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Abstract: 

This thesis represents the results of several related methods 

of measuring the accumulation of major metabolites of dopamine 

(DA) and norepinephrine (NE) in the brain and cerebrospinal fluid 

(CSF). These methods include measurement of the endogenous metab¬ 

olites as well as measurement of the radioactivity of the metab¬ 

olites following intravenous injection of labeled L-dopa, a pre¬ 

cursor of the parent catecholamines. Peripheral decarboxylase 

inhibitors were administered prior to the injection of labeled L- 

dopa in order to minimize peripheral metabolism. Probenecid was 

administered in order to block the transport of these metabolites 

out of the brain and CSF. The metabolites studied were homova- 

nillic acid (HVA), a major metabolite of brain DA, and 3-methoxy- 

4-hydroxyphenylglycol (MHPG) and its sulfate conjugate (MHPG-S), 

major metabolites of brain NE. 

Ch1orpromazine increased the probenecid-induced accumula¬ 

tion of endogenous and labeled HVA in rabbit brain and CSF. A 

decreased accumulation of endogenous and labeled HVA was measured 

in the lumbar CSF of humans with Parkinson's disease. A probenecid 

induced accumulation of endogenous MHPG-S in rabbit brain and CSF 

was demonstrated. This accumulation of MHPG-S was enhanced by 

foot-shock stress and slightly decreased by chiorpromazine. Chlor- 

promazine also decreased the amount of labeled MHPG in rabbit brain 

However, in rat brain the accumulation of MHPG-S was slightly in¬ 

creased by chlorpromazine. 

These results indicate that the measured changes in CSF 

metabolites probably reflect functional changes in the metabolism 





of DA and NE in the central nervous system, 

brain DA and NE in the mechanisms of action 

drugs like chiorpromazine is discussed. 

The role played by 

of antipsychotic 
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Int roduction; 

Metabolic pathways for the synthesis and degradation of the 

catecholamines dopamine (DA) and norepinephrine (NE) have been 

known for about fifteen years (9) (see fig. 1). The physiology 

and pharmacology of these monoamines at their respective synapses 

have been extensively studied (37, 69, 70). They are thought to 

function as neurotransmitters. More recently discrete neuronal 

pathways which utilize either DA or NE as transmitters have been 

identified by the methods of fluorescence hisochemistry (130). 

Both DA and NE are thought to play a role in the etiology and 

therapy of many forms of neurological and psychiatric disorders, 

including Parkinson's disease (40,68, 74), schizophrenia (75, 87, 

110, 124, 125, 126, 137), and affective illnesses (30, 36, 57, 87, 

117, 118, 119, 120, 121). It has been difficult to study direct 

electrophysiological and biochemical effects on the post-synaptic 

side of the neuronal synapses in the brain (3, 35, 26, 66, 114). 

However, functional changes, and particularly drug-induced changes, 

in the activity and metabolism of DA and NE neurons have been mea¬ 

sured by a variety of methods. Changes in neuronal activity have 

been measured by single-cell recording of the firing of individual 

neurons (28, 29, 61). Changes in brain amine turnover have been 

measured by the rate of disappearance of DA and NE following syn¬ 

thesis inhibition (3, 5, 16, 18, 39, 79, 81, 88, 93), by isotopic 

labeling techniques (53, 95, 96), and by measurement of the levels 

of metabolites of the parent amines in the brain (1, 4, 6, 28, 31, 

80, 81, 91, 94, 112), the cerebrospinal fluid (CSF) (20, 21, 22, 23, 
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24, 25, 32, 34, 36, 56, 57, 58, 59, 60, 64, 71, 72, 77, 78, 83, 97, 

98, 100, 105, 106, 131, 134, 136), and urine (27, 48, 85, 86). 

Probenecid blocks the transport of certain weak acids out of the 

brain and CSF and has been used to study the accumulation of mono¬ 

amine metabolites in the brain (89, 94, 135) and CSF (21, 22, 23, 

58, 60, 68, 78, 97, 128) as an index of central turnover. 

In humans, CSF is the accesible tissue which probably best 

reflects brain metabolism of monoamines. CSF levels of homovanillic 

acid (HVA-a major brain DA metabolite) and 5-hydroxyindoleacetic 

acid (5HIAA---a major metabolite of brain serotonin) have been ex¬ 

tensively studied in a variety of pathological and drug-induced 

states in animals and man. 

Many drugs affecting levels of metabolites of these amines 

in brain tissue have similar effects on CSF levels of these metab¬ 

olites. It has been concluded that CSF amine metabolites origi¬ 

nate in the brain and that changes in the probenecid-induced accu¬ 

mulation of these metabolites in the CSF are an index of changes 

in brain amine metabolism (23, 58, 77, 97). However, whether 

the rate of accumulation of HVA and 5HIAA in the CSF after pro¬ 

benecid loading is directly related to the rate of formation of 

these metabolites in the brain has yet to be established. 3-methoxy- 

4-hydroxypheny1g1ycol (MHPG) and its sulfate conjugate ((MHPG-S) 

are major metabolites of brain NE (88, 116). They have been much 

less extensively studied in CSF than have been HVA and 5HIAA (60, 136). 

The work here presented represents an attempt to expand the 

methodology whereby brain DA and NE metabolism can be studied by 

measuring their metabolites in the brain and particularly in the 

CSF. The work will be presented in three parts. 
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In part I the probenecid-induced accumulation of endogenous 

HVA in rabbit CSF was demonstrated., A new method was developed 

whereby the accumulation of H-HVA could be measured in CSF fol- 

3 
lowing intravenous administration of H-L-dopa to rabbits pre¬ 

treated with a decarboxylase inhibitor and probenecid. Accumu¬ 

lation in the CSF of both endogenous and labeled HVA increased in 

response to changes in central DA metabolism induced by chlorpro- 

mazine. Part II demonstrates the application of the methods of 

Part I to the study of patients with Parkinson's disease, whose 

pathology is known to involve a defect in central DA neurons. 

Methods parallel to those used in Part I to study HVA, a major 

DA metabolite, have been applied in Part III to the study in 

rabbits of MHPG and its sulfate conjugate, major central NE metab¬ 

olites. A probenecid-induced accumulation of endogenous MHPG-S 

was demonstrated for the first time in CSF. It was also shown 

that ^H-MHPG appeared in brain following intravenous administration 

of labeled L-dopa. Accumulation of endogenous MHPG-S in rabbit 

brain and CSF was shown to increase in response to increases in 

central NE metabolism induced by foot-shock stress. The effect 

of ch1orpromazine on the accumulation of endogenous MHPG-S and 

labeled MHPG in rabbit brain and CSF and in rat brain were studied 

as well. 



, 
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Figure 1. Metabolic pathways for the synthesis and degradation 

of dopamine and norepinephrine in brain, TH=tyrosine hydroxylase, 

LAAAD=L-aromatic amino acid decarboxylase. DBH=dopamine beta- 

hydroxylase. MA0=monoamine oxidase. AR=aldehyde reductose (al¬ 

cohol dehydrogenase). COMT=catechol-0-methyl transferase. HVA= 

homovanillic acid. MHPG=3-methoxy-4-hydroxypheny1g1ycol. AD= 

aldehyde dehydrogenase. 
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3 
Part One: HVA in rabbit brain and CSF following i.v. H-L-dopa- 

the effect of chlorpromazine 

Int roduction: 

Part I describes a method for pulse-labeling brain DA pools 

by systemic administration of labeled L-dopa. The subsequent accu¬ 

mulation in brain and CSF of labeled HVA, a major brain DA metab¬ 

olite, may be an index of central dopaminergic neuronal activity. 

Systemically administered L-dopa is thought to be converted 

to DA within the brain, which accounts for its efficacy in the 

treatment of Parkinson's disease (40). It has been demonstrated 

previously in animals (14) and humans (102) administered ^C-L- 

dopa that ^C-HVA is measurable several hours later in the CSF. 

Utilizing intravenous administration of ^H-L-DOPA to rabbits 

treated with a peripheral decarboxylase inhibitor and probenecid, 

we sought to study in animals the metabolic fate in blood, brain, 

and CSF of systemically administered L-DOPA. Accumulation of 

labeled and endogenous HVA was measured in rabbit brain and CSF. 

Probenecid-induced accumulation of endogenous HVA has been suggested 

to be a useful measure of brain DA metabolism in animals (21, 63) 

and man (23, 58, 77, 97). 

Chlorpromazine, like other antipsychotic drugs, is known to 

increase brain DA metabolism (1, 3, 31, 95) and dopaminergic neu¬ 

ronal activity (28). Therefore, groups of rabbits were pretreated 

with this drug in order to determine if the measured accumulation 

3 o 
of H-HVA following -^H-L-DOPA changed in response to known changes 

in brain DA metabolism. 
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Methods: 

Male white rabbits weighing 2.0 - 2.5 kg were treated with 

R04-4602 in a dose (50 mg/kg, i.p.) which inhibits L-aromatic 

, x 3 
amino acid decarboxylase ext race reb ra 1 1 y (1, 12). H-L-DOPA (100 |j,c 

3 
of L-3, 4-dihydroxypheny1alanine ring 2,5,6 H, specific activity 

4 C/mmole, obtained from Amersham-Searle) was injected intravenously 

one-half hour later. The transport of HVA out of the CSF was 

blocked by a high dose of probenecid (150 mg/kg, i.p.) administered 

3 
every two hours beginning ten minutes before the H-L-DOPA in¬ 

jection. Control rabbits as well as drug pretreated rabbits 

were injected with probenecid. When the effects of drug-pretreat¬ 

ment were studied, the drug was administered immediately prior to 

the JH-L-D0PA injection. Chiorpromazine (10 mg/kg) was injected 

int ravenous 1y. 

•3 

At a given time after H-L-DOPA injection, each rabbit was 

anesthetized with ether. Blood was obtained by cardiac puncture 

and 0.5-1.0 ml of CSF was obtained by cisternal puncture. The 

brain was then removed and the subcortex dissected out. The 

subcortex consisted of midbrain, diencepha1 on, and basal ganglia 

and weighed approximately 2.0 g. 

3 
Serum metabolites of H-L-DOPA were separated on aluminum 

oxide and Dowex 50 columns (52). 

Brain tissue was deproteinized by homogenization with 8 ml 

of 0.4 N perchloric acid and then neutralized with potassium hy¬ 

droxide to precipitate the perchlorate. Brain supernatants and 

CSF samples were then freeze-dried and taken up in 80% ethyl al¬ 

cohol. The volume was reduced by evaporation in a stream of 
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nitrogen gas before being spotted on cellulose thin-layer chroma¬ 

tographic plates for analysis by a two-dimensional method (49). 

Standards of DOPA, DA, and HVA were included in the spot, so that 

after development of the plates, each substance could be visua¬ 

lized, removed, and its radioactivity determined. Radioactivity 

was measured by scintillation counting in 10 ml of a solution made 

by dissolving 5.5 g PPO and 300 mg P0P0P in 2 1 toluene and adding 

1 liter of Triton X-100. Efficiency was determined by individual 

3 
internal H-toluene standards. 

Because of the limited amount of CSF which could be obtained 

from each rabbit, levels of endogenous HVA in brain and CSF were 

determined f1uorometrical 1y (51) in a second, separate experiment 

3 
with rabbits not injected with H-L-DOPA. These rabbits received 

the exact schedule of probenecid injections and chiorpromazine pre¬ 

treatment as did the rabbits in the first experiment. Apparent 

specific activities of CSF HVA were calculated by dividing the 

radioactivity measured in the first.experiemtn by the endogenous 

levels measured in the second experiment, at the same time points. 

Results; 

Serum analysis showed that the aluminum oxide eluate frac¬ 

tion (DOPA, DA, DOPAC) declined rapidly after one-half hour, whereas 

the Dowex 50 eluate fraction containing 0-methy1-DOPA increased 

greatly up to one hour. 

3 
The time course for the appearance of H-L-DOPA and its metab¬ 

olites in brain and CSF is shown in Figures 2 and 3. Brain DA 

radioactivity was maximal one-half hour after injection of ^H-L- 

DOPA and declined rapidly in amounts consistent with the subse¬ 

quent statistically significant accumulation of ^H-HVA in brain 
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and CSF. 

The time course of the probenecid-induced accumulation of en¬ 

dogenous HVA in CSF is shown in Figure 3. For the first several 

3 
hours the increase of endogenous HVA and H-HVA were approximately 

parallel. Hence the calculated apparent specific activities were 

approximately constant over this time period. Endogenous HVA 

did not accumulate in rabbit brain following probenecid (Table 1). 

Figure 4 shows that chiorpromazine pretreatment caused a 

significant two to three-fold increase in the amount of ^H-HVA 

accumulated in brain and CSF by four hours, which was paralleled 

by a similar increase in the accumulation of endogenous HVA in 

CSF. The calculated apparent specific activity of HVA in the CSF 

four hours after 3H-L-Dopa injection was not affected by chlorpro- 

mazine pre-treatment (Figure 4). 

Discuss ?on: 

Results of the analysis of L-DOPA metabolites in serum con¬ 

firm the efficacy of the decarboxylase inhibitor. ^H-L-DOPA was 

present in highest concent rat rations in the blood for one-half 

hour, and was then rapidly 0-methylated, but only slowly decarboxy- 

lated or deaminated. 

3 
The time course of the appearance of H-HVA in CSF is in 

basic agreement with earlier studies in humans using ^C-L-DOPA 

in the absence of a decarboxylase inhibitor or probenecid (28). 

The plateau maintained in CSF between two and four hours is con¬ 

sistent with the blockade of HVA egress from CSF by probenecid. 

3 
H-HVA reached a sharper and an earlier maximum in brain than it 



■ 



10 

did in CSF, and then declined. This decline is consistent with 

the finding (13,135) that probenecid does not effectively inhibit 

HVA egress from rabbit brain. The failure of HVA to increase in 

rabbit brain following probenecid has been reported previously (135). 

Concentrations of endogenous HVA are high in rabbit brain, sug¬ 

gesting that HVA transport out of brain is inefficient in this 

species and not dependent on a probenecid-sensitive active trans¬ 

port. Why HVA fails to accumulate in rabbit brain but accumulates 

in rabbit CSF following probenecid is not well understood (see part 

III). 

3 3 
The appearance of H-L-DOPA and H-DA in brain 

and their sharp fall from one-half to two hours after injection of 

^H-L-DOPA are certainly consistent with the assumption that^H-DA 

is formed in the brain from exogenously administered ^H-L-DOPA, 

becomes part of a functional endogenous DA pool, and then is metab- 

olized. Over the same time period -'H-HVA increased significantly 

in brain and CSF, in parallel with the increase in endogenous CSF 

HVA. Hence the formation of ^H-HVA from ^H-DA seems to reflect 

the same processes whereby endogenous HVA is formed from endog¬ 

enous DA. 

However, it is not certain that either all the endogenous 

HVA in CSF or all the labeled HVA appearing in CSF after adminis¬ 

tration of exogenous labeled L-DOPA represents DA released from 

dopaminergic neurons and subsequently metabolized to HVA. Endog¬ 

enous HVA might be raadefrom DA formed in brain capillaries (17). 

However, it has been demonstrated in rats (Roth, R.H., unpublished 

data), cats and monkeys (27, 98), and humans with Parkinson's 

disease (26, 97) that lesions affecting the cellularity of the 
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substantia nigra cause parallel decreases in striatal and CSF 

HVA. Stimulation of the substantia nigra of the cat causes 

large increments in the amount of H\/A appearing in lateral ven- 

tricular CSF ( 30, ). 

Some portion of ^H-HVA in rabbit CSF following even small 

3 

doses of H-L-DOPA i.v. might represent capillary metabolism, 

despite peripheral decarboxylase inhibition (14). In the dose used 

here, R04-4602 does inhibit the decarboxylase localized in brain 

capillary walls without interfering with the same enzyme in the 

cerebral parenchyma (12), and should at least minimize the contri¬ 

bution of capillaries. It should be pointed out that should 

3 
H-HVA be formed outside the CNS, it has been shown to penetrate 

the brain quite poorly (11, 102). Another possible artifactual 

source of HVA following exogenous L-DOPA is via 0-methyl-dopa. 

But only a very small percentage of blood 0-methyl-dopa is con¬ 

verted into brain amines (15). 

Even if non-neuronal metabolism is minimized, other neurons 

besides dopaminergic neurons can decarboxyl ate exogenous L-DOPA to 

DA (82) and lead to HVA formation. However, labeled L-DOPA ad¬ 

ministered i.v. (101) or i ntraventri cul arly (54, 55) has resulted 

in an uneven distribution of labeled amines in the brain, roughly 

parallel to the distribution of endogenous catecholamines. Pre¬ 

liminary reports in the monkey demonstrate that the dopaminergic 

nigro-striatal pathway must be intact in order for administration 

of exogenous L-DOPA to raise CSF HVA significantly (98), 

The fact that chlorpromazine induced the same increase in 

brain and CSF ^H-HVA measured by our method as it induces in 

endogenous HVA is, in our opinion, the best evidence for the 
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•3 

assumption that the JH-HVA detected here in CSF after exogenous 

^H-L-DOPA administration represents in vivo brain neuronal DA metab 

ol i sm. The increase in endogenous HVA in the striatum (1) and 

CSF (25, 64, 100) following phenothiazine-1ike drugs is thought 

to reflect a compensatory increase in brain DA turnover in response 

to blockade of post-synaptic DA receptors (31). This increased 

DA turnover is probably at least in part a reflection of the re¬ 

ported increased rate of firing of dopaminergic neurons following 

chiorpromazine and similar drugs (28). The chlorpromazine-induced 

acceleration of DA synthesis from ^C-tyrosine (95) has been shown 

to be abolished by lesions of the dopaminergic nigro-striata1 neu¬ 

ronal pathways (96). 
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Table 1. 

The effect of probenecid on HVA levels in rabbit brain. 

Levels of homovanillic acid (HVA) in rabbit subcortex before 
and two hours after treatment with probenecid, 150 mg/kg i.p. 
Each value is the mean in ng/g of brain tissue + S.E.M. for 
the number of rabbits indicated in parentheses. 

time after probenecid homovani11ic acid 

treatment in hours in subcortex 

0 2.3^5 + 133 (8) 

2 2.015 + 168 (7) 
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Figure 2. Levels of labeled L-DOPA, dopamine (DA), and homovan- 

illic acid (HVA) in the subcortex at various times after intra- 

3 

venous administration af H-L-DOPA to rabbits treated with R04-4602 

and probenecid. Each point is the mean disintegrations per minute 

(DPM) per gram of brain tissue + S.E.M. for the number of rabbits 

indicated in parentheses. ^H-L-DOPA (cr-r°), ^H-DA (x-x), 

3 
H-HVA (o a). (*) indicates a significant increase above 

levels of ^H-HVA in subcortex at one-half hour, p < 0.05 by 

two-tailed t-test. 
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Figure 3. Levels of labeled and endogenous homovanillic acid 

(HVA) in the cisternal cerebrospinal fluid (CSF). ^H-HVA was 

measured at various times after intravenous administration of 

^H-L-DOPA to rabbits treated with R04-4602 and probenecid. Endog¬ 

enous HVA was measured in a separate experiment with different 

rabbits treated with the same probenecid schedule. Each point is 

the mean disintegrations per minute (DPM) of JH-HVA, or ng of 

endogenous HVA, per ml of CSF + S.E.M. for the number of rabbits 

indicated in parenthesis. ^H-HVA (o-o), endogenous HVA (&*_A ). 

•3 
Significant increases above levels of ^H-HVA in CSF at one-half 

hour (*) or above levels of endogenous HVA in the CSF of untreated 

controls (**) are indicated, p < 0.01 by two-tailed t-test. 
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Figure 4. Levels of labeled and endogenous homovanillic acid (HVA) 

in the subcortex and cisternal cerebrospinal fluid (CSF). -^H-HVA 

was measured four hours after intravenous administration of ^H-L-DOPA 

to rabbits treated with R04-4602 and probenecid. Endogenous HVA 

was measured in a separate experiment with different rabbits treated 

with the same probenecid schedule for four hours. Apparent specific 

activity of HVA in CSF at four hours was calculated by dividing 

3 
the levels of H-HVA in disintegrations per minute/ml at four hours 

by the level of endogenous HVA in ng/ml at the same time point. 

Values in rabbits pretreated with ch1orpromazine (10 mg/kg i.v.) 

are expressed as the mean percentage of controls + S.E.M. for 

the number of rabbits indicated in parentheses. Control and 

chlorpromazine pretreated rabbits received the same schedule of 

R04-46Q2 and probenecid injections. Significant drug-induced 

increases are noted by (*) for p < 0.01 by two-tailed t-test. 

1 
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Part Two: HVA in the CSF of Parkinsonian patients following 

1 Ll 
i.v. C-L-dopa 

Int roduct ? on; 

Part II describes an application in humans of the methods of 

part I for pulse-labeling brain DA pools by intravenous adminis¬ 

tration of labeled L-dopa. The subsequent accumulation of HVA in 

CSF may be a clinically useful index of the central metabolism of 

L-dopa and of central dopaminergic neuronal activity. In animals, 

labeled tyrosine has been used to study synthesis and metabolism 

of DA and NE (95, 96), However, because of the participation of 

tyrosine in numerous metabolic pathways, it would be neither econ¬ 

omical nor safe to administer labeled tyrosine to humans for the 

purpose of labeling brain catecholamines. 

L-dopa has been found to be of therapeutic benefit in the 

treatment of Parkinson's disease (40). This effect is thought 

to be related to L-dopa's conversion to DA within the brain re¬ 

sulting in facilitation of dopaminergic transmission (68, 74). 

Many investigators have interpreted increased levels of HVA in 

CSF of Parkinsonian patients treated with exogenous L-dopa as an 

index of the hypothesized activation of dopaminergic neuronal path¬ 

ways (32, 56, 123, 134). Use of a peripheral decarboxylase inhib¬ 

itor potentiates L-dopa's therapeutic effects and probably mini¬ 

mizes the extra-neuronal contribution to the HVA appearing in the 

CSF after administration of exogenous L-dopa to patients (33). 

There is some precedent for use of labeled exogenous L- 

dopa to study the metabolism of L-dopa and DA in humans. 1i+C-L-dopa 
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has been given i.v. to humans followed by detection of C-HVA 

in cisternal CSF several hours later (102). The work reported 

in this thesis makes several additions to the earlier methodology. 

CSF was obtained from the lumbar CSF-more distant from the brain 

but much more accesible. A peripheral decarboxylase inhibitor was 

used in an effort to decrease the extra-neuronal metabolism of 

the labeled L-dopa and increase the liklihood that the labeled 

HVA in CSF represented central metabolism of DA. Probenecid was 

used in order to try to measure the rate of formation of HVA in¬ 

stead of a static level. Parkinsonian patients were compared to 

controls in order to determine in humans if a known abnormality 

in brain dopaminergic systems would be reflected by the rate of 

formation of ^C-HVA from ^C-L-dopa, as was demonstrated in 

chiorpromazine treated rabbits in part I. It was hypothesized 

that if the HVA measured in the CSF reflected brain DA metabolism, 

then both endogenous and labeled HVA should be lower in patients 

with Parkinson's disease than in controls. 

The pathology of Parkinson's disease is thought to involve 

a functional deficit in dopaminergic transmission in the striatum 

(68). Brains of Parkinsonian patients show a characteristic de¬ 

generation in the substantia nigra (68). This degeneration in¬ 

cludes some of the DA neurons which project from the substantia 

nigra to the striatum. Post-mortum samples of Parkinsonian 

brain tissue have low levels of DA and HVA (68). The levels of 

CSF HVA (34, 56, 71, 97, 131), as well as the accumulation of 

HVA in the CSF following probenecid (24, 34, 83, 97), are also 

abnormally low in Parkinsonian patients. Ext rapy rami da>l symp¬ 

toms similar to those seen in parkinsonism can be produced by 
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drugs such as ch1orpromazine which block DA receptors (75)* 

Measurement of probenecid-induced accumulation of labeled 

and endogenous HVA in CSF after a small dose of labeled L-DOPA 

might have certain advantages over measurement of endogenous HVA 

alone after probenecid. Individual variability in transport of 

HVA and the difficulty in humans in establishing sufficient con¬ 

centrations of probenecid to completely block acid transport pose 

difficult problems to clinical research (23, 77). Specific ac¬ 

tivities of isolated HVA would be independent of the rate of e- 

gress of HVA from the CSF and may allow one to circumvent these 

problems. Certainly changes of labeled and endogenous HVA in the 

same direction would strengthen any conclusions based on the pro¬ 

benecid test in humans, and might better reflect the changes in 

brain DA activity that have been suggested in the etiology and 

therapy of certain neurological and psychiatric disorders (75, 110, 

124). 

Methods: 

This study was performed according to a protocol approved 

by the Yale Clinical Investigations Committee and the Yale Radio- 

14 
isotope Committee. C-L-dopa has been administered to humans by 

other investigators in doses of 100 |iCi orally (99) and 5 p,Ci/kg 

i.v. (102). The ^C was almost entirely excreted in urine within 

one week of i.v. administration of ^C-L-dopa to humans (personal 

communication from Professor R. Tissot, Univ. of Geneva). MK-486 

or alpha-methyldopahydrazine (13, 18, 104) (Carbidopa; Merck, Sharp, 

and Dohme) was used under an IND from the U.S. Food and Drug 

Administration. Informed consent was obtained from all participants. 
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Patients were studied on in-patient wards of the Yale 

Medical Center. Four were previously diagnosed Parkinsonians. 

Of the four controls, three were neurology patients with the 

diagnoses of dystonia muscularum deformans, multiple sclerosis, 

and cerebral palsy. One of the controls was a paid volunteer with 

out active disease. The mean age of the Parkinsonians was 67, 

and the mean age of the controls was 48. The Parkinsonian group 

consisted of two males and two females, while the controls con¬ 

sisted of four males. All patients had been off all medication fo 

several weeks prior to the admission. 

The patients were given a peripheral decarboxy1ase inhibi¬ 

tor, MK-486, 50 mg po every six hours, beginning at 7 AM on the 

day prior to the injection of ^C-L-dopa. This dose of MK-486 

is higher than the amount commonly used to enhance the thera¬ 

peutic effects of L-dopa.in Parkinsonians (32, 33). The decar¬ 

boxylase inhibition following oral administration of MK-486 peaks 

in about 3 or 4 hours (personal communication-Dr. M. Jaffe, 

Merck, Sharpe, and Dohme). It has been shown that a single dose 

of 100 mg po or daily doses of 100 mg po for one week are equally 

efficacious in inhibiting the peripheral decarboxylation of exog¬ 

enously administered L-dopa (18). 

Probenecid (Benemid; Merck, Sharpe, and Dohme) was given in 

a dose of one gram po at 5 PM of the day prior to injection of 

L-dopa. This dose was repeated every four hours until CSF was ob¬ 

tained 24 hours after the first dose. Total dosage of probene¬ 

cid was 6 g po in 24 hours, or about 100ro.g/kg. This probenecid 

schedule(25) has been shown to cause accumulation of HVA in the 

lumbar CSF of humans. Patients were kept flat in bed from the 
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first dose of probenecid until the lumbar puncture (106). 

50 pCi of lZ+C-L-dopa |_L-3 (3,^-dihydroxyphenyl )al anine-3- 

1 I 

4C, specific activity 21 mCl/mmol, supplied by Amersham-SearleJ 

was injected intravenously at 9 AM, two hours after the last dose 

of MK-486. The labeled L-dopa was injected in 10 ml of sterile 

saline. 

Seven and one-half hours later a lumbar puncture was performed 

and 10 ml of CSF was obtained and immediately put on ice. The 

timing of the lumbar puncture was considered optimal in order to 

1 4 
detect the peak accumulation of C-HVA in CSF. Following i.v. 

labeled L-dopa, labeled HVA has been reported to peak about 2-4 

hours later in the cisternal CSF of rabbits (14) and humans (102). 

Endogenous HVA has been reported to begin accumulating in human 

lumbar CSF about 4 hours after oral administration of probencid 

(128). This last figure presumably represents the time for ven¬ 

tricular and cisternal HVA to begin to appear in lumbar CSF. The 

two lag-times were added in order to arrive at the estimate of 7-5 

hours as the optimal time. 

The CSF was centrifuged to remove any red blood cells and 

stored at -20° C. Endogenous HVA and 5HIAA were assayed by fluor¬ 

escence methods (25). CSF probenecid levels were assayed by a 

spectrophotometric technique (77). Total radioactivity was de¬ 

termined by counting 0.1 ml of raw CSF. Radioactivity of ^C- 

HVA was determined by a modification of the methods described in 

Part I. The procedure was revised in order to be able to do thin- 

layer chromatographic analysis on up to 5 ml of human CSF. The 

method consisted of deproteinization of 4 ml of CSF by acidifi¬ 

cation with perchloric acid, precipitation of the perchlorate 
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with potassium hydroxide, and extraction of non-polar interfering 

substances into pet ether before freeze-drying of the aqueous phase. 

Dopa, DA, and metabolites were extracted, and separated by thin- 

layer chromatography (49), and radioactivity of ^C-HVA was counted 

by methods described in Part I. Samples were counted for 40 minutes, 

until the raw background counts reached about 1000. Efficiency 

14 
was determined by individual internal C-toluene standards. 

Background was determined by running cold CSF through the assay. 

14 
Recovery of C-HVA was determined by analysis of cold human CSF 

14 
to which a known amount of C-HVA standard was added. Recovery 

was 61%. 

Results: 

The results showed this procedure to be technically feasible 

in humans. Raw counts in the HVA spots ranged from 150 to 350 

percent of background count. Although no time course was done, the 

hour time after ^C-L-dopa injection seems to be a usable 

14 
time point for measuring C-HVA accumulation in the lumbar CSF. 

Results are summarized in figure 5. 

Endogenous HVA levels and HVA radioactivity were lower in the 

parkinsonian group than in controls. Specific activity of HVA, 

obtained by dividing the ~j\ hour accumulation of labeled HVA by 

the 24 hour accumulation of endogenous HVA, in each individual, 

was also lower in the parkinsonian group. Thus, the results are 

in the predicted direction. 

14 
The difference between C-HVA in the two groups was more 

marked if the HVA radioactivity was expressed as a percentage of 

the total radioactivity in the CSF for each individual. This 
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reflects variance among individuals in the total radioactivity 

in CSF, perhaps related to incomplete decarboxylase inhibition in 

14 
the periphery causing variance in the amount of C-L-dopa reach- 

14 
ing the brain. C-HVA expressed as percentage of total CSF 

radioactivity may be the most accurate measure of what proportion 

of the^C-L-dopa reaching the brain is converted to^C-HVA. 

D? scussion: 

Interpretation of the meaning of changes in the accumulation 

in CSF of endogenous HVA and labeled HVA formed from intravenously 

administered labeled L-dopa were discussed in part I. They prob¬ 

ably reflect at least in part changes in central DA metabolism 

and dopaminergic neuronal activity. Use of the peripheral de- 

14 
carboxylase inhibitor decreases the proportion of C-HVA formed 

14 
by extra-cerebral and capillary metabolism of the C-L-dopa (13, 

18, 33). 

There was much variation in the probenecid levels obtained. 

Levels of endogenous HVA were linearly related to the CSF proben¬ 

ecid levels. A schedule of probenecid administration similar to 

the one used here has been reported by others (25) to result in 

higher CSF probenecid levels and slightly higher CSF HVA levels. 

However, even at these higher probenecid levels, HVA levels were 

directly related to probenecid levels, indicating that HVA egress 

was not completely blocked. The dosage of probenecid that can be 

used is limited by production of nausea and vomiting. In the re¬ 

sults shown in figure 5, CSF probenecid levels in the parkinsonian 

group were not significantly different from control. There was 

a tendency for higher probenecid values in the parkinsonian group. 
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which might be expected to bias the results in favor of higher 

HVA levels in this group. Thus, the variance in probenecid levels 

can not account for the lower levels of endogenous and labeled 

HVA in the CSF of parkinsonian patients. 

Although the parkinsonians were older as a group, age has 

little effect on HVA levels. 

Post-mortum studies of the brains of parkinsonians has shown 

DA and HVA in the basal ganglia and substantia nigra to be reduced 

by between 50 and 90 percent of controls (68). Measurement of 

HVA in the CSF of parkinsonians has consistently documented a 

reduction, but not to the extent of the reduction in the brain 

(71, 97, 131, 34, 56). Reports of decreased accumulation of 

HVA in the CSF of parkinsonian patients during probenecid treat¬ 

ment have been interpreted as reflecting a decreased turnover of 

central DA (24, 34, 83, 97). There is no agreement on whether the 

probenecid test makes differences between CSF HVA levels in park¬ 

insonians and controls easier to detect (34, 97). Reports of 

the extent of the decreased HVA accumulation in the CSF of park¬ 

insonians treated with probenecid vary from a 70% decrease(97) 

to small and statistically insignificant decreases (24). There 

is also disagreement as to whether the extent of the decrease in 

CSF HVA is correlated with severity of illness or clinical re¬ 

sponse to L-dopa therapy (24, 34, 83). 

The differences reported here i nendogenous levels are only 

20%. Variance in probenecid levels and small sample may have 

kept this from being significant. The 50% decrease in '^C-HVA is 

consistent with other reports of decreased HVA in the CSF of 

parkinsonians. Thus, the formation of labeled HVA from labeled 
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DA seems to reflect the same process whereby endogenous HVA is 

formed from endogenous DA. Presumably, the labeled HVA was formed 

from labeled brain DA physiologically released from dopaminergic 

neurons (see part 1). The decrease in labeled HVA in the CSF of 

parkinsonians could represent a decrease in the formation or 

utilization of DA at any step along the path from L-dopa to HVA. 

Like the decrease in endogenous HVA, it may reflect an abnor¬ 

mality in DA neurons, or may reflect the decreased number of 

normal neurons caused by degeneration in the nigra-striatal 

pathway. Thus, the decreased formation of ^C-HVA from ^C-L- 

dopa seems to reflect the anatomical and functional abnormalities 

in DA neurons which are known to exist in Parkinson's disease. 

The decreased specific activity reported here in parkinson¬ 

ians may be important. If it is real, then it implies that form¬ 

ation of labeled HVA from labeled L-dopa is more sensitive to 

the pathological changes in Parkinson's disease than is the forma 

tion of endogenous HVA. Perhaps a larger proportion of endoge¬ 

nous HVA in the CSF comes from peripheral sources and masks the 

deficiency in central DA turnover. 

In conclusion, it has been shown here that it is clinically 

feasible to administer tracer amounts of labeled L-dopa intra¬ 

venously to humans premedicated with a peripheral decarboxylase 

inhibitor and probenecid and to detect easily measurable amounts 

of labeled HVA subsequently in the lumbar CSF. The fact that the 

amount of C-HVA accumulating in the CSF of patients with Parkin 

son's disease is decreased supports the assumption that changes 

14 
in C-HVA accumulation in CSF reflect functional changes in 

brain DA metabolism. 
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Figure 5. Endogenous and labeled homovanillic acid (HVA), 

5-hydroxyindoleacetic acid (5-HIAA), and probenecid in the 

lumbar cerebrospinal fluid (CSF) 72- hours after intravenous 

injection of 50 uC i of ^C-L-dopa to humans premedicated 

with the peripheral decarboxylase inhibitor alpha-methyl- 

dopa hydrazine and probenecid. Values are expressed as the 

mean + S.E.M. for the number of patients indicated in 

pa rentheses. 
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Part Three: MHPG in rabbit brain and CSF 

In part III a probenecid-induced accumulation of MHPG-S 

in rabbit brain and CSF is reported. A methlod' is described in 

rabbits for labeling brain NE by i.v. administrat?on of labeled 

L-dopa and measuring the subsequent appearance of labeled MHPG 

in brain. The accumulation in brain and CSF of MHPG, a major 

brain NE metabolite, may be an index of central noradrenergic 

neuronal activity. These methods in part III parallel the 

methods used in part I for measuring HVA as an index of dopa¬ 

minergic activity. 

Adequate methods for measuring the metabolism of biogenic 

amines in the human brain will undoubtedly contribute to the 

knowledge of the function of these amines. Some recent progress 

has been made regarding the metabolism of DA and serotonin 

(5-hydroxytryptamine or 5HT) in the human brain. Probenecid- 

induced accumulation of the metabolites HVA and 5HIAA in the 

CSF of human patients has already been used as a hypothesized 

measure of abnormalities in the central metabolism of DA and 

serotonin respectively. However, a similar approach for the 

metabolism of NE in the human or animal brain has not yet been 

described (23, 58, 60, 77, 97). 
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MIA: A probenec i d-i nduced accumulation of MHPG-sulfate in 

the brain and CSF 

Int roduct ? on; 

The sulfate ester of 3-methoxy-4-hydroxyphenylg1ycol, 

MHPG-S, is a major central nervous system (CNS) metabolite of 

NE (84, 113, 116). It has been demonstrated in rat(74) that 

MHPG-S levels in cerebral cortex are dependent on the functional 

integrity of ascending NE-pathways. Total MHPG, determined after 

hydrolysis of MHPG-S, has been measured in the CSF of animals (109, 

115) and humans (59, 136) by gas chromatography. In the rat 

labeled MHPG-S injected intraventricular1y is transported out 

of the CSF by a probenecid-sensitive mechanism (83). Results 

using a fluorometric assay (90) to determine endogenous levels of 

MHPG-S show that this metabolite accumulates in rat brain follow¬ 

ing probenecid (91). However, at the time we did this study, there 

were no published data describing a probenecid-induced increase 

in endogenous MHPG-S in the CSF of any animal. Preliminary 

studies (58, 59) in human CSF had failed to detect any such in¬ 

crease. We report here a marked probenecid -induced increase of 

MHPG-S in rabbit CSF and brain. 

Methods: 

White rabbits weighing about 2.0 kg were maintained in a 

ventilated 30.5°C box. They maintained a constant rectal temp¬ 

erature. Following ether anesthesia brain and CSF samples were 

obtained without any drug treatment in some animals. Other rab¬ 

bits were treated with probenecid-150 mg/kg i.p„, repeated 
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every two hours. Either two or four hours after the first pro¬ 

benecid injection, these rabbits were killed by ether inhalation 

and 0.5-1.5 ml of CSF was quickly withdrawn by cisternal punc¬ 

ture, placed on ice, and then frozen. The brain was then removed, 

and the cerebral cortex and a portion of the subcortex were dis¬ 

sected out and frozen. The portion of subcortex was a piece of 

the midbrain weighing about 400 mg, chosen because of its prox¬ 

imity to the ventricular CSF. 

MHPG-S and NE were determined in the same sample of brain 

tissue. Tissue was homogenized in 0.4 N perchloric acid and the 

MHPG-S was isolated on DEAE sephadex anion exchanger and determined 

by a fluorometric method (9, 11, 80, 90). We collected the ef¬ 

fluent and the washing fluid (5 ml of 0.08 N HCL), mixed it with 

1 ml of 10% ethy1enediamine tetracetate, and determined NE fluor- 

ometrically (111). The amount of MHPG-S in brain was expressed 

as the ratio of MHPG-S to NE in order to minimize individual vari¬ 

ation in the brain tissue samples. In order to measure CSF MHPG-S, 

0.5 ml of CSF was mixed with 2 ml of water and 0.5 ml of 1% for¬ 

mic acid. The MHPG-S was isolated and determined f1uorometrical 1y 

(80, 90). In the HVA investigations HVA was assayed (51) in sub¬ 

cortex and in a 0.5 ml sample of CSF. 

Resu1ts and Discuss ?on: 

Control levels of MHPG-S were 27+6 ng/ml of CSF (n = 11), 

87 + 17 ng/g of cerebral cortex (n = 4), and 120 + 14 ng/g of mid¬ 

brain (n = 4). Control levels of NE were 207 _+ 27 ng/g of cerebral 

cortex (n = 4), and 307 + 13 ng/g of midbrain (n = 4). 
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There was a significant nearly linear increase in MHPG-S in 

the CSF of rabbits treated with probenecid for four hours (fig. 6) 

After four hours the levels were increased about sixfold above con 

trols. These results are consistent with the findings of Meek 

and Neff (89) who showed that in rat the egress of intraventric- 

ularly administered radioactive MHPG-S was blocked by probenecid. 

In both cerebral cortex and midbrain (fig. 7) there was a 

significant increase in the MHPG-S to NE ratio after two hours of 

probenecid treatment. However, there was no significant change 

from two to four hours (fig. 7), at a time when MHPG-S continued 

to increase in the CSF. It is likely that the blockade in the 

egress of MHPG-S from brain was not complete in the rabbits, des¬ 

pite the high probenecid dosage. In rats, doses up to 400 rag/kg 

are required to block MHPG-S egress from brain (91). The differ¬ 

ential effect of probenecid on MHPG-S in rabbit brain and CSF 

could involve inability to attain sufficient tissue concentrations 

of probenecid, differences in the sensitivity of CSF and brain 

transport mechanisms, or that egress of a part of the MHPG-S 

from brain occurs by passive diffusion or bulk flow once certain 

high concentrations of the metabolite have built up in brain tis¬ 

sue. In any case, there appears to be a differential effect of 

probenecid on the accumulation of MHPG-S in brain tissue and CSF, 

and therefore, one must be careful in drawing conclusions about 

MHPG-S production in brain based on the probenec?d-induced accum¬ 

ulation of this metabolite in the CSF. It should be noted in 

this regard that in the rabbit, probenecid causes an increase in 

HVA in CSF, but not in brain (see Table 1). 3HIAA also has been 

reported to increase faster in rabbit CSF than in brain following 

probenecid (22). 
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Figure 6. Levels of 3~methoxy-4-hydroxyphenylglycol-sulfate 

(MHPG-S) in rabbit cisternal CSF before and two and four hours 

after treatment with probenecid (150 mg/kg, i.p., repeated every 

two hours). Each value is the mean in ng/ml + S.E„M„ for the 

number of rabbits indicated in parentheses. * denotes a level 

significantly greater than the level before probenecid treatment, 

p ^ 0.001, by the two-tailed t-test. ** denotes a level signif¬ 

icantly greater than the levels before and two hours after pro¬ 

benecid treatment, p< 0.001, by the two-tailed t-test. 
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Figure 7. Ratios of 3-methoxy-4~hydroxyphenylgiycol-sulfate 

(MHPH-S to norepinephrine (NE) in the cerebral cortex and midbra 

of rabbits before and two and four hours after treatment with 

probenecid (150 mg/kg i.p., repeated every two hours). Each 

value is the mean + S.E.M. for the number of rabbits indicated 

in parentheses. Ratios significantly greater than the ratio be¬ 

fore probenecid treated are noted by (*) for p ^0.05 and by 

(**) for p < 0.01, by the two-tailed t-test. 





IM
 

H
O

U
R

S
 

T
IM

E
 

IN
 

H
O

U
R

S
 

R
R

D
R

A
L
 C

O
R

T
R

X
 

- i 
;■ 

M
ID

B
R

A
IN

 





39 

NIB; The effects of stress and chlorpromazi ne on the probenecid- 

induced accumulation of MHPG-sulfate in brain and CSF 

Int roduct ?on: 

In order to determine if the probenecid-induced accumulation 

of MHPG-S in brain and CSF reflects central noradrenergic neuronal 

activity, the effect of "stress" was measured. A variety of stress 

procedures have been shown in animals to enhance brain NE turnover 

(39, 50, 81, 88). Accumulation of HVA in brain and CSF has been 

shown to change in response to changes in brain DA metabolism and 

turnover, as demonstrated in parts I and II. Similarly, it might 

be expected that the accumulation of MHPG-S in brain and CSF 

would change in response to a change in brain NE metabolism such 

as that caused by foot-shock stress. 

Recently it has been reported (81) that electric foot-shock 

increases NE turnover and MHPG-S levels in rat brain. These ef¬ 

fects were mediated via increased impulse flow in the nucleus 

locus coeruleus, a group of NE-containing neurons in the brain¬ 

stem which project to more rostral structures (81). If probene¬ 

cid-induced accumulation of MHPG-S in CSF also reflects central 

NE metabolism it would be expected that electric foot-shock 

"stress" would increase this accumulation. Results reported 

here demonstrate that foot-shock increases the probenecid-induced 

accumulation of MHPG-S in rabbit brain and CSF. 

Antipsychotic drugs such as chlorpromazine are thought to 

act as blockers of post-synaptic DA and NE receptors (see Part I 

and Discussion). Ch1orpromazine has been shown by a variety of 

methods to increase the turnover of DA and NE in brain. This 
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increase is thought to be a compensatory response by pre-synaptic 

neurons to be post-synaptic receptor blockade. However, the evi¬ 

dence for increased DA turnover is better established than is the 

evidence for increased NE turnover following ch1orpromazine (see 

Discussion). If ch1orpromazine increases NE turnover in the 

brain in the same way that it increases DA turnover, one might 

expect to measure an increase in NE metabolites in brain and CSF 

similar to the increase in the DA metabolite HVA measured in 

Part I. It has recently been reported that a spectrum of anti¬ 

psychotic drugs, including chlorpromazine, caused a significant 

increase in MHPG-S in rat brain (72). Phenoxybenzamine, an alpha 

adrenergic blocker in the periphery but not an antipsychotic drug, 

has been shown to increase the probenecid-induced accumulation of 

MHPG-S in the rat brain (91). 

Methods: 

In the shock-stress experiments white rabbits weighing 

approximately 2.5 kg were injected with probenecid, 150 mg/kg 

i.p. Fifteen minutes later the rabbits' feet were shaved and 

they were placed in a plexiglass box with metal grid floor. The 

floor was connected via a scramble to an electrical shock gene¬ 

rator (Grason-Stadler Model # E1100EA) programmed to generate 

shocks of 5 mamps intensity and 1 second duration every 10 seconds 

(81). The rabbits were shocked for 1.75 hours, removed from the 

box, and 0.5 hours later, they were anesthetized by ether inhala¬ 

tion. Control rabbits were injected with probenecid and kept in 

their home cages for 2.5 hours until being anesthetized. A sam¬ 

ple of 0.5-1.5 ml of CSF was obtained by cisternal puncture, and 
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the brain was removed and dissected into cerebral cortex and sub¬ 

cortex. The cerebral cortex included the hippocampus and weighed 

approximately 4.5 g. The subcortex consisted of basal ganglia, dien¬ 

cephalon, and midbrain and weighed about 2 g. Brain and CSF MHPG -S 

were assayed by a fluorescence method (80, 90) described previously 

in part I I I A. 

In the chiorpromazine experiments white rats weighing about 

300 g and white rabbits weighing about 2.5 kg were maintained in 

a ventilated 30.5°C box, so that the animals' rectal temperatures 

remained normal throughout all experiments. Sixteen rats were 

injected with probenecid, 200 mg/kg i.p. Five minutes later, 

half of these rats were injected with chlorpromazine, 10 mg/kg i.p. 

Two hours later all sixteen rats were decapitated, their brains re¬ 

moved, and the caudate nuclei dissected out. The caudate nuclei 

of pairs of ch1orpromazine-treated rats and those of pairs of 

control rats were pooled and assayed for HVA. The rest of the 

brain was dissected into cerebral cortex and subcortex as des¬ 

cribed previously for assay of MHPG-S. Ten rabbits were injected 

with probenecid, 150 mg/kg every two hours. Five rabbits were 

pretreated with chlorpromazine 10 mg/kg i.v. two hours before the 

first probenecid injection. Four hours after the first probene¬ 

cid injection, all ten rabbits were killed by ether inhalation, 

and CSF and brain tissue were obtained and MHPG-S assayed (80, 

90) as described previously. 

Results: 

Results of the shock and stress experiments are recorded in 

figure 8. The shock procedure caused a statistically significant 
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increase in the accumulation of MPHG-S in cerebral cortex and 

CSF compared to controls. 

Results of the chlorpromazine experiments are summarized 

in figures 9 and 10. Chlorpromazine induced a small but statis¬ 

tically significant increase in the accumulation of MHPG-S in the 

rat cerebral cortex and a non-significant increase in the MHPG-S 

accumulation in the rat subcortex. In the rabbit subcortex and cere¬ 

bral cortex chlorpromazine induced a non-significant decrease in 

the accumulation of MHPG-S. There was a statistically signifi¬ 

cant decrease in the accumulation of MHPG-S in rabbit CSF follow¬ 

ing chlorpromazine pretreatment. Similar chlorpromazine pretreat¬ 

ment was shown in Part 1 (see figure 4) to double the accumula¬ 

tion of HVA in rabbit CSF in four hours. 

Discussion: 

Stimulation of the locus coeruleus in the rat has been shown 

to cause an increase in NE turnover following synthesis inhibi¬ 

tion (79) as well as to increase levels of MHPG-S in the brain (80) . 

These effects are abolished by lesions in the locus. Thus, in the 

rat brain MHPG-S seems to reflect noradrenergic neuronal activity 

and NE metabolism. A schedule of electric foot-shocks similar to 

that used here in rabbits has been shown in rats to increase brain 

NE turnover following synthesis inhibition (81). This increased 

turnover correlated with an increased level of MHPG-S in the 

brain. Both effects were abolished by lesions of the NE neurons 

in the locus coeruleus. Thus, the increased MHPG-S in the brain 

of stressed rats seems to reflect activation of NE neurons and 

increased brain NE metabolism. 
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The results reported here in rabbits indicate that foot- 

shock stress increases brain and CSF MHPG-S. The approximately 

25% increases are less than might be expected from the severe 

stress procedure used here, and less than reported from similar 

shock schedules in the rat (81). Perhaps if unconjugated MHPG-S 

(115) had been measured, or if higher doses of probenecid were 

used (90, the increase would be greater. If as in the rat this 

increased MHPG-S reflects activation of brain NE neurons, then 

the data suggest that functional changes in noradrenergic neuro¬ 

nal activity and NE metabolism in rabbit brain are reflected in 

changes in the probenecid-induced accumulation of MHPG-S in brain 

and CSF. However, studies of the effect of stimulation and les¬ 

ion of brain NE cells are needed to document the source and 

significance of NE metabolites in rabbit CSF. 

Ch1orpromazine in the dose of 10 mg/kg i.p. has been reported 

in rats to increase whole brain MHPG-S by about 20 percent after 

two hours (72). The results reported here for probenecid-treated 

rats injected i.v. with the same chlorpromazine dose of 10 mg/kg 

show a similar 20 percent increase in brain MHPG-S after two hours. 

It is difficult to say why chlorpromazine slightly increases 

MHPG-S in the rat and slightly decreases levels of this metabo¬ 

lite in the rabbit. The sulfate conjugate is known to be the 

major NE metabolite in rat brain (115, 116), but the ratio of 

conjugated to unconjugated MHPG in rabbit brain has not been 

studied. Perhaps increases in free MHPG in rabbit brain went 

undetected in these experiments. 

It does seem clear that in the dose of 10 mg/kg chlorproma- 

zine does not have a big effect on MHPG-S levels in either the 





rat or the rabbit. However, HVA levels are greatly increased. 

Much higher doses of chlorpromazine up to 50 mg/kg i.p. have 

been reported to raise MHPG-S only AO percent in the rat brain (72). 

This small effect is difficult to explain in terms of the theory 

that ch1orpromazine and other antipsychotic drugs increase the 

activity of DA and/or NE neurons as a feed-back response to block¬ 

ade of post-synaptic receptors. Chlorpromazine is felt to block 

both NE and DA receptors (3), and hence one would expect it to in¬ 

crease levels of DA and NE metabolites. Chlorpromazine and other 

antipsychotic drugs cause marked increases in HVA levels in rats 

and rabbits (1). Some antipsychotic drugs other than chlorproma- 

zine have been reported to double MHPG-S levels in rat brain (72). 

It should again be noted that the chlorpromazine-induced increase 

in NE turnover measured by other methods is less pronounced and 

less consistently documented than the increase in DA turnover (see 

Discussion). 

There are several possible explanations for the relative 

lack of effect of chlorpromazine on MHPG-S levels. It may be 

that the egress of MHPG-S must be completely blocked in order to 

detect an increase in rate of formation. It has been reported (91) 

that doses of up to 400 mg/kg are needed to block MHPG-S egress in 

the rat. The dose used here in rabbits and rats was 150 and 200 

mg/kg respectively. However, other antipsychotic drugs more than 

double MHPG-S in rats who received no probenecid (72). It may be 

that properties peculiar to chlorpromazine make its effects on 

NE metabolism difficult to detect by measurement of MHPG-S. It 

should be mentioned that chlorpromazine has been shown to inhibit 

the liver alcohol dehydrogenase (73). If the related enzyme in 
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brain, the aldehyde reductase (see figure I) is similarly inhi¬ 

bited then NE metabolism might be shunted away from MHPG formation 

and toward VMA. the main NE metabolite in the periphery (84). 

This might explain why chlorpromazine had little effect on the 

accumulation of MHPG in the rat and rabbit. Chlorpromazine could 

also interfere with sulfate conjugation. 

In summary, stress procedures which are known to increase 

brain NE metabolism increase the probenecid-induced accumulation 

of MHPG-S in rabbit brain and CSF. Thus, the accumulation of 

MHPG-S in the CSF might be a useful index of central noradrener¬ 

gic function. Chlorpromazine slightly increased the accumulation 

of MHPG-S in rat brain and slightly decreasd the accumulation in 

rabbit brain and CSF. The relatively small effect of chlorproma¬ 

zine on MHPG-S levels is discussed in terms of current hypotheses 

about the DA and NE receptor blocking action of this drug. 

This investigation suggests that it might be possible to 

measure increases in MHPG-S in human CSF following probenecid. 

At approximately the same time that the probenecid-induced increase 

in MHPG-S in rabbit CSF was reported from our laboratory (47), 

another group of investigators reported small increases in MHPG 

and MHPG-S in the lumbar CSF of patients treated with probenecid 

100 mg/kg p.o. for eighteen hours (60). This accumulation is 

much less marked than that of HVA and 5-HIAA, perhaps because 

larger doses of probenecid are needed to block MHPG-S transport 

(91). It should also be kept in mind that about half the MHPG 

in human CSF is not the conjugated from but the free form (60) 

whose transport does not seem to be probenecid sensitive (89). 

If it is possible in humans to block MHPG-S transport to a 
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significant degree, then the accumulation of this metabolite 

might be a useful measure of the abnormalities in central nor¬ 

adrenergic function thought to be involved in some neurological 

and psychiatric disorders (30, 117). 
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Figure 8. Levels of 3-methoxy-4-hydroxyphenylglycol-sulfate 

(MHPG-S) in the brain and cerebrospinal fluid (CSF) of rabbits 

2.5 hours after injection with probenecid, 150 mg/kg i.p. 

Some of the rabbits were given electric foot-shocks, 5 mA inten¬ 

sity, 1 second duration, every 10 seconds for 1.75 hours follow¬ 

ing the probenecid injection. Each bar-graph represents the mean 

in ng/g brain or ml CSF for the number of rabbits indicated in 

parentheses. Significant shock-induced increases are noted by 

(**) for p < 0.05 and by (*) for p < 0.02, by two-tailed t-test. 
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Figure 9. Levels of 3-methoxy-4-hyd roxyphenylglycol-sulfate 

(MHPG-S) and homovanillic acid (HVA) in the brain of rats 2 

hours after injection of probenecid, 200 mg/kg i.p. Some of the 

rats were treated with ch1orpromazine, 10 mg/kg i.p. five minutes 

after the probenecid injection. Each bar graph represents the 

mean ng/g brain + S.E.M. for the number of rats indicated in 

parentheses. Significant ch1orpromazine-induced changes are 

noted by (*) for p < 0.05 by two-tailed t-test. 
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Figure 10. Levels of 3-methoxy-4-hydroxyphenylglycol-sulfate 

(MHPG-S) in the brain and cerebrospinal fluid (CSF) of rabbits 

4 hours after injection of probenecid (150 mg/kg i.p., repeated 

every two hours). Some of the rabbits were pretreated with chlor- 

promazine (10 mg/kg i.v.) 2 hours before the first probenecid 

injection. Each bar graph represents the mean in ng/g brain or 

ml CSF + S.E.M. for the number of rabbits indicated in parentheses. 

Significant ch1orpromazine-induced changes are noted by (*) for 

p < 0.05 by two-tailed t-test. 
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■3 

MIC: MHPG In brain foMowing i.v. H-L-dopa-the effect of 

chiorpromazine 

Int roduction: 

3 
A method for measuring H-MHPG formed in brain from system- 

ically administered ^H-L-dopa is presented here, using methods 

similar to those developed in part I. Exogenous L-dopa is taken 

up by noradrenergic as well as dopaminergic neurons in the brain 

3 
(54, 55, 101), and it would be reasonable to assume that if H-DA 

3 
is formed, then JH-NE is formed as well (see figure 1). If the 

3 
increased accumulation of JH-HVA reported in part I reflects in¬ 

creased dopaminergic neuronal activity induced by chiorpromazine, 

then it would be interesting to see if ch1orpromazine has a sim- 

3 
ilar effect on the accumulation of H-MHPG. Recent work in rats 

(79, 80, 81), as well as the results of the foot-shock experiment 

in rabbits in this thesis seem to imply that MHPG formation in 

brain reflects brain NE metabolism and neuronal activity. 

Methods: 

White rabbits were pretreated with the peripheral decarboxy¬ 

lase inhibitor R04-4602, 50 mg/kg i.p., and one-half hour later 

. 3 
were injected i.v. with 100 |j,Ci of H-L-dopa as described in part I. 

Some of the rabbits were pretreated with chiorpromazine, 10 mg/kg 

i.v., five minutes before the ^H-L-dopa injection. Results were 

the same in rabbits which were allowed to become hypothermic as in 

ones whose temperature was maintained. Thus, the results were 

pooled irrespective of temperature controls. Two or four hours 

3 
after H-L-dopa injection, the rabbits were anesthetized, the 





brain removed and dissected as described previously. 

The brain tissue was homogenized immediately in 8 ml of 

0.4 N perchloric acid and 50 p,g of cold MHPG was added to each 

sample as carrier. The homogenate was centrifuged, and a 2 ml 

aliquot of the supernatant taken. One ml of 10% barium acetate 

buffer was added, and each sample was adjusted to pH 5.5 with NaOh. 

The samples were spun and the supernatant added to 0.4 ml of p-glu- 

curonidase aryl sulfatase (Calbiochem) in order to hydrolyze the 

sulfate conjugate of MHPG (70). The samples were incubated at 37°C 

for 20 hours and the raction was then stopped by the addition of 

0.2 ml of concentrated perchloric acid. 

The pH of each sample was then adjusted to 7.0 with K0H, 

chilled on ice, and spun to precipitate perchlorate salts. The 

supernatant was then saturated with NaCl and shaken for 15 minutes 

with four volumes of nanograde ethyl acetate to extract the MHPG. 

To the ethyl acetate layer was added 25 (j.g of cold MHPG and other 

amine metabolites for future chromatographic visua1ization. The 

solution was blown down to dryness with nitrogen, taken up in 

100 [_l 1 of 80% ethyl alcohol, spun, and 25 p,l of the supernatant 

was spotted on a cellulose thin-layer chromatographic plate for 

twodimensional chromatographic analysis (49). 

The MHPG spot was visualized by spraying with an aniline 

dye and radioactivity was determined by scintilation counting in 

10 ml of triton-100 counting solution. Efficiency was determined 

by individual H-toluene standards. 

The counting of theMHPG spots presented several methodo¬ 

logical problems. First, autofluorescence from the MHPG-dye 

complex caused the scintillation counter to record artificially 
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high counts. We eliminated this problem by cooling the sam¬ 

ples for at least 24 hours before counting, and by counting the 

samples several times to make sure that the counts had stabi¬ 

lized. The second problem was that the counts were very low, 

often less than twice background. In order to improve accu¬ 

racy, we counted for a long time-100 minutes. We determined 

a realistic background by scraping a non-radioactive area of 

the TLC plate and counting that for 100 minutes. 

Resu1ts : 

Results from five separate experiments were expressed as 

percentage of control in each experiment and pooled. The pooled 

results are Summarized in figure 10. Ch1orpromazine induced a 

statistically significant decrease in the total amount of ^H- 

MHPG appearing in rabbit cerebral cortex and subcortex two and 

four hours following i.v. ^H-L-dopa. 

Piscussion: 

3 
Previous work showed that H-L-DA peaks in brain one-half 

3 3 
hour after the H -L-dopa injection and fell off as the H-HVA 

rose (see Part 1). In preliminary work for this experiment, we 

3 
noted the presence of H-NE in brain at two and four hours in 

amounts sufficient to have served as precursor for the ^H-MHPG 

present. This information is consistent with the assumption 

■3 

that JH-L-dopa has labeled the endogenous brain stores of 

DA and NE, and that the ^H-MHPG represents physiologically 

released and metabolized brain ^H-NE. 

Although stimulation and lesion studies in the rat (79, 80, 





56 

81) showed endogenous MHPG-S to reflect NE neuronal activity in 

the brain, there is little evidence to prove or disprove that 

3 3 
H-MHPG formed in brain following i.v. -’H-L-dopa represents 

activity in NE neurons. Though other neurons besides noradren¬ 

ergic ones take up exogenous L-dopa (54, 55, 101) and decar- 

boxylate it to DA (82), it is only in neurons which contain the 

enzyme dopamine beta-hydroxylase that NE and subsequently MHPG 

could be formed (see figure 1). The distribution of this en¬ 

zyme seems to follow the distribution of endogenous NE and prob¬ 

ably occurs in noradrenergic neurons only (10). On this basis 

3 
one might expect H-MHPG to more accurately reflect noradrenergic 

3 
neuronal activity than H-HVA reflects dopaminergic activity. 

3 
The marked decrease in JH-MHPG measured in brain following 

chlorpromazine treatment parallels the ch1orpromazine-induced 

decrease in MHPG-S in brain and CSF of the rabbit. As discussed 

in the previous section, this decrease is not consistent with 

the small increases in MHPG-S measured in rats (66) and is not 

consistent with current hypotheses about feed-back activation 

of NE cells and NE turnover resulting from blockade of post- 

synaptic NE receptors by ch 1 orp romaz i ne (3). Contrary to the 

results reported here, ch1orpromazine has been shown to enhance 

the decrease in the specific activity of NE in rats injected 

14 
with C-L-dopa, suggesting an acceleration of the turnover of NE in brain (53). 

It is*difficult to explain how the turnover of labeled NE could increase 

without increased formation of NE metabolites. 

3 
Preliminary results showed that H-MHPG was present in 

CSF but in quantities too small to measure accurately. If 

3 
the ^H-MHPG in CSF can be shown to represent brain NE metabolism 
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then perhaps measurement of its accumulation in human CSF fol¬ 

lowing i.v. administration of labeled L-dopa might prove to be 

a useful index of central noradrenergic function in man. 
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Figure 11. Radioactivity of total (free plus the sulfate 

3 

conjugate) 3-methoxy-4-hydroxypheny1 glycol (H-MHPG) in rab- 

3 

bit brain. H-MHPG was measured 2 or 4 hours after intravenous 

administration of ^H-L-dopa to rabbits treated with R04-it602. 

Some of the rabbits were pretreated with ch1orpromazine, 10 

mg/kg i.v., five minutes before the first probenecid injection. 

Values represent the pooled results of several separate exper¬ 

iments. Bar graphs represent the mean percentage of control + 

S.E.M. for the number of rabbits indicated in parentheses. Sig¬ 

nificant chlorpromazine-induced decreases are noted by (*) for 

p <0.01 and by (**) for p <0.05 by the two-tailed t-test. 
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D i scuss i onThe role of brain dopamine and norepinephrine 

in the central actions of chiorpromazine and other 

anti-psychotic drugs 

Chlorpromazine is a phenothiazine w'th antipsychotic 

properties (^3,92). Along with many other antipsychotic 

drugs, it is thought to block post-synaptic DA and NE receptors 

in the central nervous system (3, 31, 67). There are several 

lines of experimental evidence for the propsed receptor¬ 

blocking action of ch1orpromazine. 

Some recent work (35) has demonstrated a DA-sensitive 

adenylate cyclase in mammalian brain, whose stimulation by 

DA is blocked by ch1orpromazine. This enzyme may be part of 

the structure of the hypothesized neuronal membrane "receptors." 

Ch1orpromazine inhibits apomorphine-induced turning of 

unilaterally striatomized rats to the operated side. This 

implies a blockade of DA receptors in the striatum (3). Sim¬ 

ilarly, ch1orpromazine inhibits the L-dopa-induced increases in 

flexor reflex activity in spinal rats. This implies blockade 

of NE receptors in the spinal cord (3). 

Increased pre-synaptic activity in DA and NE neurons 

following chlorpromazine and other related antipsychotic 

drugs has been measured by a variety of methods. This increased 

activity is thought to be a compensatory feedback response (31) 

to blockade of post-synaptic receptors, and in animals has been 

measured directly by single unit recording of individual neurons 

(28, 29, 61). This increased neuronal activity is also reflected 

by increased turnover as measured by disappearance of DA and NE 

following synthesis inhibition (3, 5, 16, 38, 93), by isotopic 
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labeling techniques (53, 95, 96), and by measuring the levels 

of DA and NE metabolites in brain (1, 4, 6,28, 31), CSF (20, 25, 

64, 100) and urine (27). 

Chlorpromazine, like most antipsychotic drugs, seems to 

block both DA and NE receptors but seems to be more potent in its 

blockade of the DA receptor. Whereas the rate of firing of 

dopaminergic neurons in the substantia nigra and ventral teg¬ 

mental areas is increased following ch1orpromazine (28), this 

same drug has little effect on the firing rate of noradrener¬ 

gic cells in the locus coeruleus(Wa1ters, J.R., unpublished re¬ 

sults, 1973). Ch1orpromazine has been reported (61), however, 

to antagonize amphetamine-induced slowing in these NE cells. 

Studies of the effect of chlorpromazine on DA and NE turnover 

have yielded contradictory results. 

Using alpha-methyltyrosine, an inhibitor of catecholamine 

biosynthesis, some investigators (93) have obtained results 

indicating a selective increase in DA turnover following chlor¬ 

promazine. Others (5, 38) have obtained histochemica1 and bio¬ 

chemical results providing evidence that there is an accelerated 

disappearance primarily of cerebral NE after alpha-methyltyro- 

si ne and chlorpromazine. If the chlorpromazine treatment were 

continued for 2-3 days, there also appeared an accelerated dis¬ 

appearance of cerebral DA (38). Studies on the accumulation 

and decline of ^C-DA and ^C-NE formed from exogenously ad¬ 

ministered ^C-tyrosine precursor have shown that chlorpro¬ 

mazine markedly increases DA synthesis and turnover while in¬ 

creasing NE synthesis at only the highest doses (95, 96). 

The results reported in parts I and III of this thesis 
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reveal a marked difference in the effect of chlorpromazine on 

the DA and NE systems. Chlorpromazine markedly increased the 

accumulation in brain and CSF of a major DA metabolite, HVA, as 

has consistently been reported by others (1, 4, 6, 64). 

However, as demonstrated in part III and reported by others 

(72) chlorpromazine had only slight effects on the accumulation 

of a major Ne metabolite, MHPG-S. If these results indicate a 

selective increase in brain dopaminergic activity with noradren¬ 

ergic activity relatively unaffected, then the data are consistent 

with the hypothesis that chlorpromazine is a more potent blocker 

of DA receptors than of NE receptors. An alternate interpretation 

is that chlorpromazine does block post-synaptic NE receptors but 

the feed-back mechanisms operative in DA systems are less sensitive 

in NE systems. However, histochemica1 studies in spinal rats 

demonstrate that chlorpromazine increases the nerve impulse flow 

from cell bodies of the bulbospinal neurons (2). Also, other anti¬ 

psychotic drugs cause more marked elevation of MHPG-S in rat brain 

(72), as the feed-back hypothesis would predict. 

The above and other results have led to the hypothesis that 

the antipsychotic properties of chlorpromazine and similar drugs 

are directly related to the ability of these drugs to block DA 

receptors in the brain (3, 75, 110, 134). In order to verify 

this hypothesis the ratio of potency of DA to NE receptor blockade 

should be known for a variety of drugs. The relative potencies of 

one drug to the other in blocking DA and NE receptors and in 

clinical antipsychotic activity must be known as well. Either 

piece of information alone could be misleading. 

It is theoretically possible that most antipsychotic drugs 
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could be more potent in blockade of DA than NE receptors but 

that antipsychotic potency could still correlate best with the 

still quite potent blockade of NE receptors. Thus the evidence 

in this thesis that ch1orpromazine in the dose of 10 mg/kg 

induces a much greater percentage increase in DA metabolites than 

in NE metabolites could be misleading. In fact, a dose of chlor- 

promazine six times that of haloperidol has been reported to be 

necessary to raise MHPG-S in rat brain 25 percent (72). But a 

dose of ch1orpromazine about twelve times that of haloperidol 

is equipotent in raising HVA levels (1). The clinical anti¬ 

psychotic potency of haloperidol is forty or fifty times that 

of chiorpromazine (43). Thus the twelvefold potency difference 

between the two drugs on raising HVA correlates more closely 

with the relative clinical potencies than does the six-fold 

potency difference between the two drugs in raising MHPG-S. If 

a dose of ch1orpromazine 25 times that of haloperidol had been 

needed to raise MHPG-S levels, then the effect on NE systems 

would have correlated better with the antipsychotic properties, 

despite the fact that both drugs seem to block DA receptors 

more strongly than NE receptors. 

Listing the relative potencies of many drugs on only one 

monoamine system - for example, on their ability to raise MHPG-S 

can be misleading too. Thus in the example above, if either 

haloperidol had been more potent or ch1orpromazine had been less 

potent in its effects on MHPG-S, then this would have been better 

evidence for the theory that NE receptor blockade is responsible 

for antipsychotic action. The order of potency can be misleading 

if not compared to the order of potencies on the DA system and 





clinical effect.Absolute dosage must be considered as well. 

Haloperidol, for example, has been reported to have varying 

effects on noradrenergic function (3, 5, 38) but is one of the 

most potent antipsychotic drugs in increasing MHPG-S (72). 

Yet in the very small doses in which it is clinically useful 

it has little effect on MHPG-S levels (72). 

Although these strict criteria are difficult to fulfill 

in one experiment, the weight of evidence supports the above 

hypothesis. In functional, biochemical, and electrophysiologica1 

studies in the rat the most potent and specific antispychotic 

drugs seem to influence mainly brain DA mechanisms (3). It 

seems unlikely that this correlation is accidental and not 

causally related. The relative antipsychotic potencies of the 

various drugs seem to correlate much better with effects on 

DA turnover and neuronal activity than with effects on NE 

neuronal systems (3). 

Almost all known antipsychotic drugs in high enough doses 

produce parkinsonian and other extrapyramida 1 side effects 

presumably because of their interference with dopaminergic 

transmission in the striatum (75, 110. 124). The tendency to 

produce these extrapyramida 1 effects correlates well with the 

antipsychotic potencies (4-3). It has been suggested that the 

potency of antipsychotic drugs in enhancing NE turnover parallels 

their sedative properties (72). Thus drugs such as pimozide (19) 

and haloperidol (43) are reported to be potent antipsychotic 

drugs likely to cause extrapyramida 1 effects but with little 

sedative action. These are potent blockers of DA receptors and 

markedly enhance DA turnover but have weaker effects on NE 

systems (1, 3, 4, 5, 28, 72, 95). Drugs such as thioridizine (43) 





65 

must be used in much higher doses to be effective antipsychotic 

agents, are unlikely to cause extrapyramida 1 effects, and are 

sedating. This drug blocks both DA and NE receptors when used 

in relatively high doses (3, 16, 72). Ch1orpromazine is a drug 

which is clinically quite similar to thioridizine (43) . It is 

somewhat surprising that the effect of ch1orpromazine on NE turn¬ 

over has not been more consistently documented. Another interesting 

antipsychotic drug is clozapin. This compound rarely causes extra- 

pyramidal symptoms but does increase HVA in the striatum and 

certain limbic area in animal brain (6). It has been suggested 

that the anticholinergic properties of some antipsychotic drugs 

are related to the tendency to produce fewer extrapyrami da 1 

effects (6). 

Though attempts to correlate antipsychotic potencies with 

effects on DA and NE turnover can become quite confusing, the 

simple observation that most antipsychotic drugs affect 

dopaminergic neuronal systems seems clear. Thus it seems now 

that it is the blockade of DA receptors that is crucial to the 

antipsychotic effects of these drugs. The site of the anti¬ 

psychotic action is still unknown, but the distinction between 

effects on striatal and limbic DA projections is being 

investigated (4). 

Reinforcing the notion that DA and NE activity are involved 

in the pathogenesis and treatment of psychosis has been the use 

of amphetamine-induced stereotypy in animals and amphetamine- 

induced paranoid psychosis in man as mqdels for schizophrenia 

(7, 8, 44, 45, 108, 110, 124, 125). Amphetami nes are known to 

potentiate the central actions of DA and NE by causing the 
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release and interfering with the re-uptake of both these 

catecholamines at their respective synapses (121). There is 

considerable evidence in animals to support the hypothesis 

that amphetamine stereotypy is due to increased availability 

of DA at its post-synaptic receptors in the basal ganglia. 

A1pha-methyl-paratyrosine blocks synthesis of DA and NE and 

prevented the induction of stereotyped behavior in the rat by 

amphetamine (133), while an inhibitor of the conversion of DA 

to NE did not prevent amphetamine stereotypy (107). Lesions 

of the corpus striatum prevented the development of the same 

behavior (109) while direct application of DA to this region 

elicited the behavior without amphetamine (46). 

Based on behavioral and biochemical differences between 

d- and 1-isomers of amphetamine some investigators (8, 42, 124, 

125, 129) have suggested that amphetamine psychosis in humans is 

a result of the potentiation of the effects of brain DA. Other 

investigators have disputed the differences between isomers 

which support the above theory (29, 41, 65, 122, 127, 132). 

Amphetamine psychosis in humans remits readily in response 

to antipsychotic medication ( Angrist, B., unpublished 

observation). 

It is important to keep in mind when discussing 

schizophrenia that this diagnosis can refer both to an 

acute psychotic state and to a long-term debilitating 

process (43). The efficacy of antipsychotic drugs like 

chiorpromazine is better documented for the former (92) 

than for the latter. We are just beginning to understand 
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the interplay of genetic, biological, social, emotional, 

symbolic, and cognitive functioning which are included in 

the term 11 schizophrenia " (103, 126). Certainly the role 

of the antipsychotic drugs in alleviating the symptoms of 

schizophrenia must be studied in more detail on a variety 

of levels. 

Perhaps measurement of DA and NE metabolites in human 

CSF will prove to be a clinically useful method for studying 

the central metabolism of the catecholamines. The interaction 

of drugs such as chlorpromazine with brain DA and NE in the 

therapy of schizophrenia might be better understood using 

this methodology. As demonstrated in this thesis, accumulation 

of endogenous metabolites in the CSF, as well as accumulation 

in the CSF of labeled metabolites formed from radioactive 

precursor of DA and NE can reflect changes in central 

dopaminergic and noradrenergic function. 
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