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INTRODUCTION 

Euryhaline teleosts are able to regulate their tissue water and 

ion concentration in response to changes in the environmental salinity. 

In freshwater the passive inward diffusion of water and the renal and 

extrarenal loss of sodium and chloride is compensated by maintaining 

a copious hypotonic urine flow coupled with feeding and the active 

uptake of sodium and chloride by the gill epithelium. In a marine 

environment euryhaline teleosts drink seawater and increase intestinal 

transport of sodium chloride and water which coupled with extrarenal 

excretion of sodium chloride by the gill epithelium compensates for 

the passive outward flux of water (1-4). There is also a decrease 

in urine flow (isomotic urine) which conserves water. Both salt and 

water balance are regulated through hormonal mechanisms mediated parti¬ 

cularly by the adrenal cortex and the pituitary gland (5-8). 

Sodium - and potassium - activated ATPase is a ubiquitous enzyme 

found in high concentration in many tissues in which active sodium 

transport plays a prominent role. The function of this enzyme has 

recently been reviewed by Skou (9) and Glynn (10). It is known that 

the level of Na-K-ATPase in the gills and intestine of several species 

of euryhaline teleosts increases markedly when the fish are transferred 

from a freshwater to a seawater environment (11-14). This increase 

in the level of Na-K-ATPase parallels the increase which occurs in 

the net sodium transport by these tissues. In freshwater the teleosts' 

kidneys transport considerably more sodium chloride than they do in 

seawater and it would therefore be expected that the Na-K-ATPase levels 
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should be higher in freshwater than in seawater (15). The outflux of 

sodium across the gills of Anguilla anguilla is 5 - 10 times higher 

in seawater - adapted than in freshwater - adapted eels (16,17). 

Adrenalectomy interferes with this adaptation, and cortisol injected 

over a 24 hour period rapidly restores the outflux to normal levels (18). 

The factors which enable freshwater euryhaline teleosts to adapt to 

seawater are only partially understood. The present work was under¬ 

taken to investigate the effects of exogenous cortisol on the Na-K-ATPase 

activity of the gill epithelium and intestinal mucosa of freshwater eels, 

and to see whether pretreatment with cortisol would enable freshwater 

eels to adapt to a seawater environment maintaining better osmoregula¬ 

tion than untreated controls. 
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GENERAL COMMENTS ON Na-K-ATPase 

Sodium-potassium activated ATPase is an enzyme system which may 

play an integral role in the active transport of Na and K across cell 

membranes (9,10,19,20). This enzyme has been found in a wide range 

of tissues from one animal (21,22) and in various tissues from many 

different species (see review articles 9,10,19). It appears to be 

present in all tissues in which it was carefully looked for. This 

enzyme seems to play an important role in the active reciprocal 

transfer of sodium and potassium across the plasma membrane of in¬ 

dividual cells, particularly the erythrocyte. Skou (9) proposed the 

following requirements for such a transport system; it should 1. be 

located in the cell membrane, 2. have an affinity for Na that is 

greater than for K at a site located on the inside of the cell mem¬ 

brane, 3. have an affinity for K that is greater than for Na at a 

site located on the outside of the membrane, 4. contain an enzyme 

system that can catalyze the hydrolysis of ATP and thus convert the 

energy from ATP into a movement of cations, 5. be capable of hydro¬ 

lyzing ATP at a rate dependent on concentration of Na inside the cell 

and also on concentration of K outside the cell, and 6. be found in 

all cells in which active, linked transport of sodium and potassium 

occurs. A transport system was found which met these criteria and 

had two additional properties, 7. a close correlation was found 

between the effect of cardiac glycosides on the cation transport in 

the intact cell and their effect on this system and 8. this enzyme 

system has the same quantitative relation to Na and K as the transport 

system in intact cells (9). 
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The activity of Na-K-ATPase parallels the level of sodium 

transport in various tissues (23,24) indicating that this enzyme may 

play a role in active sodium transport. It is found in various organs 

in which bulk transport of sodium across an epithelial membrane occurs; 

kidney (25), gill (11) and the avian salt gland (26,27). Since this 

sodium transport is not known to be coupled with active K transport 

in the opposite direction of comparable magnitude, the role of the 

enzyme is unclear. That Na-K-ATPase may play some role is suggested 

since it has been shown that increases in cation transport are 

correlated with increases in enzyme activity, furthermore decreases 

in active transport are followed by decreases in enzyme activity. The 

parallels in enzyme activity and cation transport in these tissues 

will be discussed in some detail subsequently. 

Properties of Na-K-ATPase 

Requirements for sodium and potassium: This enzyme system 

hydrolyzes adenosinetriphosphate to adenosinediphosphate and ortho¬ 

phosphate. For maximal activity it requires Mg-H- usually equimolar 

with the ATP plus both sodium and potassium. In the presence of Mg-H- 

alone, the enzyme system has low activity which increases slightly 

with addition of sodium but little or not at all with addition of 

potassium. If both sodium and potassium are present with magnesium 

there is a marked increase in activity. Potassium can be replaced by 

ammonium, rubidium, cesium or lithium in order of decreasing efficiency, 

however, sodium cannot be replaced by another cation (28). The re¬ 

quirement for sodium is of interest since this cation rarely is an 

enzyme activator. A kinetic analysis of the effect of Na and K on 
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activity suggests that the system has two sites with affinities for 

cations - one where the affinity for Na is six to eight fold greater 

than that for K and where K can competitively displace Na, and a 

second with high affinity for K and very low affinity for Na (28). 

When the concentration of K is high relative to the concentration of 

Na, K competitively displaces Na from the first site and the activity 

is decreased. 

The activity of this enzyme system is strongly inhibited by low 

concentration of Ca++ which can be reversed to some extent by in¬ 

creasing the Mg++ concentration (28). The inhibition is apparently 

not caused by ionic calcium but by the Ca-ATP complex which competes 

with Mg-ATP for enzyme binding (29). 

Requirements for ATP as energy substrate: The substrate for this 

enzyme system is adenosinetriphosphate since there is little if any 

phosphatase activity when other nucleotide triphosphates such as 

inosine, guanosine or uridine triphosphate are used as substrate (20,28). 

Cardiac glycoside inhibition: Cardiac glycosides in concentrations 

Q _ A 

from less than 10 ° M to more than 10 ^ M inhibit that portion of enzyme 

activity stimulated by the simultaneous presence of Na and K, whereas, 

the Mg-dependent activity is unaffected (10) „ The inhibition of Na-K 

activated ATPase by low concentrations of ouabain can be prevented by 

an increase in the concentration of K, however, this effect cannot be 

explained by simple competitive kinetics and the displacement of K is 

probably due to an allosteric effect on the K site secondary to glycoside 

enzyme interaction (30). These glycosides possess an unsaturated lactone 

ring attached in /S configuration to the C17 of a eyelopentanophenanthrene 
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nucleus. Partial or complete loss of inhibitory activity is caused 

by saturation of the lactone ring, ^configuration at C17, dehydro¬ 

genation of the hydroxyl at C3 or epimerization of this hydroxyl from^to 

ot pos it ion (10) . 

Location of enzyme: This enzyme is found in the membranes of the 

erythrocyte (31) and the sheath of the squid axon (32). Following 

differential centrifugation of a cell homogenate the highest activities 

are present in the "nuclear" fraction (sedimenting at 600-1000xg) which 

contains cell debris and large fragments of cell membranes, and/or in 

the "microsomal" fraction (sedimenting at 30,000-100,OOOxg) which 

contains endoplasmic reticulum and cell membrane fragments. Wallach 

and coworkers (33-35) concluded that small fragments of plasma membrane 

sediment with the "microsomes" and are responsible for the bulk of the 

Na-K-ATPase activity in this fraction. The "mitochondrial" fraction 

has little or no enzyme activity (36). 
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CORRELATION OF Na-K-ATPase ACTIVITY WITH SODIUM TRANSPORT 

An effective method of examining the physiologic role of enzyme 

systems is to correlate changes in the amount of enzyme within a 

tissue and its activity per milligram of protein with changes in the 

traffic over a metabolic pathway catalyzed by the enzyme system. 

With an increase in traffic over a pathway the enzyme activity often 

increases, whereas a decrease in traffic over a pathway frequently 

results in a decrease in enzyme activity. Enzymes which are rate- 

limiting are more sensitive to such maneuvers, however, enzymes which 

are non rate-1imiting may also be affected. The lack of adaptation 

when volume of reaction changes does not exclude a functional role 

for the particular enzyme system. This approach has been utilized in 

several tissues (e.g. mammalian kidney, avian salt gland and teleost 

gill and intestine) in which Na-K-ATPase is thought to play an integral 

role in sodium transport. 

Mammalian Kidney 

In the kidney the bulk of the oxygen consumption and energy pro¬ 

duction is probably related to active sodium transport which in turn is 

closely related to renal blood flow and glomerular filtration rate. If 

Na-K-ATPase plays a role in active sodium transport it might be expected 

that by increasing or decreasing the tubular reabsorptive work, changes 

in enzyme activity would be effected. 

An increase in Na-K-ATPase per milligram of protein inamicrosomal 

fraction of rat kidney cortex has been shown to occur following a 
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chronically increased tubular reabsorptive load of sodium per gram 

of kidney tissue (36). Increased tubular reabsorptive load follows 

unilateral nephrectomy (36), a course of methylprednisolone (2.5 mg/day 

for 4 days) (37) or feeding animals a high protein diet (50 percent 

protein for 7 days)(38,39). There is a 50 percent or greater increase 

in Na-K-ATPase activity following unilateral nephrectomy with lesser 

increases after the other two methods. This observation is of interest 

since the activity of glucose-6-phosphatase* and Mg-ATPase, two other 

microsomal enzymes, remained unchanged as did succinic dehydrogenase 

(a mitochondrial enzyme participating in oxidative metabolism) and 

glutaminasQ. 

When the net tubular reabsorption of sodium was decreased following 

bilateral adrenalectomy (40) the Na-K-ATPase activity of a microsomal 

fraction of rat kidney reaches a level of about one-half that for normal 

controls by the seventh postoperative day (36,41-43), however, the 

Mg-ATPase activity does not change significantly. This can be restored 

to normal levels in 2-3 days with physiologic doses of corticosterone, 

but cannot be restored with physiologic doses of aldosterone (42). In 

a microsomal fraction of rat renal cortex two weeks post hypophysectomy 

there is a 50 percent decrease in Na-K-ATPase activity and a 30 percent 

decrease in Mg-ATPase activity compared with normal controls (unpublished 

data). 

Glucocorticoids increase the glomerular filtration rate and net 

tubular reabsorption of sodium, therefore part of the effect of these 

hormones in stimulating Na-K-ATPase activity may be secondary to these 

changes rather than to a direct effect upon the cellular production or 

*The activity after methylprednisolone increased as a result of 

corticoid-induced stimulation of renal gluconeogenesis. 
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degradation of the enzyme. The cellular mechanism of methylpred- 

nisolone induced increase in enzyme activity in rat kidney is not 

understood. This hormone increases the enzyme activity in a whole 

homogenate of kidney, however, there is no difference between the 

Na-K-ATPase activity per mg of protein of plasma membrane obtained 

from treated or untreated rats (44). This finding supports the 

hypothesis that glucocorticoids increase the Na-K-ATPase activity in 

the kidney by increasing the amount of plasma membrane per cell, which 

might be accomplished by proliferation of the infoldings of the limiting 

cell membrane at the antiluminal border, rather than by an increase 

in the specific activity of enzyme per unit of plasma membrane. 

The sodium pump is thought to be located on the antiluminal 

surface of the renal tubular cell (45), and as sodium is pumped out, 

potassium might be reciprocally transferred into the cell, only to 

leak out again through the basilar membrane, which is considerably more 

permeable to potassium than is the luminal surface of the tubular cell (46). 

Saline loaded dogs respond to infusion of strophanthidin into the renal 

artery with a rapid fall in the glomerular filtration rate and a delayed 

natriuresis and diuresis (47). Since the diuresis could be blocked by 

potassium loading and enhanced by potassium depletion it suggests that 

the glycoside acts by limiting the availability of this ion to the 

exchange mechanism and therefore limits the transfer of sodium from 

tubular cell to the peritubular space, which in turn dissipates the 

gradient for movement of tubular sodium to tubular cell and results in 

the observed diuresis. Ouabain infused into the renal artery of dogs 

has produced a natriuresis which could be correlated with a dose-dependent 
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inhibition of renal cortical Na-A-ATPase, however, there was no 

consistent effect on enzyme from the medulla (48). Martinez-Maldonado 

and coworkers (49) found that infusion of digoxin into one canine 

renal artery resulted in a unilateral natriuresis with impaired con¬ 

centrating capacity. The Na-IOATPase activity was found to be greater 

in medullary tissue than in cortical tissue and both were decreased by 

about 50 percent after digoxin infusion. 

The observation that Na-K-ATPase activity changes in an adaptive 

way when the renal absorptive load of sodium is increased coupled with 

the effects of cardiac glycosides on both enzyme and transport systems 

strengthens the hypothesis that this enzyme is involved in active sodium 

transport. 

Avian Nasal Gland 

Marine birds are faced with the necessity of conserving water and 

excreting salt. The avian kidney is composed of two types of nephrons; 

the cortical nephron, the more common, lacks a loop of Henle whereas the 

medullary nephron has a loop of Henle. The avian kidney cannot concen¬ 

trate urine more than approximately twice the osmolarity of plasma and 

an extrarenal means of salt excretion has evolved. All birds have 

paired nasal glands situated along the dorsal margins of the orbit and 

discharging their excretory fluid, in most species, via ducts into the 

anterior nasal cavity. In terrestrial species the glands are small, but 

in birds with an evolutionary history of adaptation to a marine envir¬ 

onment the gland has developed a significant capacity to secrete a 

hypertonic solution of sodium chloride. The capacity of the salt 
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secreting gland in birds depends on a primary genetic factor and on a 

secondary phenotypic effect of salt stress (i.e. diet e.g. fresh fish, 

invertebrates or marine plants). 

The nasal gland was long known to be present in various avian 

species, however, its function in osmoregulation was not appreciated 

until Schmidt-Nielsen (50) found that cormorants utilized an extrarenal 

mechanism for salt secretion in response to an oral or intravenous 

hypertonic saline load and that an intravenous non-electrolyte osomotic 

load (sucrose) would also stimulate secretion. The stimulus to secretion 

may depend on volume or stretch receptors rather than on osmoreceptors 

(51). In subsequent studies Schmidt-Nielsen and coworkers (52-54) found 

that the main components of the nasal gland secretion were sodium and 

chloride in nearly equal amounts ranging from 500-1100 me<j sodium/liter 

with small amounts of bicarbonate and potassium, magnesium and sulphate 

being virtually absent. The concentration of the secretion remains 

fairly constant for each species. 

The gland is innervated by parasympathetic cholinergic stimulatory 

fibers and sympathetic adrenergic inhibitory fibers. Acetylcholine 

and its analogues cause secretion whereas epinephrine, atropine and 

anesthesia block secretion (55,56). The actively secreting salt gland 

of the herring gull develops a positive potential difference between 

the ducts of the gland and the blood. Retrograde injection of strophan- 

thin (0.05 mg) through the duct prevented the development of the duct 

potential in response to stimulation and abolished secretion, however, 

the vasodilation in response to secretory nerve stimulation was main¬ 

tained (54). Acetazolamide, a carbonic anhydrase inhibitor, blocks 
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secretion in an active gland, however, this effect can be reversed 

with methacholine (55). Since acetazolamide had no effect on the 

duct potential or secretory response of an electrically stimulated 

gland the block in secretion in response to an osmotic load which 

occurs after administration of acetazolamide must be due to an action 

of the drug in the reflex chain outside the salt gland (54). Figure 1 

is a summary of the pathways involved in the regulation of excretion by 

the nasal gland. 

Increase in E.C.E.V 
and/or 

E.C. osmolarity 

fw 
Osmotic \y 

load Renin 

Ganglion 
ethmoidale 

Adenohypophysis 1 Increase in 

1 ACTH 
blood glucose 

1 
Kidney I—Angiotensin 

1 protein ° 

Aldosterone 

Corticosterone 
X 

Nasal gland 

Na+ retention Na+ excretion 

Fig. 1. A schematic representation of the possible 

pathways involved in the regulation of excretion 

in marine birds. (See reference 137) 

When ducks (Anas platyrhnchos) are raised on one percent saline 

as drinking water, the salt secreting glands hypertrophy and the extra- 

renal salt-secreting capacity is increased primarily by increasing the 

volume of fluid that can be produced per unit time, however, there is 

also an increase in the sodium concentration of the fluid (57,58). 
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Both gulls (59) and ducks (60) when reared on salt water have in¬ 

creased absolute and relative adrenal weights when compared to 

freshwater controls. This suggests that adrenosteroids may be in¬ 

volved in nasal gland activity. 

The oral administration of a sodium chloride load to intact 

ducks results in a diphasic response, beginning with a renal phase 

of excretion followed by an extrarenal phase of excretion (61). The 

onset of the extrarenal phase was significantly earlier in birds pre¬ 

treated with cortisol, cortexone, aldosterone or ACTH and the total 

extrarenal excretion of sodium and potassium and initial rate of 

secretion was greater than in control ducks (61). 

Bilateral adrenalectomy obliterates the extrarenal excretory 

phase in saline loaded ducks. Unilateral adrenalectomy resulted in 

a delay in onset and duration of the extrarenal phase with a decrease 

in the total excretion of sodium and potassium when compared with intact 

controls. The extrarenal phase began at a higher serum osmolarity than 

for control ducks. Maintenance of totally adrenalectomized ducks on 

cortisol restored their response to saline loads to near normal levels (62). 

When the extrarenal mechanism of excretion is studied uncomplicated 

by effects secondary to the renal phase (63), aldosterone was found to 

have no effect on the excretion of a hypertonic saline load and to be 

unnecessary for the normal functioning of the nasal glands of the domestic 

duck. 

In neither ducks (Anas platyrhnchos) nor gulls (Larus argentatus) 

is there a relationship between plasma corticosteroid levels and the 

activation or sustained secretion of the nasal gland (64). Phillips 
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and Bellamy (65) found an increased uptake of 14 C- cortisol and 

O 

H corticosterone in the nasal glands of ducks injected with 0.5 M 

NaCl as compared to 0.15 M NaCl. They postulated that the role of the 

neural component in nasal gland function is to cause dilation of the 

vascular bed which would provide the parenchyma with a greater volume 

of blood per unit time and therefore a larger amount of corticosterone. 

The role of the adenohypophysis in nasal gland function has not 

been clarified, however, it has been shown that there is a significant 

depression of the extrarenal response to a hypertonic saline load in 

adenohypophysectomized ducks (66) and an enhanced output from the 

minimally stimulated nasal gland of ducks injected with ovine prolactin (67). 

Glucose administered with a saline load increase nasal gland secretion 

while insulin-induced hypoglycemia diminishes response to a similar saline 

load (68). 

The presence of Na-K-ATPase in the avian salt gland was first 

demonstrated by Hokin (26). Using Great Lakes gulls and domestic geese 

maintained on 1.5%. sodium chloride as their drinking water for one week, 

she was unable to demonstrate a change in Na-K-ATPase levels in a 

mitochondrial-microsomal fraction. The explanation for this in light 
<» 

of subsequent work is probably that the salt load was not large enough 

and the duration was too short. 

Bonting and coworkers (27) demonstrated that the Na-K-ATPase 

activity of the nasal glands from gulls maintained on fresh water for 

seven weeks had only 51% of the activity per gram nasal gland compared 

to wild birds and the gland weighed only 65% of the control weight. An 

increase in the Na-K-ATPase activity of nasal gland homogenates from 

domestic ducks maintained on about one percent sodium chloride as 
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drinking water for varying time periods has been demonstrated (69-71) „ 

Fletcher and coworkers (72) have shown that domestic ducks during the 

period of adaptation to hypertonic saline (284 mM/liter sodium and 

6 mM/liter potassium) undergo changes in the function of nasal glands 

characterized by increase in Na-K-ATPase activity which follows a 

similar time course to changes in sodium-excreting capacity, and 

increases in nasal gland weight and sodium concentration of the excreted 

fluid. These changes were reversed when ducks were returned to fresh 

water. Table 1 summarizes these findings. 
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THE EEL 

Natural History of The Eel 

The life history of the European eel (Anguilla anguilla) is composed 

of three phases separated by two metamorphoses (73) . Spawning occurs 

in the Sargasso Sea during spring and summer at a depth of 400 - 500 

meters. After hatching the larvae (leptocephali) ascend toward the 

surface to a depth of about 50 meters and are carried by surface currents 

and dispersed. This period, the marine larval phase, lasts 2-3 years. 

The metamorphosis of the leptocephali into elvers occurs in autumn 

immediately adjacent to the Continental Slope. The elvers ascend 

(anadromous migration) to freshwater areas and complete their metamor¬ 

phosis into young eels. The sexually immature yellow eel lives in a 

freshwater environment where it feeds and grows slowly for a period of 

9-18 years depending on food supply, temperature and living space; 

this is the freshwater larval stage. The second metamorphosis is 

accompanied by several changes: 1. the eel which was greenish on 

the back and yellow ventrally now becomes nearly black on the dorsal 

and lateral aspects and silvery white ventrally due to an increase in 

malanins and guanine respectively, 2. an alteration of the hormonal 

environment which enables the eel to adapt to a marine environment more 

rapidly, 3. the cessation of food consumption with a reduction in the 

digestive tract and 4. sexual maturation (73,74). In autumn, the 

silver eel begins the reproductive or catadromous migration to the 

Sargasso Sea to spawn (74) or die (75), this period is the adult marine 

phase. 
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Tucker (75) proposed that: 1. Anguilla rostrata and Anguilla 

anguilla are not distinct species but eco-phenotypes, their distinguishing 

features (103 - 110 vertebrae versus 110 - 119 vertebrae) being envir¬ 

onmentally determined, 2. the European eels perish in their own 

continental waters without completing their reproductive cycle and 

3. the population of European eels is entirely maintained by rein¬ 

forcements of larvae of North American parentage. 

Although the natural history of the American eel has not been 

carefully studied, it is likely that it is similar to that of the 

European eel. The change from a seawater to a freshwater environment 

during migration requires rapid osmoregulatory readjustment of the gills, 

intestine and kidneys. 

Gills 

The gills of euryhaline teleosts play an integral role in osmore¬ 

gulation in both freshwater and seawater (1,3). Fish are able to compen¬ 

sate for the renal and extrarenal loss of sodium and chloride in fresh¬ 

water by active absorption of sodium and/or chloride (76-79). The skin 

and gills of freshwater eels seem to be highly impermeable, there being 

little passive loss of sodium or potassium, or gain of water (17). When 

isolated gills of freshwater silver eels were incubated in tap water 

aerobically they were able to maintain a constant level of sodium chloride 

against the normal diffusion gradient (80). This steady state appeared 

to be due to active movement of sodium chloride into the gills balancing 

the passive outward diffusion. This transport might be a NH4+/Na+ 

exchange mechanism since intraperitoneal injection of NH4+ resulted in 
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an increase in sodium influx (79), no evidence for a HCO3-/CI- exchange 

was found. 

In a marine environment the gills transport sodium and chloride 

outward against the osmotic gradient (3). Isolated gills of seawater- 

adapted eels are able to maintain a steady state concentration of sodium 

chloride when incubated in seawater, whereas gills from freshwater eels 

could not transport sodium chloride against the concentration gradient 

(80,81). During the course of seawater adaptation the gills become 

capable of actively secreting sodium chloride. When ouabain is injected 

into seawater-adapted eels the isolated gills lose the capacity to excrete 

sodium and the sodium content of the gills during incubation in seawater 

increases as it does in freshwater eels (12,82). This inhibitory effect 

of ouabain is not observed when it is added to the incubation medium (82). 

Incubation of isolated gills from seawater-adapted eels in potassium- 

free seawater causes a complete inhibition of sodium chloride excretion (83). 

Intestine 

Marine teleosts compensate for the passive outward diffusion of 

water by drinking seawater and excreting sodium chloride extrarenally 

(1,4). Eels can adapt to external environments ranging from tap water 

(containing 0.4 mM sodium, 0.02 mM potassium and virtually no chloride) 

(84) to double-strength seawater (17). In going from freshwater to 

double-strength seawater there is an increase in drinking rate, sodium 

turnover rate and plasma sodium concentration. (see Table 2). The 

drinking reflex apparently depends upon an increase in tissue osmotic 

pressure rather than the presence of specific ions in the external medium 



. 
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since freshwater eels placed in hypertonic sucrose solutions drink 

from the surrounding medium (85). In seawater there is an initial 

dilution of the intestinal contents, achieved by a passive flow of 

water from plasma to lumen, which is necessary before absorption of 

water is possible. Subsequently, the concentration of sodium chloride 

in the ingested fluid decreases due to active transport of sodium 

chloride with "solute-1 inked water flow". The bivalent ions. Mg and 

SO4, are not well absorbed and are retained in the intestine in an 

isotonic solution becoming several times more concentrated than in 

seawater (1). 

Table 2 

Some Parameters of Osmoregulation in Eels Adapted to Various Salinities 

(modified from reference 17) 

Adaptation 

medium 

External Na 

cone. m@<j/L 

Drinking rate 

ul/hr/lOOg b.w. 

Na turnover rate 

% exchangeable Na/hr 

Plasma Na 

me<^/L 

Freshwater 0.5 135^27.7 (17)++ 0.5-1.0+ 130-2.43 (25) 

Seawater 5.25 325-33.5 (12)* 27.2^3.54 (5)* 147^2.34 (25) 

Double-Strength 1040 802^182 (5)* 61.2-7.92 (4)* 176^3.84 (ID 
seawater 

+ From Garcia Romeu and Motais 1966 

++ Mean S.E„ number of subjects in parenthesis 

* The increase in drinking rate and sodium turnover with increasing exter¬ 

nal salinity in significant P^O.Ol 

Permeability to water and ionic absorption capacity of the intestine 

is greater in seawater-adapted eels than in freshwater eels (86-90). As 

the external salinity increases the osmotic gradient between external 

and internal media increases and the rate of drinking increases to 

compensate for the increased water loss across the gills„ Skadhauge (90) 
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studied the absorption of salt and water in vivo by intraluminal 

perfusion of the intestine of European eels adapted to freshwater, 

seawater and double-strength seawater. The net absorptive rate of 

sodium and chloride ions and the rate of water absorption is aug¬ 

mented in relation to the increased osmotic stress of higher ex¬ 

ternal salinities, as is the osmotic gradient against which water 

absorption becomes possible. Perfusion experiments with impermeant 

solutes demonstrated that in the absence of active salt movement 

water movement was essentially a passive process. Following transfer 

from freshwater to seawater the Japanese eel increases its drinking 

rate gradually to a maximum on day five and then it decreases to a 

constant level after three weeks (86). Transport of water and sodium 

in isolated gut sacs parallels the change in drinking rate. In 

isolated intestine sacs of the American eel (Anguilla rostrata) following 

transfer to seawater, the salt and water transport increases to a 

maximum on the third day and then decreases slowly to a stable level 

after about two weeks (89). Ouabain (10"^ M) decreased water transport 

in gut sacs from both fresh and seawater-adapted eels. All of the 

increase in water transport that develops during seawater adaptation 

is ouabain sensitive and therefore probably represents an increase in 

sodium transport dependent on Na-K-ATPase (89). A considerable 

component of water transport, possibly due to transport of solutes 

other than sodium, was insensitive to ouabain in both freshwater and 

_ O 

seawater-adapted eels but was completely inhibited by KCN (10”J M) 

-3 
plus iodoacetic acid (10 M) suggesting its dependence on metabolic 

energy. 



. 
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Kidney 

The eel kidney is similar to other teleost glomerular kidneys; 

having nephrons composed of a glomerulus, a proximal convoluted 

tubule, a distal convoluted tubule and a collecting system (91,92). 

The thin segment of the loop of Henle is absent and this limits the 

teleosts to elaboration of an iso or hypotonic urine. The arterial 

vascularization accounts for about 30 percent of the total, with the 

rest arising from the caudal vein giving rise to a renal-portal system 

(93). In seawater the urinary electrolytes consist primarily of Mg 

and SO4 with small quantities of Ca, PO4, Na, K and Cl. In freshwater 

only small quantities of Mg and SO4 are excreted. 

Freshwater teleosts combat the passive influx of water by main¬ 

taining a rapid flow of hypotonic urine (1,2). In freshwater eels the 

GFR and urine volume is greater than in seawater-adapted eels, however, 

the percentage reabsorption of water and sodium is greater in the latter 

resulting in a slightly greater absolute loss of sodium in freshwater 

eels (84). The reabsorbed sodium load is about four fold greater in 

freshwater compared to seawater-adapted eels. These parameters of 

renal function are illustrated in Table 3. Oide and Utida (94) found 

that in Japanese eels transferred to seawater both the rate of urine 

flow and the GFR was reduced markedly within six hours. However, after 

ten days the urine flow was still slight but the GFR recovered to the 

level of freshwater eels. In seawater the eel conserves water by 

increasing the absorption of Na, Cl and water. 
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Table 3 

Changes in Glomerular Filtration and Tubular Reabsorption of 

Water and Electrolytes in Freshwater and Seawater Eel (Anguilla anguilla) 

(modified from reference 84) 

Freshwater Eels Seawater Eels+ 

H2O++ Na K Cl H2O Na K Cl 

Filtered (GFR) 110 16.5 0.297 11.5 25 4.37 0.077 3.85 

Excreted 84 1.6 0.055 nil 15 0.098 0.031 1.80 

(Urine) 

% Reabsorbed 24 90.3 81.5 100 40 97.8 59.7 53.2 

+ adapted to seawater for at least 10 days 

++ results expressed as ml/kg/24 hr or mM/kg/24 hr 

Pituitary Influence on Osmoregulation 

Teleosts can be divided into two categories: one in which the 

pituitary appears to play no essential role in osmotic adjustments, the 

other in which the fish cannot live in freshwater without the gland (7). 

Fundulus heteroclitus is unable to survive in freshwater after hypo- 

physectomy (95) due to progressive asthenia secondary to hyponatremia. 

Ovine prolactin enables hypophysectomized F, heteroclitus to maintain 

normal serum osmolarity in freshwater (96-98). Osmoregulation in the 

eel appears not to be closely controlled by prolactin since hypo¬ 

physectomized yellow eels can survive in freshwater and de-ionized 

water for long periods of time (99,100). Hypophysectomy induces a 

slow decline in plasma sodium of freshwater eels which is due to an 

augmentation of the sodium outflux (101) and to a probable decrease 

in sodium influx secondary to adrenocortical insufficiency (102,103). 

Prolactin administered to recently hypophysectomized eels can reduce 





24 

the sodium outflux to normal levels but has no effect on sodium 

influx (101). Chan and coworkers (103) and Butler (102) found that 

hypophysectomized silver eels in freshwater were unable to maintain 

water and electrolyte balance, manifested by marked decrease in 

serum sodium and potassium concentration coupled with increase in 

percent muscle water and a decline in the muscle sodium and potassium 

concentration compared with intact and sham-operated controls. In¬ 

jections of bovine prolactin (2 mg/100 b.w./day) plus cortisol 

(20 i4g/100g b.w./day) returned the above parameters to normal whereas 

neither alone was adequate (103). 

In hypophysectomized seawater adapted silver eels there is an 

increase in serum sodium and chloride concentration with a decrease 

in percent muscle water compared to intact controls (102). The rate 

of sodium exchange between the internal and external environment of 

seawater-adapted eels involves about thirty percent of the exchangeable 

sodium per hour and hypophysectomy reduces this rate by about fifty 

percent (101). Prolactin does not increase the reduced sodium turn¬ 

over rate in hypophysectomized seawater eels, however, ACTH does 

increase the rate (101). On transfer from seawater to freshwater the 

hypophysectomized eel readjusts sodium fluxes in a pattern similar to 

that of intact eels; however, the sodium influx is reduced and the 

sodium outflux is maintained at levels above that of freshwater 

adapted eels resulting in a slightly negative sodium balance (101). 
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Corticosteroid Influence on Osmoregulation 

Cortisol is the major corticosteroid secreted by teleost 

interrenal tissue (8). In eels the interrenal tissue extends for 

approximately ten millimeters in the wall of the anterior and posterior 

cardinal veins. The main nodes are in the walls of both left and right 

posterior cardinal veins ending posteriorly in the lymphoid head 

kidney (104). Cortisol has been demonstrated in the plasma of eels 

(105). In the European eel the plasma cortisol concentration was 

found to be about 2 - 3jUg/100ml in both freshwater and seawater-adapted 

eels (106). In vitro incubation of interrenal tissue with progesterone- 

4-Ciq' or pregnenolone- 16-Hr yields labelled cortisol as predominant 

product with smaller quantities of cortisone and corticosterone (107-111). 

Aldosterone has not been conclusively demonstrated in plasma or by in 

vitro incubation techniques (107,108,112), however, a low-activity 

NADPH-dependent 18-hydroxylase which transforms exogenous corticosterone 

to 18-hydroxycorticosterone has been found in eel interrenal tissue (112). 

There is evidence for a pituitary-adrenocortical feedback mechanism 

based on histologic (113,104) and physiologic (114) data. The admin¬ 

istration of metopirone (an ll^-hydroxylase inhibitor) to eels results 

in an activation of the interrenal, with nuclear, nucleolar and cellular 

hypertrophy with mitotic activity. In hypophysectomized eels the 

interrenal hypertrophy and hyperplasia is suppressed but the nuclei 

undergo changes similar to those of intact eels. The epsilon cells 

(corticotrophic cells), located in the rostral pars distalis along its 

posterior border with the neurohypophysis, undergo hyperplasia, 
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hypertrophy, degranulation and vacuolization during treatment with 

metopirone. The changes in the interrenal cells are presumably 

secondary to drug induced hypersecretion of ACTH by the pituitary, 

which is reflected by the changes in morphology of the epsilon cells 

of the pars distalis. 

In the eel, hypophysectomy decreases the in vitro rate of con¬ 

version of endogenous precursors in the interrenal gland without altering 

the composition of secretion. In vivo injection of ACTH restores the 

corticosteroidogenic activity of in vitro gland preparations. ACTH 

stimulates in vitro corticosteroidogenesis of the interrenal gland but 

only after prior hypophysectomy (115). Butler and coworkers (114) 

have shown that hypophysectomized eels have decreased plasma cortisol 

levels compared to intact controls, that ACTH (0.20 IoUa/100g b.w.) 

elevated the plasma cortisol level of hypophysectomized eels to twice 

that of intact controls and that the plasma cortisol level could be 

decreased significantly by dexamethasone-21 phosphate (4mg/kg b.w.). 

These findings suggest that both a positive and negative feedback 

machanism operates between the hypophysis and the teleost interrenal 

gland. 

Effects of Adrenal Hormones on Composition and Distribution of Body Fluids 

The changes in plasma and tissue electrolyte composition, the 

distribution of body fluid between the intra-and extracellular spaces 

and the level of sodium transport performed by eels after adrenalectomy, 

hypophysectomy or treatment with exogenous hormones depends on many 

factors (e.g. completeness of endocrine ablation, schedule and dose of 
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hormones used, season and phase of eel, specific experimental protocol 

and the inclusion of appropriate sham-operated controls). The inter¬ 

pretation of data from one experiment to another often gives conflicting 

results and does not allow generalizations to be made concerning the 

effects of a specific treatment on the above parameters. 

Freshwater eels: Adrenalectomy of freshwater (yellow or silver) 

eels was accompanied by an increase in body weight and muscle water 

content, decrease in serum sodium concentration and maintenance of 

normal serum potassium concentration (116). Butler and Langford (117) 

found no change in plasma or tissue electrolyte concentration in partially 

adrenalectomized freshwater yellow eels, however, it is likely that 

residual interrenal tissue was present since no change in plasma cortisol 

concentration was observed (118). Subsequently using a more radical 

technique of adrenalectomy (105) they were able to demonstrate a 

decrease in serum sodium and chloride concentration but no change in 

serum potassium concentration or body weight in adrenalectomized fresh¬ 

water yellow eels compared to intact controls. There was a significant 

decrease in plasma cortisol levels in the adrenalectomized group. 

Cortisol (5-10 mg/day for 10 days) given to freshwater yellow eels 

produced a decrease in serum sodium concentration and the serum potassium 

level either fell or remained within normal range without change in 

muscle water content (116). Mammalian ACTH (2 I.U./day for 10 days) in 

intact freshwater eels did not change the above parameters (116). ACTH 

administered to hypophysectomized freshwater silver eels elevated serum 

sodium concentration toward normal levels (103). 
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Seawater eels: Adrenalectomy in seawater-adapted eels resulted 

in a decrease in body weight with diminution of muscle water content 

and an increase in serum sodium concentration with normal serum 

potassium concentration (116). Mayer and coworkers (18) found that 

adrenalectomized seawater eels could not survive in seawater for more 

than 48 hours, however, they were able to survive in one-third seawater. 

Effects of Adrenal Hormones on Sodium Transport in Gill and Intestinal Mucosa 

Gill: Freshwater adapted silver eels have a net extrarenal uptake of 

sodium from the surrounding tap water (made up to 600 MM sodium) which 

can be changed into a net extrarenal loss with cortisol (10 mg/day for 

4 days) (119). Distilled water adapted silver eels, which are salt 

depleted with low serum concentration, have a net extrarenal sodium 

uptake three times greater than freshwater controls. Hypophysectomy 

or adrenalectomy decreased the net extrarenal sodium uptake in distilled 

water adapted eels and this uptake was increased in adrenalectomized 

eels treated with aldosterone or cortisol (10 >Mig/500-800g b.w.) (119). 

Cortisol appears to play a role in the net extrarenal uptake of sodium 

in freshwater adapted eels probably by increasing the sodium influx 

rather than by decreasing the sodium outflux (103). 

Adrenalectomized seawater-adapted yellow eels have a much lower 

sodium turnover rate, 6 percent (expressed as percent of internal 

sodium exchanged/hr), than do sham-operated controls, 27 percent (18). 

Cortisol (50 iig/lOOg b.w.) given during the 24 hours prior to flux 

measurement brought the sodium turnover rate of adrenalectomized eels 

to a level comparable with that of sham-operated controls. The sodium 
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outflux in adrenalectomized seawater adapted eels was considerably 

reduced compared to sham-operated and adrenalectomized cortisol 

treated controls. On transfer of adrenalectomized freshwater adapted 

eels to seawater there was an increased lag period before the sodium 

outflux was augmented, and the level achieved was significantly less 

than that for sham-operated controls (18). The presence of the 

adrenals seems to facilitate the increased sodium outflux across the 

gills which is necessary for seawater adaptation. 

Intestine: The increase in sodium and water transport by isolated 

intestine sacs which occurs after transferring freshwater eels to 

seawater (86,87,89) can be abolished by hypophysectomy (81,120), and 

restored toward normal with cortisol (120). ACTH or cortisol produced 

a significant augmentation in intestinal water transport within 24 hours 

in freshwater Japanese eels (Anguilla japonica) and the response 

appeared to be dose dependent (121). Other hypophyseal or adrenocortical 

hormones were without effect. A single injection of cortisol acetate 

(2.5 mg) into freshwater eels produced changes in water transport in 

isolated intestine sacs similar to those occuring after transfer of 

freshwater eels to seawater (121). Injection of freshwater eels 

(Anguilla rostrata) with cortisol (400 ;Ug/100g b.w./day for 14 days) 

or methylprednisolone (0.3 mg/lOOg b.w./week for 2 weeks) increased 

intestinal water transport markedly (89). Adrenalectomy reduces the 

water permeability of everted intestine sacs from freshwater eels and 

cortisol administration restores it to normal levels (122). The adrenal 

steroids appear to be closely linked with changes in intestinal transport 

occurring during seawater adaptation. 
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Na-K-ATPase Activity in Gill and Intestinal Mucosa of Eels 

The activity of Na-K-ATPase in a sodium iodide treated microsomal 

fraction of gills from seawater-adapted Japanese eels was five times 

greater than that of freshwater eels, the Mg-ATPase activity remained 

unchanged (12). Oide (123) found a three fold increase in Na-K-ATPase 

level in intestinal mucosa from seawater-adapted Japanese eels 

compared to freshwater controls. Jampol and Epstein (13) observed a 

two fold increase in the Na-K-ATPase level in both the gills and in¬ 

testine of seawater-adapted eels (Anguilla rostrata) compared to 

freshwater controls, however, the Mg-ATPase activity was not signifi¬ 

cantly different. In the European eel (Anguilla anguilla) and flounder 

(Platychthys flesus) no difference in the Na-K-ATPase or the Mg-ATPase 

activity was found in seawater-adapted fish compared to freshwater 

water controls (124), however, Motais (14) subsequently observed a 

doubling of the Na-K-ATPase activity in gills of seawater adapted eels. 

Hypophysectomy of seawater-adapted Japanese eels did not affect either 

the active excretion of sodium ions from isolated gills (81) or the 

level of Na-K-ATPase of the gills (125). The failure to show a de¬ 

crease in Na-K-ATPase activity or active sodium excretion was probably 

due to the short time interval between hypophysectomy and the measure¬ 

ment of these parameters. 
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METHODS 

Freshwater yellow eels (Anguilla rostrata) were trapped in a 

freshwater pond (sodium concentration less than 5 w*M/L) by the 

collecting crew of the Mt. Desert Island Biology Laboratory. The 

eels, both male and female, weighing between 80 and 400 grams were 

obtained in July and August. They were initially kept in running 

freshwater tanks at ambient temperature. Those designated as sea- 

water-adapted were preadapted for two days in 50 percent seawater 

prior to being placed in running seawater tanks (about 475 mM sodium/L 

at about 15° C). 

Eels were adapted to seawater for periods of from several days 

to three weeks„ Some freshwater eels were given intramuscular 

injections of long-acting methylprednisolone acetate (Depo-Medrol, 

Upjohn) 300 M-g/100 gram body weight (200 /Mg/0.1 ml) weekly for two 

or three weeks. Several groups of freshwater eels received intra¬ 

muscular injections of hydrocortisone hemisuccinate (Solu-Gortef, 

Upjohn) daily, either 50 /Mg or 400 Aig/100 gram body weight (50 /Ug or 

400 jug/0.1 ml) for seven to fourteen days. All fish were starved for 

several days prior to use. 

Preparation of tissue homogenates: The eels were sacrificed 

by multiple spinal cord sectioning. The gills were dissected and the 

gill filaments were removed and placed in tared iced beakers and weighed. 

The intestine was dissected, then opened longitudinally and washed 

with water after which the mucosa was scraped with a glass slide and 

then weighed. 
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The tissue was homogenized in an ice-cold solution containing 

0.25 M sucrose, 30 mM imidazole buffer, 5 mM sodium ethylenediamine- 

tetraacetate and one gram sodium deoxycholate per liter at pH 6.8 

in a ratio of 2 ml homogenizing solution to 100 mg of tissue. This 

was carried out in a glass homogenizer immersed in ice with a Teflon 

pestle at 1725 rpm and 0.18 mm clearance using 20-25 strokes. The 

homogenate was filtered through a double layer of gauze and then 

immediately assayed for Na-K-ATPase activity. 

Adenosine triphosphatase assay: One-tenth milliliter of the 

tissue suspension (containing 2-8 mg protein/ml) was added to 4.6 ml 

of incubation medium containing 10 mM imidazole buffer, and either 

100 mM NaCl and 20 mM K Cl (regular medium) or 120 mM NaCl (no potassium 

medium) at pH 7.8. This mixture was preincubated at 37°C for 5 minutes 

in a shaking water bath. The reaction was begun by the addition of 

0.3 ml of a solution containing 100 mM disodium ATP (sodium adenosine 

triphosphate. Sigma Chemical) and 100 mM MgCl£ at pH 7.8 and incubated 

for 15 minutes at 37°C in a shaking water bath. It was terminated 

by the addition of 1 ml of ice-cold 35 percent trichloracetic acid to 

the incubation flasks. After centrifugation the precipitated protein 

was discarded and the inorganic phosphate in the supernate was 

determined by the method of Fiske and Subbarow (126), the optical 

density being read at 660 m/i on a Coleman Junior spectrophotometer. 

Correction for the spontaneous nonenzymatic breakdown of ATP was made 

by measuring the inorganic phosphate liberated in the absence of enzyme. 

This blank, containing homogenizing solution was run along with phosphate 

standards (0.2, 0.4 and 0.8 mM/L K2HPO4) with each set of phosphate 
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determinations. Each sample was done in duplicate and averaged. 

The protein content of the tissue suspensions was determined 

by the method of Lowry, Rosebrough and coworkers (127) using 

crystalline human albumin standards. The activity of Na-K-ATPase 

was defined as the difference between the amount of inorganic phosphate 

(Pi) released from ATP in the medium containing potassium and that 

released in the medium without potassium, and is expressed as 

micromoles of Pi released per hour per milligram of protein. The 

breakdown of ATP in the medium without potassium is referred to as 

"Mg-ATPase" or "residual" ATPase. In separate experiments the 

Na-K-ATPase activity was shown to be equal to the amount of ATP 

breakdown inhibited by 10 ^ M ouabain. 

Blood was aspirated into syringes, treated with heparin or EDTA, 

from the caudal vein of unanesthetized restrained eels. The plasma 

was separated by centrifugation and the chloride was determined by 

an amperometric method (Cotlove chloridometer). 

The statistical significance between mean values was assessed 

by Student's t test. P values less than 0.05 were considered signi¬ 

ficant . 
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RESULTS 

ATPase Activity in Gill Epithelium and Intestinal Mucosa (Table 4) 

Adaptation to seawater for one to three weeks resulted in a 50 

percent increase in Na-K-ATPase activity in the gill filaments, from 

4.6 to 7.3 or 6.7 moles Pi released / mg protein/hr respectively 

(p^O.Ol). Cortisol in low-dose (50jl*g/100g b.w./day for 7-12 days) 

and high-dose (400>Mg/100g b.w./day for 7-14 days) induced a rise in 

the Na-K-ATPase activity in freshwater eels. The former raised the 

enzyme level in the fill filaments to that seen in seawater-adapted 

eels and the latter to a level almost three times that of untreated 

freshwater controls. Methylprednisolone (300 Mg/100g b.w./week for 

2-3 weeks) similarly raised the level of Na-K-ATPase. The Mg-ATPase 

activity was not changed significantly after transfer to seawater or 

by the corticosteroid treatment. 

The activity of Na-K-ATPase in intestinal mucosa was increased 

after treatment with high-dose cortisol from 9.6 in freshwater eels 

to 18 (p{0.05), a level comparable with that found previously in 

intestinal mucosa after seawater adaptation (13). The Mg-ATPase 

activity was also augmented by the high-dose cortisol from 11 to 22 

(p{0.01). Low-dose cortisol treatment increased the level of both 

enzymes insignificantly. 

Effect of Treatment With Cortisol on the Adjustment of Freshwater Eels 

to Seawater 

Seawater adapted European and Japanese eels have serum sodium and 

chloride levels which are about 20-40 mt<^/L higher than that of fresh- 
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water eels (17,94,116,128). Freshwater yellow eels (Anguilla rostrata) 

can be adapted to seawater but must spend a minimum of two days in 50 

percent seawater prior to transfer to full-strength seawater. In the 

present experiments, the plasma chloride level of six freshwater yellow 

after 2-3 weeks of adaptation to seawater the average plasma chloride 

level in nine eels was When 

freshwater eels were transferred directly to full-strength seawater, 

they usually died on the second or third day following transfer, appar¬ 

ently due to inability to readjust their osmoregulatory mechanisms 

rapidly. This is illustrated in Figure 2 by serial plasma chloride 

samples obtained from three eels. Plasma chloride levels rose rapidly 

to levels of 170-190 me<^/L during the initial 24 hours and all three 

eels died by the third day. Pretreatment of freshwater eels with cortisol 

(400;ug/100g b.w./day) for two weeks prior to and after transfer to full- 

strength seawater enabled them to survive direct transfer. The plasma 

chloride levels rose slowly during the first day and then leveled off 

the second day and remained between 128 and 

which had turned silver after the cortisol injections. In the third 

eel, which had not turned color, the adaptation seemed to be partial, 

since the plasma chloride rose slowly over the six days of the experiment 

reaching 180 meq/L at l4o hours. 
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Figure 2 

• Control eels 

Hours after transfer to seawater 

Effect of pretreatment with cortisol (400>Ug/100g b.w./day) 

on plasma chloride level during rapid adaptation to seawater, 

(modified from reference 129) 
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Pigmentary Effects of Cortisol and Seawater Adaptation (see Figure 3) 

After seven to ten days of cortisol injections the ventral surface 

of freshwater yellow eels lost its yellow color and turned silver, 

similar to the silver hue of European eels spontaneously migrating 

to the sea (130). Freshwater yellow eels adapted to seawater for 

2-3 weeks did not undergo a color change. 

Figure 3 

Freshwater yellow eels. The one above was treated with cortisol 
(UOO >Ug/100 g b.w./day for ten days), the one below was control. 
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Table b 

Effect of Seawater Adaptation and Corticosteroids on ATPase 
Levels in Gill Epithelium and Intestinal Mucosa of Anguilla rostrata 

N Na-K-ATPase Mg (residual) 

Freshwater gill 11 4.6 - 1.2+ 11 ± 6.3 

Seawater gill 
(adapted 3 weeks)•'■ 10 6.7 - 1.0** 8.7 ± 3.3 

(adapted 1 week 4 7.3 - 1.5** 8.0 t o.75 

Low-dose cortisol gill^ 5 7.7 - 2.3* 7.6 ± 2.1 

High-dose cortisol gill** 11 12 - 2.8** 8.3 ± 1.2 

Methylprednisolone gill^ 6 6.9 - 1.7** 9.4 ± 2.8 

Freshwater gut 5 9.6 ± 1.9 11 ± 3.6 

Low-dose cortisol gut 5 12 ± 3.9 14 ± 2.1 

High-dose cortisol gut 5 18 - 6.6* 22 ± 3.5** 

+ mean - S.D. results expressed as M moles Pi released/mg protein/hr 

* p^ 0.05 compared with freshwater controls 

** p^O.Ol compared with freshwater controls 

1 mid July 

^ mid August 

received 7-12 daily injections cortisol 50 yUg/lOOg b.w. 

** received 7-14 daily injections cortisol 1+00 Mg/100g b.w. 

^ received 2-3 weekly injections methylprednisolone 300>Ug/100g b.w. 
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DISCUSSION 

Sodium Transport in Freshwater and Seawater Teleosts 

The essential features of sodium transport in freshwater and 

seawater teleosts are summarized in Figure 4. In freshwater the internal 

sodium turnover rate is small. The net branchial uptake of sodium 

compensates for the renal salt loss. In seawater the high internal 

sodium turnover rate involves 10-30 fold more sodium than can be 

accounted for by drinking, gut absorption and gill net excretion rates. 

Maetz (131,132) proposed a linkage between sodium outflux and potassium 

influx through a common exchange carrier, with external sodium and 

potassium competing for this common carrier. The exchange diffusion 

mechanism (linkage of sodium influx and outflux) and the high internal 

sodium turnover rate results from this competitive process. Support 

for this model is based on the following observations in the seawater- 

adapted flounder (Platychthys flesus) (131): 1. the net sodium ex¬ 

trusion rate by the gill is similar to the potassium influx, 2. a small 

but significant reduction of sodium outflux is seen in K-free seawater 

which results in suppression of net sodium excretion, and 3. in the 

absence of external potassium the sodium turnover rate remains high. 

Maetz (131) suggested that Na-K-ATPase might play a central role in 

this Na-K exchange pump. 

Cortisol Induction of Na-K-ATPase in Gill Epithelium and Intestinal Mucosa 

The activity of Na-K-ATPase in the gills of stenohaline teleosts 

is much higher in marine species than in freshwater species (13,133) 

which is consistent with the known high level of sodium outflux in 

the gills of marine teleosts compared to freshwater teleosts. The 
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Na-K-ATPase activity in gills from seawater-adapted; eels (Anguilia 

anguilla, Anguilla japonica, and Anguilla rostrata)(12-14) , killifish 

(Fundulus heteroclitus) (11), coho salmon (Oncorhynchus kisutch) (134), 

rainbow trout (Salmo gairdnerii) (133) and the goby (Acanthogobius 

flavimanus) (133) was several times higher than that of freshwater- 

adapted controls, however, the Mg~ATPase activity was constant. 

Hypophysectomy of seawater adapted killifish decreases the Na-K-ATPase 

activity in the gills compared to intact controls (11). Cortisol re¬ 

placement therapy in hypophysectomized seawater killifish increases the 

Na-K-ATPase activity in the gill epithelium and intestinal mucosa 

compared to hypophysectomized control eels, however, the activity of 

Mg-ATPase was not changed (135). 

Cortisol, the major corticosteroid secreted by the teleost inter- 

renal gland (8) appears to be a salt-excreting factor in seawater- 

adapted eels and a salt-absorbing factor in freshwater eels (6). The 

present experiments demonstrate that cortisol as well as methylpredni- 

solone increase the Na-K-ATPase activity in gill epithelium and in¬ 

testinal mucosa of intact freshwater eels to levels equal to or greater 

than those of seawater-adapted eels. The magnitude of this effect 

appears to be dose dependent. It is apparent at a dose of cortisol 

(50>ug/100g b.w./day) that suffices to restore the sodium turnover 

rate across the gill of adrenalectomized eels to levels comparable 

with sham-operated controls (18), and it is more marked when a larger 

dose of cortisol (400yUg/lOOg b.w./day) is given. The increase in 

mucosal Na-K-ATPase activity is accompanied by an increase in ouabain- 

sensitive sodium transport capacity of isolated intestine sacs in vitro (89). 
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The failure of the Mg-ATPase activity to change significantly, except 

in one instance, suggests that this enzyme does not play a role in the 

active sodium transport system. The plasma cortisol level was not 

significantly different between the freshwater and the seawater-adapted 

eels, being less than 3 ,Wg/100 ml, however, the high-dose cortisol 

treated (400yUg/100g b.w./day) eels had a mean level of 17 jUg/100 ml 

indicating a state of hyperadrenalism (unpublished data). 

Hormones may influence the activity of cellular enzymes by a 

direct action on the target organ to enhance or depress the rate of 

synthesis and/or degradation of the enzyme, or an indirect action by 

altering the physiology of an organism so as to change the traffic 

over the pathway catalyzed by the enzyme. The cortisol induced in¬ 

crease in the Na-K-ATPase activity in gill epithelium and intestinal 

mucosa of freshwater yellow eels appears to be a direct effect of the 

hormone on the target tissue since there is no significant difference 

in the sodium flux across the gills of cortisol treated freshwater 

eels compared to untreated controls (Epstein, F. H„ personal commun¬ 

ication) . 

The augmentation in the enzyme activity following transfer of 

freshwater eels to seawater may represent an adaptive response of the 

gill epithelium and intestinal mucosa to increased sodium transport 

initiated by transfer. It is likely that cortisol has a role in 

facilitation or induction of enzyme in this instance also, since the 

plasma cortisol levels, measured by a competitive protein-binding 

technique, which are not significantly different in freshwater or 

seawater-adapted eels are elevated from 3-9 jUg/100 ml two to three 
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days following transfer from freshwater to seawater, and return to 

normal level (2-3 ;Ug/100 ml) by the eighth day (106, Epstein, F. H. 

personal communication). The stimulus for the increase in interrenal 

activity, probably mediated through the hypothalamo-hypophyseal- 

interrenal axis, during the early period of seawater adaptation is 

not known, however, it may be secondary to an increase in serum 

osmolarity or a decrease in extra-or intracellular volume. 

The cellular mechanism responsible for the increase in Na-K-ATPase 

activity in gill epithelium or intestinal mucosa of freshwater eels 

following seawater adaption or corticosteroid treatment is not known. 

The possibilities are the following: 1. an increase in specific 

activity per unit plasma membrane, 2. an increase in the amount of cell 

membrane per cell and/or 3. an increase in the number of cells in¬ 

volved in sodium transport. There is little basis for favoring any 

one of these mechanisms. The "chloride cell" a mitochondria-rich 

cell of the gill filament is felt by some workers to play a role in 

salt transport, however, this is still controversial (5). During 

seawater adaption intestinal mucosa of eels undergoes mucosal hyper¬ 

trophy, however, this was not observed to occur in cortisol treated 

freshwater eels (Epstein, F. H. personal communication). 

Eels adapted to seawater for one week during the late summer had 

a larger increase in gill Na-K-ATPase activity than did eels adapted 

to seawater for three weeks earlier in the summer. Utida and coworkers 

(136) found that the rate of water transport in isolated intestine sacs 

showed a tendency to increase and the sodium penetration into isolated 

gills incubated in seawater tended to decrease during autumn (when the 
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catadromous migration is thought to occur) in freshwater eels. During 

autumn freshwater eels were better able to resist the osmotic stress 

of seawater transfer. He suggested that the eel repeats these seasonal 

variations in adaptability to seawater each year until attaining maximal 

adaptability and sexual maturity when it migrates to the sea as a 

catadromous silver eel. Zaugg and McLain (134) monitored the Na-K-ATPase 

activity in a microsomal fraction of gills from yearling coho salmon 

(Oncorhynchus kisutch) from February to October and found a doubling 

of activity during late March as seaward migration begins, and a later 

decline in this activity if the fish remained in freshwater. The 

activity of Mg-ATPase remained constant during this period. 

There is no consistent difference observed in the activity of 

Na-K-ATPase of freshwater silver compared to freshwater yellow eels 

(unpublished data). The freshwater Japanese silver eel has a higher 

rate of water transport in isolated intestine sacs and a lower rate 

of sodium penetration through isolated gills incubated in seawater 

compared to freshwater yellow eels (87). It would be of interest to 

measure serially the plasma sodium, sodium outflux and Na-K-ATPase 

activity of seawater adapting silver eels compared to yellow controls. 

Motais (14) (see Table 5) found that actinomycin D reduced the 

Na-K-ATPase activity in gills from seawater-adapted eels (Anguilla 

anguilla) but had no effect on the enzyme level of the freshwater- 

adapted eel. The activity of Mg-ATPase was unchanged after treatment 

of seawater or freshwater adapted fish. He suggested that there were 

two types of Na-K-ATPase; an actinomycin sensitive form which is in¬ 

volved in the branchial sodium-excreting pump with a short half-life 
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(2-3 days) and an actinomycin insensitive form with a relatively long 

half-life which could be directly involved in the branchial sodium- 

absorption pump of freshwater eels or could be unrelated to the 

osmoregulatory function of the gill but be associated with the Na-K 

exchange pump which maintains the high intracellular potassium level 

in all cells. 

Figure 4 

FW 
Gill 

SW 
(525) 

1000 

Comparative Na balance in the freshwater (FW) and seawater (SW) eel. 
Note different scales for the fluxes (in -equiv h“^(l00 g)-^). 
External and internal Na concentrations in brackets (in m-equiv l.--*-). 
Size of the extracellular spaces in percentage body weight. 

(from reference 132) 
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Table 5 

Effects of Actinomycin D^- on Na-K-ATPase and Mg-ATPase Activity 
of the Gill of the European Eel (Anguilla anguilla) 

(modified from reference lU) 

Seawater adapted Freshwater adapted 

Control 
Actinomycin 

treated 
Actinomycin 

Control treated 

Na-K-ATPase 10.8 ± 0.85 6.9 - 0.63* 5.5 - 0.6l 5.1 - 0.72 

(9) (16) (16) (8) 

Mg-ATPase 12.U ± 0.93 10.9 - 0.72 9.3 - 0.76 8.6 - 1.1 

(9) (16) (16) (8) 

^"Actinomycin D 50 Mg/100g b.w. intraperitoneally, given five days prior 
to sacrifice 

Activity expressed in jll moles Pi released/mg protein/hr (mean ~ S.E.), 
the number of fish in parenthesis 

* P<0.01 compared with untreated controls 
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Effect of Pretreatment With Cortisol on Seawater Adaptation of Freshwater Eels 

Freshwater yellow eels (Anguilla rostrata) pretreated with cortisol 

(400 g/lOOg b.w./day for 14 days) are able to withstand direct transfer 

to full-strength seawater, whereas, untreated controls die within 2-3 

days unless they are placed in 50 percent seawater for two days prior 

to the transfer to full-strength seawater. The Japanese eel and the 

European eel are able to withstand direct transfer to seawater. This 

ability may be due to species differences or may reflect previous ex¬ 

posure of these eels to water of varying salinity, whereas the eels 

used in these experiments probably had lived wholly within a freshwater 

environment. 

Although pretreatment of freshwater eels induced an increase in 

Na-K-ATPase activity comparable to that of seawater adapted eels the 

transfer to full-strength seawater was accompanied by an elevated plasma 

chloride level for 3-4 days before adequate osmoregulation is achieved. 

It would seem that some factor in addition to Na-K-ATPase, perhaps in¬ 

duced by osmotic stress, is necessary to increase the sodium outflux 

from the pretreated seawater adapting eel (132). Epstein and coworkers 

(personal communication) have found that there is a parallel increase 

in sodium outflux and Na-K-ATPase activity in the gills of seawater 

adapting freshwater eels and that pretreatment with cortisol leads to 

an earlier increase in the sodium outflux. 

Pigmentary Effects of Cortisol and Seawater Adaptation 

Cortisol (400 ;Ug/100g b.w./day for 7-10 days) produced a change 

in the ventral pigmentation of freshwater yellow eels to the silver 
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hue of spontaneously migrating eels. Seawater-adapted yellow eels 

did not undergo a change in pigmentation. The failure of the sea¬ 

water-adapted eels to undergo a change in pigmentation might be due 

to the short duration of the elevated cortisol levels or possibly the 

cortisol induced pigment change was secondary to feedback inhibition 

of ACTH or MSH. The seaward migration of eels is thought to be 

induced by changes in their hormonal environment. Since the alter¬ 

ation in pigmentation and increase in enzymatic (Na-K-ATPase) and 

functional (sodium transport) activity of the gills and intestinal 

mucosa induced by treatment of freshwater yellow eels with cortisol 

are similar to the changes thought to occur in naturally migrating 

eels, it appears that this hormone may be responsible for the sequence 

of physiological alterations that facilitate the spontaneous catadromous 

migration of freshwater eels. 
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SUMMARY 

Adaptation to seawater by freshwater eels (Anguilla rostrata) 

involves an increase in active sodium transport across gill epithelium 

and intestinal mucosa which is mediated in part by cortisol secreted 

by the interrenal gland. Cortisol induces an augmentation in the 

activity of Na-K-ATPase in the gill filaments and the intestinal 

mucosa of freshwater eels similar to the changes produced by adaptation 

to seawater. Freshwater eels pretreated with cortisol (400 jUg/lOOg b.w./ 

day for 14 days) were able to withstand direct transfer. The plasma 

chloride level of the cortisol treated eels did not rise as high as 

that of the untreated eels. The ventral surface of freshwater eels 

injected with cortisol (400 jUg/100g b.w./day for 7-10 days) loses its 

yellow pigmentation and turns silver, resembling the color of eels 

spontaneously migrating to the sea. The data suggests that cortisol 

plays an integral role in the adaptive changes associated with the 

catadromous migration of freshwater eels. 
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