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Vasopressin and Oxytocin reduce 
Food sharing Behavior in Male,  
but not Female Marmosets in  
Family groups
Jack H. Taylor1,2*, Allison A. Intorre1,2 and Jeffrey A. French1,2,3

1 Department of Psychology, University of Nebraska at Omaha, Omaha, NE, United States, 2 Callitrichid Research Center, 
Omaha, NE, United States, 3 Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States

Oxytocin (OT) is critical for lactation and maternal care, but OT and the related nonapeptide  
vasopressin are important for caregiving behaviors in fathers and alloparents as well. 
This experiment tested the effects of vasopressin and OT on food sharing in marmoset 
families. We treated caregivers (parents, siblings) with intranasal vasopressin, OT, or 
saline, and then paired them with the youngest marmoset in the family. Caregivers were 
given preferred food, and then observed for food sharing and aggressive behavior with 
young marmosets. OT reduced food sharing from male alloparents to youngest siblings, 
and fathers that received vasopressin refused to share food with their youngest offspring 
more often than when treated with OT. Vasopressin increased aggressive vocalizations 
directed toward potential food recipients in all classes of caregivers. These results indi-
cate that vasopressin and OT do not always enhance prosocial behavior: modulation of 
food sharing depends on both sex and parental status.

Keywords: food sharing, provisioning, oxytocin, vasopressin, marmoset, sibling, parental care

inTrODUcTiOn

In mammals, mothers begin providing nutritional support (i.e., lactation) immediately after the 
delivery of offspring, and this process is regulated by the nonapeptide hormone oxytocin (OT) and its 
cognate receptor (1). OT is also an important modulator of other maternal behaviors in addition to 
lactation, as demonstrated in multiple experimental approaches. OT administered intracerebroven-
tricularly (i.c.v.) induces maternal behavior in estrogen-primed rats (2), and OT receptor (OTR) 
antagonists administered directly into the ventral tegmental area, or administered directly into the 
medial preoptic area block the normal expression of postpartum maternal behavior in rats (3, 4), 
indicating a causal role for OT in the onset of maternal behavior. Arginine vasopressin (AVP), a 
nonapeptide that is closely related to OT, also modulates maternal behavior. AVP and OT are highly 
similar nonapeptides, differing at only two amino acid positions, and each can bind and activate the 
others’ receptors [reviewed in Ref. (5, 6)], but often AVP and OT affect different behavioral patterns 
associated with mother–offspring interactions. Pharmacological manipulations of AVP in the brain 
indicate that AVP is an important neuromodulator of “active” maternal behavior, including the 
enhancement of defensive aggression [(3, 4); c.f. (7, 8)]. Data from correlational studies investigating 
OT or AVP support a role for both nonapeptides in the regulation of maternal care (9–11), though 
there is some concern over whether peripheral measures of nonapeptides accurately reflect levels 
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in the central nervous system (12, 13). These experimental and 
correlational data show that OT and AVP are important neuro-
modulators of maternal behavior.

There is strong evidence that OT modulates behavior in car-
egivers other than the mother, including fathers (paternal care), 
as well as older siblings and unrelated, reproductively inexperi-
enced males and females (alloparental care). OT-like compounds 
facilitate male parental care in several non-mammalian species 
[(14, 15); c.f. (16)]. OT induces maternal-like behavior in female 
sheep exposed to unrelated offspring and enhances pup care 
in reproductively naïve female rats, animals which would not 
otherwise provide care spontaneously (2, 17, 18). Moreover, 
OTR knockdown reduces spontaneous alloparental behavior in 
female prairie voles (19). Male caregiving behavior is affected 
by OT as well; i.c.v. OT enhances food provisioning behavior 
in marmoset monkey fathers (20), and intranasal OT increases 
responsiveness to infant stimuli in marmoset males (21). In 
humans, intranasal OT in fathers enhances infant touching and 
joint father–infant social gaze (22). Correlational data support 
these pharmacological studies in fathers and alloparents. In 
general, OT-system activity, measured both peripherally and 
centrally, increases with caregiving behavior in human fathers 
(9, 11, 23), non-human alloparents (24, 25), and fathers of 
biparental non-human species (24, 26–29). Taken together, these 
data show that OT is important for modulating the behavior of 
all caregivers.

Arginine vasopressin and its non-mammalian analogs also 
affect caregiving behavior in fathers and alloparents. In repro-
ductively inexperienced male prairie voles, i.c.v.-administered 
AVP enhanced, and a V1aR antagonist inhibited, alloparental 
behavior (30). Similarly, AVP enhanced responsiveness to infant 
stimuli in female marmosets [including infant-naïve females 
(21)]. Correlational data also suggest that AVP-system activity 
enhances parental behavior. Exposure to young enhances AVP-
system activity in the brain (27, 31–34), and enhanced paternal 
behavior is positively associated with AVP-system activity  
(9, 35). In other species and contexts though, AVP activity 
inhibits caregiving behavior by non-mothers. AVP administra-
tion reduced nest building in biparental old-field mouse fathers, 
and inhibition of AVP neuron activity enhances nest building in 
male and female laboratory mice (36). Similarly, V1aR mRNA 
is downregulated in biparental California mouse fathers, and 
increased V1aR mRNA expression in California mice is associ-
ated with longer latencies to approach pups (28). AVP-mediated 
inhibition of paternal behavior is present in non-mammals as 
well; intraperitoneal vasotocin inhibited paternal behavior in 
poison frogs and clownfish (14, 16). In other contexts, the rela-
tionship between AVP and caregiving behavior by non-mothers 
is less clear. AVP administration did not affect responsiveness 
to infant stimuli in male marmosets (21), and V1aR antagonist 
treatment in reproductively inexperienced male prairie voles was 
only effective at reducing alloparental behavior when it was co-
administered with an OTR antagonist (37). Thus, the relationship 
between AVP and caregiving in non-mothers is less clear than 
the relationship between OT and caregiving in non-mothers, and 
it is less clear than the relationship between AVP and caregiving 
behavior in mothers.

Females are the primary provisioners early in mammalian 
development (via lactation) but in marmosets, mothers, fathers, 
and alloparents participate in food sharing behavior to infants 
both during and after weaning. Moreover, the relationship 
between increased urinary OT and food provisioning in marmo-
sets strengthens during and after weaning (24). To date, only one 
study has shown that OT manipulation enhances food sharing 
behavior. Saito and Nakamura (20) treated marmoset fathers 
with i.c.v. OT and found that OT reduced food sharing refusals 
to young, a measure of enhanced food provisioning, but not older 
offspring. OT did not affect active food sharing in fathers, though. 
We sought to expand Saito and Nakamura’s findings by investi-
gating both OT- and AVP-mediated food sharing in all family 
members. In this experiment, we investigated the influence of 
AVP and OT on food sharing with juvenile family members by 
fathers, mothers, and older siblings (alloparents) in marmosets. 
We treated marmoset mothers, fathers, and alloparents with 
intransal AVP, OT, or saline control, and then tested their provi-
sioning of rewards in a food sharing paradigm. In this paradigm, 
caregivers could choose to share or withhold preferred food items 
with the youngest member of the family. If AVP and OT affect 
food provisioning via general prosocial mechanisms, then we 
would expect both AVP and OT to increase food provisioning 
in all caregivers, regardless of sex or parental status (breeder vs. 
alloparent). Alternatively, if AVP and OT act via mechanisms 
specific to sex or parental status of food provisioners, then we 
would expect differential rates of food provisioning between 
AVP- and OT-treated mothers, fathers, and alloparents. Because 
AVP enhanced responsiveness to infant stimuli in marmoset 
females and OT enhanced responsiveness to infant stimuli in 
marmoset males (21), we expected a similar pattern with respect 
to food provisioning; we expected AVP to enhance food sharing 
behavior in mothers and female alloparents and OT to enhance 
food sharing behavior in fathers and male alloparents.

MaTerials anD MeThODs

subjects
We used 17 marmosets (Callithrix jacchus) from three differ-
ent family groups at the University of Nebraska at Omaha’s 
Callitrichid Research Center as subjects. Twelve served as 
potential food provisioners (four adult parents and eight older 
sibling alloparents, ages 1.15–6.7  years) and five were juvenile 
marmosets (30–60  weeks of age) that served as potential food 
recipients. Breeding females were contracepted with cloprostenol 
(38) to prevent the confounding effects of the presence of nursing 
and dependent infants within family groups. Thus, all potential 
food recipients were the youngest animals in their family groups. 
Table  1 provides demographic and social information on the 
animals included in the experiment. Marmosets were housed in 
large family enclosures (1.0 m × 2.5 m × 2 m), and each enclosure 
had two smaller holding areas (30 cm × 30 cm × 66 cm each) in 
which all food sharing trials occurred. Marmosets were fed a daily 
diet of commercial marmoset diet (Science Diet), at approxi-
mately 0900  h, and fresh fruits, eggs, mealworms, and yogurt, 
at approximately 1500 h. Further details on colony management 
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TaBle 1 | Marmoset family demographics and recipient pairings.

Family iD Parents (ages) alloparent siblings 
(ages)

recipient juveniles  
(sex/age)

C1 Mother (5.7 years) Juvenile 1 (F/0.7 years)
Father (6.0 years) Juvenile 1

C2 Mother (6.7 years) Male 1 (2.1 years) Juvenile 1 (F/0.7 years)
Father (6.7 years) Female 1 (2.1 years) Juvenile 2 (F/0.7 years)

Female 2 (1.2 years) Juvenile 1
Male 2 (1.2 years) Juvenile 2

C3 Mothera (5.7 years) Female 1 (2.0 years) Juvenile 1 (M/1.1 years)
Fathera (3.4 years) Female 2 (2.0 years) Juvenile 2 (M/1.1 years)

Male 1 (1.6 years) Juvenile 1
Male 2 (1.6 years) Juvenile 2

aIndicates these animals were removed from the study because they refused 
experimenter-provided food.
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and husbandry can be found in Ref. (39). All procedures were 
approved by the University of Nebraska at Omaha/University of 
Nebraska Medical Center IACUC (#15-005-04-FC).

identification of Preferred Food items
We wanted to identify foods that were preferred enough by mar-
mosets to elicit consistent food begging by juveniles, but not so 
highly preferred that provisioners would refuse to share them. We 
surveyed our colony (four males, six females from Table 1, plus 
an additional male and an additional female) to identify preferred 
food items using a two-choice food preference test (40). The food 
items tested were Science marmoset diet, breakfast cereal (Honey 
Nut Cheerios©), apple, and marshmallows. Adult and subadult 
marmosets were presented with two food items on a tray, sepa-
rated by 2.5 cm, and we recorded which food item was selected 
first among each food pair. All possible combinations of food item 
pairs were presented to each marmoset at least four times, with 
order of testing food pairs randomized and position of food items 
on the tray alternated between trials.

Food sharing Test
At the beginning of each session, the marmoset serving as 
food provisioner was briefly manually restrained and treated 
intranasally with either the variant of OT native to marmosets 
(Pro8-OT; approximately 150 µg/kg), vasopressin (approximately 
133 µg/kg; ~80 IU), or a saline control. Intranasal treatments were 
applied dropwise in a volume of 50 µL per nostril. These doses 
have been shown to alter social behavior in marmosets and Titi 
monkeys (21, 41–43). Each provisioner was exposed to all three 
treatments in a counterbalanced order, with at least 48 h between 
treatments. Salivary OT in humans returns to near baseline levels 
in less than 7 h after intranasal administration (44). The marmo-
set was returned to the home cage, and a period of 20 min was 
given to allow uptake of the treatment (45, 46). After 20 min, the 
provisioner and recipient were moved to a holding area within the 
home cage, eliminating the potential for other family members to 
interfere with potential food provisioning. The provisioner and 
the recipient were briefly separated with a slotted barrier, and the 
provisioner was offered a piece of food in a dish. As soon as the 
provisioner obtained the food item, we removed the barrier, and 
interactions between the caregiver and recipient were recorded 

by a single observer who was blind to experimental treatment 
condition for the provisioner.

Specific behaviors of interest were begging, food sharing, food 
sharing refusals, and vocalizations. Begging (count) was recorded 
when the recipient marmoset made contact with the provisioner 
when attempting to take the apple or cereal. Food sharing (count, 
latency) was recorded when the provisioner transferred or allowed 
recipient to take part or all of the food provided. Food sharing 
refusals (count) were recorded when a beg occurred, but sharing 
did not. Begging cries (count) from the recipient and aggressive 
“Ehr-Ehr” vocalizations (count) by the provisioner were also 
recorded for each trial. To account for trial-by-trial differences 
in recipient behavior, we recorded if the recipient did not see (yes/
no) food before it was eaten, recipient appeared to see food, but 
had no interest (yes/no), and recipient watched (yes/no) caregiver 
eat food, but did not attempt to take food.

Each session of testing consisted of 20 1-min trials, and apple 
and cereal were alternated in successive trials. If the provisioner 
dropped the piece of food before the barrier between the provi-
sioner and recipient was removed, an additional food item was 
given to the provisioner. Each provisioner:recipient pair was 
tested under all three experimental conditions (OT, AVP, saline).

Data analysis
We used a trial-by-trial analysis to evaluate effects of treatment, 
sex, and caregiver parental status within the family (parent vs. 
alloparent). We used a Linear Mixed Model analysis, and nested 
food sharing trials within testing sessions, sessions within indi-
vidual marmosets, and marmosets within families. This strategy 
allowed us to control for trial-by-trial differences in recipient 
and provisioner hunger status, motivation, or attention, as well 
as experiment-wide differences in recipient age and family size. 
Moreover, we were able to appropriately treat families, individuals, 
and testing sessions as non-independent entities. Our final model 
is described in Eq. 1. Significant main effects and interactions 
were explored using Fisher’s post hoc tests, using a Satterthwaite 
approximation for degrees of freedom.

 

Behaviour = Caregiver Sex reatment Parental Status Food T×× ΤΤ ×× ×× yype

                Family Size  Recipient Age  Sessio+ + + nn Number

Trial Number  Recipient Interest

error(Famil

a+ +

+ yyID)  error(MonkeyID)

error(SessionID)  error(residual

+

+ + )) (1) 

Equation 1. Template model for analysis of behavioral data. 
Bolded variables indicate primary tests of hypotheses. aRecipient 
Interest was composed of three separate variables and corresponding 
regression coefficients: recipient did not see food before it was eaten, 
recipient appeared to see food, but had no interest, and recipient 
watched caregiver eat food, but did not attempt to take food.

resUlTs

Food Preference
Adult marmosets showed a clear hierarchical preference profile for 
the four food items we tested. Standard diet was never preferred 
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FigUre 3 | Caregiver (parents, alloparents) food share refusals after a 
recipient food beg. Mothers refused to share food less often than any other 
caregiver group. Fathers treated with arginine vasopressin (AVP) refused 
more when treated with AVP compared to Pro8-oxytocin (OT). Asterisks 
indicate significant differences between social roles using a Fisher’s post hoc 
test (p < 0.05). Bars with differing letters indicate significant differences 
across treatments within individuals using a Fisher’s post hoc test.

FigUre 2 | Latency for caregivers (parents, alloparents) to share food to the 
youngest family members. Mothers shared significantly faster than fathers 
and female alloparents. Bars with differing letters indicate significant 
differences between social roles using a Fisher’s post hoc test.

FigUre 1 | Food sharing from caregivers (parents, alloparents) to the 
youngest family members. Mothers shared significantly more than fathers 
did. Male alloparents treated with Pro8-oxytocin (OT) shared less than when 
they were treated with saline or arginine vasopressin (AVP). Asterisks indicate 
significant differences between social roles using a Fisher’s post hoc test 
(p < 0.05). Bars with differing letters indicate significant differences across 
treatments within individuals using a Fisher’s post hoc test.

TaBle 2 | Choice matrix for all food items paired with all other food items.

chosen food (%)

Paired food Diet apple cereal Marshmallow

Diet – 100a 97.9a 100a

Apple – 62.5 70.8a

Cereal – 70.8a

Marshmallow –

Bold values indicate no significant preference for chosen food over paired food.
aIndicate percentage for chosen food was significantly different from 50% [t(11) > 2.41, 
p < 0.05].
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over other foods, and marshmallows were always preferred over 
other foods. However, there was no overall preference for apples 
vs. cereal (Table 2, bolded), thus apples and cereal were interme-
diate in preference compared to diet and marshmallow. In order 
to maximize food begging while optimizing rates of food sharing 
(i.e., prevent floor or ceiling effects due to food preference), we 
chose apples and cereal as our food items in our food sharing test.

Food sharing Test
Food sharing was associated with the parental status of the 
provisioner, and it was affected by the interaction between 
parental status and nonapeptide treatment. Mothers shared more 
often than fathers, but otherwise there were no differences in 
rates of food sharing among parents or alloparents [Figure  1; 
F(1, 13.65)  =  6.23, p  =  0.026]. Mothers also had shorter latencies 
to share food than fathers and female alloparents [Figure  2;  
F(1, 13.7) = 7.28, p = 0.018]. Male alloparents were the only family 
members whose rates of food sharing were altered by nona-
peptide treatment. In male alloparents, Pro8-OT reduced food 
sharing compared to AVP and saline [F(2, 26.3) = 3.45, p = 0.047], 
but neither Pro8-OT nor AVP changed rates of food sharing in 

mothers, fathers, or female alloparents nor did it affect latencies 
to share. Provisioners shared marginally, but not significantly, 
more often [F(1, 11.29) = 3.78, p = 0.07; Table S1 in Supplementary 
Material] and faster to younger recipients than to older recipients 
[F(1, 11.31) = 4.31, p = 0.06, Table S2 in Supplementary Material].

Food sharing refusals were also associated with the parental 
status of the provisioner with the family, and food sharing was 
also affected by the interaction between parental status and nona-
peptide treatment (Figure 3). Just as mothers shared more often 
than other caregivers, mothers also refused to share less often 
than any other caregivers [Figure  3, brackets; F(1, 42.4)  =  14.38, 
p < 0.001]. Fathers were the only family members whose rates 
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FigUre 4 | Aggressive vocalization emitted by caregivers (parents, 
alloparents). Treatment with arginine vasopressin (AVP) increased aggressive 
vocalizations compared to saline, Pro8-oxytocin (OT). Bars with differing 
letters indicate significant differences across treatments using a Fisher’s 
post hoc test.
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did, and food provisioning behavior by mothers and female 
alloparents was not altered by manipulations of AVP or OT. 
The food provisioning behavior of male alloparents and fathers, 
however, was altered by AVP and OT treatment. Contrary to our 
hypothesis, AVP decreased provisioning behavior in fathers, and 
OT decreased provisioning behavior in male alloparents.

Previous studies in our lab indicated that AVP and OT 
enhance parental behavior and food sharing in marmosets. Food 
sharing among adults toward the pair mate was reduced following 
OTR antagonist treatment, suggesting that OT is important for 
prosocial food sharing behavior within the family (47). In a simu-
lated infant distress paradigm, AVP enhanced responsiveness to 
infant stimuli in females, and OT enhanced responsiveness to 
infant stimuli in males (21), so we had expected to observe the 
same pattern with regard to food provisioning to juveniles; we 
expected AVP to enhance caregiving behavior in females, and 
OT to enhance caregiving behavior in males. However, in the 
context of maintaining monogamous pair bonds, previous work 
in our lab has provided evidence that OT may not always enhance 
prosocial behavior. OT did not enhance behavior directed toward 
the pair mate, but rather it reduced prosocial food sharing and 
sociosexual behavior directed toward opposite-sex strangers, 
thereby enhancing fidelity to the established pair mate (41, 43). 
Thus, AVP and OT may not enhance prosocial behavior generally, 
instead they may alter social decision-making based on context 
and social relationships.

We designed this experiment to expand upon the work 
done by Saito and Nakamura (20), who demonstrated that OT 
enhances food sharing in fathers toward younger (7–16 weeks), 
but not older (24–31 weeks) offspring. We expanded on the age 
range, and showed that OT does not alter paternal food shar-
ing behavior toward older offspring (36–57  weeks). We used a 
different dose of OT and method of administration that Saito 
and Nakamura (20), and found no effect of OT on food sharing 
behavior toward older offspring in fathers. Escalating doses of OT 
and AVP produce differential behavioral effects in other species 
[e.g., Ref. (42, 48–50)] and it is likely that the same is true in mar-
mosets. We used a single dose of each nonapeptide that affects 
adult pair-bonding behavior (41–43), but it may be the case that 
varying doses may have had differential behavioral effects in this 
context. With regard to fathers though, OT did not affect food 
sharing behavior at our intranasal dose or the i.c.v. dose used by 
Saito and Nakamura (20). An important distinction between our 
study and Saito and Nakamura’s (20) is that the OT ligand used 
differed: Saito and Nakamura used the conserved mammalian 
variant of OT (Leu8-OT), while we used the variant native to 
marmosets, Pro8-OT. Pro8-OT and Leu8-OT differentially affect 
marmoset social behavior in some contexts of adult pair bonds 
(41, 43, 51, 52). We also treated marmosets with AVP in our food 
sharing task, and compared to treatment with Pro8-OT. Like Saito 
and Nakamura, we found that OT at these doses did not affect 
paternal food sharing toward older offspring, and that AVP at this 
dose inhibited paternal food sharing behavior. We also included 
mothers and alloparents, and found that OT inhibited food 
sharing behavior in male alloparents. Our findings, combined 
with those of Saito and Nakamura, demonstrate that behavioral 
modification via AVP and OT is flexible; AVP- and OT-mediated 

of food sharing refusal were affected by nonapeptide treatment. 
Fathers treated with AVP had higher rates of food sharing refusals 
than when treated with Pro8-OT [Figure 3, letters; F(2, 39.9) = 3.24, 
p  =  0.050]. Recipient age did not affect food sharing refusals  
[F(1, 33.04) = 2.64, p = 0.11].

Aggressive vocalizations (Ehr-Ehr) emitted by the provisioner 
during the food sharing test were associated with the parental 
status of the provisioner, as well as nonapeptide treatment. 
Alloparents emitted more aggressive vocalizations than parents 
did [F(1, 694)  =  13.52, p  <  0.001; alloparents, M (±  SEM)  =  0.3 
(0.03) vocalizations per trial; parents, M (± SEM) = 0.069 (0.05) 
vocalizations per trial]. Additionally, AVP increased aggressive 
vocalizations in provisioners compared to both Pro8-OT and 
saline in both parents and alloparents [Figure 4; F(2, 694) = 4.49, 
p = 0.012]. There were no sex differences in provisioner aggres-
sive vocalizations [F(1, 694)  =  0.02, p  =  0.877], and sex did not 
interact with nonapeptide treatment or parental status [F’s < 0.31, 
p’s > 0.640]. Provisioners emitted marginally, but not significantly, 
more aggressive vocalizations toward younger recipients than 
they did toward older recipients [F(1, 694) = 2.99, p = 0.08, Table S4 
in Supplementary Material].

Finally, we evaluated whether nonapeptide treatment of 
provisioners altered rates of begging cries emitted by recipients. 
Nonapeptide treatment of the provisioner did not affect recipient 
begging cries, nor did parental status of the provisioner or the 
interaction (F’s < 2.24, p > 0.05). Begging cries did, however, vary 
by the recipient’s age; older recipients exhibited fewer begging cries 
than younger recipients [b = −0.0034, F(1, 11.2) = 5.38, p = 0.040].

DiscUssiOn

In marmosets, all family members perform post-weaning car-
egiving behavior in the form of food sharing, and we showed that 
nonapeptide treatment altered food sharing behavior in some, 
but not all, caregivers. Overall, mothers consistently provisioned 
food to recipients more frequently than fathers or alloparents 
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food sharing behavior depends on multiple factors, including 
offspring age, caregiver sex, and parental status.

Food sharing behavior in primates is the product of multiple 
demographic and contextual variables. The relationship between 
OT and caregiving behavior in marmosets change with offspring 
age (20, 24), suggesting that OT modulates caregiving behavior 
dynamically with changing offspring and caregiver needs. 
Moreover, in large marmoset families, offspring age, caregiver 
experience, sex, and parental status interact to produce differ-
ential food provisioning behavior. Tolerance for food begging 
in adult marmosets wanes as offspring mature (53), reflecting 
reduced responsivity to signals for continued care from older 
offspring. Food sharing behavior in alloparents is also modulated 
by multiple variables, including sex and experience. Previous 
experience in rearing infants is associated with improved food 
sharing in male, but not female alloparents during undisturbed 
conditions (54). In an experimental task in which a response 
provided food to a younger family member, mothers, fathers, 
and male alloparents all selectively provided food to younger 
family members, but female alloparents exhibited lower scores 
on this measure (55). There is some evidence supporting the role 
of OT in altering social decision-making depending on social 
context, rather than enhancing global prosociality. In macaques, 
OT increases the willingness of male macaques to reward 
another macaque, but only when the alternative is to reward no 
one. However, when choosing to reward the self or another, OT 
increased selfish choices (56). In pair-bonded adult marmosets, 
OT does not increase food sharing with the pair mate, it instead 
decreases food sharing with an opposite-sex stranger (43). OT 
also reduces food sharing in group-housed adult capuchin mon-
keys, and it was suggested that this was mediated by OT-induced 
increases in social distance (57). It is likely that interactions 
between older and younger siblings, neither of which are wholly 
dependent on caregivers, will yield some selfish decision-making 
that is altered by hormonal neuromodulators like OT and AVP. 
Our findings speak to the broader issue of whether OT and AVP 
enhance prosocial behavior generally, or whether they alter social 
behavior depending on social context. We found that OT and 
AVP inhibited food sharing behavior, suggesting that OT and 
AVP alter social behavior depending on characteristics of the 
caregiver, rather than global enhancement of prosociality.

Arginine vasopressin is known to affect a wide range of aggres-
sive behaviors, including maternal aggression [(3, 4, 10); c.f.  
(7, 8)], as well as territorial aggression [reviewed in Ref. (58)].  
In general, the association between AVP and defense of offspring 
is limited to females (reviewed in Section “Introduction”), though 
not always (31), while AVP-mediated modulation of territorial 
aggression is often limited to males [reviewed in Ref. (58)]. 
We found that AVP increased aggressive vocalizations during 
food sharing trials, in males and females, as well as in parents 
and alloparents. There are two explanations for our lack of a sex 
effect. First, food aggression, maternal aggression, and territorial 
aggression may be controlled by different endocrine mechanisms, 
including AVP and OT. There is some evidence for this, as AVP 
V1b receptor knockout mice display impaired maternal and 
territorial aggression, but predatory aggression remains intact, 
suggesting that food aggression is different from defending off-
spring or territory (59, 60). However, while V1b knockout mice 

do compete for food, they do not compete as aggressively as wild 
types (59), weakening this argument. An alternative explana-
tion for our lack of a sex effect in AVP-mediated aggression is 
that AVP and OT may affect aggressive behavior differently in 
primates than it does in rodents. There is some evidence for this, 
V1b receptor genetic polymorphisms human children are associ-
ated with aggression in both boys and girls, though they are more 
robust in boys than in girls (61, 62). Our findings highlight the 
need for more continued study of AVP, OT, and aggression in 
non-human primate models.

Oxytocin and AVP are involved in the modulation of dyadic 
interactions that are dependent on the behavior of both individu-
als. In humans, intranasal OT treatment in fathers enhances social 
reciprocity between father and infant, it also causes an increase in 
infant salivary OT and duration of social gaze (22). Similarly, high 
paternal plasma and salivary OT in human mothers and fathers is 
associated with father–infant coordination of affect (23, 63). Both 
AVP and OT are associated with dyadic interactions involving 
responding to infant gaze (9). This work in humans suggests that 
OT and AVP in the caregiver can affect behavior in the recipi-
ent. Previous work in our lab has shown that the behavior of an 
untreated marmoset is altered by OT treatment of the pair mate, 
suggesting that nonapeptides might alter the social attractiveness 
of a social partner (52). There is an important dyadic component 
to our measure of food sharing refusals. AVP-mediated increases 
in refusals may be the result of stable rates of begging and increased 
rates of refusal, or it may be the result of both increased rates of 
begging and increased refusal. However, begging cries emitted 
by the recipient were unaffected by nonapeptide treatment, sug-
gesting that the behavior of recipients did not change in response 
to altered stimulus properties or any unobserved behavior of the 
caregiver.

There is considerable overlap between the OT and AVP sys-
tems in terms of neuroanatomical distributions [Reviewed in Ref. 
(64)] and receptor affinity [Reviewed in Ref. (6)], and there are 
also often important sex and species differences in the effects of 
OT and AVP on behavior. Given the considerable variation in 
NWM species OTRs and V1aRs, interactions between Pro8-OT 
and V1aR (or AVP and marmoset OTR) may be either reduced 
(i.e., greater receptor selectivity) or enhanced (i.e., greater recep-
tor promiscuity) compared to humans, mice, and rats. Currently, 
the binding affinities and signaling potencies/efficacies of these 
ligand–receptor complexes is unknown. When AVP and OT are 
studied together, they provide valuable insights on these closely 
related systems, such as showing that OT and AVP act via one 
another’s receptors, and that they affect behavior synergistically. 
For example, both AVP and OT induce territorial marking in 
Syrian hamsters, but OT-induced marking is blocked by AVP 
receptor antagonists, not OTR antagonists (65). Similarly, block-
ing both OTRs and V1aRs reduced alloparental behavior in male 
voles, but blocking only one of these receptor types did not, 
indicating that AVP and OT work in concert to modulate male 
vole parental behavior (37). We found that AVP increased food 
sharing refusals in fathers, but not in male alloparents. Instead, 
for male alloparents, OT reduced total food sharing. These 
examples show that more information and nuance are gained 
from studying AVP and OT together than the sum of what is 
gained from studying each individually. These studies highlight 
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the importance of comparing OT and AVP, especially in species 
with complex behavior and interindividual relationships.
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