ludviksson. Mucosal Immunity Section. NIAID. National Institutes of Health. 

Bethesda, MD (Sponsored by Dr. John Seashore, Department of Surgery, Yale University 
School of Medicine). 

In the late 1980s, it became apparent that under certain experimental conditions, 

CD4+ T cells would differentiate into either IFN-y (Thl) or IL-4-producing (Th2) cells. 

In the past decade, murine models of Crohn’s disease have demonstrated that this 

condition may reflect an over-active Thl cell response. In several of these models, 

decreased colonic inflammation has been associated with increased levels of the cytokine, 

TGF-p. However, it is presently unknown how TGF-P affects the proliferation, cytokine 

production, or intra-cellular signaling found in Thl cells. 

We primed CD4+ Ova Tg T cells in conditions favoring Thl differentiation, and 

also used the previously-established A.E7 Thl cell line. In both cell lines, TGF-P 

produced a dose-dependent reduction of DNA synthesis during antigen-specific 

stimulation. In functional assays we found that TGF-P had a dose-dependent inhibitory 

effect on IFN-y production (A.E7: 1 ng/ml TGF-P reduced IFN-y production by 34%, 

p<0.01; 10 ng/ml reduced production by 61.9%, p<0.007. Thl cell line: 1 ng/ml TGF-P 

reduced IFN-y production by 20.9%, p<0.017; 10 ng/ml TGF-P reduced production by 

30%, p<0.0004). However, this counter-regulatory effect of TGF-P was not due to the 

lack of IFN-y or IL-2 since addition of these cytokines into the cultures did not reverse 

the effects of TGF-p. Furthermore, this effect was not attributed to apoptosis since 

addition of TGF-P did not induce apoptosis of Thl cells significantly above baseline. 

It is known that STAT4 phosphorylation is up-regulated by IL-12 during Thl cell 

activation. Therefore, we evaluated whether TGF-P could interfere with IL-12 mediated 

signaling of Thl cells. In both the Thl and A.E7 cell lines, TGF-P significantly down- 

modulated the phosphorylation of STAT4. Together with the data on DNA synthesis and 

cytokine production, these experiments suggest that TGF-P regulates the function of 

fully-differentiated CD4+ Thl cells by inhibiting the phosphorylation of the intracellular 

protein, STAT4. 
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Introduction 

Author’s introductory note 

The research completed for this thesis was stimulated by the findings of 

Dr. Warren Strober and his peers, who found that in their murine models of 

Crohn’s disease (see text), there was an overabundance of inflammatory T cells 

(Thl cells) (1). Dr. Strober’s group and others have found that when 

inflammation in these murine models is suppressed by various methods, the 

cytokine, transforming growth factor beta (TGF-(3) is expressed at high levels. In 

addition, it has been shown that by inhibiting this cytokine, inflammation is 

restored in the model. Therefore, the hypothesis that was the impetus for this 

research was that TGF-p inhibits the Thl cell development responsible for 

inflammation in the murine models of Crohn’s disease. Through experiments 

measuring DNA synthesis, cytokine production, and intracellular phosphorylation, 

this hypothesis was tested. 

Abbreviations: 
A.E7: CD4+ T helper type I cell type IL: Interleukin 

APC: Antigen presenting cell MBP: myelin basic protein 

BIO.A: transgenic mouse strain NK cell: natural killer cell 

BALB/c: transgenic mouse strain OVA: ovalbumin 

CD3: T cell Ligand PBS: phosphate buffered saline 

CD4: CD4+ T cell Ligand PCC: pigeon cytochrome c peptide 

DNCB: 2,4-dinitrochlorobenzene SED: subepithelial dome 

EAE: Experimental allergic encephalomyelitis STATs: signal transducers and activators 

FCS: Fetal calf serum of transcription 

GALT: Gut-associated lymphoid tissue TCR: T-cell receptor 

HBSS: Hepes Buffered Saline Solution TGF-P: Transforming Growth Factor Beta 

HRP: Horseradish peroxidase Thl cell: CD4+ T helper cell type I 

IFN-y: Interferon gamma Th2 cell: CD4+ T helper cell type II 

IgA: Immunoglobulin A TNF-a: tumor necrosis factor alpha 

IL-2 /IL-2 knockout TNP: 2,4,6-trinitrophenol 
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Inflammatory Bowel Disease 

Inflammatory bowel disease was first characterized in the late 19th and 

early 20th centuries. Crohn’s disease is primarily a transmural inflammation of the 

wall of the gastrointestinal tract. The complications of the disease include bowel 

obstruction, fistulas, and abscess formation (1). Fistulas are a particularly 

insidious complication and are found in one-third of patients (2). Crohn’s disease 

can occur anywhere in the entire gastrointestinal tract but often involves the 

terminal ileum. There are “skip lesions,” meaning that the areas of inflammation 

are interspersed with normal areas. Histologically, the lesions in Crohn’s disease 

consist of a dense accumulation of activated T cells and macrophages (1). In 

some cases, granulomas may form. The clinical course of Crohn’s disease is a 

recurrence of episodes of abdominal pain and symptoms of bowel obstruction. 

More than 50% of patients will require surgery at some point in their lives. 

Medical therapy is with immunosuppressant medication. However, neither 

medical nor surgical treatment is curative, as even with the complete surgical 

removal of diseased intestine, there is a 50% recurrence rate within ten years 

(1)- 

In comparison, ulcerative colitis involves the inflammation only of the 

mucosa, leading to the formation of ulcers (1). The lesions of ulcerative colitis 

are nearly always continuous, with no normal areas between inflamed areas of 

the Gl tract. Ulcerative colitis usually begins in the rectum and sigmoid colon and 

can progress in a proximal direction. Histologically, ulcerative colitis is also 

different from Crohn’s disease. There is a larger variety of cellular infiltrate and 
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acute inflammatory events, such as the congregation of neutrophils into crypt 

abscesses, are quite prominent (1). Treatment for ulcerative colitis is the same, 

with immunosuppressant medication. Depending on the extent of the disease 

and the presence of any associated dysplastic areas of the colon, surgery is a 

curative option for patients with ulcerative colitis (1). 

Immunology and the Gl Tract 

The majority of the contact between foreign antigens and the host occur 

at mucosal surfaces (3). Although most dietary antigens are degraded by the 

time they reach the small intestine, studies in both rodents and in humans show 

that some undegraded antigens are absorbed by the gastrointestinal tract and 

are later found in the systemic circulation (3). The concentration of bacteria in 

the colon is very high, with over 1012 microorganisms found in each gram of 

stool. The normal flora provides a continuous source of antigenic stimulation to 

the gut. In order to handle the dietary antigens and the gastrointestinal microbes, 

the Gl tract has an abundance of lymphoid tissue. In fact, there are 1012 

lymphoid cells per meter of small intestine in the human (3). It has been 

postulated that the number of antibody-secreting cells in the human gut exceeds 

the number of these cells elsewhere by severalfold (3). 

The gut-associated lymphoid tissue (GALT) system has been extensively 

studied (4). Lymphoid cells congregate into structures known as Peyer’s patches. 

M cells, which are specialized cells present in the follicle-associated epithelium, 

transport antigens from the lumen of the gastrointestinal tract into the 
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subepithelial dome (SED) region of the germinal follicles in the Peyer’s patch (4). 

In this area, the antigens encounter dendritic cells, macrophages, T cells, and B 

cells. In the GALT system, the B cells stimulated in this manner preferentially 

produce IgA. After the initial stimulation of IgA-producing B cells in the Peyer’s 

patch germinal center, the B cells leave the Peyer’s patch and migrate to 

draining lymph nodes and then to the lamina propria underlying mucosal 

surfaces. At this point, the B cells differentiate into plasma cells and function to 

produce IgA that is ultimately transported into the lumen of the gastrointestinal 

tract (4). 

Parallel to the activation of B cells in the Peyer’s patch is the activation of 

T cells (see Figure 1). It is thought that like B cells, T cells come into contact with 

dendritic cells in the subepithelial dome (SED) region of the follicles of the 

Peyer’s patch. T cells are activated and can then migrate out of the Peyer’s 

patch and can disseminate to not only the lamina propria of mucosal tissue but 

also to other lymphoid sites (4). 

There are three main immunological responses to the presence of antigen 

in the gastrointestinal tract (3). The first response is a local, noninflammatory 

immune response that results in the production of secretory IgA. As discussed 

above, antigen is transported by M cells into the Peyer’s patch, where it is taken 

up by dendritic cells and presented to B cells, stimulating the production of 

specific IgA against the antigen. 

The second immunological response is a systemic inflammatory 

response, with the production of antibodies in the serum. This is a rare event and 
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FIGURE 1—T cell movement in the gut-associated lymphoid tissue (GALT). M 
cells are found in the epithelium near lymphoid follicles called Peyer’s patches. 
The M cells transport antigen from the lumen of the gastrointestinal tract into the 
lymphoid nodules. There, dendritic cells and macrophages take up antigen and 
present it to T cells. This activates the T cells, which then migrate out of the 
Peyer’s patch and can travel to both mucosal sites and to the systemic 
circulation. Adapted from Faria et al. (3) 
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is associated with hypersensitivity reactions to proteins in the diet, or 

overwhelming inflammatory reactions to bacterial invasion (3). 

The final response is a systemic hyporesponsive state known as oral 

tolerance (3). This response is the most common consequence to the ingestion 

of an antigen. With a plethora of harmless proteins and microbes present in the 

gastrointestinal tract, it is apparent why this response should be so dominant. 

Because of its importance to the understanding of the immune system and its 

potential utility in the treatment of Crohn’s disease and other autoimmune 

diseases, the theory of oral tolerance is discussed at length below. 

Thl versus Th2 cells 

Before discussing the immune cells involved in the pathogenesis of 

Crohn’s disease, it is necessary to define the types of CD4+ T cells involved in 

this process. There are two types of CD4+ T cells (4), T helper 1 and T helper 2 

(Thl and Th2). It is thought that both Thl and Th2 cells differentiate from a 

common precursor cell, the naive T cell. The process governing the 

differentiation of naive T cells into Thl and Th2 cells is not fully understood at 

this time. However, it is thought that three main factors contribute to it. Firstly, the 

cytokine milieu to which the T cell is exposed at the time of antigenic stimulation. 

Secondly, the nature and quantity of the antigen. Thirdly, the type of antigen 

presenting cel! (APC) involved in the stimulation process (4). 
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Once differentiated, Thl and Th2 cells have different functions. Thl cells 

produce the cytokines interleukin-2 (IL-2), interferon-y (IFN-y), tumor necrosis 

factor alpha (TNF-a), interleukin-3 (IL-3), and granulocyte-macrophage colony 

stimulating factor (GM-CSF). Th2 cells produce interleukin-4 (IL-4), interleukin-5 

(IL-5), interleukin-10 (IL-10), interleukin-13 (IL-13), interleukin-3 (IL-3), and GM- 

CSF (4). Each type of CD4+ T cell produces different autocrine growth factors, 

with Thl cells producing IL-2 and Th2 cells producing IL-4. Thl cells are 

responsive more to macrophages than B cells, whereas Th2 cells are more 

responsive to B cells than to macrophages. When involved in inflammatory 

reactions, Thl cells induce the proliferation of predominantly neutrophils, while 

Th2 cells induce the proliferation of predominantly eosinophils (4). 

Crohn’s Disease and the Immune System 

The study of the immunoregulatory pathways that might be involved in 

Crohn’s disease was not begun until the early 1960s (5). The first studies trying 

to link the immune system with inflammatory bowel diseases were done by 

Kirsner, who created several animal models of mucosal inflammation (5). In a 

review article by Strober et al., two groups of murine models (see Figure 2) are 

described (5). These models are extremely useful because they not only provide 

insight into the immunological aberrations found in inflammatory bowel disease, 

but can also be used to create potential immunological treatments for the 

disease (1). 





8 

The first group consists of “spontaneous” or “induced” models in which the 

inflammatory cytokine, IL-12 (interleukin-12), drives the mucosal inflammation 

(Figure 2) (5). Inflammatory cytokines, such as IL-12, are mediators that result in 

an influx of lymphocytes, leading to inflammation. Thl cells, which are T cells 

that have differentiated to produce inflammatory cytokines such as IFN-y and 

TNF-a, are produced. The classic model for this type involves injecting the 

compound, 2,4,6-trinitrophenol (TNP)-substituted protein plus adjuvant into IL-2"/_ 

mice (6). The histology shows a massive lymphocyte and macrophage infiltration 

of the colon wall. Similar to Crohn’s disease in humans, the inflammation is 

present in the full thickness of the wall. In both this murine model and in Crohn’s 

patients, the lymphocytes found in the sites of inflammation are mostly Thl cells. 

It has been proposed that Crohn’s disease represents an inadequate secretion 

of the counter-regulatory (i.e., inhibitory) and anti-inflammatory cytokine, 

transforming growth-factor beta (TGF-(3) (1). In the IL-2'/' mice injected with TNP, 

there is a failure of TGF-(3 production after injection with TNP (6). It has been 

proposed that the model is similar to Crohn’s disease because the IL-27 mice 

given TNP develop a Thl response that is not appropriately counter-regulated by 

TGF-p (6). 

The second category of model for inflammatory bowel disease is the Th2 

cell model. In contrast to Thl cells, Th2 cells are differentiated T cells that 

secrete the cytokine, IL-4, and stimulate antibody production from B cells, but do 

not produce inflammatory cytokines. The T-cell receptor knockout mouse 

represents the classic form of this model. A newer model in this category is 
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rectally-administered oxazolone. Although the two models seem very different, in 

both, the mechanism is a Th2-mediated process that results in the production of 

IL-4. The inflammation in the gastrointestinal tract is superficial. The histologic 

picture is similar to that seen in human ulcerative colitis (5). 

It has been proposed by many that inflammatory bowel disease 

represents an imbalance between Thl and Th2 cell development. In other 

words, because of a combination of genetics and the environment, patients with 

Crohn’s disease have an overactive Thl cell response, whereas patients with 

ulcerative colitis have an overactive Th2 cell response (5). Evidence for the role 

of genetics is provided by the fact that the incidence of both Crohn’s disease and 

ulcerative colitis shows a strong familial pattern (1). Evidence for the role of the 

environment is provided by the fact that the incidence of Crohn’s disease is 

increased in urban environments (1). 

Characterization of the imbalance of Thl and Th2 cells in humans with 

Crohn’s disease is provided by Fuss et al., who isolated CD4+ T cells from 

intestinal lesions in patients with both Crohn’s disease and ulcerative colitis (1). 

The CD4+ T cells from Crohn’s patients produced twice as much interferon-y 

(IFN-y) compared to CD4+ T cells from controls or patients with ulcerative colitis 

(1). Fuss also isolated CD4+ T cells from the peripheral circulation of patients 

with Crohn’s disease and showed that these T cells secreted three times as 

much IFN-y as did the peripheral T cells from controls or patients with ulcerative 

colitis (1). Additional studies showed that the intestinal T cells from Crohn’s 

patients also secreted less IL-4 and IL-5 than T cells from controls. The cytokine 
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FIGURE 2—There are two categories of murine models of inflammatory bowel 
disease. The first group is made up of Thl models, such as the TNBS colitis 
model depicted in the figure. The inflammatory lesion is characterized by 
increased levels of IFN-y. The second group is made up of Th2 models, such as 
the oxazolone model above. In this group, the inflammatory lesion is 
characterized by increased levels of IL-4 Used with permission from Strober et 
al., 1998. 
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profile of T cells from Crohn’s lesions (increased interferon-y and decreased IL-4 

and IL-5 production) is consistent with Thl cells. In contrast, the cytokine profile 

of T cells isolated from ulcerative colitis lesions (decreased production of 

interferon-y and increased production of IL-5) is partially consistent with a Th2 

imbalance, although there is no elevated IL-4 present (2). 

With evidence that the lesions found in patients with Crohn’s disease 

have an overactive Thl cell population, Neurath et al. did a series of experiments 

to try to show that IL-12, which is the key stimulant of Thl cell activation, is found 

in greater amounts in the lesions of patients with Crohn’s disease (1). It is known 

that IL-12 is produced by antigen-presenting-cells (APCs) when they interact and 

stimulate Thl cells (1). Neurath et al. showed that inflamed tissue from patients 

with Crohn’s disease stained positive for IL-12, whereas tissue from controls and 

from patients with ulcerative colitis did not (1). 

The above information is the foundation for the model that Crohn’s 

disease represents an overactive stimulation of Thl cells. The mucosa of the 

gastrointestinal tract is exposed to an initiating antigenic stimulus. Antigen- 

presenting cells produce an increased level of IL-12, which stimulates a 

dysregulated, over-active Thl cell response. The Thl cells secrete increased 

levels of interferon-y, which in turn, activates macrophages to secrete 

inflammatory cytokines, such as TNF-a, IL-6, and IL-lp, which results in 

inflammatory lesions in the gastrointestinal tract. The cycle is self-perpetuating, 

because high levels of TNF-a and interferon-y further stimulates the activation of 

antigen-presenting cells and the secretion of additional IL-12 (1). 





12 

Many questions remain, however. Does this represent an under-activation 

of counter-regulatory T cells? Is there a deficiency of counter-regulatory 

cytokines? What are the counter-regulatory cytokines? What effect do they have 

on the pathways involved in the activation of Thl cells? The bridge between the 

knowledge of the immunology of Crohn’s disease and the knowledge of the 

counter-regulatory elements involved in T cell suppression is derived from the 

ancient concept of oral tolerance. 

Crohn’s Disease and Oral Tolerance 

It has been known for centuries that one can alter the immune system 

through a mechanism known as oral tolerance. Research in the field of oral 

tolerance has demonstrated that anti-inflammatory cytokines are produced by 

counter-regulatory T cells in response to the ingestion of various antigens (7). 

Because Crohn’s disease may represent a deficiency in the production of 

counter-regulatory T cells and anti-inflammatory cytokines, oral tolerance is 

therefore very important in the understanding of, and possibly could have a 

therapeutic role in the treatment of, inflammatory bowel disease. 

The study of the balance of Thl and Th2 cells really pre-dates any 

knowledge of their existence, as the concept of oral tolerance was described in 

the nineteenth century, when it was first recognized that by ingesting an 

immunogenic compound, it was possible to manipulate the immune system and 

to reduce or preclude a systemic reaction to that same compound at a later time 
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(8). In fact, the terminology was quite different, since none of these concepts 

were known at the time. However, there was a report commenting on the use of 

oral administration of Rhus leaves to Native American children to prevent 

sensitization to poison ivy. Dakin wrote, “some good meaning, mystical, 

marvelous physicians, or favoured ladies with knowledge inherent, say the bane 

will prove the best antidote, and hence advise the forbidden leaves to be eaten, 

both as preventive and cure to the external disease.” (3). This is quite 

extraordinary, considering that there was no such knowledge of a B cell, T cell, 

or antibody at the time. 

In 1911, Wells fed hen’s egg proteins to guinea pigs and discovered that 

the guinea pigs were resistant to anaphylaxis when later challenged systemically 

with these egg proteins (9). In 1946, Chase fed guinea pigs the compound 2,4- 

dinitrochlorobenzene (DNCB) and demonstrated that the animals had decreased 

skin reactivity to the compound after ingesting it orally (10). Indeed, only 3% of 

animals given oral DNCB showed a high skin hypersensitivity response to the 

same compound, compared to 74% of control animals. 

What mechanism is there in the gastrointestinal tract to account for the 

“oral tolerance” discovered so long ago? The gut-associated lymphoid tissue 

(GALT) consists of Peyer’s patches, or lymphoid nodules, epithelial cells found in 

villi, and intraepithelial lymphocytes and lymphocytes found in the lamina propria 

(4). Inside Peyer’s patches, there are both T and B lymphocytes, macrophages, 

dendritic cells, and germinal centers containing B lymphocytes (11). The Peyer’s 

patches are associated with M cells, which take up antigen from the gut and 
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transfer it to antigen-presenting cells in the Peyer’s patches. It has been known 

for some time that the major antibody-mediated response that arises in the Gl 

tract is that of IgA B cells. If the Peyer’s patches are the site of both the induction 

of oral tolerance and/or an antigen-specific antibody response, there must be 

some mechanism in this location to differentiate between the two (11). Further 

complicating the picture is the knowledge that there is more than one mechanism 

for oral tolerance. In fact, it has been shown that low doses of antigen favor 

“active suppression,” which involves the generation of suppressive cells in the 

Peyer’s patches, whereas high doses of antigen favor clonal anergy or deletion 

of responsive T cells (see Figure 3) (11). 

So, we know that there are important regulatory events that take place in 

the Peyer’s patches. These events determine the ultimate response to ingested 

antigens, whether these antigens are harmless Escherichia coli bacteria, food 

products, or cholera toxins. It was not known until recently what elements in the 

Peyer’s patches were responsible for the “active suppression” taking place in this 

site. 

TGF-J3 is a crucial counter-regulatory cytokine involved in oral tolerance 

In 1992, Weiner et al. demonstrated thatTGF-p played an important role in this 

process (12). Using their experimental allergic encephalomyelitis (EAE) model of 

multiple sclerosis in mice, they successfully induced oral tolerance to myelin 
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basic protein (MBP) and showed that this reduced symptoms of EAE (12). They 

demonstrated that after giving oral MBP to mice in vivo, there was reduced 

proliferation of splenic T cells in vitro. Therefore, they postulated that 

suppressive cells from the Peyer’s patches must be inhibiting splenic T cells. In 

addition, they showed that by adding anti-TGF-p antibodies in vitro to splenic cell 

cultures, they could reverse the “oral tolerance” induced by MBP in a dose- 

dependent fashion (12). When they tried feeding various peptides to mice, they 

showed that there were increased levels of TGF-p found in splenic supernatants 

in vitro when they induced oral tolerance in the animals with any number of 

peptides, as long as the same peptide was used in vitro. In other words, if they 

administered oral MBP to the mice, they could measure increased TGF-p 

production from in vitro splenic cultures only if they stimulated the cultures with 

MBP. TGF-p producing T cells must be activated in response to the oral antigen, 

most likely in the Peyer’s Patches, and then must be able to migrate to 

peripheral lymph nodes and to the spleen, where secondary stimulation in an 

antigen-specific manner activates these suppressor T cells to secrete TGF-p in 

this location. Furthermore, in vivo administration of anti-TGF-p antibody could 

reverse the oral tolerizing effects of MBP on clinical symptoms of EAE (12). 

Several human trials have arisen from research on oral tolerance. Groups 

are using oral peptides of various sorts to treat many illnesses. Oral bovine 

myelin protein is being tested for the treatment of multiple sclerosis, chicken type 

II collagen is being tested for the treatment of rheumatoid arthritis, bovine s- 

antigen is in trials for treatment of uveoretinitis, and human insulin peptides are 
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FIGURE 3—In this model, the presence of antigen in the gastrointestinal tract can lead 
to different responses by the host organism, depending on the concentration of antigen 
A high concentration of antigen leads to the clonal deletion or global inhibition of T cells 
that recognize the antigen. However, when a low dose of antigen is present in the Gl 
tract, counter-regulatory cells are produced that include TGF-p-secreting cells and Th2 
cells, which actively inhibit the activation and proliferation of T cells that recognize the 
antigen. Adapted from Friedman et al., 1994 





17 

being tested for treating type I diabetes (13). In all trials, the theory is the same. 

By administering an antigen orally, suppressive T cells will be formed in the 

Peyer’s patches, which will then migrate to peripheral lymph nodes and suppress 

an immunological response to the same antigen (13). 

TGF-p, A Multi-faceted Peptide 

TGF-p plays an important role in oral tolerance but it is not limited to this. 

There are at least three closely-related isoforms of TGF-p found in the human, 

with 70-80% homology among the isoforms (14). TGF-pl is located on 19q 13, 

TGF-P2 on 1q41, and TGF-p3 on 14q24. TGF-p is synthesized as a large 

precursor with an amino-terminal pro-domain and a mature carboxy-terminal 

subunit (15). The amino-terminal domain contains a signal sequence and a 

latency-associated protein, or LAP. Active TGF-p is a homodimer composed of 2 

disulfide-linked mature subunits that are cleaved from the LAP. 

There are 3 types of TGF-p receptors, types l-lll (15). The functional 

receptor complex is a tetramer of two Type I and two Type II receptors, which 

are constitutively-active serine/threonine kinases. The two types of Type III 

receptors, betaglycan and endoglin, are proteoglycans that are involved in 

stabilization but not signaling (16). The initial step is the binding of TGF-p to the 

Type II receptor. Bound TGF-p is then recognized by the Type I receptor, which 

is recruited into the complex. The Type I receptor is then phosphorylated by the 
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Type II receptor and this propagates a signal to various intracellular targets 

called Smads (16). The TGF-p receptor complex phosphorylates Smad2 or 

Smad3, which then form a complex with Smad4, resulting in translocation of the 

complex to the nucleus. Type III receptors are believed to be binding proteins. 

Betaglycan is a membrane-anchored proteoglycan and has been shown to bind 

all three isoforms of TGF-p with high affinity and to facilitate the binding of TGF-p 

to the Type II receptor (16). The role of betaglycan is most evident with TGF-p2. 

Endoglin is the second kind of Type III receptor and has been shown to bind 

TGF-pi and TGF-p3 but unlike betaglycan, it does not bind TGF-p2 (16). 

There are 3 main biological activities of TGF-p (17). Flowever, it is 

important to keep in mind that one confusing characteristic of TGF-p is its 

bifunctional nature (17). The first activity is the inhibitory effect that TGF-p has on 

the growth of most types of cells. The cytokine inhibits the cycling of epithelial 

cells in G1 phase via the inhibition of the cyclin dependent kinase-2/cyclin 

complex (15). However, TGF-p stimulates the growth of certain cell types, 

including Schwann cells, osteoblasts, and chondrocytes (17). The second activity 

is the immunosuppressive effect of TGF-p, which results from its anti¬ 

proliferative properties on both B and T cells. However, TGF-p stimulates 

production of IgA antibodies, possibly playing a role in IgA nephropathy, a renal 

glomeruloproliferative disease. The third activity is the enhancement TGF-p has 

on the deposition of extracellular matrix components, such as collagens, 

fibronectin, tenascin, glycosaminoglycans, and proteoglycans. 
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TGF-p is important in wound repair, as might be expected due to its 

effects on cellular proliferation and extracellular matrix formation (17). A high 

concentration of TGF-pi is found in circulating platelets, where it plays a role as 

a chemoattractant for monocytes, neutrophils, and fibroblasts. In fact, local 

administration of TGF-pi accelerates the healing of cutaneous wounds. 

However, excess TGF-pi has been shown to cause formation of scar tissue. 

Some preliminary studies have shown that by giving antibodies to TGF-pi and 

TGF-p2, together with active TGF-p3, one can enhance wound repair without 

scar formation (17). A potential use for TGF-p is in nerve injuries in the central 

nervous system. After a brain injury, TGF-pi is expressed and causes the 

formation of scar tissue. The regeneration of the damaged nerve is impossible if 

scar tissue has formed. It might be feasible in the future to manipulate the levels 

of the various TGF-p isoforms in order to prevent CNS scar formation and allow 

nerve re-growth after damage. 

The nitric oxide cascade, which is involved in neurotransmission, 

immunological tissue injury, and host defense against bacterial invasion, is 

suppressed by TGF-pi (17). It has been shown that TGF-pi inhibits the 

formation of nitric oxide in macrophages, bone marrow cells, cardiac monocytes, 

smooth muscle cells, and retinal pigment epithelial cells. 

TGF-p is of obvious importance during infection (14). Trypanosomas cruzi 

triggers the activation of the TGF-p signaling pathway. This blocks the activation 

of macrophages by IFN-y, thereby diminishing the oxidative response. Similarly, 
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infection of macrophages by Leishmania induces the production of TGF-p. 

Neutralizing antibodies to TGF-p can halt disease in a murine model. 

Because solid tumors require the formation of a vascularized stroma, 

TGF-p is quite important in the progression of cancer (17). TGF-p stimulates the 

production of stromal elements, such as fibronectin. A high level of TGF-p 

stimulates stromal expansion, allowing the tumor to proliferate, and also results 

in immunosuppression, thereby inhibiting the immune response to the tumor. In 

some cancers, the loss of the type II TGF-p receptor has been correlated with 

the loss of growth inhibition. In some forms of leukemia, the impairment of the T 

cell response and the suppression of lymphokine-activated killer cells is linked to 

uncontrolled expression of TGF-p. 

As might be expected, TGF-p is involved in inflammatory diseases (17). In 

rheumatoid arthritis, increased levels of TGF-p are found in the synovial fluid in 

affected joints. In fact, intra-articular injection of TGF-p in rodents leads to 

synovial erythema, whereas intra-articular injection of anti-TGF-p antibody can 

reverse synovial inflammation. However, systemic administration of TGF-p 

reverses the synovial inflammation as well. If TGF-p is mainly 

immunosuppressive, why, then, is its presence in joints correlated with 

inflammation? Why does systemic TGF-p reverse this inflammation? One theory 

is that localized administration of TGF-pl enhances inflammation by increasing 

leukocyte adhesion and infiltration via its chemoattractive properties for 

inflammatory cells. Systemic administration might reverse this process because 
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TGF-pi initially encounters the capillary endothelium, where it decreases 

endothelial cell expression of adhesion molecules (17). 

Some other inflammatory diseases associated with TGF-p include uveitis, 

glomerulonephritis, atherosclerosis, and autoimmune disease (17). In uveitis, low 

levels of TGF-p are found. In glomerulonephritis, TGF-p might act by increasing 

IgA production, leading to IgA nephropathy, or by increasing the proliferation of 

smooth muscle in the glomerulus. In atherosclerosis, a lack of TGF-p might allow 

the proliferation of smooth muscle cells in the atherosclerotic lesion. In 

autoimmune disease, such as Multiple Sclerosis, there are increased levels of 

TGF-p secreted by cultured blood cells from patients during regression of 

exacerbations. 

Because TGF-p is associated with many cellular processes and biological 

activities, a knockout mouse was made for each isotype of this cytokine (17) 

(18). The first few experiments using TGF-pi_/‘ mice demonstrated that the mice 

could be grouped into two phenotypes. One phenotype was death in mid¬ 

gestation due to defects in yolk sac vasculogenesis and hematopoiesis (18). The 

second phenotype was death at three weeks after birth due to multi-system 

inflammation (18). Interestingly, it was noted that the vascular defects found in 

TGF-pT/_ mice were similar to lesions found in patients with Hereditary 

Hemorrhagic Telangiectasia (HHT) (18). The varying, but inevitably fatal, effects 

of the knockout condition were initially explained by the presence of maternal 

TGF-p, which was thought to rescue some of the embryos (18). In more recent 

studies, Akhurst has shown that it is the genetic background of the mice that 
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determines whether the mouse will die during embryogenesis or shortly after 

birth (18). 

Due to the loss of another role of TGF-pl, that is, the inhibition of 

progression of thymocytes from the double-negative stage to the double positive 

stage (CD4CD810 to CD4+CD8+) during T cell development, the knockout mouse 

has increased numbers of thymic double-positive thymocytes (14). However, 

there is actually decreased cellularity in the thymus due to decreased numbers of 

thymic precursors, whereas the peripheral lymph nodes and spleen have 

increased CD4+ cells with an activated phenotype. In the knockout, the T cells 

are continuously proliferating, expressing mRNAfor IL-2, IL2R, IL-6, and IL-10. 

There are IgG autoantibodies found, glomerular immune complex deposition, 

and widespread vasculitis (14). 

TGF-p2'/_ and TGF-pS'7' knockout mice have not been as well studied, 

compared to the TGF-pl'7' mice discussed above. TGF-p2'7' mice all die around 

the time of birth and demonstrate a wide range of developmental defects, 

including disruptions of the cardiac, lung, craniofacial, limb, vertebral, eye, ear, 

and urogenital systems (19). TGF-P3'7' knockout mice die within 20 hours of 

birth, due to aberrant development of the lungs and palate (17). This isotype has 

been implicated in type II pneumocyte development. 
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The Role of TGF-p As A Counter-Regulatory Cytokine in Crohn’s Disease 

Recent work by the Strober lab has shown TGF-p to be of great 

importance as a counter-regulatory cytokine (21). In the IL-2 knockout mouse 

model, mice develop colitis and autoimmunity when kept in a non-sterile 

environment. In a sterile environment, the IL-2mice, but not the control mice, 

develop colitis when immunized with various antigens. When the inflamed areas 

of the colon were isolated, it was discovered that they were CD4+, IFN-y- 

secreting T cells. When anti-CD3 antibody (aCD3) was given either alone or with 

the colitis-inducing antigen, surprisingly, the mice remained healthy. Anti-CD3 

antibody binds CD3, which is an important cofactor in the presentation of antigen 

to the T-cell receptor (TCR) (20). This stimulates T cells directly, in a non- 

antigen-specific manner. Why would this result in the prevention of colitis? 

Perhaps, anti-CD3 antibody was stimulating counter-regulatory T cells, which 

would inhibit the colitis-producing T cells. The lab showed that, in fact, TGF-p 

was produced by lymphocytes after addition of anti-CD3 antibody (21). There 

was a decrease in IFN-y production, hinting that the Thl response that caused 

colitis in the mice was inhibited by TGF-p in those mice given anti-CD3 antibody. 

To prove this, they administered anti-TGF-p antibody in vivo and showed that 

this reversed the protective effect of anti-CD3 antibody. They therefore 

concluded that TGF-p was involved in protection against a Thl-driven 

inflammatory response (21). Furthermore, by giving the mice neutralizing 
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antibodies to IL-12, there was an enhanced oral tolerance found. Clearly, TGF-p 

is affecting Thl cell differentiation or proliferation in a counter-regulatory manner. 

The question that followed was how this occurred. How did TGF-p affect 

naive T cells in the gut? How did it affect Thl cells? Did TGF-p act by altering the 

intracellular signaling pathways, which therefore altered the pattern of cytokine 

expression? Or, did TGF-p directly alter the pattern of cytokine expression, 

resulting in an altered cellular growth pattern? It is necessary to examine the 

effects of TGF-p on expression of cytokines associated with Thl cell activation 

(IFN-y, IL-12) and Th2 cell activation (IL-4, IL-10), in addition to its effects on 

DNA synthesis and expression of intracellular proteins. 

If one is to understand the interaction between TGF-p, IL-2 production, 

and Thl development, it is necessary to examine the cytokine pathways 

involved. As seen in Figure 4, these cytokines signal through signal transduction 

elements called JAKs and STATs (22). JAKs are protein tyrosine kinases 

coupled to cytokine receptors. JAK1, JAK2, and TYK2 are ubiquitously 

expressed, whereas JAK3 is highly expressed only in activated lymphoid and 

myeloid cells (22). STATs are “signal transducers and activators of 

transcription.” There are seven family members, most of which are activated by a 

few different cytokines. In addition, most cytokines activate multiple STATs. 

Ligand binding induces dimerization of the STAT proteins. Following 

phosphorylation, STATs detach from the receptor complex and translocate to the 

nucleus. As shown in the figure, IL-12 induces phosphorylation of STAT4 in 

activated T cells. 
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FIGURE 4: JAKs and STATs are intracellular proteins involved in the signal 
transduction pathways of the cytokines IL-2, IL-12, and interferon-^. STAT4 is 
phosphorylated only in T cells that have been activated by IL-12 Figure based 
on information from Lamont et al. (24) and O’Shea (25). 
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Schmitt et al. published some preliminary data on the interaction of TGF-p 

and Thl cells (23). They showed that TGF-p inhibited production of IFN-y by IL- 

12-stimulated, naive CD4+ T cells and inhibited IL-12-induced Thl cell 

development from naive T cells. One hypothesis that follows from the preceding 

discussion and the results by Schmitt is that if IL-12 activates the Thl pathway 

and that TGF-p is a counter-regulatory cytokine that inhibits this activation, 

perhaps it is acting through down-regulation of STAT4 phosphorylation. 

Future Treatments of Crohn’s Disease Will Be Based on The Knowledge of 
the Immunology of the Disease 

It has recently been shown that macrophages isolated from sites of 

inflammation in the gastrointestinal tracts of patients with Crohn’s disease 

produce greatly increased amounts of IL-12. T cells in these lesions have been 

shown to be mostly Thl cells, producing IFN-y and TNF-a (5). STAT4, an 

intracellular protein that is activated in the IL-12-driven Thl cell activation 

pathway, is phosphorylated to greater levels in T cells isolated from patients with 

Crohn’s disease (5). Recent work with the murine model of colitis has 

demonstrated that administration of anti-IL-12 antibody can prevent, or even 

reverse, the inflammation. A project is currently underway to create a modified 

anti-IL-12 antibody from mice with regions of the antibody containing human 

sequences and to use this in clinical trials in humans (5). 
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Regardless of the etiology of Crohn’s disease, if the model of Thl cell 

dysregulation is assumed to be correct, one could target any step in the Thl cell 

activation pathway as a potential treatment for the disease. TNF-a is a major 

cytokine “player” in the model. It has two major roles, the first of which is its 

function as a pro-inflammatory cytokine that directly mediates mucosal 

inflammation (1). The second is its ability to keep the Thl cell activation pathway 

going, as TNF-a, together with interferon-y, synergize to activate IL-12 production 

by antigen-presenting cells (1). In murine models of Crohn’s disease, systemic 

administration of anti-TNF-a antibodies decreases the amount of colitis present 

in the gastrointestinal tract (1). In addition, blocking the transcription of TNF-a by 

treating mice with intrarectal antisense oligonucleotides of NF-kB (NF-kB is 

necessary for the transcription of TNF-a) is more effective than corticosteroids in 

the treatment of mice with symptoms of Crohn’s disease (1). Human trials of 

anti-TNF-a antibody produced excellent clinical responses with few side effects 

(2) (26) (27). In one multi-center, double-blind, randomized, controlled trial, 

Infliximab (anti-TNF-a antibodies) achieved a 38-55% success rate in the closure 

of all fistulas (2). However, the negative side to the manipulation of the immune 

system is that this drug has been shown to induce a monocytopenia (28) and 

has been associated with lymphoma in four patients (29). 

Another method to try to abrogate the Thl response in patients with 

Crohn’s disease is to try to inhibit IL-12 directly. IL-10 is known to inhibit the 

synthesis of IL-12, whereas anti-IL-12 antibodies would inhibit the function of IL- 
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12 (1). One group is conducting trials with administration of IL-10, whereas 

another group is trying to create human anti-IL-12 antibodies (30). 

Crohn’s disease clearly represents a dysregulation of the immune system. 

With the decades-old, brute-force treatment of the disease with general 

immunosuppressant medication being slowly replaced by newer, custom-tailored 

cytokine therapies designed to directly target the imbalance found in Crohn’s 

disease, it is clear that research is going in the right direction and that increased 

knowledge of the regulation of Thl cells is needed. In order to design more 

specific, efficacious treatments for Crohn’s disease, while decreasing the side 

effects caused by anti-immune therapy, it is necessary to find out what the 

counter-regulatory pathways are that do not function properly in patients with 

Crohn’s disease. 

The field of oral tolerance has yielded the information that TGF-p is 

produced by suppressive T cells. TGF-(3 is known to inhibit the Thl cell pathway 

but little is known about the mechanism of this action. Does it decrease the 

proliferation of cells when stimulated with antigen and antigen-presenting cells? 

Does it alter the cytokines that are produced by the T cells? Does it have an 

effect on any of the intracellular signaling pathways found in Thl cells? These 

questions were asked in the series of experiments described below. 
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STATEMENT OF PURPOSE: 

Preliminary data from several laboratories have suggested that the 

cytokine, TGF-p, is a crucial counter-regulatory cytokine that can suppress the 

function of Thl cells. The purpose of this thesis is to: 

1) Quantify the effects of TGF-p on CD4+ Thl cell DNA synthesis as a 

reflection of its effects on cellular proliferation 

2) Determine the effects of TGF-p on CD4+ Thl cell cytokine production 

3) Search for an intracellular signaling target for the action of TGF-p on 

Thl cells. 
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Methods 

All experiments were conducted by the author of this thesis in the laboratory of 
Dr. Warren Strober, Mucosal Immunity Section, LCI, NIAID, National Institutes of 
Health, Bethesda, MD. AH media M/as prepared by NIH laboratory unless 
otherwise stated. 

Media 

All cell media was made from RPMI with the following added: 10% heat- 

inactivated Fetal Calf Serum (Whittaker), 100 U/ml penicillin (courtesy of Kevin 

Chua, NIH, Bethesda, MD), 100 pg/ml streptomycin, 75 mM Hepes, 5% NCTC- 

109 (Life Technologies, NY) 0.05 mM 2-ME, 2 mM L-glutamine. 

Naive T cell isolation 

In order to isolate and eventually stimulate in vitro CD4+ T cells from 

murine spleens, mice were chosen based on their ability to respond to a specific 

antigen. Transgenic mice were used (clone D011.10) so that the TCR (T-cell 

receptor) would recognize a specific peptide that could be provided to cell 

cultures in vitro after the T cells were isolated. In this case, the TCR recognized 

a peptide fragment (corresponding to amino acids 323-339) of the protein, 

ovalbumin (henceforth referred to as “OVA”) when presented in conjunction with 

a specific MHC ligand, IAd. The genetic background of the mice was BALB/c. All 

mice were maintained by the NIH Twinbrook II Animal Care Facility. 4-8 week old 

female mice were used for all experiments in order to maintain consistency 

throughout all experiments. Intact murine spleens were removed using sterile 

technique. HBSS solution and a mortar were used to homogenize the splenic 

cells, which were passed through a 100 pM nylon filter (Falcon, Franklin Lakes, 

NJ) into a 50 ml conical tube in order to remove any undissolved splenic debris. 

The filtrate was spun at 300 G for 10 minutes. Supernatant was discarded and 

the cellular pellet was washed with 50 ml HBSS and spun again under the same 

conditions. After removing the supernatant once again, 2-3 ml ACK lysis buffer 

(Biofluids, Rockville, MD) per spleen was used to re-suspend the pellet. This 
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lysis preferentially degrades erythrocytes during the first 2 minutes after addition. 

During this time, the suspension was thoroughly mixed via pipeting up and down 

rigorously. After 2 minutes, the 50 ml tube was filled with HBSS and centrifuged, 

again under the same conditions. After removing the supernatant, the pellet was 

again washed with 50 ml HBSS and re-spun. At this time, the cells were counted 

and re-suspended in HBSS with 1% PCS (fetal calf serum) at a concentration of 

30 x 106 cells per 0.4 ml. 

In order to remove cells other than the T cell population of interest, 

negative selection was performed using biotinylated antibodies and streptavidin- 

coated magnetic beads. In this protocol, antibodies against undesirable cells are 

added to the cell culture. In this case, because CD4+ T cells were the target for 

purification, antibodies against CD8+ T cells and non-T cells were used. All 

antibodies are covalently linked to biotin. Magnetic beads that are covalently 

linked to streptavidin are mixed with the cell cultures. In theory, only those cells 

that have been targeted by the biotinylated antibodies will bind to the magnetic 

beads. A magnet is used to separate the beads from the cells that are still free in 

solution (CD4+ T cells), which are then separated. 

In these experiments, only CD4+ T cells were desired. To remove 

granulocytes, macrophages, NK cells, and B-1 cells, biotin anti-CDIIb antibody 

(Pharmingen, CA) was added. To remove CD8+ T cells, biotin anti-CD8a 

antibody (Pharmingen, CA) was added. To remove B cells, biotin anti-B220 

antibody (Pharmingen, CA) was added. Biotin anti-l-Ad antibody (Pharmingen, 

CA) was added to deplete MHC Class II antigen. All antibodies were added at 

concentrations of 12 pg per 30 x 106 T cells. The cells were kept at 0°C on ice 

for 30 minutes, at which point they were washed twice with HBSS containing 1% 

FCS. At this point, the cells were re-suspended in 400 p! HBSS with 1 % FCS per 

30 x 106 T cells. 100 pi of previously-washed streptavidin-conjugated Dynal 

beads (Dynal, Oslo, Norway) at a concentration of 350 pi beads per 30 x 106 T 

cells were added to an eppendorf tube and placed next to a magnet for 1 minute. 

Supernanant was removed and an equal volume of PBS with 0.1% BSA was 

added. Again, the supernatant was removed. Following this, the beads were re- 
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suspended in 100 pi PBS/0.1% BSA for 30 minutes. The T cells and beads were 

placed on ice for 30 minutes, after which time 1.5 ml HBSS/1% FCS was added 

per 30 x 106 T cells. Finally, the tube was placed on a magnet for 5 minutes. In 

theory, the streptavidin binds to the biotin linked to the antibodies, which are 

bound to CD8+ T cells and non-T cells, but not to CD4+ T cells. The 

supernatant, containing only CD4+ T cells, was removed and saved. 2 ml 

HBSS/1% FCS was added to the beads and the tube placed next to the magnet. 

The supernatant was saved again, washed, and re-suspended at a final 

concentration of 0.5 x 106 T cells per ml. 

Antigen presenting cell (APC) isolation 

BALB/c and B10.A mice (used in A.E7 cultures, see below) were 

maintained by the NIH Animal Care Facility. 4-12 week old female mice were 

used for all experiments (see above). Spleens were removed in sterile fashion. 

Splenic cells were homogenized with a mortar and HBSS solution, after which 

they were passed through a 100 pM filter (Falcon, Franklin Lakes, NJ) into a 50 

ml conical tube in order to remove any undissolved splenic debris. The cells 

were lysed to remove erythrocytes and washed as described above in the naive 

T cell isolation protocol. 

For T-cell-depleted APCs only: Antibodies reactive to T cell markers 

were then added: anti-Thyl.2, GK1.5, and anti-Ly2.2 antibodies (kindly provided 

by Dr. Robert Seder) were all added at a concentration of 1 ml per spleen. The 

cells and antibodies were kept on ice for 30 minutes and then washed once with 

HBSS. A pre-warmed complement cocktail was then added. This contained (per 

spleen) 0.5 ml complement (Gibco Life Technologies), 1.5 ml HBSS, 10 pi 1 M 

Hepes, 50 pi MARI2.5 (provided by Dr. Robert Seder). The cells and 

complement cocktail were incubated at 37°C for 30 minutes to lyse any T cells 

present. Following the incubation, the dead cells were removed by Percoll 

gradient (40 and 100% Percoll). 
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For both T-cell-depleted and non-T-cell-depleted APCs, cells were 

irradiated at 3000 rads, and washed 2-3 times (to remove any free radicals 

produced during the irradiation procedure). T-cell-depleted APCs were re¬ 

suspended at 5 x 106 cells/ml and used for experiments (in which the APC:T cell 

ratio was 10:1), while non-T-cell-depleted APCs were re-suspended at 10 x 106 

cells/ml (and thus a 20:1 ratio of APCs to T cells) and used to expand the initial 

cultures for use in experiments. 

Thl and Th2 cultures 

When first setting up cultures, 1.0 ml each of T cells (0.5 x 106 cells/ml) 

and APCs (10 x 106 cells/ml) were plated in each well in 24-well plates. The ratio 

of 20:1 APCs to T cells was chosen to maximize the growth of T cells in culture 

in order to expand the desired population of cells. This ratio was based on prior 

experiments comparing multiple ratios. For all cells, 20 pi of 300 mM ovalbumin 

peptide (Peptide Synthesis Facility, NSAID, NIH, Bethesda, MD) were added to 

each 2 ml culture. Several investigators have shown that naive T cells will 

differentiate into a Thl phenotype when cultured in media containing IL-12 and 

anti-IL-4 antibody, whereas they will differentiate into a Th2 phenotype when 

cultured in media containing anti-IL-12 antibody and IL-4 (31). For Thl cells, 10 

U/ml IL-12 and 10 pg/ml anti-IL-4 antibody were added to each 2 ml culture. For 

Th2 cells, 3 pg/ml anti-IL-12 antibody and 200 U/ml IL-4 were added to each 2 

ml culture. 

On day 2-3, when the T cells appeared activated and crowded, the 2 ml 

cultures were expanded to 6 ml in 6-well plates. Cytokines were added at the 

same concentrations, with the addition of 10 units/ml of IL-2 to both Thl and Th2 

cultures. Until using the cultured cells, the cultures were expanded or media 

changed as necessary. 

A.E7 cell culture: 

A.E7 cells are an established Thl cell line borrowed from the laboratory of 

Dr. Michael Lenardo. This is a celi line originally isolated from transgenic mice 
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that have a T-cell receptor that recognizes the peptide, PCC (pigeon cytochrome 

c). These mice are in a different genetic background than the BALB/c mice used 

in the above experiments. Rather, these mice have a BIO.A genetic background 

and must be stimulated with antigen presenting cells isolated from the spleens of 

B10.A mice. It has been shown by Dr. Lenardo’s lab and others that when 

stimulated with peptide and antigen presenting cells, these cells proliferate and 

produce interferon-y selectively, thus qualifying the cell line as Thl (32), (33). In 

order to passage the cells, the following protocol was used. On Day 0, 10 x 106 

A.E7 cells and the [non-T-cell-depleted] APCs from one B10.A murine spleen 

(irradiated at 3000 rads) were cultured in a volume of 30 ml in a flask. 100 pi of 

1500 pm pigeon cytochrome c peptide (Peptide Synthesis Facility, NIAID, NIH, 

Bethesda, MD) were added to the flask for optimal stimulation. After 48 hours, 

the culture was spun in a Percoll gradient (40% and 100%) and the dead cells 

(mostly APCs) were removed. The viable cells were then cultured in 150 ml of 

fresh media with 100 units/m! IL-2. Between days 12-24, the A.E7 cells were re¬ 

stimulated and the cycle repeated. 

Cell culture during experiments: 

0.5 ml of T cells at 0.5 x 106 cells/ml (either freshly-isolated “naive” CD4+ 

cells or cultured Thl, Th2, or A.E7 cells) and 0.5 ml of APCs at 5 x 106 cells/ml 

(T-cell-depleted) were added to 24-well plates. These concentrations were 

selected to optimize growth of T cells. In the initial cultures to expand the 

population of T cells, a 20:1 ratio of APCs (not T-cell-depleted) to T cells was 

used. In the experimental cultures, a 10:1 ratio of T-cell depleted APCs to T cells 

was found to be optimal. For the initial expansion of freshly-isolated CD4+ T 

cells, ovalbumin peptide or pigeon cytochrome c (for A.E7 cultures) was added 

to each well, to make the final concentration of antigen either 3.0 pM (ovalbumin) 

or 5.0 pM (pigeon cytochrome c). For Thl, Th2, or A.E7 experiments, 1/10th the 

concentration of peptide was added to each well. For those experiments in which 

TGF-p was used, TGF-pl (Genzyme) was diluted in PBS and added to wells at a 

final concentration of 10 ng/ml, 5 ng/ml, 1 ng/ml, or 0.1 ng/ml. 
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DNA synthesis (Thymidine Uptake) Assay 

This assay is commonly used in immunologic research as an estimate of 

cellular proliferation. 100 pi each of T cells (0.5 x 106 cells/ml) and APCs (T-cell- 

depleted cells at 5 x 106 cells/ml) were added in triplicate to 96-well plates. 

Ovalbumin and pigeon cytochrome c were added at levels consistent with the 

experiments described above. TGF-p was added at various concentrations, 

consistent with the experiments above. 8 hours before measuring the DNA 

synthesis, 1 pCi of [3H] thymidine was added and the counts measured with a 

Beta-Plate reader. 

IFN-y ELISA 

The basic premise of an ELISA assay (Enzyme-linked immunosorbent 

assay) is that antibodies to the target molecule are linked to an enzyme that 

catalyzes a colorimetric assay. In this case, antibodies are first linked to the 

bottom of a 96-well microtiter plate. Samples are added to the wells and the 

target molecule binds to the antibodies. Next, secondary antibodies are added 

that are covalently linked to biotin. Horseradish peroxidase-streptavidin (HRP- 

streptavidin) is then added. The biotin linked to the secondary antibodies (which 

are now bound to the target molecule) binds to streptavidin and the peroxidase 

catalayzes a colorimetric reaction when substrate buffer is added. Therefore, the 

amount of color seen in the wells is a reflection of the amount of enzyme 

present, which in turn, is a reflection of the amount of bound secondary antibody 

present, which is determined by the amount of target molecule present in the 

well. 

Day 1: 

After 48 hours of culture, the experimental cell cultures were spun for 10 minutes 

at 300 G and the supernatants were collected and frozen at -20 °C. At a later 
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time, the supernatants were thawed for use in the ELISA assay. Wells of a 96- 

well flatbottom Immulon plate (Dynatech Lab, Inc. - cat. # 011-010-3850) were 

coated with 50 pi of a 2 pg/ml solution of anti-IFN-y antibody in carbonate buffer. 

The plates were kept at 4°C overnight. 

Day 2: 

Plates were washed twice with PBS/Tween (500 ml PBS/250 pi Tween 20) in 

order to decrease any protein-protein interactions. Next, the wells were blocked 

with filtered (0.45 pm) 3% BSA in PBS (Sigma Bovine Albumin Cat. # A-7030) at 

200 pl/well for 1 hour at 37°C. After one hour, the plates were washed twice with 

PBS/Tween. Standards were then added by serial dilution, in final concentrations 

ranging from 1000 U/ml to 7.8 U/ml. Samples were plated at 100 pl/well, usually 

with a 2-10 fold dilution. The plates were then incubated for 2 hours at 37°C. 

Following incubation, the plates were washed 4 times with PBS/Tween. 100 pi of 

secondary antibody was added at 2 pg/ml in 3% BSA/PBS solution and the 

plates were incubated for 1 hour at 37°C. Following this incubation, the plates 

were washed 6 times with PBS/Tween. Next, a 1:1000 avidin-peroxidase solution 

(HRP-Streptavidin by ZYMED) in PBS was added and incubated for 25 minutes 

at 37°C. The plates were washed 8 times with PBS/Tween. 100 pi substrate 

buffer was added and the plates were read by a Dynatech MR500 plate reader. 

Substrate buffer was made by combining 24.3 ml 0.1 M citric acid, 25.7 ml 0.2 M 

Na2P04, and 50 ml dH20. One 15 mg O-phenylenediamine dihydrochloride 

tablet (Sigma #4664) was added per 30 ml solution. The substrate buffer was 

completed with the addition of a 30% hydrogen peroxide solution at 1:1000 

dilution. 

IL-4 ELISA 

Day 1: 

The protocol for the IL-4 ELISA is similar to the above description of the IFN-y 

ELISA assay except for the IL-4 ELISA, a three-day procedure was used. On the 
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first day, the wells of a 96-well flatbottom Immulon plate (Dynatech Lab, Inc. - 

cat. # 011-010-3850) were coated with 100 pi of a pre-aliquoted solution of anti- 

IL-4 antibody in PBS. The plates were kept at room temperature overnight. 

Day 2: 

The wells were blocked with filtered (0.45 pm) 3% BSA in PBS (Sigma Bovine 

Albumin Cat. # A-7030) at 200 pl/well for 1 hour at room temp. After one hour, 

the plates were washed three times with PBS/Tween (500 ml PBS/250 pi Tween 

20). 50 pi of 3% BSA/PBS were added to each well. Standards were then added 

by serial dilution, in final concentrations ranging from 862 pg/ml to 13.5 pg/ml, 

with the last pair of wells lacking any IL-4. Samples were plated at 50 pl/well. The 

plate was covered and left at room temperature overnight. 

Day 3: 

Following incubation, the plates were washed 3 times with PBS/Tween. One 

aliquot of detecting antibody was obtained from the -80°C freezer and diluted in 

11 ml 3% BSA/PBS solution, of which 100 p! were added per well. The plates 

were incubated for 1 hour at room temperature. Following this incubation, the 

plates were washed 3 times with PBS/Tween. Next, 100 pi of a 1:1000 avidin- 

peroxidase solution (HRP-Streptavidin by ZYMED) in PBS was added and 

incubated for 30 minutes at room temperature. The plates were washed 3 times 

with PBS/Tween. 100 pi substrate buffer was added and the plates were read by 

the Dynatech MR500 plate reader. 

STAT4 Western Assay 

The principle of immunoblotting is as follows. The cells are lysed carefully and 

proteins are selected out by adding proteinase inhibitors to the buffer. The 

protein mixture is loaded onto a polyacrylamide gel and electrophoresed to 

separate the proteins by molecular weight. The two-dimensional gel is then 

placed beside nitrocellulose paper and electrophoresis is used to transfer the 





38 

proteins from the gel to the paper. Enzyme-labeled antibodies are added to a 

solution that is then used to bathe the nitrocellulose paper. The antibodies bind 

to proteins on the nitrocellulose paper and enzyme substrate then reveals the 

presence of bands of proteins, where the antibodies have bound to the paper. 

Day 1: 

The protocol for the first day of this assay involves lysing the cells in a buffer that 

will protect the intracellular proteins from degradation. Samples were washed 

twice with cold PBS solution and spun at 10,000 rpm. Supernatants were 

discarded. RIPA solution contains 100 ml PBS, 1 g IGEPAL (Sigma, #630), 0.5 g 

0.5% sodium deoxycholate (Sigma), and 1 ml 10% SDS solution. To make lysate 

buffer, the following proteinase inhibitors (courtesy of Dr. Bjorn Ludviksson) were 

added to RIPA: 10 pl/ml 100 mM PMSF, 1 pl/ml Apoprotinin, and 10 pl/ml 100 

mM sodium orthovanadate. 1 ml of lysate buffer was added to each cell sample 

following the two washes. Samples were incubated at 4°C on a shaker for 30 

minutes. Next, they were centrifuged at 15-20,000 rpm for 30 minutes. In order 

to prevent warming of each sample, the supernatants were transferred to a 1 ml 

tube previously cooled on dry ice, and then stored in the -80°C freezer for at 

least 12 hours. By the end of this part of the experiment, all non-protein cellular 

elements should have been degraded. 

Day 2: 

Samples were thawed at 0°C and were not allowed to warm past this 

temperature. 1 pg rabbit IgG (Santa Cruz Technologies) was added to each 

sample, followed by 20 pi of Agarose conjugate (Santa Cruz Technologies). In 

this step, all cellular elements that might bind non-specifically to rabbit 

immunoglobulin are removed. The samples were spun at 2500 rpm for 5 minutes 

at 4°C. The supernatant was collected. 1 pg rabbit anti-mouse STAT4 antibody 

(Santa Cruz Technologies) was added to each sample and incubated for 1 hour 

at 4°C in a rocker. 20 pi agarose conjugate was added to the samples and 

incubated at 4°C on a rocker overnight. The agarose conjugate binds to the anti- 
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mouse STAT4 antibody, which presumably is bound to any STAT4 protein 

present. 

Day 3: 

The samples were washed 4 times by spinning at 2500 rpm for 5 minutes per 

wash, and replacing the supernatant with RIPA buffer. Following the fourth wash, 

the pellets were re-suspended in 40 pi electrophoresis buffer (450 pi sample 

buffer (Novex) + 450 pi PBS + 100 pi 2-ME) and boiled for 90 seconds. 15 pi 

were loaded into a pre-made gel (Novex) and run at 125 V for 90 minutes. The 

protein was transferred to a nitrocellulose membrane (Novex 0.45 pm) by 

electrophoresis at 25 V for 2 hours. The membrane was blocked with Blotto B 

(PBS with 2% BSA) without Tween at 4°C overnight on a rocker. 

Day 4: 

The membrane was incubated for one hour at room temperature in HRP 

(Horseradish peroxidase)-conjugated anti-phosphotyrosine antibody solution 

(200 ng/ml Py99 - Santa Cruz, sc-7820) diluted in Tris-buffered saline with 

0.05% Tween (to inhibit non-specific protein interactions) and 2% BSA. Anti- 

phosphotyrosine antibodies were used because it has been well documented 

that STAT4 is phosphorylated by a tyrosine kinase during activation (24) (25). 

Following incubation, the membrane was washed twice in Tris-buffered saline 

with 0.05% Tween, each wash with 15 ml buffer for 7 minutes. This step 

removes all unbound antibody. The nitrocellulose paper was then placed next to 

film (Kodak) in a cartridge and the film was developed in an automated Kodak 

machine. After measuring the level of phosphorylated STAT4 protein on the gel, 

the nitrocellulose paper was stripped and incubated with HRP-conjugated anti- 

STAT4 antibody solution. These results demonstrated that there was equal 

protein loading of STAT4 in all experimental and control groups (data not shown) 
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Statistical Analysis Methodology: 

Each experiment was performed in triplicate and thus n=1 reflects three separate 

wells cultured under the same conditions. All Thl and A.E7 experiments were 

repeated six times (n=6) and thus reflect data from 18 wells. For the Th2 cells, 

the DNA synthesis assay was repeated six times but the cytokine assay was 

performed only one time. The STAT4 Phosphorylation assay was performed 

several times but due to protein loading variation, only the one experiment 

presented in the results section was used because in this experiment, there was 

equal protein loading in all conditions. All mean values and p values were 

calculated using Microsoft Excel. 
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Results 

A. Effects of TGF-p on DNA synthesis 

The first set of experiments was conducted to see what effect TGF-p 

would have on the DNA synthesis of a known Thl cell line called A.E7. In the 

above experiments, the mean levels of DNA synthesis (thymidine uptake) were 

Control (117907 cpm), 1.0 ng/ml TGF-p (108020 cpm), 10 ng/ml TGF-p (98213 

cpm). When expressed as a percent of the control level of DNA synthesis 

(thymidine uptake) (See Figure 5), 1.0 ng/ml TGF-p inhibited DNA synthesis by 

8.4% (91.6% of control, p=0.031) while 10.0 ng/ml TGF-p inhibited DNA 

synthesis by 16.7% (83.3% of control, p=0.026). 

In order to verify whether the effect TGF-p had on Thl DNA synthesis 

could be generalized to Thl cells with different genetic backgrounds and MHC 

class types, the same experiments were performed in Thl cells created in the 

laboratory. Using mice bred in a BALB/c genetic background, CD4+ T cells were 

isolated from murine spleens by negative selection. These cells were stimulated 

with peptide (ovalbumin) and antigen-presenting cells and then cultured in 

conditions favoring Thl cell development (IL-12 and anti-IL-4 antibody). In the 

above experiments, the mean levels of DNA synthesis (thymidine uptake) were 

Control (34016 cpm), 1.0 ng/ml TGF-p (21904 cpm), 10.0 ng/ml TGF-p (16378 

cpm). When expressed as a percent of the control level of DNA synthesis (see 

Figure 5), 1.0 ng/ml TGF-p inhibited DNA synthesis by 35.6% (64.4% of control, 
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A.E7 Thl Cells Mean % DNA synthesis, vs. St Dev P value 
(B10.A background) control (n=6) 

control 100 0 
1.0 ng/ml TGF-p 91.6 5.13 0.031 

10.0 ng/ml TGF-p 83.3 9.81 0.026 

Thl Cells (BALB/c Mean % DNA synthesis, vs. St Dev P value 
background) control (n=6) 

Control 100 0 
1.0 ng/ml TGF-p 64.4 0.71 0,002 

10 ng/ml TGF-p 48.1 9.19 0.01 

Effects of TGF-p on Thl DNA Synthesis 

A.E7 DNA Synthesis Thl DNA Synthesis 

Thl Cell Type 

TABLE 1 & FIGURE 5: A.E7 CD4+ T cells are a known T cell line of the Thl phenotype. The cell 
line was passaged every three weeks and re-stimulated with pigeon cytochrome c peptide (PCC) 
and antigen-presenting cells from BIO.A spleens. For use in experiments, A.E7 CD4+ T cells 
were stimulated with antigen-presenting cells (10:1 APC:T cell ratio) and PCC in media-containing 
IL-12 and anti-IL-4 antibody. CD4+ Thl cells from the BALB/c background were created by 
removing spleens from OVA TCR-transgenic mice in a BALB/c genetic background. CD4+ T cells 
were isolated by negative selection and were stimulated with antigen-presenting cells (20:1 APCT 
cell ratio) and albumin peptide. Thl cells were created by culturing CD4+ T cells with IL-12 and 
anti-IL-4 antibody. For use in experiments, the Thl cells were stimulated with ovalbumin peptide 
and a 10:1 ratio of APCs. TGF-P was added to make the final concentration in cell cultures either 
0 ng/ml, 1 ng/ml, or 10 ng/ml. After 48 hours of culturing cells in media, [3H] thymidine was added 

for 8 hours and uptake detected by a beta plate reader. In both cell types, TGF-P was found to 
inhibit DNA synthesis in a dose-dependent manner 
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p=0.002) while 10.0 ng/ml TGF-p inhibited DNA synthesis by 51.9% (48.1% of 

control, p=0.01). 

If TGF-p inhibits the DNA synthesis of differentiated Thl cells, what effect 

does it have on naive, undifferentiated CD4+ T cells? Naive CD4+ T cells were 

isolated as in previous experiments, by using negative selection to limit the cell 

population to CD4+ T cells and then stimulating the cells with antigen 

(ovalbumin) and antigen-presenting cells. No Thl-favoring (IL-12, anti-IL-4 

antibody) or Th2-favoring (IL-4, anti-IL-12 antibody) cytokines or antibodies were 

added to the media. In the above experiments, the mean levels of DNA 

synthesis (thymidine uptake) were Control (59295.5 cpm), 1.0 ng/ml TGF-p 

(83439.2 cpm), 10.0 ng/ml TGF-p (66745.5 cpm). When expressed as a percent 

of the control level of DNA synthesis (see Figure 6), 1.0 ng/ml TGF-p increased 

DNA synthesis by 40.7% (p=0.013) while 10.0 ng/ml TGF-p increased DNA 

synthesis by 12.6% but was not statistically significant (p=0.113). Flere, we see a 

response that is not straightforward. While the addition of a low concentration of 

TGF-p has a profound stimulatory effect on DNA synthesis, it appears as though 

high levels of TGF-p starts to have less of an effect. Although the p value for the 

10 ng/ml concentration of TGF-p group is above 0.05, in each of six 

experiments, 10 ng/ml TGF-p results in decreased DNA synthesis, compared to 

the 1 ng/ml TGF-p group. This suggests that TGF-p might have a bi-modal action 

on naive T cells. Similar effects have been noted with TGF-p by others (16) (18). 

In order to see what effect TGF-p would have on the Th2 population of 

CD4+ T cells, similar experiments to those conducted with Thl cells were 
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performed. CD4+ T cells were purified from murine spleens as described above. 

These cells were stimulated with peptide and antigen-presenting cells and 

cultured in media favoring the differentiation of the T cells to the Th2 cell 

phenotype (IL-4, anti-IL-12 antibody). In the above experiments, the mean levels 

of DNA synthesis (thymidine uptake) were Control (29455 cpm), 1.0 ng/ml TGF-p 

(53972 cpm), 10.0 ng/ml TGF-p (55940 cpm). When expressed as a percent of 

the control level of DNA synthesis (see Figure 6), 1.0 ng/ml TGF-p increased 

DNA synthesis by 83% (p=0.06) while 10.0 ng/ml TGF-p increased DNA 

synthesis by 90% (p=0.88). Contrary to the results seen when TGF-p was added 

to naive T cells, the stimulatory effect of TGF-p on the DNA synthesis of Th2 

cells is not bimodal. Therefore, the stimulatory effect of TGF-p appears maximal 

at 1 ng/ml for Th2 cells. 
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Naive CD4+ T cells Mean % DNA synthesis, vs. St Dev P value 
(BALB/c background) controls (n=6) 

control 100 0 
1.0 ng/ml TGF-(3 140.7 19.7 0.013 

10.0 ng/ml TGF-(3 112.6 15.6 0.113 

Th2 cells (BALB/c Mean % DNA synthesis, vs. St Dev P value 
background) controls (n=6) 

Control 100 0 
1.0 ng/ml TGF-P 183 46.36 0,06 

10.0 ng/ml TGF-P 190 42.10 0.88 

Effects of TGF-|3 on Naive T Cell and Th2 Cell DNA 
Proliferation 

Naive T cell DNA Synthesis Th2 DNA Synthesis 

T Cell Type 

TABLE 2 & FIGURE 6: CD4+ T cells were isolated from the spleens of OVA TCR-transgenic 
mice in a BALB/c genetic background by negative selection, and were stimulated with antigen- 
presenting cells (20:1 APC:T cell ratio) and ovalbumin peptide during initial expansion of cell 
cultures. Th2 cells were created by adding IL-4 and anti-IL-12 antibody to the culture media. 
During experiments, ovalbumin and APCs (10:1 APC.T cell ratio) were added to the naive or Th2 
cells. TGF-P was added to cultures to make the final concentration 0 ng/ml, 1 ng/ml, or 10 ng/ml 
After 48 hours of culture with TGF-P, [3H] thymidine was added for 8 hours and uptake was 
detected with a beta plate reader. TGF-P stimulates Th2 DNA synthesis at both 1 ng/ml and 10 
ng/ml concentrations, whereas it has a biphasic effect on freshly-isolated, naive CD4+ T cells 
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B. Cytokine Production 

Once again, the known Thl cell line, A.E7, was used in these 

experiments. The cells were stimulated with peptide and antigen-presenting cells 

and cultured in 96-well microtiter plates. ELISA was used to detect the 

concentration of interferon-y in the supernatants of the cell cultures. In the above 

experiments, the mean values were control (2816 U/ml), 1 ng/ml TGF-p (1860 

U/ml), and 10 ng/ml TGF-p (1073 U/ml). When expressed as a percentage of the 

control value of the concentration of interferon-y (see Figure 7), 1.0 ng/ml TGF-p 

inhibited the production of interferon-y by 34% (66% of the control value, p=0.01) 

while 10.0 ng/ml TGF-p inhibited the production of interferon-y by 61.9% (38.1% 

of control, p=0.007). 

As in the earlier experiments, BALB/c Thl cells were produced by 

isolating CD4+ T cells from murine spleens, stimulating their growth with antigen- 

presenting cells and peptide, and culturing in conditions favoring the 

differentiation of the cells towards the Thl cell phenotype. The cells were 

cultured in 96-well microtiter plates and ELISA was performed to measure the 

concentration of interferon-y in the supernatants of the cell cultures. In the above 

experiments, the mean values were control (1271 U/ml), 1 ng/ml TGF-p (1006 

U/ml), 10 ng/ml TGF-p (890 U/ml). Expressed as a percentage of the 

concentration of interferon produced by control cells (see Figure 7), 1.0 ng/ml 

TGF-p inhibited the production of interferon by 20.9 (79.1% of control, p=0.017) 

while 10.0 ng/ml TGF-p inhibited the production of interferon by 30% (70% of 
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A.E7 Thl Cells (B10.A 

background) 

Mean % IFN-y production, 
vs. control (n=6) 

St Dev P value 

control 100 0 
1.0 ng/ml TGF-p 66.0 17.6 0.01 

10.0 ng/ml TGF-p 38.1 23.1 0.007 

Thl Cells (BALB/c 

background) 

Mean % IFN-y production, 
vs. control (n=6) 

St Dev P value 

Control 100 0 
1.0 ng/ml TGF-p 79.1 8.5 0.017 

1 10.0 ng/ml TGF-p 70.0 5.0 0.004 

Effects of TGF-p on IFN-y Production by Thl Cells 

Thl Cell Type 

TABLE 3 & FIGURE 7: A.E7 CD4+ T cells are a known T cell line of the Thl phenotype. The 

cell line was passaged every three weeks and re-stimulated with pigeon cytochrome c peptide 

(PCC) and antigen-presenting cells from BIO.A spleens. For use in experiments, A.E7 CD4+ T 

cells were stimulated with antigen-presenting cells (10:1 APC:T cell ratio) and PCC in media- 

containing IL-12 and anti-IL-4 antibody CD4+ Thl cells from the BALB/c background were 

created by removing spleens from OVA TCR-transgenic mice in a BALB/c genetic background 

CD4+ T cells were isolated by negative selection and were stimulated with antigen-presenting 

cells (20:1 APC:T cell ratio) and albumin peptide Thl cells were created by culturing CD4+ T cells 

with IL-12 and anti-IL-4 antibody. For use in experiments, the Thl cells were stimulated with 

ovalbumin peptide and a 10:1 ratio of APCs. TGF-P was added to make the final concentration in 

cell cultures either 0 ng/ml, 1 ng/ml, or 10 ng/ml After 48 hours of culture with TGF-(3, ELISA was 

performed on culture supernatants to detect IFN-y. TGF-(3 inhibits the production of IFN-y by the 
two types of Thl cells in a dose-dependent manner. 
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control, p=0.004). Again, there is a dose-dependent inhibition of Thl cell 

function seen with the administration of TGF-p. 

While the main cytokine produced by Thl cells is interferon-y, the major 

cytokine produced by Th2 cells is IL-4. In order to see what effect TGF-p would 

have on the function of Th2 cells, CD4+ T cells were isolated from murine 

spleens, stimulated with antigen-presenting cells and peptide, and then cultured 

in conditions favoring the differentiation towards the Th2 cell phenotype (IL-4, 

anti-IL-12 antibody). These results are preliminary, as only one set of 

experiments was performed. Expressed as a percentage of the concentration of 

IL-4 produced by control cells, 1 ng/ml TGF-p decreased the production of IL-4 

by 9% while 10 ng/ml TGF-p decreased the production of IL-4 by 7%. These 

slight decreases in IL-4 production are statistically insignificant, given the n=1. 

However, from this initial data on three culture wells in one experiment, it 

appears that TGF-p does not induce a large decrease in Th2 cell function similar 

to the inhibition seen of Thl cell function. 
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IL-4 Production in Th2 Cells % IL-4 Production vs. controls (n=1) 
Control 100 

1 ng/ml TGF-p 91 

10 ng/ml TGF-P 93 

Effects of TGF-p on IL-4 Production by Th2 Cells 

Th2 Cell IL-4 Production 

□ control 

■ 1 ng/ml TGF-b 

□ 10 ng/ml TGF-b 

TABLE 4 & FIGURE 8: CD4+ T cells were isolated from the spleens of OVA 
TCR-transgenic mice in a BALB/c genetic background by negative selection, and 
were stimulated with antigen-presenting cells (20:1 APC:T cell ratio) and 
ovalbumin peptide during initial expansion of cell cultures. Th2 cells were created 
by adding IL-4 and anti-IL-12 antibody to the culture media. During experiments, 
ovalbumin and APCs (10:1 APC:T cell ratio) were added to the naive or Th2 
cells. TGF-p was added to cultures to make the final concentration 0 ng/ml, 1 
ng/ml, or 10 ng/ml. After 48 hours of culture with TGF-p, ELISA was performed 
on culture supernatants to detect IL-4. TGF-p does not significantly affect 
production of IL-4 by Th2 cells. 
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C. STAT4 Phosphorylation 

As discussed in the introductory section, IL-12 induces the 

phosphorylation of STAT4 as part of its intracellular signaling cascade. 

Therefore, detection of a phosphorylated band corresponding to STAT4 on a 

Western blot demonstrates that the Thl cell line has been activated by IL-12. 

Before performing this experiment, it is necessary to demonstrate that the Thl 

cell lines are indeed IL-12 responsive in order to avoid a false negative result. 

A.E7 cells, demonstrated to be of the Thl cell phenotype, were used in these 

experiments. IL-12 responsiveness was demonstrated by the increase in DNA 

synthesis caused by the addition of IL-12 to the media of A.E7 cells. 

Table 5/Figure 9 demonstrates the IL-12 responsiveness of the A.E7 Thl 

cell line. IL-12 caused a mean 62% increase in the DNA synthesis of A.E7 cells 

(p<0.05). Therefore, these cells are highly responsive to the presence of IL-12, a 

major growth factor for Thl cells. A Western blot was performed (Figure 10), 

fixing the intracellular protein from the A.E7 cell line onto a membrane and then 

staining with antiphosphotyrosine antibodies. Because it is the activated, or 

phosphorylated, form of STAT4 that is found at high levels in IL-12-stimulated 

Thl cells, it is this form of STAT4 that could potentially be inhibited by TGF-p. 

Anti-phosphotyrosine antibodies were used to detect the presence of the 

phosphorylated form of STAT4 in the Thl cells. A control was performed that 

demonstrated equal protein loading of STAT4 (including both the phosphorylated 

and non-phosphorylated forms) in all groups (data not shown). In the control 

group (neither IL-12 nor TGF-p present), 
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A.E7 Experiments Control IL-12 
1 8275 13990 
2 8261 12112 
3 8290 13829 
4 9237 13310 
Mean 8216 13310 
St Dev 481 850 
P value 0.006 

DNA Synthesis in A.E7 Cells is IL-12 Responsive 
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□ A.E7 Cell DNA Synthesis 

control IL-12 

Condition 

TABLE 5 & FIGURE 9: A.E7 CD4+ T cells are a known T cell line of the Thl 
phenotype. The cell line was passaged every three weeks and re-stimulated with 
pigeon cytochrome c peptide (PCC) and antigen-presenting cells from B10.A 
spleens. For the use in experiments, A.E7 CD4+ T cells were stimulated with 
antigen-presenting cells (10:1 APC:T cell ratio) and PCC in media-containing IL- 
12 and anti-!L-4 antibody. The cells were washed after 48 hours and cultured 
with and without 10 U/ml IL-12. Cells cultured with IL-12 underwent DNA 
synthesis that was 62% greater than cells cultured without IL-12, verifying that 
the cells were IL-12-responsive. 
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there was no phosphorylated band corresponding to the size of STAT4 (95 kD). 

In the IL-12 group, there was a phosphorylated 95 kD band, corresponding to 

phosphorylated STAT4 protein. The addition of TGF-p to the culture media 

results in the inhibition of any phosphorylation of this band. Anti-STAT4 antibody 

was used to demonstrate the presence of a STAT4 band for all experimental 

conditions. The level of total STAT4 protein was equal in all groups (data not 

shown). 

This experiment was performed several times but due to protein loading 

and cell culture difficulty, only one experiment was performed in which there was 

equal STAT4 protein present in all conditions. It is from this one experiment that 

the Western blot shown below was taken. 





53 

TGF-|3 Inhibits Phosphorylation of STAT4 

FIGURE 10: A.E7 CD4+ T cells are a known T cell line of the Thl phenotype. 
The cell line was passaged every three weeks and re-stimulated with pigeon 
cytochrome c peptide (PCC) and antigen-presenting cells from B10.A spleens. 
For the use in experiments, A.E7 CD4+ T cells were stimulated with antigen- 
presenting cells (10:1 APC:T cell ratio) and PCC in media-containing IL-12 and 
anti-IL-4 antibody. Cells were cultured for 48 hours and lysed after a 6-hour 
incubation in 10 ng/ml TGF-(3. Thl cells were incubated in media containing 10 
ng/ml TGF-(3 for six hours and then transferred to media containing 10 U/ml IL- 
12 for another 20 minutes. Cells were then lysed. Immunoprecipitation for 
STAT4 protein, followed by incubation with anti-phosphotyrosine antibodies was 
performed. STAT4 protein weighs 95 kD and can be seen on the Western blot 
above only for those cells exposed to IL-12 with no prior exposure to TGF-p, 
demonstrating that TGF-J3 inhibited the IL-12-induced phosphorylation of STAT4 
(n=1). A control was performed using anti-STAT4 antibody, verifying that equal 
levels of STAT4 were present for all conditions (data not shown). 
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Discussion 

Murine models of inflammatory bowel disease suggest that the 

pathogenesis of Crohn’s disease is an overly-active Thl cell response in the gut- 

associated lymphoid tissue, or GALT (5). Crohn’s disease, then, can be depicted 

as an auto-immune disease in which a combination of genetics and the 

environment results in the dysregulation of the immune system. An antigen, that 

would be harmless to most, is transported by the M cell into the Peyer’s patch. 

There, it is presented to both B cells and T cells, stimulating an immune 

response. As demonstrated by Fuss et al., CD4+ T cells isolated from the lesions 

of patients with Crohn’s disease produced twice as much interferon-y when 

compared to CD4+ T cells from patients with ulcerative colitis and from controls 

(1). These T cells also produced less IL-4 and IL-5 than did T cells from controls. 

These experiments demonstrate that patients with Crohn’s disease have 

increased numbers of CD4+ T cells consistent with Thl cells. 

IL-12 is a key stimulant of Thl cells. Neurath et al. demonstrated that, in 

fact, IL-12 was indeed present in lesions found in patients with Crohn’s disease, 

whereas it was not present in tissue taken from control patients (1). Therefore, 

there are two independent lines of experimentation that support the theory that 

the pathogenesis of Crohn’s disease is an over-active Thl cell response. 

It is known from studies of oral tolerance that TGF-p is a crucial counter- 

regulatory cytokine. Weiner et al. performed several key experiments that 

demonstrated the fact that low doses of oral myelin basic protein fed to mice with 

EAE resulted in a suppression of the Thl response and an improvement in 
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symptoms (3). This group made the key discovery that CD4+ T cells isolated 

from the Peyer’s patches of mice after oral administration of an antigen were 

increased. Moreover, they provided evidence that suppressor T cells must then 

migrate to the murine splenic lymph nodes because when CD4+ T cells were 

isolated from spleens, administration of the same antigen to these in vitro T cells 

resulted in the production of TGF-p (12). 

Knowledge of the importance of TGF-p as a counter-regulatory cytokine, 

in addition to several experiments that supported the fact that patients with 

Crohn’s disease appeared to have an overactive Thl cell response, led to the 

hypothesis that these patients might have a defect in one of the regulatory 

pathways involved in Thl cell activation. It was known that TGF-p inhibited Thl 

cell function but little was known regarding the exact nature of its effects. 

In order to quantify the effects of TGF-p on Thl cell development, several 

experiments were performed, as described above. The first question was what 

effect TGF-p had on the DNA synthesis of stimulated CD4+ T cells. 

Two different Thl cell lines were used for these experiments, one in a 

BALB/c background and the other in a B10.A background. In both cell lines, 

TGF-p inhibited DNA synthesis in a dose-dependent manner. For the A.E7 cells, 

1 ng/ml TGF-p inhibited the DNA synthesis of cells by 8.4%, whereas 10 ng/ml 

inhibited DNA synthesis by 16.7%. In the BALB/c Thl cell line, 1 ng/ml TGF-p 

decreased DNA synthesis by 35.6%, while 10 ng/ml inhibited DNA synthesis by 

51.9%. It is apparent in both cell lines that TGF-p inhibited the incorporation of 

thymidine into DNA. Presumably, this is a reflection of cellular proliferation and 
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thus, TGF-p had a profound, dose-dependent effect on the growth of the Thl 

cells. Knowing that TGF-p administration reversed colitis in murine models of 

Crohn’s disease, and that anti-TGF-p antibodies can restore colitis in these mice, 

it is clear that this cytokine has profound effects on inflammation and the Thl 

cells responsible for it. 

Although TGF-p inhibited the growth of previously-differentiated Thl cells, 

it had a different effect on naive CD4+ T cells and on Th2 cells. NaTve CD4+ T 

cells were isolated from murine spleens in the same manner as the Thl cells. 

Flowever, they were cultured in the absence of IL-12 or anti-IL-4 antibody and 

represented truly undifferentiated CD4+ T cells. In these naive cells, 1 ng/ml 

TGF-p enhanced DNA synthesis by 40.7%, whereas 10 ng/ml TGF-p enhanced 

DNA synthesis by 12.6%. In other words, there is a positive effect of low doses 

of TGF-p, while with increasing levels after this point, we see an enhancement of 

DNA synthesis that begins to decrease in strength. Clearly, TGF-p affects Thl 

cells in a very different way than it affects naive T cells. The bimodal effect of 

TGF-p has been noted by others and demonstrates the complexity of this 

cytokine’s actions (18). 

Similar experiments were performed to see what effect TGF-p would have 

on the DNA synthesis of differentiated Th2 cells. Weiner’s model of oral 

tolerance predicts that TGF-p should inhibit the cell proliferation, and thus DNA 

synthesis, of Thl cells, but should increase that of Th2 cells. In fact, our data 

support this. CD4+ T cells were again isolated from the spleens of mice in a 

BALB/c background. In comparison to the Thl cell line, which was stimulated 
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with IL-12 and anti-IL-4 antibody, the Th2 cell line was stimulated with IL-4 and 

anti-IL-12 antibody, which has been shown to create a CD4+ T cell line that has 

the characteristics of Th2 cells (1)(27). When TGF-p was added to the Th2 cell 

cultures, 1 ng/ml of TGF-p increased DNA synthesis by 83%, whereas 10 ng/mi 

TGF-p increased DNA synthesis by 90%. In comparison to the Thl cell lines, the 

Th2 cells demonstrated a positive response to the administration of TGF-p. If the 

mouse model of Crohn’s disease suggests that the pathogenesis of the illness 

reflects a regulatory pathway that has gone awry, leading to an imbalance 

between Thl and Th2 cells, then this result makes much sense. Decreased 

levels of TGF-p would activate the function of Thl cells, while at the same time 

inhibit the function of Th2 cells. 

These DNA synthesis studies demonstrate that TGF-p affects different 

populations of T cells in different ways. When oral antigen is presented to T cells 

in the Peyer’s Patches, we know that TGF-p production activates a population of 

T cells that can suppress a systemic response. From these studies, we know 

that TGF-p inhibits the growth of Thl cells in a dramatic fashion and also 

enhances the expansion and the function of other types of T cells. This provides 

an explanation for the biological induction of oral tolerance. 

Interferon-y production is a sign of Thl cell activation. Therefore, 

measuring levels of this cytokine is another way of looking at the effects of TGF- 

p on the phenotype of T cells. In the A.E7 cell line, 1 ng/ml TGF-p inhibited IFN-y 

production by 30%, while 10 ng/mi TGF-p inhibited production by nearly 50%. In 

the BALB/c Thl cells, 1 ng/ml TGF-p inhibited IFN-y production by nearly 20%, 
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while 10 ng/ml inhibited production by 30%. Because these two different Thl cell 

lines are from different genetic backgrounds, as previously discussed, this 

shared effect demonstrates that TGF-p has important inhibitory effects on 

cytokine production from Thl cells. Because the activation of Thl cells leads to 

inflammation, it is no surprise that by inhibiting their DNA synthesis and 

interferon-y production, one finds that increased levels of TGF-p are associated 

with decreased levels of inflammation in both murine models of Crohn’s disease 

and in vitro. 

The above data support the idea that TGF-p inhibits both the DNA 

synthesis and the function of Thl cells. What effect might TGF-p have on the 

function of Th2 cells? These cells do not make IFN-y, but do produce abundant 

levels of IL-4. Contrary to its effect on Thl cell cytokine production, TGF-p does 

not seem to have a strong effect on the function of Th2 cells. IL-4 production is 

decreased very slightly by the administration of TGF-p, with 1 ng/ml TGF-p 

inhibiting cytokine production by 8% and 10 ng/ml TGF-p inhibiting production by 

6%. These values are not statistically significant and really do not represent a 

decrease in the function of Th2 cells. 

The initial studies demonstrate that TGF-p has a great inhibitory effect on 

both the DNA synthesis of, and cytokine production of, Thl cells. In comparison, 

TGF-p actually stimulates the DNA synthesis of both naive and Th2 cells and 

has no real effect on the cytokine production of Th2 cells. The question that 

follows is where in the pathway of DNA synthesis and cytokine production is 

TGF-p having an effect. 
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Close examination of the cytokine pathways (see Figure 4) yields a 

possible answer to the above question. It is known that IL-12 stimulates naive T 

cells to differentiate into Thl cells. In addition, the experiments above 

demonstrate that Thl cells cultured in media containing IL-12 show decreased 

DNA synthesis and decreased cytokine production when TGF-p is added to the 

media. Therefore, TGF-p is able to overcome the stimulatory effects of IL-12. It is 

known that two intracellular proteins, STAT3 and STAT4, are phosphorylated 

during the signal transduction cascade precipitated by the stimulation of Thl 

cells with IL-12 (25). Of the two intracellular proteins, only STAT4 is specifically 

phosphorylated solely when the T cells are activated by IL-12. There is no 

phosphorylated STAT4 present when the Thl cells are not activated. Therefore, 

perhaps, TGF-p inhibits phosphorylation (and therefore activation) of STAT4, 

which would account for its Thl cell suppressive activities. 

A Western blot was performed to detect whether the presence of 

phosphorylated STAT4 is affected by the addition of TGF-p to activated T cells. 

As seen in Figure 10, there is a 95 kD band present, corresponding to the 

presence of phosphorylated STAT4 protein, when IL-12 is added to cultures of 

activated Thl cells. This band is not present in naive T cells (data not shown). 

When TGF-p is added to the cultures of activated Thl cells, the 95 kD band 

disappears. Controls were performed to verify that the total level of STAT4 (both 

the phosphorylated and un-phosphorylated forms) were equal in all conditions. 

However, these results are preliminary, as there has been only one successful 

experiment and the results are not statistically significant. 
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Using all of the results above, a model begins to come to light (see Figure 

11). TGF-p inhibits the DNA synthesis of Thl cells, but not that of naive T cells 

or Th2 cells. TGF-p strongly inhibits the production of interferon-y from Thl cells, 

but has no real effect on the production of IL-4 by Th2 cells. Clearly, TGF-p has 

profound effects on the DNA synthesis and function of Thl cells that are very 

different from its effects on other CD4+ T cells. The data support the idea that 

TGF-p exerts its effect on Thl cells by inhibiting the signal transduction cascade 

downstream of IL-12. Thus, the addition of IL-12 is insufficient to overcome the 

effects of TGF-p. TGF-p results in decreased DNA synthesis and decreased 

interferon-y production in Thl cells. According to this model, un-phosphorylated 

STAT4 protein is unable to translocate to the nucleus and have Thl-like effects. 

Because different signal transduction cascades are involved in the DNA 

synthesis of, and function of, naive and Th2 cells, TGF-p has different effects on 

these cells. 

The proposed model is only one possibility. TGF-p might affect more than 

one pathway in Thl cells. Because a controlled experiment evaluating the effect 

of TGF-p on the phosphorylation of STAT4 in Thl cells was performed only 

once, this must be repeated in the future. Flowever, even if this result was 

statistically significant, there are other alternative explanations for the effects of 

TGF-p. Rather than inhibit the phosphorylation of STAT4, it might inhibit another 

protein in the signal transduction cascade involved in Thl cell activation. Future 

experiments could be performed to further delineate the role of TGF-p in the 

inhibition of Thl cell activation. By inhibiting the STAT4 protein directly, one 
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FIGURE 11: Proposed model for IL-12-induced signaling pathways in Thl cells 
TGF-p inhibits STAT4 phosphorylation, thereby inhibiting Thl DNA synthesis 
and IFN-y production. 
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could see if this would have the same effect as TGF-p. This might be performed 

through the use of antibodies or anti-sense oligonucleotides of STAT4. 

Beginning with the knowledge that TGF-p is an important counter- 

regulatory cytokine that is produced by suppressor T cells, a model has been 

created that accounts for all of the effects of TGF-p on Tbl cells. Translating this 

knowledge into newer, more specific treatments for diseases like Crohn’s 

disease is the next important step. Crohn’s disease is an autoimmune disease of 

unknown etiology. Murine models of Crohn’s disease support the hypothesis that 

the illness reflects an imbalance between Thl and Th2 cells, with a larger 

proportion of the former leading to inflammation in the gastrointestinal tract. 

Examination of tissue from humans with the disease also supports this theory. 

Trials with medications that target the ll-12-induced Thl cell activation 

pathway have yielded good results thus far, further supporting the model. TNF-a, 

which not only has a direct effect as an inflammatory cytokine but also activates 

the production of IL-12 by antigen-presenting cells (1), has been one major 

target. Administration of anti-TNF-a antibodies decreases the amount of 

inflammation in murine models of Crohn’s disease and has shown promising 

early results in human trials (26) (27) (28). NF-kB, which is an intracellular 

protein that is necessary for the transcription of TNF-a, has been another target. 

Treatment of mice with intrarectal antisense oligonucleotides of NF-kB has been 

effective in alleviating symptoms of colitis in the murine model (1). 

Both anti-TNF-a and antisense NF-kB are treatments that inhibit the 

production of IL-12 and act much more specifically than general 
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immunosuppressants, like corticosteroids. However, the model above suggests 

that there might be a treatment that is still more specific for inhibiting the Thl 

pathway. STAT4 is an intriguing target. Administration of antisense 

oligonucleotides of STAT4 could selectively inhibit Thl cells and reduce 

inflammation in Crohn’s disease. Because STAT4 is phosphorylated only in 

activated Thl cells, perhaps the phosphorylation of STAT4 would be a similar 

target in the development of a specific treatment for Crohn’s disease. Both of 

these methods should specifically inhibit Thl DNA synthesis and cytokine 

production, leaving the Th2 pathways responsible for antibody production alone. 

Several key experiments are necessary to further understand the effects 

of TGF-p and the model of Thl cell activation. How does TGF-p affect the other 

signaling elements involved in the IL-12-induced signal transduction cascade? 

What effects does TGF-p have on the signal transduction elements involved in 

the activation of Th2 cells or naive T cells? If Crohn’s disease reflects an 

imbalance of Thl and Th2 cells, what exactly is the defect? Is it the same in 

every patient or are there multiple sites at which the system can become 

dysregulated? All of these questions need to be answered in order to design 

treatment modalities that can correct the defect or defects in the regulation of the 

T cell activation and differentiation pathways. With antibodies, gene therapy, 

antisense oligonucleotides, or other new modalities, the treatment of Crohn’s 

disease will become more specific, will have fewer side effects, and will eliminate 

the need for harmful, generalized immunosuppressant medications. 
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