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ABSTRACT 

A proper interpretation of perimetric results first requires an adequate 

evaluation of patient reliability. The patient reliability parameters that are 

currently used require extra testing time and are based on a relatively small 

sample of the subject's responses. To develop a new, more robust reliability 

parameter, 160 visual fields of 20 eyes of 20 healthy volunteers were performed 

with a customized static threshold program of 44 test locations. The responses 

to the bracketing strategy algorithm were analyzed for inconsistencies which 

occurred when the subject claimed to see and not see the same intensity 

stimulus when re-presented at the same test location. These inconsistencies 

were summed over the entire visual field and termed "number of inconsistent 

responses". The number of inconsistent responses correlated significantly with 

the following parameters: the sum of false-positive and false-negative 

responses to catch trials (r = 0.62; p = 0.003), fixation losses (r = 0.51; p = 

0.020), and total number of stimuli (r = 0.61; p = 0.004). In contrast to 

conventional reliability parameters, the number of inconsistent responses is 

based on all the subject's responses and requires no additional testing time. 
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INTRODUCTION 

BACKGROUND 

Visual field testing has undergone many extensive changes and 

developments. In the 5th century B.C., Hippocrates first reported the existence 

of hemianopsia in one of his patients and in 150 B.C. Ptolemy made the first 

recorded attempt to measure a visual field. Mariotte made the next major 

discovery in 1688, describing the existence of a scotoma, which is now known 

as the physiological blind spot. Thomas Young in 1801 made the first 

quantitative measurement of a visual field. 

Visual field examinations and techniques continued to evolve and their 

value have become increasingly more apparent. In 1856 Van Graefe 1 

introduced in a systematic way the campimeter into clinical practice. Through 

his examinations he identified amblyopias, central scotomas, and bitemporal 

and binasal hemianopias. In addition he was able to distinguish absolute from 

relative scotomas. In 1862 with the aid of Albert, Forster created the first arc 

perimeter that allowed the mapping of visual field abnormalities.2 This allowed 

closer examinations of the peripheral visual field and led to the mapping of 
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major glaucomatous visual field defects. It was not until 1889, when Bjerrum 

described the arcuate scotoma using a tangent screen that the analysis of the 

central visual field became popular.3 He understood the necessity of examining 

both the peripheral and central fields in glaucoma. Ronne developed the kinetic 

isopter perimeter in 1909 and described the nasal step in glaucoma.4 Realizing 

its importance, Traquair and others became strong proponents of painstaking 

performance of kinetic perimetry on the tangent screen.5,6,7 

Goldmann understood the need for a perimeter that would provide 

optimal conditions for visual field testing, and in 1945 he introduced his own 

projection perimeter.8 Its spherical shape allowed easier, more accurate, and 

more complete testing of the visual field. The background luminance and the 

size, color, and brightness of the stimulus could now be precisely controlled and 

standardized. It also offered absolute freedom of test object movement. In 

addition he allowed the examiner to directly monitor fixation, so that he could 

better assess the cooperativity and reliability of the patient. Finally, it was 

flexible enough to allow perimetrists to use both static and kinetic techniques 

effectively. It was for these reasons that the Goldmann perimeter became the 

clinical standard throughout the world. 

Louis Sloan, along with Ferree and Rand, were the first to recognize the 

true value of nonmoving, static threshold perimetry.9 However, the 
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popularization of this testing method, and the appreciation of its clinical value 

was the result of Harms and Aulhorn's work.10 They introduced the Tubinger 

perimeter, which was specifically designed for static perimetry. Although it was 

possible to achieve excellent measurements, the time and effort involved made 

it both impractical and unpopular. 

STATIC VERSUS KINETIC PERIMETRY 

Nevertheless, it was recognized that static perimetry has certain 

advantages over kinetic perimetry. Kinetic perimetry uses a stimulus of 

constant size and intensity that moves from an area of non-vision to an area of 

vision. It provides a good general indication of the shape of the visual field with 

isopters in the center and periphery of the visual field. However, accurate 

detection of the boundary between seeing and non-seeing requires a sloping 

area in the hill of vision. In areas where the hill of vision is flat the distance 

between isopters increases. Therefore, kinetic techniques are not very 

sensitive to changes in relatively flat portions of the visual field.11 This testing 

method is susceptible to missing early localized depressions. On the other 

hand, static perimetry uses fixed stimuli that vary in intensity, until the threshold 

is determined. Therefore, it does not really depend upon the slope of the hill of 

vision, and is probably better suited to the flat portions of the hill of vision. With 
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static perimetry, small relative or absolute scotomas can be found that may be 

missed by kinetic techniques.12'14 Static perimetry also delineates central 

scotomas well because it checks the macular area. In addition quantification of 

the threshold allows more reliable assessment of the progression of scotomas. 

Although kinetic perimetry is easier and faster to perform than static perimetry, 

it has the disadvantage of having much more complex algorithms, and 

therefore, it is much more difficult to program and computerize. 

AUTOMATION OF PERIMETRY 

With the development and advancement of computer technology, 

automated perimetry has developed rapidly over the past several decades. 

Dubois-Poulsen and Magis, in the early 1960's, recognized the value of 

automation and are credited with the first significant attempt at automating 

perimetry.15 However, their efforts were limited by technology. The 

electomotors to shift the test stimulus location and change to filters to alter 

stimulus intensity were under the control of the patient. Realizing the 

importance of complete automation, Lynn and Tate followed up the work of 

Dubois-Poulsen and Magis by suggesting the possibility of using a 

microcomputer for automatic visual field examinations.16 This idea was put into 

practical use by the work carried out by several different investigators, most 
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notably that of Fankhauser, Heijl, and Krakau.17"20 

Because automation has made static perimetry much more efficient and 

because it has several advantages over kinetic perimetry, almost all of the 

automatic, computerized perimeters utilize static perimetry as a basis for 

quantitation and screening. Although there are a number of computerized 

perimeters that employ kinetic techniques, the reliability and reproducibility of 

these measurements need to be studied further. 

Automated perimetry has proven to be invaluable for clinical research 

and for the care of glaucomatous patients. With the technology of 

computerized and automated perimetry, one could achieve better 

standardization of testing technique, more uniform control of testing variables, 

and reduction of technician bias.17,21 The visual field test can be performed 

much more rapidly and easily. Standardized quantitative results lend 

themselves well to comparative statistical techniques. Finally, the information 

could be easily retained in computer memory, making possible the display of 

data in a variety of forms.21,22 
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DIFFERENTIAL LIGHT SENSITIVITY ESTIMATION 

Static perimetry is a visual field testing method, which determines the 

retinal sensitivity by the detection of various intensities of a stimulus with a 

constant background luminance, stimulus size, and exposure duration. The 

sensitivity is known as the differential light sensitivity. A visual field is 

completed, when the differential light sensitivity has been determined for a 

number of test locations. The sensitivity is the inverse of the threshold, which 

is defined by the psychometric function of frequency-of-seeing curve of the 

subject.23 The threshold is the light intensity, whereby the subject is able to see 

a stimulus of constant size and exposure duration, 50% of the time (Figure 1). 

Since scatter is a property of the threshold itself, thresholds clearly are not 

absolute values.24 It should be noted that the frequency-of-seeing curve 

assumes a symmetry of barely seeing and readily seeing sides of the curve, 

such as in a Gaussian distribution, but this has recently been called into 

question.25'27 

Various bracketing or staircase methods have been described to 

determine a threshold. Besky developed a method which was used to measure 

aural thresholds of audio frequencies.28 Cornsweet adapted this method to 

determine threshold values for light sensitivity.29 Although this method was 
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never used for perimetry, it is still employed for various psychophysical tests, 

such as the Nicoles CS-2000 contrast sensitivity. 

Later, Spahr further developed a repetitive staircase method, based upon 

computer simulations and theoretical considerations.30 His method worked by 

using bracketing steps of 4, 2, and 1 decibel. The principle behind this method 

is that a threshold can lie anywhere on the scale, so several stimulus 

presentations are need to provide a rough estimation, and then the bracketing 

steps are made smaller to make a more accurate determination.23,31 Initially, at 

a single test location, large steps are employed in either increasing or 

decreasing luminosity, until the "seen-not seen" or "not seen-seen" boundary is 

crossed. At this point, the bracketing step is halved and the stimulus luminosity 

changes in the opposite direction of the first bracketing steps, until the threshold 

is crossed once again. The first phase makes a rough search for the threshold 

and the subsequent phases increases the accuracy and reliability of the 

measurement (Figure 2). The bracketing steps can be made smaller and the 

threshold could be crossed more times for a more accurate measurement. 

However, the cost of increasing the accuracy and reliability of results is an 

increasing investment in time and effort, which is certainly a consideration for 

patient comfort in clinical settings. 

The Octopus perimeter employs several methods that use this bracketing 





11 

process to different extents, which vary the examination time and the quality of 

information obtained. The most time consuming method is the normal or full 

bracketing method. For most perimeters, the threshold is crossed twice, 

independent of whether or not the test location is pathological or normal. 

Therefore, each location is measured without bias and produces the most 

accurate and reliable visual field measurements. 

On the opposite extreme, there is a qualitative screening method of 

examining the visual field. It does not actually measure the threshold. Instead, 

it presents to the subject a suprathreshold stimuli of 4 dB greater luminance 

than the age-corrected normal values, and describes the test locations as either 

normal, relative defect, or absolute defect.32 This method is extremely fast, and 

is good when then number of defects is small and when individual test locations 

vary dramatically from their neighbors.33,34 However, the cost for speed is 

much less information. 

There is a fast method of visual field testing that incorporates aspects of 

the previous two methods mentioned above. It possesses both qualitative and 

quantitative features. Therefore, it is faster, but has less information than the 

full quantitation. On the other hand, it is slower, but more accurate and reliable 

than the screening method. It accomplishes this by only measuring the 

threshold of test locations that have been determined to be pathological. This 
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method first assesses whether or not a test location is normal or pathological by 

screening with a stimulus that is 4 dB brighter than the calculated age-corrected 

normal values. If the stimulus is not perceived by the subject, the perimeter 

performs a full bracketing procedure on that test location. The drawbacks of 

this method are that the perimeter will not perform a full bracketing procedure, 

unless the test location demonstrates a considerable defect. Hence, it may 

miss shallow scotomas. In addition it may underestimate a patient's actual 

normal threshold because screening is done with age-corrected normal values, 

which represents an average.35 

PRESENTATION OF RESULTS 

There are currently several ways to depict the results of visual field 

examinations. One such representation is the gray-scale, which has the 

advantage of simplifying the search for characteristic changes. However, gray¬ 

scales often assign values to test locations that have not been measured, do 

not make full use of the large amount of quantitative data collected, and fail to 

provide any information about the range of normal variation.36 However, the 

graphical image makes it easier to understand and is good to show to patients. 

Visual field examination results can be represented as a three 
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dimensional map. Although it is a good graphical image, the three dimensional 

depiction tends to mask certain areas, making it impossible to determine the 

depth of some depressions.37,38 In addition it may also unduly exaggerate or 

diminish visual field alterations.39 Like gray scales, it has the advantage of 

being easier to explain visual field results to patients. 

The depiction of visual fields that is currently the most popular is a 

numerical representation. This gives the ophthalmologist a clear picture of the 

fields, without the interference or distortions of the graphical representations 

mentioned earlier. However, the amount of numerical information can be 

overwhelming, making the visual field difficult to interpret. 

Recently, "Bebie" or "rank" curves are becoming a much more popular 

representation of visual fields. This method first classifies the sensitivities of 

test locations from highest to lowest. It then plots this against the sensitivities 

themselves, producing a curve. This curve is then superimposed onto a normal 

age-corrected curve, so that one can determine whether the visual field is 

pathological and the type of damage in the field, either localized or diffuse. 

This has the advantage over the other representations of not distorting the data, 

but still providing a good graphical image that is easy to interpret.40 The 

disadvantage is that spatial representation is lost, which is important in many 

clinical situations. 
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RELIABILITY 

Now that ophthalmologists have a lot of information from visual fields at 

their disposal, they are left with the extremely complex problem of interpreting 

these perimetric results. An area of major difficulty is evaluating a subject's 

cooperativity. Since perimetry is a subjective psychophysical measurement of 

retinal sensitivity, it depends upon the reliability of the subject's responses. It 

has become an especially difficult predicament because the realities of clinical 

practice have forced ophthalmologists to relinquish the role of perimetric testing 

to technicians. If the ophthalmologist were performing the examination, they 

would be in an excellent position to evaluate the patient's reliability and 

attentiveness. However, this is not the case, and even if the technician is 

extremely skillful, an ophthalmologist is forced to rely upon second hand 

information. In addition, now that perimeters have become automated, the 

technician has become a more passive operator in visual field testing. Hence, 

it has become more difficult for the technician to comment on the patient's 

reliability. Therefore, there is a need for more objective measurements of a 

patient's cooperativity and attentiveness, so that the ophthalmologist can make 

an accurate assessment of the visual field. 

Currently, the ophthalmologist has several parameters at his disposal to 
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evaluate his patient's reliability. Other than the technician's own evaluation, the 

most basic piece of information about the patient's cooperation and reliability is 

the number of stimulus presentations that are necessary for the patient to 

complete the visual field examination. The number of questions asked of the 

patient increases mainly due to the difficulty in accurately determining the 

specific thresholds. Therefore, an increased number of stimulus presentations 

tends to indicate an unreliable patient.41 

Automated perimeters have the ability to actively monitor patient 

fixation. Some of them, such as the Octopus, have a system that is capable of 

detecting, through an IR camera, obvious losses in patient fixation and 

recognizing when the patient has their eye closed, as in a blink, or when the 

pupil is in a "wrong" place. If the perimeter registers a fixation loss during a 

stimulus presentation, it disregards the patient's response, whether it is positive 

or negative. Later in the visual field examination, it will randomly present the 

same stimulus again. The number of wandering fixations and eye closures is 

reported as number of repetitions. 

Some other perimeters, such as the Humphrey and Digilab, do not 

monitor fixation as repetitions, but rather they employ the Heijl-Krakau method 

of monitoring fixation loss.42 They are also equipped with a monitor and the 

operator should supervise the patient during visual field testing. However, with 
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this method, fixation is quantified using the blind spot. These machines initially 

determine the location of the physiologic blind spot. Later during the visual field 

examination, it presents a stimulus in the area of the blind spot with the lowest 

retinal sensitivity. If the fixation of the patient wanders, they will shift their blind 

spot and be able to perceive a stimulus that they should not be able to 

perceive. This information is reported as a ratio of the number of positive 

responses to the number of stimulus presentations to the blind spot, and is 

reported as fixation losses. 

Fixation loss, whether it is reported as the number of repetitions or as a 

ratio of positive responses to blind spot presentations, gives the ophthalmologist 

information about possible problems the patient may be having with fixation or 

attentiveness. They could be experiencing difficulty with fatigue, increases in 

rhythmic blinking, or sensory deprivation phenomenon. 

There has been some controversy over the fixation loss criteria that 

should be used to judge a patient's performance. Currently, with the Humphrey 

Visual Field Analyzer (30-2 program), fixation loss must be under 20% and the 

false-positive and false-negative catch trials must be less than 33% for a field to 

be considered reliable. Katz and Sommer have examined the reliability indices 

of automated perimetric tests and found that failure to meet fixation loss criteria 

was mainly responsible for considering visual field examination results 
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unreliable.43 Other investigators have also come up with the same conclusion, 

and went on to suggest that the fixation loss criteria is much too stringent.44,45 

They believe that increasing the cutoff to 33% would markedly increase the 

number of reliable fields with minimal effect on the sensitivity and specificity of 

the test. Whatever criteria is used, fixation monitoring certainly aids the 

ophthalmologist in determining the reliability and accuracy of the results. 

False-positive answers can also be used as an indicator for assessing 

patient performance. Some perimeters create a sound before stimuli 

presentations and others do not. The Octopus generates a sound by moving 

filters and mirrors. The pitch and duration of the sound varies, depending upon 

the amount of movement necessary for the next stimulus presentation. In order 

to simulate a normal stimulus presentation, some perimeters will use an audible 

sound and others will use an artificial time period before a false-positive catch 

trial presentation. When no stimulus or an imperceptible stimulus is presented 

and the patient gives a response, it is counted as a false-positive answer. A 

large number of false-positive responses indicates that the patient is very 

anxious and over-eager. The term "trigger happy" has been coined for such 

patients. 

Another method for evaluating the patient's cooperativity is to look at the 

false-negative answers. The perimeter first established a threshold value for 
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a test location. It has determined that the patient can detect a stimulus at that 

particular point. Later, during the visual field examination, the perimeter returns 

to that test location and presents a stimulus significantly brighter than the 

threshold. If the patient fails to respond to the stimulus, it tends to indicate the 

patient is not paying attention. In other words the false-negative answers are 

an indication of the attentiveness of the patient. 

For both false-positive and false-negative catch trials, the perimeters 

spend approximately 5% of all questions asked for each of these catch trials. If 

either catch trial is greater than 20%, then the accuracy of the results and the 

patient's reliability should be questioned. 

Fluctuation has been known to be present in manual perimetry.46 In 

automated perimetry, ophthalmologists use the fluctuation rate or short-term 

fluctuation to provide some insight into the cooperativity of the patient. 

Perimeters make repeated measurements for the threshold at several test 

locations, typically ten within a visual field test. Although it is possible, 

perimeters generally do not make multiple determinations for every test location 

because it would greatly increase the amount of testing time. It has been 

shown that short-term fluctuation calculated on the basis of ten doubly tested 

points lies within 44% of the true short-term fluctuation at a 95% confidence 

level.23 Most perimeters calculate short-term fluctuation or the root mean 
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square (RMS) fluctuation rate as the square root of the mean of the variances 

of all test locations that have been multiply tested. The Humphrey perimeter 

calculates a weighted short-term fluctuation, which gives more emphasis to 

double determinations performed centrally.47 

As discussed earlier, the threshold is not an absolute value. The 

threshold of a test location is defined as the intensity of a stimulus that the 

subject will perceive 50% of the time. In other words threshold assessment is 

an inherently variable process, and all strategies of threshold determination only 

provide an approximation of the theoretical "true" threshold. Therefore, a small 

amount of fluctuation is expected, and many studies have defined the normal 

fluctuation averages between 1.1 to 1.9 dB within the central thirty degrees.48'53 

Manufacturer's upper limits of normal for short-term fluctuation is 2.0 dB for the 

Octopus and 2.3 dB for the Humphrey perimeter. 

THE PROBLEM 

Although the commercial perimeters use the number of stimuli presented, 

fixation losses, short-term fluctuation, false-positive and false-negative catch 

trials, these indices have significant shortcomings that impair their ability to 

quantify reliability. Each method with the exception of total number of stimuli, 
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make significant contributions to the total testing time. The amount of test time 

spent for these reliability indices vary according to the type of perimeter. With 

the Digilab 1500 perimeter, false-positive and false-negative catch trials can 

take as much as 10% of total testing time. Fixation loss determination with 

Heijl-Krakau method can add another 10% to the testing time. The Humphrey 

perimeters use less time to assess reliability, with 5% of all presentations are 

used for fixation losses and 3% are used for false-positive and false-negative 

catch trials. Fatigue from prolonged testing can have a significant effect on the 

outcome of visual field measurements.54'59 Therefore, it would seem 

advantageous to reduce the testing time and perhaps enhance the reliability of 

the results. 

In addition to adding to the testing time, each of these indices have been 

shown to be poor estimators of reliability. The number of stimuli presented 

increases with the difficulty in determining the threshold. Although this could be 

secondary to unreliability, it has also been demonstrated to occur with abnormal 

visual fields.60 In addition there has also been a learning effect demonstrated 

with the number of stimuli presented.61 

False-positive and false-negative catch trials have many shortcomings. 

Firstly, they are determined by only a small sample of all the responses given 

during the examination, and hence, may not be robust estimators of reliability. 
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As with the number of stimuli presented, both false-positive and false-negative 

catch trials tend to decrease with experience and learning.44'62,63 The number 

of false-positive replies has been found to be positively correlated with fixation 

losses.44,63,64 False-positive catch trials are also associated with an increase in 

the differential light sensitivity and an increase in short-term fluctuation.48,64,65 

False-negative catch trials increases with a decrease in differential light 

sensitivity, abnormal visual fields, and an increase in short-term fluctuation.43,45, 

49,64, es Therefore, an increase in the rate of false-negative answers may be an 

indicator of abnormality and not necessarily of patient reliability. 

Fixation loss determination can also be very problematic. In the Heijl- 

Krakau method, the blind spot may not be found, making it impossible to 

assess fixation loss. Anything that would cause the patient not to respond to a 

blind spot check, such as an eyelid closure, would be recorded as inadequate 

fixation. Studies have shown that because this method relies on accurate 

mapping of the blind spot before the test, a head tilt of as little as five degrees 

may affect fixation loss.66 As with the other reliability parameters the number of 

fixation losses decreases with experience of the patient, but is independent of 

age.44 Poor fixation also correlates positively with fluctuation, which is a poor 

reliability indicator.67 Finally, for monitoring used by the Octopus perimeter, 

some literature suggests that this method may not be sufficient for recording 

fixation losses.68 
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Although it is used as a measure of reliability, short-term fluctuation is 

generally not considered a good reflection of patient cooperativity for several 

reasons. Short-term fluctuation increases with glaucoma and with defect 

depth.12,48,49,69,70 It reaches a maximum of approximately 5 dB at a sensitivity 

of 10 dB and decreases as the sensitivity approaches 0 dB.48 Presumably this 

is due to the fact that the possible range of sensitivity decreases with such 

minimal sensitivities.71 Short-term fluctuation is larger for glaucomatous eyes 

than for normal eyes and glaucoma suspects fall in between these two 

groups.49 Short-term fluctuation is particularly high around the border of 

scotomas, which has been attributed to slight eye movements.72,73 In addition 

to abnormal fields short-term fluctuation also increases toward the periphery.48, 

5o.5i.74.75 However, there has been some controversy over the importance of 

eccentricity, with some studies reporting significant increases of short-term 

fluctuation and others reporting only minimal changes.47,74,76 There is also 

controversy surrounding the effect of age. Some claim that age causes a 

significant increase in short-term fluctuation,77,78 but others have noted no such 

effect.45,48,51,54 Another factor that must be considered is a learning effect, 

whereby short-term fluctuation decreases with patient experience.61,62,79,80 
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THE GOAL 

Numerous studies have clearly demonstrated that all the methods 

currently used to assess reliability, the number of stimuli presented, fixation 

losses, short-term fluctuation, false-positive and false-negative catch trials, have 

significant shortcomings. They are time consuming and may contribute to 

fatigue during visual field examination. In addition they are influenced by many 

factors that prevent them from being true measures of patient reliability. 

Therefore, the purpose of this study was to determine whether a new 

parameter, inconsistent responses, could be used as an alternative reliability 

index. This hypothesis was tested by correlating the results of all responses 

during visual field testing with the standard reliability parameters. 
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MATERIALS AND METHODS 

Normal volunteers who have never performed visual field tests were 

entered into the study. Each subject underwent a eye examination which 

consisted of visual acuity measurement, intraocular pressure measurement, slit 

lamp examination, and indirect ophthalmoscopy. The subjects met the following 

inclusion criteria to qualify for the study: best corrected visual acuity of at least 

20/20, intraocular pressure less than 21 mmHg, refractive error less than 5 

diopters spherical equivalent, normal slit lamp examination and no abnormalities 

of the optic disc or retina. If both eyes qualified, one was randomly chosen for 

study. 

A Digilab 1500 perimeter (software version 1.9) was used to perform a 

customized visual field of 44 test locations in a central thirty degree field (Figure 

3). It uses a 2mm stimulus of various durations with random time intervals, and 

has a background illumination that is maintained at 4 apostilbs by photoelectric 

feedback. Stimulus thresholds are determined by first calculating the precise 

thresholds at four primary points in the central 10 degree circle. Based on 

these values and the knowledge of the normal hill of vision, the starting values 

are determined for neighboring points. The program performs a full threshold 
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examination at each test location. A 1.5-1.5-1.5 dB bracketing strategy is used 

and is summarized as follows: a stimulus is presented at each location based 

upon an expected threshold level. If the subject sees the stimulus, the 

perimeter will decrease its intensity by 1.5 dB steps, until the subject is no 

longer able to perceive it. The program then increases the stimulus intensity by 

1.5 dB steps, until the stimulus is seen again. Finally, it decreases the stimulus 

intensity by 1.5 db steps, until it is no longer seen. The average brightness 

(rounded to the nearest 1 dB) of the stimuli of the seen- and not-seen crossings 

is considered the threshold of differential light sensitivity for that location. If the 

stimulus is not seen initially, the program will increase its intensity by 1.5 dB 

intervals until it is seen. The stimulus intensity is then decreased by 1.5 dB 

steps until it is no longer seen. Finally, it is increased by 1.5 dB steps until it is 

seen, and the threshold is calculated. 

With each visual field examination the patient's reliability was assessed 

in the traditional manner with fixation losses, false-positive and false-negative 

catch trials. A false-positive catch trial for the Digilab 1500 perimeter is 

accomplished by presenting a random, artificial time intervals, during which no 

stimulus is presented. A false-negative response was measured by retesting a 

stimulus, which had been determined to have a threshold value of 3 dB or 

greater. A failure to respond at the 0 dB level was considered a false-negative 

response. Fixation losses were measured with the Heijl-Krakau method. The 
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initial segment locates the point of lowest retinal sensitivity in the area of the 

physiological blind spot. Once a target of lowest sensitivity has been selected 

that target was presented randomly during the test. 

During each test session, each subject performed two visual field tests 

with a five to ten minute break between the tests. Each subject underwent four 

such test sessions within thirty days, with at least a twenty-four hour interval 

between each session. 

The visual fields were analyzed for inconsistencies in the subject's 

responses. If the subject claimed to have seen and not seen the same 

stimulus during the testing algorithm, it was counted as an inconsistent 

response. The number of inconsistent responses was summed over the entire 

visual field. After the testing was completed, false-positive catch trials, false¬ 

negative catch trials, fixation losses, and inconsistent responses were averaged 

from the eight visual fields of each subject. The average of inconsistent 

responses were compared to the averages of currently used visual field 

reliability parameters with Pearson's correlation coefficient. The sum of the 

false-negative and false-positive responses to catch trials for each visual field 

was termed "false responses". Short-term fluctuation was calculated from all 

test locations between the two examinations given during each test session. 
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The visual field examinations, data collection, data analysis were 

completed by the primary investigator. The eye examinations were performed 

by Dr. Mario Zulauf. 
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RESULTS 

Twenty eyes of twenty volunteers underwent visual field examination. 

Thirteen subjects were males and seven were females. The age range was 

twenty to twenty-five years. Thirteen were Caucasians, six were Asians, and 

one was Hispanic. The median (range) refractive error was -1.37 (0 to -4.25). 

The median (range) time for visual field performance was 7.0 minutes (5.7 to 

9.3 minutes). 

The median (range) of the standard reliability parameters for the 160 

visual fields were: false-positive replies 0% (0% to 43.8%), false-negative 

replies 0% (0% to 23.8%), fixation losses 2.7% (0% to 63.6%), and number of 

stimuli 378 (325 to 475). The median (range) number of inconsistent responses 

was 57 (29 to 91) per visual field. 

Eight visual field examinations were performed on each subject during 

the four test sessions. The average threshold values were significantly lower (p 

< 0.014) in the first test (23.2 + 1.4 dB) than in the subsequent tests (range: 

23.8 - 24.4 dB). No statistically significant differences were found between test 

sessions for any of the reliability parameters (Table 1). 
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Inconsistent responses correlated significantly with the standard reliability 

parameters (Figures 4, 5, 6). The correlation (Pearson r, n=20) values for 

inconsistent responses with these indices were: false responses to catch trials 

0.62 (p = 0.003), fixation losses 0.51 (p = 0.020), and number of stimuli 0.61 (p 

= 0.004). No significant correlation was detected between inconsistent 

responses and short-term fluctuation. 
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DISCUSSION 

Because automated perimetry is a psychophysical test, one must have a 

means to assess patient reliability, in order to adequately interpret visual fields. 

Several indices are used to quantify reliability for commercial automated 

perimeters: false-positive and false-negative answers to catch trials, number of 

fixation losses, short-term fluctuation, and number of stimulus presentations 

required to complete a test. However, each of these parameters are influenced 

by many factors, such as abnormal visual fields, patient experience and fatigue. 

This hampers the ability of an ophthalmologist to assess the reliability of 

patient's responses. 

In order to find an alternative to current indices, Lynn et al originally 

pursued the idea of examining the results of the bracketing strategy and used 

"boo-boo" counts as an indicator of reliability.81 He only compared this index 

with short-term fluctuation and did not find a significant correlation. However, 

this idea of using the bracketing strategy could be pursued further, since Lynn 

et al used short-term fluctuation as a standard of comparison, which is 

presently considered a poor measure of reliability.48'51’62-69-70'73'74 
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This study compared the number of inconsistent responses with number 

of stimuli, fixation losses, and false responses to catch trials, which are the sum 

of false-positive and false-negative responses for each visual field. The 

inconsistent responses index used here does not make a distinction between 

an inconsistency that occurs with stimulus intensities less or greater than 

threshold, which is implied with false-positive and false-negative catch trials. 

The number of inconsistent responses showed a statistically significant 

correlation with the current reliability indices: r = 0.61 for number of stimuli 

presented, r=0.51 for fixation losses, and r = 0.62 for false-responses to catch 

trials. Although short-term fluctuation was not calculated in the conventional 

manner, no correlation was found with inconsistent responses, which agrees 

with the results of Lynn et al.81 

The number of inconsistent responses as a reliability index offers several 

advantages over currently used reliability parameters. The distribution of 

fixation losses, false-positive and false-negative catch trials are all markedly 

skewed toward zero (Figures 7, 8, 9, 10). In this study 51.9% of the visual 

fields had no false-positive responses and 83.1% had no false-negative 

responses. Therefore, it may be difficult to assess whether these indices are 

truly providing reliability information or are offering a lack of it. Inconsistent 

responses to catch trials is more normally distributed, and may give more 

information about reliability because it provides some information about every 
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visual field. In addition false-positive and false-negative catch trials may 

provide only a rough estimation of patient reliability because they rely upon 

responses to extreme catch trials, i.e. no stimulus and a very bright stimulus. 

Inconsistent responses may give a more subtle and therefore more realistic and 

clinically relevant assessment of reliability. This index uses data from all 

patient responses, whereas current reliability parameters may only use 

anywhere from 3%-10% of stimuli presented, for catch trials and fixation losses. 

Hence, inconsistent responses may be a more robust reliability parameter. 

Finally, this index only increases computer processing time and does not 

require additional testing time; thus inconsistent responses may help reduce 

fatigue effects. 

Although inconsistent responses has demonstrated much promise as a 

reliability index, it still needs to be explored much further. The major point that 

needs to be addressed is the selection of subjects. They are all healthy young 

subjects with normal visual fields, so this provides no information on whether or 

not age has an effect upon inconsistent responses. In addition this study 

demonstrates no statistically significant differences between test sessions for 

any of the currently used reliability parameters and for inconsistent responses. 

The literature suggests than a learning effect does occur with fixation losses,44 

catch trials.44,62,63 and the number of stimuli presented.61 The lack of 

improvement with patient experience, in this study, may be due to the choice of 
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very reliable subjects. Therefore, the presence or lack of a learning effect with 

inconsistent responses certainly has not been conclusively demonstrated and 

will need to be evaluated further. 

To be clinically useful inconsistent responses must be able to assess 

reliability with abnormal visual fields. Inconsistent responses are inexorably 

linked to the frequency-of-seeing curve. Because abnormal visual fields will 

cause broadening of the frequency-of-seeing curve, the number of inconsistent 

responses will presumably increase with the degree of abnormality of the visual 

field. In addition, one may expect that the number of inconsistent responses 

will be particularly high around the border of scotomas. This has been shown 

to be true for short-term fluctuation, and this has been presumably attributed to 

slight eye movements.72,73 This imperfect fixation will probably cause 

inconsistent responses to increase independent of reliability. It may be possible 

to maintain the integrity of this index and get around this problem by excluding 

those test locations around the border of scotomas. 

There are several aspects of the relationship between variability and 

inconsistent responses that need to be studied further. The literature has 

demonstrated that short-term fluctuation increases with eccentricity.48,50,51,74,75 

Because there is more threshold variability with eccentricity, inconsistent 

responses may also increase with eccentricity. Therefore, as is done with 
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short-term fluctuation, the use of inconsistent responses occurring in more 

central test locations may improve its ability to assess reliability. Not only is 

there variability with eccentricity, but also normal variability. As discussed 

earlier, inconsistent responses depends upon the frequency-of-seeing curve. 

Since the calculated threshold is theoretically considered the stimulus that is 

seen 50% of the time, those inconsistent responses close to threshold may not 

truly be "errors," but rather are normal physiological responses. It may be 

necessary to exclude those normal physiological inconsistent responses to 

improve the ability of this index to measure reliability. 

Finally, other issues also need to be addressed with inconsistent 

responses. Currently, catch trial responses are used to assess reliability in 

different ways. Many false-positive answers are generally considered an 

indicator of an anxious or "trigger happy" patient and many false-negative 

responses tends to indicate an inattentive patient. Inconsistent responses may 

be able to convey this same information. Dividing the inconsistent responses 

that occur at intensities greater and less than the calculated threshold may be 

analogous to false-negative and false-positive catch trials, respectively. 

Inconsistent responses must be studied further with different testing algorithms. 

This study used a 1.5-1.5-1.5 dB strategy. However, the most commonly used 

automated perimeters, the Octopus and Humphrey, both use a 4-2-1 dB 

bracketing strategy. It is unknown what impact a different testing algorithm will 
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have on inconsistent responses. 

With normal visual fields of healthy young subjects, inconsistent 

responses has been shown to be a good possibility as an alternative or at least 

a supplement to currently used reliability parameters. However, as discussed 

earlier, it must be studied further with abnormal visual fields to see if it will be 

able to avoid the problems that plague short-term fluctuation, fixation losses, 

number of stimuli presented, and false-positive and false-negative catch trials. 

When this work is completed, we will better know the true value of inconsistent 

responses as a measure of reliability. 
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Table 1. 

Figure 1. 

FIGURE LEGENDS 

Current reliability indices and inconsistent responses for all the 

visual field examinations. The values are given as the mean + 

standard deviation. 

Frequency-of-seeing curve. As the stimulus intensity increases 

(abscicca) increases, the probability of seeing the stimulus 

increases (ordinate). The threshold is defined as the light 

intensity whereby the subject sees the stimulus 50% of the time. 

The probability of perceiving a stimulus never reaches either 0% 

or 100% because of the possibility of false-negative and false¬ 

positive responses. 
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Figure 2. Quantitative threshold determination. These are four examples of 

threshold determination, using a 4-2 dB bracketing method. In the 

first phase (A), a 4 dB stimulus is used until the threshold is 

crossed. In the second phase (B), the stimulus size step is 

decreased to 2 dB, and the luminosity is changed in the opposite 

direction until the threshold is crossed once again. 

Figure 3. The visual field test pattern used in this study consisted of 44 

test locations within 30 degrees. 

Figure 4. The number of inconsistent responses versus false response rate 

to catch trials. Inconsistent responses correlated with false 

responses to catch trials, which represents the sum of false¬ 

positive and false-negative replies (r = 0.62, p = 0.003, n = 20). 

Figure 5. The number of inconsistent responses versus fixation losses. 

Inconsistent responses correlated with fixation losses (r = 0.51, 

p = 0.020, n = 20). 
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Figure 6. The number of inconsistent responses versus the number of 

stimuli presented. Inconsistent responses correlated with the 

number of stimuli used during the visual field examination (r = 

0.61, p = 0.004, n = 20). 

Figure 7. Distribution of inconsistent responses. This index is somewhat 

normally distributed. 

Figure 8. Distribution of the number of stimuli presented. Like 

inconsistent responses, the number of stimuli demonstrates a 

fairly normal distribution. 

Figure 9. Distribution of false responses to catch trials. In contrast to 

inconsistent responses, this shows a marked skew towards zero. 





53 

Figure 10. Distribution of fixation losses. This index is conspicuously 

skewed toward zero. In many cases this makes it difficult to 

determine whether this index is offering reliability information 

or a lack of it. 
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