
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

1988

MU : a domain-independent case-based expert
system
Mitchell Jay Sklar
Yale University

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Sklar, Mitchell Jay, "MU : a domain-independent case-based expert system" (1988). Yale Medicine Thesis Digital Library. 3175.
http://elischolar.library.yale.edu/ymtdl/3175

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/3175?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3175&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

YALE

MEDICAL LIBRARY

Digitized by the Internet Archive

in 2017 with funding from

The National Endowment for the Humanities and the Arcadia Fund

https://archive.org/details/mudomainindependOOskla

MU: A Domain-Independent

Case-Based Expert System

A Thesis Submitted

to the

Yale University School of Medicine

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Medicine

by

Mitchell Jay Sklar
111

1988

Abstract

MU: A Domain-Independent

Case-Based Expert System

Mitchell Jay Sklar

1988

A medical expert system is a computer program designed to function in the

role of a medical consultant. In many such systems described in the literature,

the knowledge base of the program is stored in the form of production rules or

frames. While these approaches have their advantages, there exist alternative

cognitive models as well. We describe MU, an expert system built around a

case-based reasoning model. MU’s knowledge base is composed of recollections

of particular patients or groups of patients, stored flexibly in a format that allows

virtually any type of description the user desires. This flexible storage, together

with the separation of the database from the mechanics of the inference engine,

provides MU with domain independence. MU is also less goal-directed than

traditional medical expert systems, relying instead on associational reasoning

to produce a varied output of recollections, weighted judgements, conclusions,

commentary, and guesses, in a process we term musing. Preliminary tests of

MU with psychiatric and mammographic cases produced good results, but final

evaluation of the system awaits comprehensive trials with larger databases.

1

Contents

Abstract i

List of Figures iii

Acknowledgements iv

1 Introduction 1

1.1 Artificial Intelligence. 1

1.2 Medical Expert Systems. 3

1.3 Approaches to Knowledge Engineering. 4

1.4 Design Goals. 14

2 Methods 16

3 Results 21

3.1 Psychiatric Cases. 21

3.2 Mammographic Cases. 21

4 Discussion 30

4.1 The Mechanics of MU. 30

4.2 Analysis of Testing. 45

4.3 Comments. 47

4.4 Summary. 50

Appendix A: Code 51

Appendix B: Clustering Algorithm 79

Appendix C: Evocativeness Algorithm 81

References 83

ii

List of Figures

1 An English translation of a MYCIN production rule. 5

2 A typical frame in PIP. 8

3 A typical manifestations list from INTERNIST . 10

4 Example of a psychiatric test case used by MU. 17
5 Example of a radiologic test case used by MU. 20

6 MU’s commentary on one of the psychiatric cases. 23

7 Results of psychiatric case testing. 25

8 Table for computing x2 value for psychiatric cases . 26

9 mu’s commentary on one of the mammographic cases. 27

10 Results of mammographic case testing. 28

11 Table for computing x2 value for mammographic cases. 29

12 A sample point r used by MU. 31

13 A “prototypical” case for stocking MU. 34

14 A sample of MU’s response to a new case. 39

15 Explanatory capability using the WHY function. 42

16 The function DESCRIBE. 43

iii

Acknowledgements

I deeply appreciate the support and guidance over the last three years from

Professor David Gelernter, my advisor in the Department of Computer Science.

He graciously accepted his role as mentor and strongly encouraged my inter¬

est in artificial intelligence. Thanks also to Scott Fertig, a constant source of

helpful advice and comments regarding my project. My advisor in the medical

school, Dr. Perry Miller, deserves many thanks for initially encouraging me to

pursue this research in the computer science department. I gratefully acknowl¬

edge the use of data in this thesis provided by Dr. Chip Swett and Dr. Phyllis

Kornguth of the Department of Diagnostic Radiology and Dr. Craig Nelson of

the Department of Psychiatry at the School of Medicine.

IV

1 Introduction

1.1 Artificial Intelligence

1

The last twenty years have brought increasing efforts to explore the appli¬

cations of computers in medicine. One particularly fertile area has been the

field of artificial intelligence, which can be broadly described as the branch of

computer science that tries to understand and model “intelligent” behavior.

Although experts still debate the exact definition of artificial intelligence, or

AI, several important concepts have emerged. For one, AI involves a qualita¬

tive departure from ordinary “number crunching”—calculations digesting huge

quantities of numerical data. More than just a glorified desk calculator, a com¬

puter using AI techniques deals with symbols and abstractions. Consider, for

example, the difference between approximating the numerical value for the def¬

inite integral:

/ sin3f cos t dt fa 0.25
Jo

and computing the symbolic value of the indefinite integral:

/x • 4
. o , sin x ^

simt cost dt =-1- C.
4

While the first problem is simply a numerical calculation, the latter cannot be

solved without more complex techniques, such as symbolic reasoning, typical

of AI. Similarly, the problem of interpreting the meaning of an English para¬

graph requires an understanding of the significance of words as abstractions,

representations of entire ideas. As one paper succinctly explains,

2

The term artificial intelligence is generally accepted to include those

computer applications that involve symbolic inference rather than

strictly numerical calculation. [1]

It is precisely this symbolic approach that makes AI such a powerful and flexible

tool.

Furthermore, AI programs try to avoid exhaustive searches, relying instead

on heuristics, or rules-of-thumb. These heuristics are rules and procedures that

help a program to make an educated guess about a given situation. In a chess

game, for example, to examine all of the possible moves and countermoves

from a given board situation would prove computationally infeasible. However,

heuristics narrow down the search to a promising few moves that can then be

thoroughly explored.

Although most work in AI rests on the twin foundations of symbolic rea¬

soning and heuristics, specific approaches vary greatly. One school of thought

emphasizes cognitive modelling, imitating the mechanisms of human thought

with a computer program. For proponents of this view, AI serves as a valuable

tool to help dissect and understand human cognition. They gauge their suc¬

cess by assessing how closely the computer model seems to match the reality of

human problem solving. Thus, leaning toward the realm of psychology, Michie

defines AI as “the development of a systematic theory of intellectual process.” [2]

On the other hand, an alternate tack is to emphasize not the mechanisms of

reasoning, but instead the results. This approach recognizes that a computer’s

hardware and the human brain’s “wetware” have deep organizational differ-

3

ences, and that fast or efficient algorithms for reasoning in one system may

be inappropriate in the other. Along these lines, one standard for measuring

machine intelligence is the traditional Turing Test [3], in which an observer is

allowed to communicate by teletype with a human and a computer, each housed

in a separate room. If the observer cannot distinguish between the two, then

the computer system is deemed “intelligent.” Performance, in this view, is the

only standard; the specific methods of reasoning are irrelevant.

Most researchers, of course, would choose an approach between these two

extremes. Models of human thought serve as a guide for constructing artificial

intelligence systems, but performance remains the benchmark for measuring

success. More detailed discussions of the broad field of artificial intelligence can

be found in several texts [4,5,6].

1.2 Medical Expert Systems

Traditional problems in artificial intelligence include the recognition of ob¬

jects in a visual scene, the understanding of a “natural language” such as written

English, and voice recognition. Another historical field of interest has been the

development of expert systems, computer programs designed to emulate human

expertise in a particular area. These programs function much like human consul¬

tants offering advice. The field of medical diagnosis has proved to be especially

well suited to attack by these methods, posing interesting problems both in

constructing cognitive models of medical experts and building systems that can

perform adequately and arrive at the correct diagnosis. In addition, medical

4

diagnosis is a sufficiently complex and important problem that a functioning

medical expert system would be a valuable achievement.

Like a human consultant, an expert system cannot rely merely on the rules

of logic alone. Neither will general strategies of reasoning, such as dividing a

goal into several smaller subgoals, suffice. Instead, an expert needs specialized

information in a particular area. For example, a medical expert, whether hu¬

man or computer, would be unlikely to diagnose a patient as having sickle cell

anemia if unfamiliar with the natural history, signs and symptoms, or patho¬

physiology of that particular hemoglobinopathy. (In fact, sickle cell anemia

went unrecognized for many years [7,8].) Experts require a knowledge base and

that knowledge base must necessarily be specific to a given domain or area of

expertise.

1.3 Approaches to Knowledge Engineering

Constructing such a knowledge base, however, provides several obstacles to

surmount. What is the best method to acquire expert knowledge? In what form

should that knowledge be structured and stored? How can that knowledge be

pieced together to arrive at a valid conclusion? It is not immediately obvious

how human experts deal with these issues of knowledge acquisition, knowledge

representation, and knowledge use; and, as mentioned previously, the human

approach may not be suitable for computer expert systems. Researchers in the

field refer to these issues collectively as knowledge engineering [1], one of the

dominant directions for study in medical expert systems.

5

It is useful to review some of the strategies utilized by medical expert systems

in the literature. One large class of systems, epitomized by the MYCIN system

developed at Stanford for diagnosing bacteremias [9], stores expert knowledge

in the form of “production rules,” which can be thought of as simple if-then

rules. A English translation of such a rule [10] is shown in Figure 1. Breaking

IF The gram-stain of the organism is gram-positive

AND the morphology of the organism is coccus

AND the growth conformation of the organism is chains

THEN conclude that the identity of the organism is streptococcus

(modifier: the certainty tally for the premise times .7)

Figure 1: An English translation of a MYCIN production rule [10].

up the knowledge base into these small if-then chunks gives the system a high

degree of inherent modularity. Human experts can slowly revise the knowledge

base by adding new rules, allowing the system to grow incrementally. Because

the data relations are not deeply embedded within a data structure such as a

decision tree, errors within the knowledge base are more easily detected and

corrected. Furthermore, the modularity allows parts of the knowledge base to

be shared by systems with overlapping areas of expertise. A final advantage

is the inherent mechanism for explanation: in order to follow the path of the

system’s reasoning, the user merely tracks the string of logical rules leading to

the final conclusion. Thus the system, unlike the classic example of a Bayesian

6

statistical system, does not suffer from being perceived as a “black-box” with

obscure inner workings.

It is not clear, however, that a rule-based system provides an accurate cogni¬

tive model for human expert diagnosis. The data available to an expert clinician

is often incomplete or partially inaccurate. Particular items of data may need to

be ignored by the expert because they contradict other facts, while other seem¬

ingly trivial information may prove crucial to the final diagnosis. Intuitively it

would seem that an expert clinician does not construct a formal logical chain,

but instead relies on a cycle of hypothesis generation and testing, with continual

refinement as more data becomes available to suggest or strengthen a diagnosis.

As one paper states:

Our study clearly illuminates an important difference between the

expert in practice and the expert as often pictured in literature or

folklore. The epitome of the expert in fiction is the detective who,

through superior deductive powers and by sheer force of logic, or¬

ganizes the facts at hand in such a way that they lead to a single,

inevitable conclusion. By contrast, the real-world clinician seems

to rely much more heavily upon “guessing,” the initial hypothesis

typically being based on precious little data. These guesses are ap¬

parently prompted by patterns of clinical findings or by specific com¬

plaints that bring to mind particular diseases. They physician then

tries to demonstrate the correctness of his or her guesses, moving to

new hypotheses only if the initial impressions prove untenable. [11]

Indeed, the paradigm of forming a logical chain of conclusions may be the strat¬

egy used by inexperienced clinicians such as medical students, with expert clin¬

icians depending instead on learned associations between symptoms and their

associated diseases or suggested tests for further investigation.

This view is corroborated, in part, by the observed differences be¬

tween the diagnostic approach of a medical student or newly minted

7

doctor and that of a practicing expert. The novice struggles “from

first principles” initially to propose plausible theories and then to

rule out unlikely ones, whereas the expert simply recognizes the sit¬

uation and knows the appropriate response. [12]

The expert clinician eliminates the intermediate steps in if-then rule chaining,

apparently basing his hypotheses on compiled associations. When asked to ex¬

plain the line of reasoning to a novice like a medical student, however, the expert

will often resort to constructing the logical chain, a process that takes consid¬

erably more time and probably does not accurately reflect his own diagnostic

thought processes.

Another drawback to rule-based expert systems is that the modularity of

the knowledge base encourages a simplistic, reductionist view of the domain.

Without a data structure to synthesize a global view of each disease, it is more

difficult to discover new associations between diseases or to recognize that two

diseases are, in fact, merely differing manifestations of the same underlying

pathology. Similarly, a rule-based design would make it difficult to postulate

that a heterogeneous disease classification ought to be broken down into smaller,

more consistent, categories.

Some of these problems can be avoided by medical expert systems that

construct their knowledge base on the concept of frames [13], such as pip, a

program for obtaining a history of the present illness [12]. A frame is a struc¬

tured collection of closely related facts, stored in “slots,” about a given disease

or physiologic state. The frame related to the nephrotic syndrome, excerpted

in Figure 2, has slots filled with facts about associated physical and laboratory

8

NAME: nephrotic syndrome

IS-A-TYPE-OF: clinical state

FINDING: low serum albumin concentration

FINDING: heavy proteinuria

FINDING: > 5 grams/24hrs proteinuria

FINDING: massive symmetrical edema

FINDING: either facial or peri-orbital and symmetrical edema

FINDING: high serum cholesterol concentration

FINDING: urine lipids present

MUST-NOT-HAVE: proteinuria absent

IS-SUFFICIENT: both massive pedal edema

and > 5grams/24hrs proteinuria

MAY-BE-CAUSED-BY:

acute glomerulonephritis

chronic glomerulonephritis

nephrotoxic drugs

insect bite

idiopathic nephrotic syndrome

systemic lupus erythematosis

diabetes mellitus

MAY-BE-COMPLICATED-BY:

hypovolemia

cellulitis

MAY-BE-CAUSE-OF:

sodium retention

DIFFERENTIAL DIAGNOSIS:

if neck veins elevated, consider:

CONSTRICTIVE PERICARDITIS

if ascites present, consider:

CIRRHOSIS

if pulmonary emboli present, consider:

RENAL VEIN THROMBOSIS

Figure 2: A typical frame in PIP (excerpted from [12]).

9

findings, specific criteria for determining if the nephrotic syndrome is indeed

present, and the various possible causes and complications. Since PIP has a

conceptual representation of the nephrotic syndrome in its entirety, it can avoid

manipulating intermediate-level bits and pieces of information. There is no need

to know a specific physiologic rule such as “IF the serum albumin is low, THEN

the plasma oncotic pressure will be decreased,” because the higher-level associa¬

tions between the nephrotic syndrome and periorbital edema have already been

stored. The frame-based classification scheme also allows an expert system to

respond to broad queries such as “Please describe the nephrotic syndrome,” and

may provide some hints as to the organizational schemes of a human expert’s

mind.

The approach taken by INTERNIST [14] is similar in that the knowledge base is

partitioned into disease states. INTERNIST, however, concentrates intensively on

the associations between a disease and its signs and symptoms, giving relatively

less attention to the other information that PIP included such as etiology, com¬

plications, and differential diagnosis lists. A disease is described simply by a list

of its associated manifestations along with the strengths of those associations.

An abbreviated manifestation list is shown in Figure 3. For each manifestation

in the list, the first number represents the “evoking strength”: how strongly that

particular manifestation brings to mind the diagnosis in question, on a scale of

zero to five. This is qualitatively similar to the statistical concept of positive

predictive value. The second number is a frequency measure, representing how

10

ALCOHOLIC HEPATITIS

age 16 to 25. . .0 1

age 26 to 55... 0 3

age gtr than 55. ..0 2

alcohol ingestion recent hx. ..2 4

alcoholism chronic hx. ..2 4

sex female. ..0 2

sex male. ..0 4

urine dark hx... 1 3

weight loss gtr than 10 percent...0 3

abdomen pain acute. ..1 2

abdomen pain colicky... 1 1

abdomen pain epigastrium. .. 1 2

abdomen pain non-colicky... 1 2

abdomen pain right upper quadrant... 1 3

anorexia.. .0 4

diarrhea acute. ..1 2

myalgia. ..0 3

vomiting recent...0 4

liver biopsy periportal infiltration neutrophils...3 5

liver biopsy periportal infiltration round cells... 1 2

liver biopsy small bile ducts prominent... 1 2

LINKS FOR ALCOHOLIC HEPATITIS:

PREDISPOSES TO

CAUSES

CAUSES

CAUSES

COINCIDENT WITH

PRECEDES

mallory-weiss syndrome... 1 1

sinusoidal

or postsinusoidal portal hypertension. .. 1 1

hepatic encephalopathy.. .2 2

renal failure secondary to liver disease

<hepatorenal syndrome>. . .2 2

pancreatitis acute...2 2

micronodal cirrhosis claennec's>.. .2 3

Figure 3: Part of a typical manifestations list from INTERNIST [14]. The first

number after each manifestation is its evoking strength for the diagnosis; the

second is the frequency of the manifestation in the disease (each on a scale of

zero to five).

11

often that manifestation is present in a given disease, also on a scale of zero to

five. We can think of this as the conditional probability of finding a given sign

or symptom given a particular disease. In effect these associational strengths

are quite similar to traditional Bayesian statistics, although INTERNIST is much

more flexible in its analysis than a strict Bayesian system. This paradigm allows

the program to perform quite well when presented with fact-laden data, even

with rather difficult tests such as the clinicopathological cases from the New

England Journal of Medicine [14]. The actual construction of the manifesta¬

tion lists, however, presents a difficult and time-consuming task. Building the

knowledge base of DXplain [15], a system with an internal structure much like

INTERNIST, involved some 65,000 relationships between diseases and their signs

and symptoms. Most of these associational strengths simply do not exist in the

literature and must be estimated empirically by domain experts.

An alternate approach, one that forms the foundations for our own system,

MU, is to build a medical expert system around a database of specific patient

cases. The underlying cognitive model has a strong intuitive appeal. As any

third-year medical student can attest, gaining clinical expertise depends not so

much on “book learning,” but rather on the examination of hundreds or thou¬

sands of patients. In the hospital, one frequently hears a clinician suggesting,

“You know, that reminds me of a case I saw during my fellowship training.

That patient turned out to have disease x; perhaps this patient has the same

diagnosis.” Searching a large database of cases provides a measure of flexibility,

12

especially when diagnosing a patient whose disease does not “follow the rules”

or does not fit neatly into a typical diagnostic frame.

Several researchers have investigated this case-based cognitive model, to¬

gether with the implications for associational chaining of memories. This idea

is not new—over forty years ago one author wrote of building a “memex,” a

machine to serve as a memory aid, based on such a model of the human mind:

The human mind .. .operates by association. With one item in its

grasp, it snaps instantly to the next that is suggested by the associa¬

tion of thoughts, in accordance with some intricate web of trails car¬

ried by the cells of the brain. It has other characteristics, of course;

trails that are not frequently followed are prone to fade, items are

not fully permanent, memory is transitory. Yet the speed of action,

the intricacy of trails, the detail of mental pictures, is awe-inspiring

beyond all else in nature ... [With the aid of the “memex,” the]

physician, puzzled by a patient’s reactions, strikes the trail estab¬

lished in studying an earlier similar case, and runs rapidly through

analogous case histories ... [16]

An early system built by Feinstein and coworkers at Yale [17,18] involved

using a database of clinical information on several hundred patients with pri¬

mary lung cancer, with the goal of predicting survival rates. Their approach

was to estimate the probability of survival of a presenting patient by culling

from the database a subset of patients with matching clinical features. Sur¬

vival could then be estimated from these historical controls. A similar system,

in the domain of ischemic heart disease, was developed by Rosati et. al. [19],

using a databank of some 3,000 patients to predict prognosis and plan therapy.

These programs, as well as others [20,21], emphasize using the database as a

source for compiling statistics dynamically. They resemble a Bayesian statisti¬

cal system, but differ in that the conditional probabilities are computed on the

13

fly, recalculated from the ever-growing database with each query about diagno¬

sis, prognosis or treatment. Systems built upon a large database can provide

impressive clinical accuracy and utility. [22,23,24]

A diagnostic system described by Kulikowski [25] avoids the method of com¬

piling statistical summaries, using instead the mathematical technique of linear

transformation to classify a presenting case into a diagnosis group among the

cases in memory. While this transformation improves the separation into di¬

agnostic groups, the system loses its transparency to the user and dispenses

its diagnoses without any comprehensible explanation of its reasoning. Such a

system, as accurate as it may be, cannot claim to model human thought.

The case-based reasoning systems developed by Stanfill and Waltz [26] and

Kolodner [27] are more similar to the approach of our program MU. Both em¬

phasize the value of experience in arriving at a diagnosis. The output from these

programs, however, is limited in scope. In constructing MU we attempted to use

the case-based model as a set of girders supporting a more elaborate structure,

called musing [28,29,30]. More than just a goal-directed approach aimed at

determining the final diagnosis, musing refers to a running series of commen¬

taries and memory associations, modelled after the heterogeneous comments

that might come from a human expert. A presenting case might set off a chain

of associations, or prompt the expert to give more weight to certain features of

a case, or to focus on certain atypical aspects of a case; all within the context of

the expert’s personal experience. The information derived during the process of

14

looking for a solution can be as significant as the solution itself. The importance

of such commentary in place of solely “answer-directed” medical expert systems

has been emphasized in the critiquing systems of Miller [31,32,33] and in other

work [34].

1.4 Design Goals

With this background in mind, our aim was to construct MU, a case-based

medical expert system incorporating the concept of musing. When presented

with a new patient case, the system would have the opportunity to provide

a running commentary of its thought processes: the cases it recollects, the

weighting it assigns to features in the presenting case, chains of associations

and conclusions derived from the database, surprising aspects in the presenting

case, guesses for the diagnosis. Such varied output might prove valuable to the

user.

Moreover, we designed flexibility into the database as well. MU is domain-

independent; that is, it can handle problems in one area (such as psychiatric

diagnosis) just as well as problems in a completely unrelated field (such as mam-

mographic diagnosis). With a large enough database, the system could expand

the differential diagnosis for a difficult case by recollecting specific cases of un¬

usual diseases. New associations between diseases or new clinical syndromes

might be uncovered as a user interacts with the system.

Finally, MU was constructed with built-in explanatory facilities, so that a

user could understand the trail of the system’s musing. As some authors have

15

stressed [35], a clinician is much more likely to utilize a system with compre¬

hensible explanations.

16

2 Methods

In order to implement the design goals described above, a working version of

our case-based expert system, called MU, was constructed by the author. The

system was written in T [36,37], a programming language developed at the Yale

University Department of Computer Science, related to the language LISP [38]

and a LISP dialect called SCHEME [39], The final version of MU consisted

of more than 1500 lines of computer code divided among some 140 procedures.

The full text of the code is included in Appendix A. The system currently runs

on SUN desktop workstations with a multi-window bitmapped display and a

mouse pointer.

As the system was being developed, we constructed test databases in several

different domains, both medical and non-medical in nature. Samples of selected

output are included in the Results and Discussion sections. In order to measure

the performance of the system more objectively, however, we wished to test the

system with cases provided by an outside expert, thus avoiding the introduction

of any unintentional bias in case selection. We also wanted to evaluate the

performance of the system on actual patient data.

To this end we obtained sample medical databases from two independent

sources. One source was Dr. Craig Nelson of the Department of Psychiatry at

Yale, who kindly made available data on fifty-two patients with a history of

depressive illness. A typical case, in the list format of T, is shown in Figure 4.

The data consisted primarily of the results of a modified Hamilton depression

17

((patient-id 14)

(age 22)

(sex female)

(dmi-level 34)

(response some-response)

(clinical-diagnosis doubtfully-melancholic)

(depressed-mood 3)

(feelings-of-guilt 2)

(suicide 2)

(insomnia-early 2)

(insomnia-middle 2)

(insomnia-late 1)

(work-and-activities 3)

(retardation 1)

(agitation 0)

(anxiety-psychic 2)

(anxiety-somatic 2)

(appetite 1)

(loss-of-energy 2)

(genital-symptoms 0)

(hypochondriasis 0)

(loss-of-weight 0)

(insight 0)

(diurnal-variation-morning 0)

(diurnal-variation-evening 0)

(depersonalization 2)

(paranoid-symptoms 1)

(obsessional-compulsive 0)

(helplessness 2)

(hopelessness 2)

(worthlessness 2)

(ruminative-thinking 0)

(decreased-concentration 1)

(ability-to-experience-pleasure 3)

(delusional-thinking 0)

(hypo-activity 1)

(lack-of-responsiveness 0)

(distinct-quality 2)

(global-severity 4))

Figure 4: Example of a psychiatric test case used by MU. The possible

values for response, indicating the response to the anti-depressant medica¬

tion desipramine, are: responder, some-response. The possible values for

clinical-diagnosis are not melancholic, doubtfully melancholic, probably

melancholic, definitely melancholic.

18

scale, a questionnaire on the self-described severity of depressive symptomatol¬

ogy [40,41]. Each attribute in the Hamilton scale consists of a symptom, such

as feelings-of-guilt, and its associated value, usually a numerical rating on

a scale from 0 to 4 or from 0 to 5. Some of the cases contained incomplete

data from the rating scale, with features missing. In addition to the modified

Hamilton ratings, there was information regarding the clinical diagnosis of the

type of depression as determined by a psychiatrist, ranging along a spectrum

from not-melancholic (a milder form of depression) to definitely-melancholic (a

more severe form). Most cases also contained data relating to the patient’s ob¬

served clinical response to a particular anti-depressant medication, desipramine

(DMI), as well as measured blood levels of that drug.

The fifty-two cases were randomized and divided into three groups. The first

group, consisting of 20 cases, provided the initial stock for the system’s memory.

During the construction of MU, the second group, consisting of 12 cases, was

used to test and refine the program routines as they were being developed. The

third group of psychiatric cases, 20 patients, was not used at all during the

development phase; instead, these cases were reserved for a final test of the

completed system. MU was never presented with these last 20 cases until the

final testing.

For the testing, the system was stocked with all of the 32 psychiatric cases

that had been used in the development phase. The remaining 20 cases were

stripped of the features relating to response to desipramine and clinical diagnosis

19

(some of the cases were incomplete and missing that information). Each of the 20

cases was entered individually, with the system directed to the goal of guessing

the response to the anti-depressant. After each case, MU was also directed to

guess the clinical diagnosis.

Our second test of the system was in the domain of radiology, specifically

mammography. Dr. Chip Swett and Dr. Phyllis Kornguth of the Department of

Diagnostic Radiology at Yale generously provided data from 31 mammographic

exams. A sample case is displayed in Figure 5. The system was fully completed

before any of these cases were used. None of the cases was used during the

development phase of the program, thereby eliminating any bias in constructing

the system to perform well on these specific cases.

The thirty-one radiology cases were randomized into two groups. The first

group, 21 cases, was used to stock the system’s memory. The second group, 10

cases, was stripped of information regarding the clinical diagnosis and presented

as a test to the system.

Data from the system’s guesses, both in the psychiatric domain and the

radiologic domain, were analyzed for statistical significance with the test

with the Yates correction for small expected values [42].

20

((ID 19)

(AGE 58)

(DEN IS)

(BORD-COMP N)

(TYPE IRR)

(DEF N)

(LOC UPPER INNER)

(SIDE L)

(SZ-CH Y)

(DNS-CH N)

(COM N)

(HALO N)

(BACK MOD)

(MCAN N)

(MCATY N)

(LG N)

(ARCH N)

(DUCP N)

(MSOTHR N)

(PAL N)

(SZ-PA N)

(SK N)

(NI N)

(AD N)

(FA S)

(PE N)

(DIAGNOSIS CA-INF-DUCT)

)

identification number for patient

age in years of patient

density of lesion (high or isodense)

is the complete border seen?

border type (smooth, irreg, lobulated)

is the border well-defined?

location in breast which quadrant

left or right breast

size change since last film

density change since last film

comet (a particular film finding)

halo (a particular film finding)

background of breast tissue

(fatty, moderate, dense)

microcalcification number (none, many)

microcalcification type (none, fine)

large calcification

architectural distortion

ductal prominence

other mass

(ipsilateral or contralateral)

other masses palpable?

palpable size larger than film image?

skin changes (none, retraction, nipple)

nipple inversion

adenopathy

family history (none, sister, mother)

personal history of cancer

pathologic diagnosis

Figure 5: Example of a radiologic test case used by MU. The meaning of each

of the abbreviations is given in the comment column on the right. The values

for diagnosis included infiltrating ductal carcinoma, infiltrating lobular carci¬

noma, colloid carcinoma, carcinoma (unspecified type), metastatic melanoma,

metastatic adenocarcinoma in lymph node, papilloma, fibroademona, cyst, and

plasmacytoma.

21

3 Results

3.1 Psychiatric Cases

A sample of the commentary that MU provides when presented with a psy¬

chiatric test case is given in Figure 6. Runtime for this case was approximately

30 seconds. The interpretation and meaning of MU’s output is explained in

the Discussion section. Figure 7 contains the results of the performance of the

system applied to the psychiatric cases. As shown, for the 16 cases where the

response to desipramine was known, the system correctly guessed the response

9 times (56% correct). Analysis by the x2 test (see Figure 8) showed that the

guesses for clinical response were not significantly different from random guess¬

ing. When guessing the clinical diagnosis, however, the system ascertained the

correct choice (out of four possibilities) in 10 out of the 20 test cases (50% cor¬

rect). For guessing clinical diagnosis, the x2 test showed that the system did

indeed perform significantly better than random guessing (p < 0.10).

3.2 Mammographic Cases

An example of a test run with a mammographic case is shown in Figure 9.

Runtime for this simpler case was approximately 10 seconds. The table in Fig¬

ure 10 shows the performance with the mammographic cases. Of the 10 cases

tested, the system correctly guessed the exact diagnosis in 6 cases (60%). In

two more cases (20%) , the system was partially correct in its diagnosis. One

of these was a case where MU guessed carcinoma (unspecified type), while the

22

correct diagnosis was infiltrating ductal carcinoma, the most common type of

breast carcinoma, accounting for some seventy-six percent of all breast carci¬

nomas [43], In the other partially correct case, MU guessed infiltrating lobular

carcinoma while the actual diagnosis was given as carcinoma (unspecified type).

In two of the cases (20%), the guesses were incorrect. One was a case of infil¬

trating ductal carcinoma misdiagnosed as a fibroadenoma, and one was a case

of plasmacytoma. Plasmacytoma, a rare tumor that can occur in the breast,

was not represented by any cases already stored in the database. Analysis by x2

(see Figure 11) showed that these results of guessing the pathologic diagnosis

were also statistically significant at a level of p < 0.01 .

23

> (query
’((patient-id 7)
(sex male)
(depressed-mood 2)
(suicide 2)
(insomnia-middle 1)
(work-and-activities 3)
(agitation 0)
(anxiety-somatic 2)
(loss-of-energy 2)
(hypochondriasis 3)
(insight 1)
(diurnal-variation-evening 0)
(paranoid-symptoms 0)
(helplessness 2)
(worthlessness 2)))

Evocativeness: 2.34

(age 23)
(dmi-level 123)
(feelings-of-guilt 1)
(insomnia-early 1)
(insomnia-late 0)
(retardation 0)
(anxiety-psychic 4)
(appetite 1)
(genital-symptoms 2)
(loss-of-weight 0)
(diurnal-variation-morning 2)
(depersonalization 0)
(obsessional-compulsive 0)
(hopelessness 2)

I am reminded of the following cases:

Case Number PATIENT-ID RESPONSE

29 (56) SOME-RESPONSE

0 (21)

31 (14) SOME-RESPONSE

28 (62) SOME-RESPONSE

24 (66)

2 (26)

21 (57) RESPONDER

8 (91) SOME-RESPONSE

11 (12) SOME-RESPONSE

30 (44) SOME-RESPONSE

Figure 6: mu’s commentary on one of the psychiatric cases (continued on the

next page). Note the mix of cases brought to mind, evocativeness, surprises,

conclusions, and guesses. These are explained further in the discussion section.

For this particular case, the response to desipramine was unknown. MU correctly

guessed the actual clinical diagnosis, definitely melancholic.

24

I’m surprised.

I would have predicted that the HYPOCHONDRIASIS would be (0).

I’m surprised.

I would have predicted that the INSIGHT would be (0).

Conclusions:

DELUSIONAL-THINKING (0)

Evocativeness: 1.26

I am reminded of the following cases:

Case Number PATIENT-ID RESPONSE

0 (21)

1 (51) RESPONDER

2 (26)

3 (80) SOME-RESPONSE

4 (74) SOME-RESPONSE

6 (71) RESPONDER

7 (61)

8 (91) SOME-RESPONSE

11 (12) SOME-RESPONSE

12 (23) SOME-RESPONSE

13 (18) SOME-RESPONSE

14 (67) SOME-RESPONSE

16 (11) SOME-RESPONSE

17 (72) RESPONDER

21 (57) RESPONDER

22 (84) RESPONDER

24 (65)

25 (86) SOME-RESPONSE

27 (15) SOME-RESPONSE

28 (62) SOME-RESPONSE

29 (56) SOME-RESPONSE

30 (44) SOME-RESPONSE

31 (14) SOME-RESPONSE

My best guess for RESPONSE is SOME-RESPONSE

> (guess ’clinical-diagnosis)

My best guess for CLINICAL-DIAGNOSIS is DOUBTFULLY-MELANCHOLIC

Figure 6 (continued).

25

Psychiatric Test Cases

ID

Response to Desipramine Clinical Diagnosis-Melancholic

Guess Actual Correct? Guess Actual Correct?

2 some some + definitely definitely +

9 some some + probably definitely -

7 some ? ? doubtfully doubtfully +

40 some responder - probably probably +

47 some ? ? probably not -

3 some responder - probably probably +

6 some some + definitely definitely +

16 some some + definitely definitely +

73 some some + probably definitely -

59 some ? ? probably not -

42 responder some - definitely definitely +
27 some some + definitely definitely +

13 some some + definitely probably -

5 responder responder + definitely probably -

20 some responder - definitely probably -

82 some some + definitely probably -

90 some responder - definitely definitely +

52 some ? ? definitely not -

39 some responder - probably definitely -

70 responder some - definitely definitely +

Figure 7: Results of psychiatric case testing. The symbol -f shows a correct

guess, the symbol — marks an incorrect guess, and the symbol ? marks a case

where the actual value of the response or clinical diagnosis was unknown. MU’s

guesses were correct for 9 out of 16 known values for the response to desipramine

(56%), and for 10 out of 20 known values for the clinical diagnosis (50%).

26

Psychiatric Cases Data Analysis

Response number in database Pi Hi Ei

responder 10 0.357 6 2.143

some-response 18 0.643 10 6.429

Total 28 1.000 16 8.571

Expected number of correct answers: 8.571

Actual number of correct answers: 9

Expected number of incorrect answers: 7.429

Actual number of incorrect answers: 7

X2 value (with Yate’s correction): 0.001 (p not significant)

Diagnosis number in database Pi Tli Ei

not-melancholic 3 0.094 3 0.281

doubtfully-melancholic 8 0.250 1 0.250

probably-melancholic 11 0.343 6 2.063

definitely-melancholic 10 0.313 10 3.125

Total 32 1.000 20 5.719

Expected number of correct answers: 5.719

Actual number of correct answers: 10

Expected number of incorrect answers: 14.281

Actual number of incorrect answers: 10

X2 value (with Yate’s correction): 3.5 (p < 0.10)

Figure 8: Tables for computing x2 value for psychiatric cases. The number p,

represents the frequency of a value i in the initial database, and n, is the number

of times the value occurs among the test cases. The last column, Ei, is the

expected number of correct guesses for value i if the system guessed randomly,

is computed from PiUj. For example, there were 6 test cases with the diagnosis

of probably-melancholic. If the system guessed purely based on the diagnosis

frequencies already in the database, it would be correct (0.343)(6) = 2.063 times

for the diagnosis of probably-melancholic. Overall, the total number of correct

guesses for clinical-diagnosis was 10, compared to an expected number of 5.719

(p < 0.10). The total number of correct guesses for desipramine response was

9, compared to an expected number of 8.571 (p not significant).

27

> (query ’(

(id 30) (age 42) (den hi)

(bord-comp n) (type lob) (def y)

(loc lower inner) (dns-ch n) (com y)

(halo n) (back fty) (mean n)

(meaty n) (lg n) (arch n)

(ducp n) (msothr n) (pal n)

(sz-pa same) (sk n) (ni n)

(ad n) (fa n) (pe my)))

Evocativeness

I am reminded

Case Number

: 2.16

of the following cases:

ID DIAGNOSIS

12 (6) CA-C0LL0ID

6 (15) FA

4 (16) MET-MELANOMA

8 (7) FA

9 (21) CYST

13 (14) CA-INF-DUCTAL

1 (12) FA

20 (24) FA

I’m surprised. I would have predicted that the COM would be (N).

My best guess for DIAGNOSIS is FA

Figure 9: mu’s commentary on one of the mammographic cases. The system is

surprised at the radiologic finding of a comet, and guesses (correctly) that the

diagnosis is fibroadenoma despite having recalled some more malignant lesions

as well.

28

Mammographic Test Cases

ID

Diagnosis

Guess Actual Correct?

n fibroadenoma ca-inf-ductal -

25 fibroadenoma fibroadenoma +

2 carcinoma carcinoma +

22 fibroadenoma fibroadenoma +

26 carcinoma ca-inf-ductal ±

32 ca-inf-lobular carcinoma ±

3 carcinoma carcinoma +

29 fibroadenoma fibroadenoma +

4 fibroadenoma fibroadenoma +

30 fibroadenoma plasmacytoma -

Figure 10: Results of mammographic case testing. The symbol + shows a

correct guess, the symbol — marks an incorrect guess, and the symbol ± marks

a partially correct guess. MU’s guesses were correct for 6 out of 10 of the

cases (60%), and partially correct in two others (20%). Two cases (20%) were

given the wrong diagnosis, one of which (plasmacytoma) was not represented

previously in MU’s memory.

29

Mammographic Cases Data Analysis

Diagnosis number in database Pi n, Ei

carcinoma 5 0.238 3 0.714

ca-inf-ductal 4 0.190 2 0.381

ca-inf-lobular 1 0.048 0 0

ca-colloid 1 0.048 0 0

plasmacytoma 0 0 1 0

met-adeno-in-ln 1 0.048 0 0

met-melanoma 1 0.048 0 0

papilloma 1 0.048 0 0

cyst 2 0.095 0 0

fibroadenoma 5 0.238 4 0.952

Total 21 1.000 10 2.048

Expected number of correct answers: 2.048

Actual number of correct answers: 6

Expected number of incorrect answers: 7.952

Actual number of incorrect answers: 4

X2 value (with Yate’s correction): 7.3 (p < 0.01)

Figure 11: Tables for computing x2 value for mammographic cases. The symbols

are described in Figure 8. The total number of completely correct guesses for

diagnosis was 6, compared to an expected number of 2.048 (p < 0.01). If the

partially correct guesses are included, for a total of 8 correct or partially correct

guesses, we find x2 = 18.3 and p < 0.001.

30

4 Discussion

4.1 The Mechanics of MU

Some computer programs for diagnosis function like an inscrutable black box,

with a case entered in one side and the diagnosis delivered out the other. Our

system, MU, is built on an entirely different model. A human expert reacts to the

description of a patient with a wide variety of responses: recollections of similar

cases, suppositions about what features ought to be present, puzzlement over

unexpected features of the case, judgments on whether the signs and symptoms

evoke a particular diagnosis or are merely non-specific. By combining these

strategies and chaining together recollections, a human sometimes comes to a

serendipitous discovery. We refer to this flexible and heterogeneous mode of

thinking as musing [28,29], Our system was designed to provide the varied sorts

of commentary that a human might in examining each new case. The musing

design together with a case-based memory form the foundation of the cognitive

model for MU.

In order to understand how MU works, we must delve into how the data

is represented internally. The elemental object that MU manipulates, called a

point or a case, corresponds to an isolated recollection. A point can contain

a remembrance of a specific patient, a conglomeration of several patients so

similar that they have merged together in memory, a generic description of a

disease state, a helpful associational rule, or other useful data. Internally, a

point is a collection of several features, each one consisting of an attribute or

31

((name john-doe)

(age 56)

(sex male)

(weight-in-kg 80)

(recent-weight-loss no)

(children’s-names ken rhonda mihaly)

(favorite-food chocolate-ice-cream)

(lives-in new-london Connecticut)

(hobbies camping)

(smoking-hx-pack-years 50)

(occupation shipyard-worker)

(toxin-exposure asbestos formaldehyde)

(cough morning non-productive)

(hemoptysis no)

(chest-x-ray normal)

(tuberculosis-hx no)

(clubbing no)

(dyspnea occasional)

(electrocardiogram normal)

(hoarseness no)

(fever yes)

(fatigue yes)

(headache yes)

(rash yes)

(dysuria no))

Figure 12: A sample point r used by MU.

32

dimension along with the value of that attribute, as shown in the example of

Figure 12. Note that a particular attribute, such as toxin-exposure, can pos¬

sess multiple values simultaneously, here both asbestos and formaldehyde.

Also, there is no limitation on the type of features that are allowed to com¬

pose a point; a case has no predetermined slots. This flexibility can be very

important, since seemingly irrelevant features such as (lives-in new-london

Connecticut) and (hobbies camping) may be the trigger that leads to an

unusual diagnosis like Lyme Disease.

Mathematically, each case can be referred to as an unordered n-tuple r.

The system’s memory, or database, is simply a set M. of such tuples r, . One

can think of a feature space spanning all the possible attributes in the system;

in such a geometric model, cases are points in the feature space. If diagnoses

are well-defined and if the attributes are relevant, we would expect the points

to cluster into small groups, each with a single diagnosis. Postulating a di¬

agnosis for a new presenting case reduces to locating the closest cluster to a

point in the n-dimensional feature space. Although this is reminiscent of the

work of Kulikowski mentioned previously [25], there are several important dif¬

ferences. First, MU allows a case to have missing attributes, as well as allowing

an arbitrary number of differing attributes. Our system is strongly domain-

independent, and indeed, easily handles cases in several domains simultaneously.

The memory A4 may contain a heterogeneous mix of points r,-, say a potpourri of

patient cases, mammographic findings, recollections of restaurants, and descrip-

33

tions of folkdances. These points would likely form into four distinct clusters,

perhaps even separating into mutually orthogonal subspaces, but would still be

handled in the same manner by MU. In addition, Kulikowski’s system handles

distance metrics in a strictly mathematical fashion and uses a linear transforma¬

tion to improve the separation into clusters, while MU uses symbolic techniques

of AI in its metrics. Finally, MU uses the metrics merely as a launching point

to jump into the more varied commentary of “musing” discussed above.

Having a data structure consisting of a memory of cases provides an obvious

method for building expertise into the system: MU simply adds new patient

cases incrementally to its database. Automated entry of data is already a key

part of several systems [19,20,21]. MU differs from these systems in that it

also has a mechanism for stocking the system with prototypical cases before

any real patients have been added. One such tuple r is shown in Figure 13,

representing an amalgamation of 10 theoretical cases of pulmonary embolism.

The numbers following each value represents the frequency of occurrence. Thus,

out of the 10 cases lumped together, 8 were found to have dyspnea (shortness of

breath). Prototypical cases such as these serve to “prime the pump,” acting as

a foundation on which to build. As MU builds a larger and larger database, the

new points of patients with pulmonary embolism will outnumber the stocking

case ro, rendering it insignificant. This is analogous to the process of physician

in training, gradually replacing stereotypical right-out-of-the-book cases with

actual clinical experiences.

34

((diagnosis

(num-cases

(dyspnea

(chest-pain

pulmonary-embolism)

10)

(yes 8) (no 2))

(pleuritic 4) (non-pleuritic 2)

(none 4))

(chest-x-ray (normal 7) (infiltrate 1)

(activity

(onset

(hemoptysis

(call-pain

(calf-swelling

(v/q-scan

(effusion 1) (wedge-defect 1))

(bed-ridden 5) (post-op 3) (normal 2))

(sudden 9) (gradual 1))

(yes 1) (no 9))

(yes 4) (no 6))

(unilateral 3) (bilateral 1) (none 6))

(hi-prob 3) (intermediate-prob 5)

(low-prob 2))

(pulmonary-angiogram 3 (positive 9) (negative 1)))

Figure 13: A “prototypical” case for stocking MU, demonstrating both multiple

cases condensed into one case and feature-multiplicity. (The numbers given here

were chosen for illustrative purposes only and are not clinically accurate.)

35

The sample case in Figure 13 demonstrates another optional argument that

MU understands, called multiplicity. The number 3 found in the pulmonary

angiogram feature indicates that the results of that test are to be considered

three times as important as any other feature listed. This provides a way for

the user to emphasize that a given feature is especially significant.

Within this framework of M. and r, one of the primitive operations that MU

performs is

FETCH(t0, M) —* C,

which ranks the points in At according to how similar they are to To, a

presenting new case, and returns those points in an ordered remindings list C.

This is equivalent to asking MU, “What other cases does this new case tq bring

to mind, in order?”

Of course, this concept of closeness or similarity will depend heavily on the

particular distance routines we choose for comparing tq to each case rt in At.

MU handles this flexibly, allowing the user to define new metrics for specialized

attributes. For example, a user may wish to define his own “color-distance,”

in which red is closer to orange than it is to blue. The distance routines are

feature-driven, with each attribute calling up its own metric. If no individualized

metric has been specified by the user, MU applies a default metric depending

on the type of data. For example, the default distance between two numbers x

36

and y is given (on a scale of 0 to 100) by:

d(x, y) = 100
I* - y\

max{i, y, |ar - y|} '

The overall distance between To and r; is an average of the distances along the

features they have in common, weighted by the multiplicity (relative importance

of each feature) described above.

Most of the points in £ will lie relatively far away from r0. In order to focus

attention on the most important points, MU searches for a natural break in the

ordered list £ that separates a “close” group of cases C from a “distant” group

of cases V. Thus, MU concentrates on the most relevant memories and ignores

those that seem to have little bearing. The details of CLUSTER, the algorithm

to find this natural division, are described in Appendix B.

Once MU has identified these significant memories C, it proceeds to invoke

another primitive operation, GENERALIZE, which blends together all the in¬

dividual cases in C into a condensed case Q:

GENERALIZED) —> Q

Is there any distinctive flavor to the resulting stew? Did the presenting case

t0 bring to mind consistent memories? In order to evaluate this, MU calcu¬

lates the evocativeness of Q, a measure of how successful To was in stirring up

memories with a common diagnosis. If Q contains twenty cases, nineteen with

the diagnosis of myocardial-infarction and only one with the diagnosis of

esophageal-reflux, then r0 is deemed highly evocative and significant. On

37

the other hand, if Q encompasses a dozen equally likely diagnoses, then the fea¬

tures in r0 haven’t been very helpful. The routine EVOCATIVENESS uses an

algorithm based on information theory; details are given in Appendix C. This

concept of evocativeness is somewhat different from the “evoking strength” used

by INTERNIST [14]. mu’s evocativeness refers to the strength of tq in focusing

attention, and is independent of the specific diagnoses that happen to come to

mind. Further, EVOCATIVENESS evaluates the significance of an entire pre¬

senting case To, not just a single sign or symptom. MU handles the simpler case

of calculating the evocativeness of a single feature as well, merely by construct¬

ing a case r consisting of only that single feature. In fact, MU ordinarily does

just that, computing the evocativeness individually for each feature in a case

and scaling up the multiplicity for that feature accordingly. By this method,

MU dynamically weights each feature in r0 according to its importance.

If the presenting case is partially incomplete, MU attempts to flesh out the

missing features with some logical assumptions. The routine CONCLUDE de¬

termines if any feature-value pair is overwhelmingly present in the cases that

are brought to mind. This new information, arrived at from examining the pre¬

senting case in the context of the “experience” of the database, may shed some

new light on the final diagnosis. Consider, the example shown if Figure 14, with

the user asking about patient barney-rubble who has findings suggestive of

pulmonary embolism. After examining nearby cases, there is a very strong sug¬

gestion that the onset should be sudden and the pulmonary-angiogram should

38

be positive; the system temporarily concludes that these features are true.

What new recollections are stirred up by this added information? MU cycles

back and reexamines its memory, now finding that it can draw another more

important conclusion: the diagnosis is pulmonary-embolism. These cycles of

examining the database and drawing inferences allow the system to sift through

the database and extract as much information as possible. To some extent, the

chaining of conclusions and new recollections corresponds to a cognitive model

of free association, as MU focuses its attention down those interesting side trails

of reasoning.

While the system tries to conclude as much as can be supported by the pre¬

senting case, it carefully avoids contradicting data supplied by the user. Instead,

MU draws attention to the situation by expressing surprise. The sample output

of Figure 14 shows provides one example. Given the initial data, the system

would ordinarily have concluded that the value for call-swelling should be n

(“no”). Since this directly contradicts the user, however, MU declines to draw

that conclusion, merely flagging the unusual situation. Similarly, messages are

printed when the system draws two contradictory conclusions or when the user

contradicts himself. In all cases the information supplied by the user supersedes

any assumptions made by the system. These alerting messages serve to provide

checks for internal consistency as the user enters a case.

After finishing with the commentary, MU stands back and reevaluates the

original goal, coming up with a plausible diagnosis. This is the function of

39

>(new
'((name barney-rubble) (age 39) (calf-pain y) (calf-swelling n) (homan's-sign y)
(fever n) (white-blood-cell-count normal) (hemoptysis y) (dyspnea y)
(chest-pain pleuritic) (activity bed-ridden) (v/q-scan high-prob)))

Evocativeness: 4.11

I am reminded of the following cases:

Case Number NAME DIAGNOSIS

7

10

4

16

12

21

6

20

FRED-FLINTSTONE

GE0RGE-JETS0N

PEEWEE-HERMAN

JANE-SMITH

BUGS-BUNNY

J0HN-D0E

YOGI-BEAR

THE-FLASH

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

CLAUDICATION

Conclusions:

ONSET (SUDDEN)

PULMONARY-ANGIOGRAM (POSITIVE)

Evocativeness: 5.0

I am reminded of the following cases:

Case Number NAME DIAGNOSIS

4

6

7

10

12

16

21

PEEWEE-HERMAN

YOGI-BEAR

FRED-FLINTSTONE

GEORGE-JETSON

BUGS-BUNNY

JANE-SMITH

JOHN-DOE

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

Figure 14: A sample of MU’s response to a new case (output continues on the

next page). The case is entered at the top, and MU responds with a heteroge¬

neous mix of the evocativeness of the case, cases it is reminded of, surprising

features in the case, conclusions, and a guess at the diagnosis.

40

I'm surprised.

I would have predicted that the CALF-SWELLING would be (Y).

Conclusions:

DIAGNOSIS (PULMONARY-EMBOLISM)

Evocativeness: 5.0

I am reminded of the following cases:

Case Number NAME DIAGNOSIS

4 PEEWEE-HERMAN

6 YOGI-BEAR

7 FRED-FLINTSTONE

10 GEORGE-JETSON

16 JANE-SMITH

21 JOHN-DOE

My best guess for DIAGNOSIS is

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

Adding generalization:

(NAME (BARNEY-RUBBLE, FRED-FLINTSTONE))

Forgetting:

(NAME (FRED-FLINTSTONE))

Figure 14 (continued).

41

the routine GUESS. The system performs a FETCH operation based on its

current understanding of the case, which includes the features typed in by the

user, the weighting of the features calculated from the individual evocative¬

ness values, and the system’s own conclusions. From the cases that come to

mind it attempts to find the most likely diagnosis. An example is shown at

the bottom of Figure 14, where the system correctly guesses the diagnosis of

pulmonary-embolism. The function GUESS is not limited to speculating on the

diagnosis; the user can ask MU about any feature. In evaluating the psychiatric

cases, for example, the primary goal was to find the response to desipramine,

with a secondary goal of guessing the clinical diagnosis of the patient. We could

have just as easily asked the system to guess the age of the presenting patient,

based on similar patients it has seen.

MU offers more than just the commentary and guesses described above; it

also provides explanatory capabilities. When the user does not understand

what prompted a particular recollection, he can use the routine why, as shown

in Figure 15. MU will summarize the attributes the two cases share, indicating

why that case was brought to mind. Lists are provided of the features that

are identical, similar and different. By highlighting the attributes they have in

common, MU can shed some light on why two seemingly distinct cases are in

fact quite similar. If more specific information is needed, the user has access to

all the lower-level distance metrics as well.

Another explanatory mechanism is the DESCRIBE routine. This function

42

>(new
’((name barney-rubble) (age 39) (calf-pain y) (calf-swelling n) (homan’s-sign y)
(fever n) (white-blood-cell-count normal) (hemoptysis y) (dyspnea y)
(chest-pain pleuritic) (activity bed-ridden) (v/q-scan high-prob)))

Evocativeness: 4.11

I am reminded of the following cases:

Case Number NAME DIAGNOSIS

7

10

4

FRED-FLINTSTONE

GE0RGE-JETS0N

PEEWEE-HERMAN

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

PULMONARY-EMBOLISM

>(why ’george-jetson)

Their DIAGNOSIS, ONSET, PULMONARY-ANGIOGRAM,

ACTIVITY, CALF-PAIN, DYSPNEA, HEMOPTYSIS,

V/Q-SCAN are identical.

Their AGE is similar.

Their CALF-SWELLING, NAME are different.

Figure 15: Explanatory capability using the WHY function.

43

> (describe 'diagnosis pulmonary-embolism)

The ACTIVITY is BED-RIDDEN

The AGE ranges FROM 21 to 80

The ARTERIAL-P02 is LOW

The CALF-PAIN is Y

The CALF-SWELLING is Y

The DIAGNOSIS is PULMONARY EMBOLISM

The DYSPNEA is Y

The HEMOPTYSIS is Y

The NAME is PEEWEE-HERMAN, YOGI-BEAR, FRED-FLINTSTONE,

GEORGE-JETSON, JANE-SMITH, JOHN-DOE

The ONSET is SUDDEN

The PULMONARY-ANGIOGRAM is POSITIVE

The V/q-SCAN is HIGH-PROB

The CHEST-PAIN is PLEURITIC

The FEVER is Y, N

The HOMAN’S-SIGN is Y

The WHITE-BLOOD-CELL-COUNT is NORMAL

Figure 16: The function DESCRIBE. To create the disease concept, MU gener¬

alizes over all the cases that have the diagnosis pulmonary embolism.

uses GENERALIZE to construct an internal representation for a diagnosis in its

entirety. To build up a conceptual model of pulmonary embolism, for instance,

the system simply culls all the cases of pulmonary embolism from memory and

uses GENERALIZE to reduce the set to one lumped case. The resulting object

reflects the system’s current understanding of the disease, as illustrated in Fig¬

ure 16. This global disease concept corresponds to a frame in a disease-centered

database such as those in PIP [11] or INTERNIST [14]. Unlike fixed, static frames,

however, the disease concepts in MU are dynamically modified each time a new

case is incrementally added to the database. Thus the representation of a dis-

44

ease evolves as the patient population changes. In earlier versions of MU, the

process of guessing relied on these global disease concepts. Instead of using the

cases in M. for comparison, the system would compare the presenting case to

each one of the disease concepts, to see which one it most resembles. Although

this method works well with internally consistent databases, it tends to be less

successful when the cases for each diagnosis are heterogeneous.

A user can choose one of several options when asking the system about a

new case. The function QUERY elicits the sort of running commentary shown

in the examples cited previously, but does not add the new case to the database.

Another routine, NEW, provides the same commentary and also stores the new

case in memory. Instead of adding a batch of features all at once, the user

can use the routine INPUT-FEATURES, entering the attributes of a case one-

by-one, and benefiting from the continual commentary and feedback from the

system after each feature. Finally, using the routine APPEND-FEATURES,

the user can incrementally add new attributes to a case previously entered in

batch mode.

When adding a case to memory, MU does not always deposit the point un¬

changed. If the case strongly resembles other cases already stored, the system

merges the similar cases together and stores the combined case. We call this

mechanism forgetting, based on the cognitive model of an expert who can re¬

member several very similar cases but is unable to sort out exactly which details

belong to which case. When recalling cases of infiltrating ductal carcinomas of

45

the breast, for instance, it makes little difference whether Mrs. Smith was 58

years old at diagnosis and Mrs. Jones 68, or vice-versa. The information is

still retained, stored in a joint form, but the division between the two cases is

blurred. At the end of the output of Figure 14, the presenting case was found to

be close enough to one of the cases in memory that the two cases were blended

together and the combined case was stored in memory. By using the forget¬

ting mechanism to blend together details, the system achieves saving in storage

space.

4.2 Analysis of Testing

The results of testing with the psychiatric cases were summarized previously

Figures 6-8, and the results of testing with mammographic cases in Figures 9-

11. The system made correct guesses in 50% to 80% of the features, depending

on the specific attribute guessed and the strictness of the definition of “correct.”

The system did not do well in guessing the response of the psychiatric patients to

desipramine, but performed significantly well when guessing the clinical diagno¬

sis of the psychiatric patients and the pathologic diagnosis of the mammography

cases.

There are several plausible explanations for less than perfect performance.

The size of the databases were relatively small; with only 32 psychiatric cases

and 20 mammographic cases to stock the system. This makes the system depen¬

dent on the quirks of particular cases that may not be smoothed out by other

cases in the database with the same diagnosis. Further, when the system was

46

trying to guess at a rare attribute, the small size of the database became partic¬

ularly important. In guessing the diagnosis of mammographic case number 30,

for example, MU was severely handicapped from the start, having never seen a

case of plasmacytoma (an uncommon tumor of the breast). The closest diagno¬

sis it could muster up was fibroadenoma. In essence MU was still in its medical

training, and had not seen enough “zebras” to arrive at an unusual diagnosis.

Another possible source of error could arise from a lack of internal consistency

among the cases. For instance, unless the patients responding to desipramine

are indeed linked together by some similar attributes, any consultant would be

hard-pressed to predict drug response.

While counting the number of correct guesses that MU makes provides a

simple standard for gauging accuracy, it ought not be the only measure of mu’s

success. Guessing the diagnosis is only one aspect of the multi-faceted running

commentary from the system. Indeed, information provided by unusual cases in

the remindings list or surprises in the presenting case may prove more valuable

in suggesting a final diagnosis to the user. For MU, the process of musing is as

important as the final goal.

For example, in the mammography case of Figure 9, shown earlier, the sys¬

tem finds that the case in memory that most closely matches the presenting

case carries a diagnosis of colloid carcinoma. The majority of the cases that it

recollects, however, are of a benign nature and several are fibroadenomas (FA).

Making its judgement in the context of the entire database, MU guesses that

47

the presenting case, too, is a fibroadenoma. The system alerts the user, though,

that one of the attributes of the case appears unusual: from the cases brought

to mind, it would seem that a “comet” should not be present radiographically.

A comet can be a sign of malignancy and is not typical of the benign tumor

fibroadenoma. MU handles the situation smoothly, making a tentative diagnosis

while still informing the user of atypical features. (As icing on the cake, MU

made the correct diagnosis in this case.)

4.3 Comments

Using actual patient cases in the database has both advantages and disad¬

vantages. Although the system performed fairly well when guessing, the lim¬

itations of having a small database were apparent. Some diagnoses, such as

plasmacytoma, simply were not represented in the system’s memory; others,

such as colloid carcinoma, were found only in single cases. When diagnoses

are infrequently found in the database, the peculiarities of each case take on

an exaggerated role. The system has no choice but to construct a disease con¬

cept based on an isolated case report. Some of these problems can be avoided

by using templates to stock the system, allowing the addition of new cases to

gradually overcome and replace the templates in importance.

Of course, the commentary that MU provides will be highly dependent on

the mix of cases that are entered. The system is essentially a “local doctor,”

familiar with the diseases that are common to patients in the area, changing the

order in a differential diagnosis list as the patient population of the area slowly

48

changes. An implementation of MU in Connecticut, for example, would likely

contain descriptions of patients with Lyme disease, while an implementation

in another state might not. Once stocked with a large number of cases, the

system works quite efficiently on diagnosing the locally frequent diseases, but

the database loses some portability in the process.

Another disadvantage of our case-based expert system is that there is no sim¬

ple representation in the present system for complex interrelationships between

items of data. Most of the links in the database will be associational links, with

no natural method for storing other types of knowledge such as cause and effect

relationships or anatomical knowledge. One way to circumvent this problem

is simply to add more flexible features to each case. We can store procedural

knowledge right alongside our factual knowledge. Each case might possess a fea¬

ture, for instance, that spurs MU into investigating a differential diagnosis list,

asking about laboratory test results, and toward searching for an etiology. The

resulting data-points combine the advantages of case-based systems and frame-

based systems. Temporal information can easily be incorporated by providing

a feature that marks the time and day that a new case was entered.1

Despite the high degree of flexibility already built into the database, which

can accommodate arbitrary features, there must be some standardization of

cases for the system to be able to form its associational chains. It might be

difficult for the system to recognize that serum-sodium, serum-Na and Na all

1 Just such a “time-stamp” has been implemented by Scott Fertig in the Computer Science

Department at Yale, in a successor system to MU.

49

referred to the same attribute. Various solutions come to mind. One person

could be responsible for entering all the cases in the system and maintaining

internal consistency. This is basically the path chosen in the system’s develop¬

ment to date. Alternatively, a menu-driven interface can assist an inexperienced

user in entering a case [28], The user would be presented with a list of possible

features, and can enter a partial feature (such as sodium) to prompt the system

for the preferred usage.

One advantage of a case-based system over a rule-based system is that the

case-based system can deal with internal paradoxes. Two cases with exactly

the same features save differing diagnoses can peacefully coexist. There is no

need to satisfy formal logical consistency. Similarly, a highly unusual case that

“breaks all the rules” needs no special handling—whereas a rule-based system

would have to build meta-rules, rules that govern the application of other rules,

to handle the inconsistencies.

Another advantage is that MU has a simple mechanism for meta-knowledge:

knowing what it knows. It is easy to determine how many memories are stirred

up by a presenting case and to check if they are alike or quite different, so MU

can recognize how much confidence it ought to have in its information, and

where its limitations are. When too few memories are recollected or when the

remembered cases are too distant from the presenting case, the system responds

by stating “That doesn’t remind me of anything in particular,” and forgoes any

further analysis based on shaky data.

50

Because the system’s understanding of a case does not depend on locating

appropriate rules or frames to be applied to the case, MU can better manipulate

novel information. MU can conceive of objects that it has never seen before. For

example, a user can query MU about what a “purple cow” might be like, though

MU has never seen a purple cow. It is difficult to imagine how a rule-based or

a frame-based system would deal with this unusual object. MU, on the other

hand, merely proceeds with its standard fetch operation, recollecting memories

associated with the color and the animal. Even with no previous experience

of seeing a purple cow, the system can come to a reasonable conclusion. If all

the cases of purple objects in memory are flowers and berries with strong sweet

odors, and all the cows in memory have strong objectionable odors, MU could

reasonably suppose that a purple cow has a strong odor of some type. The

concept that MU forms of “purple cow” comes from generalizing over the group

of somewhat dissimilar memories that are called to mind. Thus, the flexibility

of musing allows the system to form new schemas for concepts that do not fit

into established rules or frames.

4.4 Summary

In summary, the medical expert system MU relies on a cognitive model of

a case-based memory and a style of reasoning termed musing, involving associ-

ational chaining and a varied and flexible commentary. Preliminary testing of

the system demonstrated reasonable performance in several domains; however,

larger databases are needed for full-scale trials of the system’s capabilities.

51

Appendix A: Code

This appendix contains the full computer code for the program MU, written

in the language T. It consists of approximately 1500 lines divided among some

140 procedures.

(herald mu)

LOAD MACROS:

"FOR" macro and "=>" macro used in code

"TRACE" macro used in debugging

(load "/homes/systems/dhg/mu/frozen/for.mobj")

(load "/homes/systems/dhg/mu/frozen/rasg.mobj")

(load "/homes/systems/dhg/mu/frozen/sf:macros.mobj")

(load "/homes/systems/dhg/mu/frozen/sf:trace.mobj")

STRUCTURE DEFIIITIOIS

;;; define new structure type for a remindings list entry

;;; with fields shown below, and printing instructions

(define-structuxe-type entry name

distance

raw-score

dimo-in-common

nurn-axes

nura-cases

index

(((print self port)

(format port

"Cs *s "s 's "s 's ~s)"

(entry-name self)

(round (entry-distance self) 1)

(round (entry-raw-score self) 1)

(entry-dims-in-common self)

(entry-num-axes self)

(entry-num-cases self)

(entry-index self)

))))

;;; makes a dummy remindings list entry will all nil features

52

(define (make-nil-entry)

(let ((nil-entry (make-entry)))

(set (entry-name nil-entry) ’nil-entry)

(set (entry-distance nil-entry) 101)

(set (entry-raw-score nil-entry) 101)

(set (entry-dims-in-common nil-entry) 0)

(set (entry-num-axea nil-entry) 0)

(set (entry-ntun-cases nil-entry) 0)

(set (entry-index nil-entry) -1)

nil-entry))

COHSTAHTS

; minimum distance needed for too cases to be considered contradictory

(define-constant *contradict-threshold* 10)

; minimum number of cases needed from which to draw conclusions

(define-constant *case-threshold* 2)

; minimum fraction of findings uhich must be consisten to draw a conclusion

(define-constant *fraction* .85)

; marker for if-then rules

(define-constant *marker* 1000)

; maximum distanct between cases that can be blended together

(define-constant *forget-threshold* 10)

; minimum number of attributes in common before cases can be blended together

(define-constant *forget-fraction* .74)

; global minimum for evocativeness value

(define-constant *min-evoc* 0.5)

; global maximum for evocativeness value

(define-constant »max-evoc« 5)

GL0BALS

;;; initialize global variables

(lset *mem* ’())

(lset *remindings* ’())

(lset *current* ’())

(lset *conclusions* ’())

(lset *max-entropy* 1)

(lset *nil-entry* (make-nil-entry))

(lset *named-dim* ’name)

(lset *special-dim* ’name)

(lset *batch-mode* HIL)

(lset *new-one* IIL)

(lset *metric-table* (make-table))

printing routines

53

(define (print-r-info r-lst top-cluster)

(format T ""X'XRemindings list:'%")

(neoline (standard-output))

(multiple-entry-print r-lst (standard-output))

(format T "*/C~KTop cluster of remindings:'%")

(neoline (standard-output))

(multiplo-ontry-print top-cluster (standard-output))

(neoline (standard-output)))

(define (val-lst->atring val-lst)

(cond ((null? val-lst)

((every? (lambda (elt) (number? (car elt))) val-lst)

(collapse val-lst))

((null? (cdr val-lst))

(symbol->string (caar val-lst)))

(else

(atring-append (symbol->string (caar val-lst))

(val-lst->string (cdr val-lst))))))

;;; Prints three objects (as best as possible) in three columns,

;;; here set at columns 0, 15, 40

;;; Used by recall-names.

(define (print-in-three-columns r-lst) »

(format (standard-output) ""a" "Case Humber")

(set (hpos (standard-output)) 15)

(format (standard-output) ""a" *named-dim*)

(set (hpos (standard-output)) 40)

(format (standard-output) "~a*V *special-dim*)

(format (standard-output) "'a" "-")

(set (hpos (standard-output)) 15)

(format (standard-output) "*a" "-")

(set (hpos (standard-output)) 40)

(format (standard-output) "*a*X" "-")

(walk (lambda (entry)

(format (standard-output) "*a" (entry-index entry))

(set (hpos (standard-output)) 15)

(format (standard-output) ""a"

(val-lst->string (entry-name entry)))

(set (hpos (standard-output)) 40)

(format (standard-output) "”a*%"

(val-lst->string

(val-lst-of (nth *mem* (entry-index entry))

♦special-dim*)))

HID

r-lst)

(neoline (standard-output)))

(define (print-in-two-columns r-lst)

(format (standard-output) "*a" "Case Humber")

(set (hpos (standard-output)) 15)

(format (standard-output) ""a'X" *named-dim*)

(format (standard-output) ""a" "—--")

54

(set (hpos (standard-output)) 15)

(format (standard-output) ""a'%" "-")

(walk (lambda (entry)

(format (standard-output) "*a" (entry-index entry))

(set (hpos (standard-output)) 15)

(format (standard-output) "*a'%"

(val-1st->string (entry-name entry)))

■ IL)

r-lst)

(newline (standard-output)))

;;; Prints out a little chart with cases from a remindings list.

;;; Includes in its info:

;;; case number

;;; name of the case (i.e. its value along *named-dim*)

;;; diagnosis of case (i.e. its value along *special-dim*)

(define (recall-names top-cluster)

(cond ((null? top-cluster)

(newline (standard-output))

(writes (standard-output)

"That doesn’t remind me of anything in particular.")

(newline (standard-output))

(newline (standard-output)))

(else

(newline (standard-output))

(writes (standard-output)

"I am reminded of the following cases:")

(newline (standard-output))

(newline (standard-output))

(if (or (eq? *named-dim* *special-dim*)

(eq? ‘special-dim* SID)

(print-in-two-columns top-cluster)

(print-in-three-columns top-cluster)))))

ADDING HEM CASES TO MEMORY

(define (addelt now-case)

(install new-case)

(let* ((r-lst (cluster (fetch-r-lst new-case)))

(name (name-of new-case))

(nun (num-cases-of new-case))

(index-lst (del = 0 (forget-indices r-lst new-case nun))))

(cond (index-lst

(forget-if-necessary index-lst)

ropi-wont-print)

(name

(format T "*7.Adding new caa«:'X")

(print name (standard-output))

(newline (standard-output)))

(else T))))

(define (forget-indices r-lst new-case nun)

(cond ((null? r-lst) NIL)

55

((> (entry-distance (car r-lst)) *forget-threshold*)

NIL)

((and (not (zero? (antry-num-cases (car r-lst))))

(not (zero? num))

(> (entry-dims-in-common (car r-lst))

(* *forgat-fraction* (entry-num-axes (car r-lst))

; (max (entry-nun-axe8 {car r-lst)) num}

)))
(cons (entry-index (car r-lst))

(forget-indices (cdr r-lst) nee-case num)))

(else

(forget-indices (cdr r-lst) nee-case num))))

;;; If entering this function, then sill be adding at least one generalization

;;; to the database {and deleting more specific points}.

(define (forget-if-necessary index-lst)

(let ((gen (generalize (cons (car *mem*)

(map (lambda (index) (nth *mem* index))

index-lst)))))

(format T ""/(Adding generalization: *%")

(pretty-print gen (standard-output))

(neeline (standard-output))

(neoline (standard-output))

(set (car *mem*) gen))

(map (lambda (index)

(format T "'^Forgetting:"X")

(pretty-print (nth *mem* index) (standard-output))

(neeline (standard-output))

(neeline (standard-output))

(set (nth *mem* index) HIL))

index-lst)

(set *mem* (delq ’() *mem*)))

(define (install nee-case)

(set *mem* (cons nee-case *mem*))

(set *max-entropy*

(cond ((val—1st—of (generalize *mem*) *special-dim*)

->

(lambda (x) (log (->float (length x)))))

(else -50))))

BASIC ACCESS ROUTINES FOR USER

;;; ask about a case but do not add it to memory

(define (query 1st)

(let ((temp (standardize 1st)))

(set *nee-one* temp)

(set ‘current* NIL)

(set ‘conclusions* NIL)

(set ‘remindings* HIL)

(process temp NIL)

56

T))

;;; ask about a case and when finished, add to memory

(define (new 1st)

(query 1st)

(addelt *new-one*))

;;; input features one-by-one

(define (input-features)

(set *new-one* IIL)

(set *current* IIL)

(set *conclusions* IIL)

(set ‘remindings* IIL)

(append-features)

(addelt *new-one*))

;;; append features one-by-one to old case

(define (append-features)

(do ((feature (get-feature) (get-feature))

(fact IIL IIL))

((eof? feature) ’all-done)

(set fact (list (standardize-feature feature 1)))

(cond ((eq? (caar fact) ’help)

(help (caadar fact)))

(else

(process fact IIL)

(set *new-one*

(blend-cases fact *new-one*)))))

(set *new-one* (standardize *new-one*))

T)

(define (get-feature)

(format T "— ")

(read-object (terminal-input) *standard-read-table*))

PROCESS ROUTIIES: THE HEART OF MU’S CYCLE

(define (process new-features conclude-flag)

(let* ((kept-features

(for (feature in new-features)

(filter (process-feature feature conclude-flag))))

(r-lst (fetch-r-lst kept-features))

(evoc (evocativeness r-lst))

(top-cluster (cluster r-lst))

(point (generalize (r-lst->points top-cluster)))

(num (max (* *fraction* (num-cases-of point))

♦case-threshold*)))

(cond ((null? kept-features)

(guess *special-dim*))

(else

(if *batch-mode*

(set kept-features

57

(map (lambda (feature)

(acale-up feature evoc))

kept-features)))

(cond (conclude-flag

(print-conclusions kept-features)

(set *conclusions*

(blend-cases kept-features

conclusions)))

(else IIL))

(format (standard-output)

"'^Evocativeness: “s'%" (round evoc 2))

(set *curront*

(blend-cases kept-features *current*))

(recall-names top-cluster)

(process (conclude-point point nun) T)))))

(define (process-feature feature conclude-flag)

(let* ((rescaled-feature

(if *batch-mode*

feature

(scale-up feature

(evocativeness (fetch-r-lst (list feature))))))

(old-conclusion (assq (car feature) *conclusions*))

(old-user-entry (assq (car feature) *new-one*))

(old-current (assq (car feature) *current*))

(contradicts-system? (contradicts? feature old-conclusion))

(contradicts-user? (contradicts? feature old-user-entry)))

(express-surprise feature

old-conclusion

old-user-entry

contradicts-system?

contradicts-user?

conclude-flag)

(cond ((and conclude-flag

contradicts-user?)

IIL)

(else

(cond (contradicts-system?

(delq! old-conclusion *conclusions*)

(delq! old-current *current*))

(else MIL))

(cond (contradicts-user? ;and (not conlcude-flag)

(delq! old-user-entry *new-one*)

(delq! old-current *current*))

(else HIL))

rescaled-feature))))

(defino (contradicts? featurel features)

(cond ((or (null? featurel) (null? feature2))

IIL)

((not (eq? (car featurel) (car feature2)))

■IL)

(else

(let* ((entryl (compare (list featurel)

(list feature2)))

58

(distance (entry-distance entryl))

(dims (entry-dims-in-common entryl)))

(and (not (= 0 dims))

(> distance *contradict-threshold*))))))

(define (scale-up feature evoc)

(cond ((eq? (car feature) ’num-cases)

feature)

((<» evoc (cadr feature))

feature)

(else

(list (car feature) evoc (caddr feature)))))

(define (express-surprise feature

old-conclusion

old-user-entry

contradicts-system?

contradicts-user?

conclude-flag)

(cond ((and (not conclude-flag)

contradicts-user?) ;user contradicting user

(format (standard-output)

""XI’m surprised."XYou told me before that the ")

(format (standard-output)

"~s was 's.'X'X"

(car feature)

(collapse (cddr old-user-entry))))

((and conclude-flag

contradicts-user?) ;system contradicting user

(format (standard-output)

"'Xl’m surprised. I would have predicted that the ")

(format (standard-output)

""s would be "s.'X'X"

(car feature)

(collapse (cddr feature))))

(contradicts-system? ;user or system contradicts

;system

(format (standard-output)

""Xl’m surprised."XI had assumed before that the ")

(format (standard-output)

""s was "s.'X'X"

(car feature)

(collapse (cddr old-conclusion))))))

(define (print-conclusions conclusion-lst)

(cond (conclusion-lst

(format T "'XConclusions:"X")

(map (lambda (elt)

(format T

" "s'30T "s"X”

(car elt)

(collapse (cddr elt)))

IIL)

conclusion-lst))

(else IIL)))

59

EVOCATIVENESS: HOW STROHGLY DOES A CASE EVOKE DULY A FEW DIAGNOSES?

(define (evocativeness r-lst)

(let* ((top-cluster (cluster r-lst))

(num-lst (map cadr (r-l3t->val-lst top-cluster

♦special-dim*)))

(ratio (scaled-entropy num-lst)))

(+ (* ratio *min-evoc*)

(* (- 1 ratio) *max-evoc*))))

;;; Returns a number 0<=n<=l

;;; If total is zero, nothing was present for *special-dim*

;;; and the entropy is 1.

;;; If *max-entropy* = 0, there is exactly one value in all of

;;; *mem* for ‘special-dim*. If total>0, we must have found

;;; that value of ‘special-dim*, and therefore entropy is 0.

;;; If *max-entropy* < 0, this is a flag that there are no values

;;; anywhere in *mem* for *special-dim*, and nothing could possibly

;;; be brought to mind about ‘special-dim*. This should have

;;; been trapped earlier by (=0? total) — if it was not,

;;; someone needs to reset *max-entropy* which must be wrong.

;;; If any values in rep-lst are negative, something is wrong.

;;; If (log (->float (length rep-lst))) is greater them

;;; *max-entropy*, there are more values of ‘special-dim*

;;; brought to mind than are supposed to exist in all of *mem*.

;;; In that case, *max-entropy* needs to be reset.

;;; To reset *max-entropy*,

;;; (set *max-entropy*

;;; (log (~>float (length

;;; (val-lst-of (generalize *mem«) *special-dim*)))))

II I

(define (scaled-entropy rep-lst)

(let ((total (sum-of rep-lst)))

(cond ((=0? total) 1)

((and (= *max-entropy* 0)

(>0? total))

0)

((<0? *max-entropy‘)

(warn ’entropy-function rep-lst *max-entropy*)

1)

((any? <=0? rep-lst)

(warn ’entropy-function rep-lst *max-entropy*)

1)

((> (log (->float (length rep-lst)))

•max-entropy*)

(warn ’entropy-function rep-lst *max-entropy*)

1)

(else

(/ (entropy-function rep-lst total)

max-entropy)))))

60

(define (r-lst->val-lBt r-lst dim)

(cond ((null? r-lat) HIL)

(else

(blend-val-lsts (val-lst-of

(nth *mem* (entry-index (car r-lst)))

dim)

(r-lst->val-lst (cdr r-lst) dim)))))

(define (entropy-function rep-lst total)

(- (log (->float total)) ;log needs flonum

(/ (sum-of rep-lst entropy-functionl)

total)))

(define (entropy-functionl number)

(cond ((or (= 1 number) (<=0? number))

0)
(else

(* number (log (->float number)))))) ;log needs flonum

;;; FETCH: BASIC HEMORY-EXAMIIIHG ROUTIHE

(define (fetch-r-lst new-case)

(let ((index -1))

(map (lambda (point)

(increment index)

(let ((temp (compare new-case point))

(name (val-lst-of point *named-dim*)))

(set (entry-name temp) name)

(set (entry-index temp) index)

t emp))

mem)))

(define (blend-r-lsts r-lstl r-lst2)

(cond ((null? r-lstl) r-lst2)

((null? r-lst2) r-lstl)

(else

(map blend-r-lstsl r-lstl r-lst2))))

(define (blend-r-lstsl eltl elt2)

(let* ((entry (copy-structure eltl)))

(set (entry-raw-score entry)

(+ (entry-raw-score eltl)

(entry-raw-score elt2)))

(set (entry-dims-in-common entry)

(+ (entry-dims-in-common eltl)

(entry-dims-in-common elt2)))

(set (entry-distance entry)

(mood (entry-raw-score entry)

(entry-dims-in-common entry)))

entry))

61

COHCLUDE

(define (conclude-point point num)

(if (null? point)

■ IL

(let* ((new-feature (conclude-feature (car point) num)))

(if (null? new-feature)

(conclude-point (cdr point) num)

(cons new-feature

(conclude-point (cdr point) num))))))

(define (conclude-feature feature num)

(if (null? feature)

SIL

(let* ((dim (car feature))

(vals (conclude-val-lst (cddr feature) num dim)))

(cond ((null? vals) IIL)

((eq? dim ’num-cases) IIL)

(else

(append (list dim -1) vals))))))

(define (conclude-val-lst val-lst num dim)

(cond ((null? val-lst) IIL)

((and (> (cadar val-lst) num)

(< (cadar val-lst) *marker*)

(not (assq (caar val-lst)

(val-lst-of *current* dim))))

(cons (list (caar val-lst) 1)

(conclude-val-lst (cdr val-lst) num dim)))

(else

(conclude-val-lst (cdr val-lst) num dim))))

COMPARE: FOR DISTARCE METRICS

(define (compare newpoint oldpoint)

(cond ((or (null? oldpoint) (null? newpoint))

♦nil-entry*) ;;; not really what we want?

(else

(let ((new-entry (make-entry)))

(let* ((dist-dim (comparel newpoint

oldpoint

(list 0 0)

(num-cases-of newpoint)

(num-cases-of oldpoint)))

(raw-dist (car dist-dim))

(dims-in-common (cadr dist-dim))

(score (mood raw-dist dims-in-common)))

(set (entry-name new-entry) ’unlabeled)

(set (entry-distance new-entry) score)

(set (entry-raw-score new-entry) raw-dist)

62

(set (entry-dims-in-common new-entry) dims-in-common)

(set (entry-num-axes new-entry) (subtractl (length oldpoint)))

(set (entry-num-cases new-entry) (num-cases-of oldpoint))

(set (entry-index new-entry) -1)

new-entry)))))

(define (comparel newpoint oldpoint dist-dim muni mm2)

(cond ((null? newpoint) dist-dim)

(else

(comparel (cdr newpoint)

oldpoint

(update-dim (car newpoint)

(assq (caar newpoint) oldpoint)

;should we use val-lst-of here?

dist-dim

numl

mm2)

numl

mm2))))

(define (mood distance dims-in-common)

(if (zero? dims-in-common)

101

(->float (/ distance dims-in-common))))

(define (update-dim newfeature oldfeature dist-dim numl mm2)

(cond ((null? oldfeature) dist-dim)

((null? newfeature) dist-dim)

((eq? (car newfeature) ’mm-cases) dist-dim)

(else

(let ((multiplicity (max (abs (cadr newfeature))

(abs (cadr oldfeature)))))

(list (+ (car dist-dim)

(* multiplicity

(distance-between (car newfeature)

(cddr newfeature)

(cddr oldfeature)

numl

mm2)))

(+ (cadr dist-dim)

multiplicity))))))

;;; CLUSTER

(define (cluster r-lst)

(let ((temp (alphabetize r-lst entry-distance)))

(cond ((null? temp) BIL)

((>= (entry-distance (car temp)) 100) HIL)

((and (zero? (entry-distance (car temp)))

(>= (entry-dims-in-common (car temp)) 2)

(zero? (entry-num-cases (car temp))))

(cluster (cdr temp)))

((null? (cdr temp)) temp)

63

(else

(let* ((numl (entry-distance (car temp)))

(mod-lst (common (cdr temp)))

(sum-nums (svun-of mod-lst entry-distance))

(left (length mod-lst)))

(reverse (clusterl (list (car temp))

numl

1

(cdr temp)

sum-nums

left)))))))

(define (clusterl rl srl nl r2 sr2 n2)

(if (null? r2)

rl

(let* ((m-rl

(m-r2

(m-srl

(m-sr2

(m-nl

(m-n2

(cond (

(cons (car r2) rl))

(cdr r2))

(+ srl (entry-distance (car r2))))

(- sr2 (entry-distance (car r2))))

(+ nl 1))

(- n2 1)))

(> (weight srl nl sr2 n2)

(weight m-srl m-nl m-sr2 m-n2))

rl)

(else

(clusterl m-rl m-srl m-nl

m-r2 m-sr2 m-n2))))))

(define (common r-lst)

(cond ((null? r-lst) BIL)

((> (entry-distance (car r-lst)) 100) IIL)

(else

(cons (car r-lst) (common (cdr r-lst))))))

;;; can call (sum-of 5(1 234 5)) => 15

;;; or can call (sum-of ’(1 2345) (lambda (x) (* x x))) => 55

(define (sum-of . parameters)

(cond ((null? (cdr parameters))

(sum-of1 (car parameters) (lambda (x) x)))

(else

(sum-of1 (car parameters) (cadr parameters)))))

(define (sum-of1 1 function)

(iterate *loop ((result 0) (1st 1))

(cond ((null? 1st) result)

(else

(•loop (+ result (function (car 1st)))

(cdr 1st))))))

(define (weight suml nl sum2 n2)

(if (or (zero? nl) (zero? n2))

0

(let* ((mean-diff (- (/ suml nl) (/ sum2 n2))))

(* nl n2 mean-diff mean-diff))))

64

(define (delete-unnamed all-names)

(let* ((unnamed (memq? ’? all-names))

(names (remove-elt ’? (remove-elt ’() all-names))))

(list unnamed names)))

WHY

(define (why some-name)

(why-number (index-of some-name)))

(define (why-num index)

(format T

""XCase "s: (marked entries identical to the current case)

index)

(walk why-feature (nth *mem* index))

repl-wont-print

T)

(define (why-feature feature)

(cond ((eq? (car feature) ’num-cases)

■ IL)
((assq (car feature) *current*)

(let ((dist (car (feature-distance feature

(assq (car feature) ‘current*)))))

(cond ((zero? dist)

(format T "**"))

((< dist 3)

(format T "* "))

(else

(format T " "))))

(format T " "s ~s~%"

(car feature)

(collapse (cddr feature))))

(else

(format T " ")

(format T " ~s ~s~%"

(car feature)

(collapse (cddr feature))))))

(define (feature-distance featurel feature2)

(distance-between (car featurel)

(cddr featurel)

(cddr feature2)

1

D)

(define (why-number index)

(let* ((worklist (workup index))

(idents (identicals worklist))

(fraternals (similars worklist))

(aliens (strangers worklist)))

(cond ((null? worklist)

65

))

(cond C

(cond (

(cond (

T

(format T "I Hasn’t reminded of that"*")

idents (print-props idents)

(format T " identical”*")))

fraternals (print-props fraternals)

(format T " similar”*")))

aliens (print-props aliens)

(format T " different”*")))

))

WORKUP

(define (workup index)

(cond ((not (number? index)) IIL)

((> index (length *mem*)) IIL)

(else

(workup-all ‘current* (nth *mem* index)))))

(define (workup-all newpoint oldpoint)

(cond ((null? newpoint) IIL)

((null? oldpoint) IIL)

(else

(let ((numl (num-cases-of newpoint))

(num2 (num-ca3es-of oldpoint)))

(delq ’() (map (lambda (feature)

(workup-one feature

(assq (car feature)

oldpoint)

numl

num2))

newpoint))))))

(define (workup-one newprop oldprop numl num2)

(cond ((null? oldprop) IIL)

((null? newprop) IIL)

((eq? (car newprop) ’num-cases) IIL)

(else

(list (car newprop)

(distance-between (car newprop)

(cddr newprop)

(cddr oldprop)

numl

num2)))))

(define (identicals workup-list)

(remove-elt IIL (map (lambda (elt)

(cond ((<= (cadr elt) 0)

(car elt))

(else

■IL)))

workup-list)))

(define (similars workup-list)

66

(remove-elt ’() (map (lambda (elt)

(cond ((and (< (cadr alt) 100)

(> (cadr elt) 0))

(car elt))

(else >())))

workup-list)))

(define (strangers workup-list)

(remove-elt ’() (map (lambda (elt)

(cond ((>= (cadr elt) 100)

(car elt))

(else

’())))

workup-list)))

(define (print-props prop-list)

(format T "Their "s" (car prop-list))

(cond ((null? (cdr prop-list))

(format T " is "))

(else (walk (lambda (elt)

(format T ",")

(space (standard-output))

(format T ""s" elt))

(cdr prop-list))

(format T " are ")))

repl-wont-print)

;;; DESCRIBE

(define (describe dim value)

(let* ((instances (call-to-mind dim value))

(feature-lst (generalize instances)))

(print-desc feature-lst)))

(define (print-desc summary)

(let* ((dim (caar summary))

(val-lst (cddar summary)))

(cond ((null? dim) T)

((number? (caar val-lst))

(format t "The "s ranges from ”d to *d*t"

dim

(find-min val-lst)

(find-mar val-lst))

(print-desc (cdr summary)))

(else

(format T "The ‘a is *s"

dim

(caar val-lst))

(walk (lambda (elt)

(format T ", *s" (car elt)))

(cdr val-lst))

(newline (standard-output))

(print-desc (cdr summary))))))

67

(define (find-min 1st)

(find-mini (cdr 1st) (caar 1st)))

(define (find-mini 1st currmin)

(cond ((null? 1st) currmin)

((< (caar 1st) currmin) (find-mini (cdr 1st) (caar 1st)))

(else (find-mini (cdr 1st) currmin))))

(define (find-max 1st)

(find-maxl (cdr 1st) (caar 1st)))

(define (find-maxl 1st currmax)

(cond ((null? 1st) currmax)

((> (caar 1st) currmax) (find-maxl (cdr 1st) (caar 1st)))

(else (find-maxl (cdr 1st) currmax))))

GUESS

(define (guess dim)

(set ^remindings* (fetch-r-lst ‘current*))

(let* ((top-cluster (cluster *remindings*))

(point (generalize (r-lst->points top-cluster)))

(guess-lst (val-lst-of point dim)))

(best-guess guess-lst dim)))

(define (best-guess guess-lst dim)

(format T "My best guess for 's is "s'%"

dim

(best-guessl guess-lst IIL 0))

T)

(define (best-guessl guess-lst val max-occur)

(cond ((null? guess-lst)

val)

((> (cadr (car guess-lst)) max-occur)

(best-guessl (cdr guess-lst)

(car (car guess-lst))

(cadr (car guess-lst))))

(else

(best-guessl (cdr guess-lst)

val

max-occur))))

(define (r-lst->points r-lst)

(cond ((null? r-lst) HIL)

(else

(cons (nth *mem* (entry-index (car r-lst)))

(r-lst->points (cdr r-lst))))))

68

;;; DISTAHCE ROUTIBES

(define (exact first second)

(cond ((eq? first second) 0)

((or (and (eq? first ’yes) (neq? second ’no))

(and (eq? second ’yes) (neq? first ’no)))

2)
(else 10)))

(define (distance-betueen dim val-lstl val-lst2 numl num2)

(cond ((<=0? numl)

(distance-between dim val-lstl val-lst2 1 num2))

((<=0? num2)

(distance-betueen dim val-lstl val-lst2 numl 1))

(else

(distance-betueenl dim val-lstl val-lst2 numl num2))))

(define (distance-betueenl dim val-lstl val-lst2 numl num2)

(let ((metric (table-entry *metric-table* dim)))

(cond (metric

(metric val-lstl val-lst2 numl num2))

((and (null? (cdr val-lstl))

(null? (cdr val-lst2))

(number? (caar val-lstl))

(number? (caar val-lst2)))

(set metric (table-entry *metric-table*

’numerical-distance))

(metric val-lstl val-lst2 numl num2))

((and (every (lambda (pair) (number? (car pair)))

val-lstl)

(every (lambda (pair) (number? (car pair)))

val-lst2))

(set metric (table-entry *metric-table*

’statistical-distance))

(metric val-lstl val-lst2 numl num2))

(else

(set metric (table-entry *metric-table*

’structured-distance))

(metric val-lstl val-lst2 numl num2)))))

(define (default-numerical-distance val-lstl val-lst2 numl num2)

(let ((x (caar val-lstl))

(y (caar val-lst2)))

(cond ((or (not (number? x))

(not (number? y)))

100)
((and (zero? x) (zero? y))

0)
(else

(* 100

(/ (abs (->float (- x y)))

(max (abs x) (abs y) (abs (- x y)))))))))

69

;;; for statistical distance, (ui-u2)*2 * (mn/(m+n“2)) * l/(St"2)

;;; for m=n=l, use (x-y)/(max(x,y,abs(x-y))) or equiv

(define (default-statistical-distance val-lstl val-lst2 numl num2)

(cond ((or (null? val-lstl) (null? val-lst2))

100)
((and (null? (cdr val-lstl)) (null? (cdr val-lst2)))

(default-numerical-distance val-lstl val-lst2 numl num2))

(else

(let* ((statsl (statistics val-lstl))

(stats2 (statistics val-lst2))

(stats3 (map + statsl stats2)))

(* 100

(- 1

(/ (+ (variance statsl) (variance stats2))

(variance stats3))))))))

(define (statistics val-lst)

(iterate *loop ((n 0) (sum 0) (sum-of-squares 0) (1st val-lst))

(cond ((null? 1st) (list n sum sum-of-squares))

(else

(*loop (+ n (cadar 1st))

(+ sum (* (caar 1st) (cadar 1st)))

(+ sum-of-squares

(* (caar 1st) (caar 1st) (cadar 1st)))

(cdr 1st))))))

(define (variance stats)

(let ((n (car stats))

(sum (cadr stats))

(sum-of-squares (caddr stats)))

(cond ((zero? n)

0)
(else

(- sum-of-squares

(/ (* sum sum) n))))))

;;; take average of percent matches and times by 100

(define (default-structured-distance val-lstl val-lst2 numl num2)

(let* ((suml (num-vals val-lstl))

(sum2 (num-vals val-lst2))

(match-count (count-repititions val-lstl val-lst2)))

(cond ((or (zero? suml) (zero? sum2))

100)
(else

(- 100.0

(* 50 (+ (/ (car match-count) suml)

(/ (cadr match-count) sum2))))))))

(define (count-repititions val-lstl val-lst2)

(iterate *loop ((matchl 0) (match2 0) (lstl val-lstl))

(cond ((null? lstl)

(list matchl match2))

((assq (caar lstl) val-lst2)

(•loop (+ matchl (cadar lstl))

(+ match2 (cadr (assq (caar lstl) val-lst2)))

70

(cdr Istl)))

(else

(♦loop matchl match2 (cdr lstl))))))

(define (num-vals val-lst)

(iterate *loop((sum-so-far 0) (1st val-lst))

(cond ((null? 1st) sum-so-far)

(else

(♦loop (+ sum-so-far (cadar 1st))

(cdr 1st))))))

(set (table-entry ‘metric-table* ’structured-distance)

default-structured-distance)

(set (table-entry ‘metric-table* ’numerical-distance)

default-numerical-distance)

(set (table-entry ‘metric-table* ’statistical-distance)

default-statistical-distance)

GEHERALIZE

(define (generalize case-lst)

(generalizel (car case-lst) (cdr case-lst)))

(define (generalizel easel case-lst)

(cond ((null? case-lst) easel)

((null? easel)

(generalizel (car case-lst) (cdr case-lst)))

(else

(generalizel (blend-cases easel (car case-lst))

(cdr case-lst)))))

(define (blend-cases easel case2)

(cond ((null? easel) case2)

((null? case2) easel) ;not needed

(else

(let ((featurel (car easel))

(feature2 (assq (caar easel) case2)))

(if feature2

(cons (blend-features featurel feature2)

(blend-cases (cdr easel)

(del alikev? feature2 case2)))

(cons featurel

(blend-cases (cdr easel) case2)))))))

(define (blend-features featurel feature2)

(cond ((null? feature2) featurel)

((null? featurel) feature2)

(else

(append (list (car featurel)

(max (cadr featurel) (cadr feature2)))

(blend-val-lsts (eddr featurel) (eddr feature2))))))

(define (blend-val-lsts val-lstl val-lst2) ;blend val-lsts

71

(cond ((null? val-lstl) val-lst2)

((null? val-lst2) val-lstl)

(else

(let ((vail (car val-lstl))

(val2 (ass equal? (caai val-lstl) val-lst2)))

(if val2

(cons (blend-values vail val2)

(blend-val-lsts (cdr val-lstl)

(del alikev? val2 val-lst2)))

(cons vail

(blend-val-lsts (cdr val-lstl) val-lst2)))))))

(define (blend-values vail val2)

(list (car vail) (+ (cadr vail) (cadr val2))))

;; HELP for users not knowing about symbols in the database

(define (help test-obj)

(map (lambda (feature)

(cond ((sub-symbol? test-obj (car feature))

(pretty-print feature (standard-output))

(newline (standard-output)))

((ass sub-symbol? test-obj (cddr feature))

(pretty-print (list (car feature)

(ass sub-symbol? test-obj (cddr feature)))

(st andard-output))

(newline (standard-output)))

(else T)))

(generalize *mem*))

T)

(define (sub-symbol? objl obj2)

(cond ((equiv? objl obj2) T)

((or (not (symbol? objl)) (not (symbol? obj2)))

■ IL)

((subsetstring (list->string (delq #\- (string->list

(symbol->string objl))))

(list->string (delq #\- (string->list

(symbol->string obj2)))))

T)

(else IIL)))

(define (subsetstring stringl string2)

(let ((index (string-posq (char stringl) string2))

(lengthl (string-length stringl))

(length2 (string-length string2)))

(cond ((zero? lengthl) 0)

((or (null? index)

(> lengthl (- length2 index)))

IIL)

((string-equal? stringl (substring string2 index lengthl))

index)

72

(else

(nil-sum (addl index)

(subsetstring stringl

(nthchdr string2 (addl index))))))))

(define (nil-sum numl num2)

(cond ((or (not (number? numl))

(not (number? num2)))

BIL)

(else (+ numl num2))))

; STANDARDIZE

(define (standardize point)

(if (template? point)

(alphabetize (standardize-template point) car)

(alphabetize (cons (list ’num-cases 1 (list ’foo 1))

(standardized point))

car)))

;; Check and remove duplicates in case the user inputs the exact same

;; feature-value pair more than once.

(define (standardized point)

(remove-dups (standaxdizel point 1)))

(define (standardize-template point)

(remove-dups (standardize! point (num-cases-of point))))

;; Standardizes each feature in a case until none are left,

(define (standardizel point count)

(cond ((null? point) IIL)

(else (cons (standardize-feature (car point) count)

(standardizel (cdr point) count)))))

;; Dispatches to the appropiate procedure depending on the ’type’ of feature

;; being looked at: if no value list given then goes to CHECK-YES-BO,

;; if the name of the feature is BUM-CASES then off to STABDARDIZE-BUM-CASES,

;; if already standardized then only need to alpha&standardize value list,

;; and if any other then construct {feature-name -1 alphabistand_val-lst}.

(define (standardize-feature feature count)

(cond ((null? feature) BIL)

((atom? feature) (make-yes-no-feature feature count))

((null? (cdr feature)) (make-yes-no-feature (car feature) count))

((eq? ’num-cases (car feature))

(list ’num-cases -1 (standardize-num-cases (cdr feature) count)))

((and (cddr feature)

(number? (cadr feature)))

(append (list (car feature) (cadr feature))

(alphabetize (standardize-val-lst (cddr feature) count)

73

(
car)))

else

(append (list (car feature) -1)

(alphabetize (standardize-val-lst (cdr feature) count)

car)))))

(define (standardize-num-cases 1st count)

(cond ((null? 1st) (list ’foo 1))

((number? (car 1st))

(if (equal? count (car 1st))

(list ’foo count)

(earn ’standardize-num-cases (car 1st) count)

((atom? (car 1st))

(earn ’standardize-num-cases (car 1st) count))

(else 1st)))

))

(define (standardize-val-lst val-lst count)

(cond ((null? val-lst) HIL)

((atom? (car val-lst))

(cons (list (car val-lst) count)

(standardize-val-lst (cdr val-lst) count))

((null? (cdar val-lst))

(cons (list (caar val-lst) count)

(standardize-val-lst (cdr val-lst) count))

((and (number? (cadar val-lst))

(null? (cddar val-lst)))

(cons (car val-lst)

(standardize-val-lst (cdr val-lst) count))

((number? (cadar val-lst))

(cons (list (caar val-lst) (cadar val-lst))

(standardize-val-lst (cdr val-lst) count))

)

)

)

)
(else

(earn ’standardize-val-lst (car val-lst))

(cons (list (caar val-lst) count)

(standardize-val-lst (cdr val-lst) count)))))

;; Creates a default value-list {YES 1} if feature comes eith no value attached

;; and name is not prefixed nith "10" or "HOT".

(define (check-yes-no boolean-dim)

(destructure* ((stringname (symbol->string boolean-dim))

((name neg?) (find-prefix "HOT-" stringname))

((name2 neg2?) (find-prefix "H0-" stringname)))

(cond (neg?

(return (string->symbol name) ’no))

(neg2?

(return (string->symbol name2) ’no))

else

(return boolean-dim ’yes)))))

(

74

; ; ; UTILITIES

(define (square num)

(* num num))

(define (round num accuracy)

(let ((poser (eipt 10 accuracy)))

(->float (divide (->integer (+ .5 (* num power))) power))))

(define (multiple-entry-print 1st port)

(for (elt in 1st)

(do (pretty-print elt port)

(newline port)

(newline port))))

(define (make-yes-no-feature feature count)

(receive (name yes/no)

(check-yes-no feature)

(list name -1 (list yes/no count)))

(define (template? pt)

(any (lambda (feature)

(if (pair? feature)

(eq? ’num-cases (car feature))

(eq? ’num-cases feature)))

pt))

(define (num-cases-of point)

(labels

(((sum-lst 1st) (sum-lstl 1st 0))

((sum-lstl 1st psum)

(if (null? 1st) psum (sum-lstl (cdr 1st) (add (car 1st) psum))))

((dispatch pt)

(cond

((or (null? pt) (null? (car pt))) 1)

((atom? (car pt))

(num-cases-of (cdr pt)))

((eq? ’num-cases (caar pt))

(cond ((null? (cdar pt)) 1)

((cddr (car pt)) =>

(lambda (x) (sum-lst (map cadr x))))

(else ; (HUM-CASES val)

(cadr (car pt))))) ; return val

(else (num-cases-of (cdr pt))))))

(dispatch point)))

; local vars

; returns two values

) ; body

(define (name-of point)

(let ((name (val-lst-of point *named-dim*)))

(cond (name name)

((zero? (num-cases-of point))

■ IL)

(else

(list (list ’? (num-cases-of point)))))))

75

(define (index-of name)

(set ‘remindings* (fetch-r-lst ‘current*))

(index-of1 name *remindings*))

(define (index-ofl name r-lst)

(cond ((null? r-lst) IIL)

((assq name (entry-name (car r-lst)))

(entry-index (car r-lst)))

(else

(index-ofl name (cdr r-lst)))))

(define (find-prefix prefix name)

(let ((prelen (string-length prefix)))

(cond ((<= (string-length name) prelen)

(list name IIL))

((string-equal? prefix (string-slice name 0 prelen))

(list (string-nthtail name prelen) T))

(else

(list name IIL)))))

(define (call-to-mind dim value)

(call-to-mindl dim value *mem*))

(define (call-to-mindl dim value mem-lst)

(cond ((null? mem-lst) IIL)

((assq value (val-lst-of (car mem-lst) dim))

(cons (car mem-lst)

(call-to-mindl dim value (cdr mem-lst))))

(else (call-to-mindl dim value (cdr mem-lst)))))

(define (val-lst-of point dim)

(cddr (assq dim point)))

(define (collapse value-lst)

(cond ((null? value-lst) IIL)

((atom? (car value-lst))

(cons (car value-lst) (collapse (cdr value-lst))))

(else

(cons (caar value-lst) (collapse (cdr value-lst))))))

(define (warn procedure-name . parameters)

(format T ""XitfARHIHG! in procedure *s:'/C“ procedure-name)

(cond ((eq? procedure-name ’standardize-val-lst)

(format T

" >> Value *s cannot be a list of values'V

(car parameters))

(format T

" >> *s being used as value instead'%"

(caar parameters)))

((eq? procedure-name ’standardize-num-cases)

(format T

>> lumber of cases *s should equal ~s‘/C"

76

(car parameters) (cadr parameters))

(format T

" >> *s being used.'X"

(cadr parameters)))

((eq? procedure-name ’entropy-function)

(format T

" >> Attempting to find entropy of ~s~V
(car parameters))

(format T

" >> when *max-entropy* is ~s~V
(cadr parameters)))

(else

T))

(newline (standard-output)))

(define (remove-dups 1st)

(reverse (remove-dupsl 1st ’())))

(define (remove-dupsl duplst result)

(cond ((null? duplst) result)

((mem? alikev? (car duplst) result)

(remove-dupsl (cdr duplst) result))

(else (remove-dupsl (cdr duplst)

(cons (car duplst) result)))))

(define (remove-elt elt 1st)

(reverse (remove-eltl elt 1st ’())))

(define (remove-eltl elt with-elts no-elts)

(cond ((null? with-elts) no-elts)

((eq? elt (car with-elts))

(remove-eltl elt (cdr with-elts) no-elts))

(else (remove-eltl elt (cdr with-elts)

(cons (car with-elts) no-elts)))))

;; Alphabetize routines: ALPHABETIZE is called by STANDARDIZE and

;; the result is an alphabetized feature list for each case.

;; Note numbers are defined to come *after* all symbols leiigraphically.

(define (alpha-before? one two)

(cond ((number? one)

(if (and (number? two) (< one two))

T

■ IL))

((number? two) T)

(else

(let* ((first (string->list (symbol->string one)))

(second (string->list (symbol->string two))))

(alpha-before2? first second)))))

(define (alpha-before2? first second)

(let ((first-code (if (null? first) NIL (char->ascii (car first))))

(second-code (if (null? second)

NIL

(char->ascii (car second)))))

77

(cond ((null? first) T)

((null? second) IIL)

((< first-code second-code) T)

((> first-code second-code) IIL)

(else (alpha-before2? (cdr first) (cdr second))))))

(define (alpha-insert obj 1st proc)

(let ((name (proc obj)))

(cond ((null? 1st) (list obj))

((null? obj) 1st)

((alpha-before? name (proc (car 1st)))

(cons obj 1st))

(else

(cons (car 1st) (alpha-insert obj (cdr 1st) proc))))))

(define (alpha-list orig-list list-so-far proc)

(cond ((null? orig-list) list-so-far)

((null? list-so-far)

(alpha-list (cdr orig-list) (list (car orig-list)) proc))

(else

(alpha-list (cdr orig-list)

(alpha-insert (car orig-list) list-so-far proc)

proc))))

(define (alphabetize 1st proc)

(alpha-list 1st ’() proc))

;;; IIITIALIZATIOI

(define (clean)

(set *new-one* IIL)

(set *current* IIL)

(set *conclusions* IIL)

(set ‘remindings* IIL)

(set *mem* IIL)

(reset)

)

(define (tidy)

(set •new-one* IIL)

(set ‘current* IIL)

(set ‘conclusions* IIL)

(set ‘remindings* IIL)

(reset)

)

(define (delete-last-memory)

(cond ((null? *mem‘) MIL)

(else

(format T "*%The following case is being deleted:'%")

(pp (car *mem*))

78

(newline (standard-output))

(set *mem* (cdr ♦mem*))

repl-wont-print)))

(define (block-write exp val port)

(write-line port "(block")

(writes port "(lsat ")

(write port exp)

(writes port " ")

(if (not (number? val))

(write-line port "(quote ")

T)

(pretty-print val port)

(newline port)

(if (not (number? val))

(writes port ")")

T)

(write-line port ")")

(writes port "(quote ")

(write port exp)

(write-line port ")")

(write-line port ")")

(newline port)

(newline port)

(writes (standard-output) "Done with: ")

(write (standard-output) exp)

(newline (standard-output)))

(define (mem-dump file)

(cond ((file-exists? file)

(format T "'/(File *s already exists. Use another name.*%"

file))

(else

(with-open-ports ((port (open file ’(out))))

(writes port "(herald \"")

(write port file)

(write-line port "\")")

(write-line (standard-output) "...HERALD")

(newline port)

(newline port)

(block-write ’*mem* *mem* port)

(block-write ’*max-entropy* *max-entropy* port)

(block-write ’*named-dim* *named-dim* port)

(block-write ’*special-dim* *special-dim* port)

(write-line port "’BYE")))))

79

Appendix B: Clustering Algorithm

MU uses the routine CLUSTER to find a natural break point in a list of cases,

dividing that list into a “close” group C and a “distant” group V. Referring to a

list of numerical distances, the algorithm attempts to partition the list into two

groups X{ and yj such that the sum of the squared deviations within the groups

is locally minimized. That is, CLUSTER attempts to find a local minimum for

- *)2 + £(y; - y)2-
3 = 1 i = 1

Computationally, however, this calculation is inefficient. Instead, we can note

that if y represents the mean value of all the distances x,- and yj combined, then

m m / _ . _\ 2 Et \2 V" (mx + ny
(Xi-y) = X‘ “

i=i i = 1
m + n

m , V :

= 5Z(xi-x +—T—(*-£))
r-f \ m + n J

2n
= - x)2 + ——(x - y) J> - *) +

' m + n *—•4

mn-

i=i

= £(** -x)2 +
mn

i=i

-\2

(m + n)2
(* - yf

•=i
(m + n)2 (* - y)

Similarly,

Efe - - $)2 + - *>
J=1 i=l

Combining these results gives

(m + n)2

” y)2 + £(% - y)2 = »*< - £)2 + £(% - y)2 + 7——- y)2
t=i i=i t=i i=i

(m + n)

80

Since the quantity on the left is constant for the given list of distances no matter

what the partition, we can minimize the total intra-group summed squared

deviations simply by choosing our partition to find the first maximum for the

last quantity,

mn
-(* - y)2- (m + n)

This will give us the first clean break in the distance list.

81

Appendix C: Evocativeness Algorithm

EVOCATIVENESS attempts to determine how strongly a presenting case

tq brings to mind a definite diagnosis. What we would really like to measure is

how much information about the diagnosis we gain from To. Does To strongly

suggest only one diagnosis, or does it bring to mind ten diagnoses which are

equally likely? One way to measure this information content I is to relate it to

the entropy D of a probability distribution.

Let the total number of diagnoses found in the top-cluster Q be T. Assuming

that the probability pi of diagnosis i being correct is proportional to the number

of times n* it occurs in the top-cluster, we can calculate the entropy (disorder)

of the distribution:

D -X> In pi
t

t

ln Ui

i

-^^n.lnni + lnT

The entropy function D ranges from a value of 0, occurring when only one di¬

agnosis is represented, to ln N, where N represents the total number of possible

diagnoses in the memory M.. We can scale the entropy to range of 0 to 1 simply

82

by dividing by In N:

S = 1 f Hi n»ln ni
In N

+ InT

We can further adjust the scale so that an scaled-entropy of 0 corresponds to

the maximum evocativeness allowed by the system, while a scaled-entropy of 1

corresponds to the minimum evocativeness allowed by the system. This is the

final evocativeness number E used by MU.

E = 5 (*rain — evoc*) + (1 — 5) (*max — evoc*)

83

References

[1] Shortliffe EH, Buchanan BG, Feigenbaum EA. Knowledge engineering for

medical decision making: a review of computer-based clinical decision aids.

Proceedings of the IEEE, 67:1207-1224; 1979.

[2] Michie D. On Machine Intelligence. Edinburgh, Edinburgh University

Press, 1974; cited in Kulikowski CA. Artificial intelligence methods and

systems for medical consultation. IEEE Transactions on Pattern Analysis

and Machine Intelligence PAMI-2 (5):464-476; 1980.

[3] Turing A. “Computing machinery and intelligence,” 1950, in Feigenbaum

EA and Feldman J (editors). Computers and Thought, New York, McGraw-

Hill, 1963.

[4] Winston PH. Artificial Intelligence, 2nd edition. Reading, Massachusetts,

Addison Wesley Publishing Company. 1984.

[5] McCorduck P. Machines Who Think. San Francisco, W.H. Freeman and

Company. 1979.

[6] Barr A, Feigenbaum EA, Cohen P (editors). Handbook of Artificial Intelli¬

gence, 3 volumes. Los Altos, California, William Kaufmann, 1981-1982.

[7] Mason VR. Sickle cell anemia. JAMA, 79:1318-1320; 1922.

[8] Johnson CS. Sickle cell anemia. JAMA, 254(14):1958-1963; 1985.

[9] Shortliffe EH. Computer-Based Medical Consultations: MYCIN. New York,

American Elsevier Publishing Co., 1976.

[10] Shortliffe EH, Axline SG, Buchanan BG, Merigan TC, Cohen SN. An ar¬

tificial intelligence program to advise physicians regarding antimicrobial

therapy. Computers and Biomedical Research, 6:544-560; 1973.

[11] Pauker SG, Gorry GA, Kassirer JP, and Schwartz WB. Towards the simu¬

lation of clinical cognition: taking a present illness by computer. American

Journal of Medicine, 60:981-996; 1976.

[12] Szolovits P, Pauker SG. Categorical and probalistic reasoning in medical

diagnosis. Artificial Intelligence, 11:115-144; 1978.

[13] Minsky M. A framework for representing knowledge. In Winston PH (ed),

The Psychology of Computer Vision, New York, Mc-Graw Hill, 1975.

[14] Miller RA, Pople HE, Myers JD. INTERNIST-1, an experimental

computer-based diagnostic consultant for general internal medicine. New

England Journal of Medicine, 307:468-476; 1982.

84

[15] Barnett GO, Cimino JJ, Hupp JA, Hoffer EP. DXplain: an evolving diag¬

nostic decision-support system. JAMA, 258(l):67-74; 1987.

[16] Bush V. As we may think. Atlantic Monthly, July 1945, pp 101-108.

[17] Koss N, Feinstein AR. Computer-aided prognosis. Archives of Internal

Medicine, 127:448-459; 1971.

[18] Feinstein AR, Rubinstein JF, Ramshaw WA. Estimating prognosis with

the aid of a conversational-mode computer program. Annals of Internal

Medicine, 76:911-921; 1972.

[19] Rosati RA, McNeer Jf, Starmer CF, Mittler BS, Morris JJ, Wallace AG. A

new information system for medical practice. Archives of Internal Medicine,

135:1017-1024; 1975.

[20] Fries JF. Time-oriented patient records and a computer databank. JAMA,

222(12): 1536-1542;1972.

[21] Fries JF, McShane DJ. ARAMIS (The American Rheumatism Association

Medical Information System), a prototypical national chronic-disease data

bank. Western Journal of Medicine, 145:798-804; 1986.

[22] Fries JF. A data bank for the clinician? New England Journal of Medicine,

294(25): 1400-1402; 1976.

[23] Diamond GA, Standoff HM, Forrester JS, Pollock BH, Swan HJC.

Computer-assisted diagnosis in the noninvasive evaluation of patients with

suspected coronary artery disease. Journal of the American College of Car¬

diology, l(2):444-455; 1983.

[24] Lee KL, Pryor DB, Harrell FE, et al. Predicting outcome in coronary

disease: statistical models versus expert clinicians. American Journal of

Medicine, 80:553-560; 1986.

[25] Kulikowski CA. Pattern recognition approach to medical diagnosis. IEEE

Transactions on Systems Science and Cybernetics, SSC-6(3):173-178; 1970.

[26] Stanfill C, Waltz D. Toward memory-based reasoning. Communications of

the ACM, 29(12): 1213—1228, 1986.

[27] Kolodner JL. Using experience in clinical problem solving. Proc. AIM 87,

July 1987.

[28] Gelernter D, Sklar M. Machine musing: preliminary report, in a psychiatric

domain. Proceedings AAMSI Congress 86. May, 1986.

[29] Fertig S, Gelernter D. Maven the muser. Proc. AIM 87, July 1987.

85

[30] Gelernter D, Sklar M. Machine Musing and the Smart Notepad. Yale Uni¬

versity Department of Computer Science Technical Report, TR-466, March

1986.

[31] Miller PL. Critiquing: a different approach to expert computer advice in

medicine. Proc. Eighth SCAMC, November 1984 pp 17-23.

[32] Miller PL. Critiquing anesthetic management: the “ATTENDING” com¬

puter system. Anesthesiology, 58:362-369, 1983.

[33] Miller PL, Black HR. Medical plan-analysis by computer: critiquing

the pharmacologic management of essential hypertension. Computers and

Biomedical Research, 17:38-54, 1984.

[34] McSherry DMG. Intelligent dialogue based on statistical models of clinical

decision-making. Statistics in Medicine, 5:497-502; 1986.

[35] Teach RL, Shortliffe EH. An analysis of physician attitudes regarding

computer-based clinical consultation systems. Computers and Biomedical

Research, 14:542-558, 1981.

[36] Rees JA, Adams NI. “T: a dialect of Lisp or, lambda: the ultimate software

tool.” In Proceedings of the 1982 ACM Symposium on Lisp and Functional

Programming. Association for Computing Machinery, 1982.

[37] Rees JA, Adams NI, Meehan JR. The T Manual, 4th edition. Yale Univer¬

sity Computer Science Department, 1984.

[38] Winston PH, Horn B. LISP. Reading, Massachusetts, Addison Wesley Pub¬

lishing Company. 1981.

[39] Steele GL, Sussman GJ. The revised report on Scheme, a dialect of Lisp.

AI Memo 452, Artificial Intelligence Laboratory, Massachusetts Institute

of Technology, 1978.

[40] Hamilton M. A rating scale for depression. J. Neurol. Neurosurg. Psychiat.,

23:56-62;1960.

[41] Hamilton M. Development of a rating scale for primary depressive illness.

Brit. J. Soc. Clin. Psychology, 6:278-296; 1967.

[42] Phillips DS. Basic Statistics for the Health Science Students. New York,

W.H. Freeman, 1978.

[43] Robbins SL, Cotran RS, Kumar V. The Pathologic Basis of Disease, 3rd

edition. Philadelphia, W.B. Saunders, 1984.

[44] Schwartz WB, Patil RS, Szolovits P. Sounding board. Artificial intelli¬

gence in medicine: where do we stand? New England Journal of Medicine,

316(ll):685-688;1987.

9002 01012 9972

Auc MEDICAL 1
*N

YALE MEDICAL LIBRARY

Manuscript Theses

Unpublished theses submitted for the Master's and Doctor's degrees and
deposited in the Yale Medical Library are to be used only with due regard to the
rights of the authors. Bibliographical references may be noted, but passages
must not be copied without permission of the authors, and without proper credit
being given in subsequent written or published work.

This thesis by has been
used by the following persons, whose signatures attest their acceptance of the
above restrictions.

NAME AND ADDRESS DATE

	Yale University
	EliScholar – A Digital Platform for Scholarly Publishing at Yale
	1988

	MU : a domain-independent case-based expert system
	Mitchell Jay Sklar
	Recommended Citation

	MU : a domain-independent case-based expert system

