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I. INTRODUCTION 

The ongoing electrical activity of the human brain, recorded 

from the scalp as the electroencephalogram (EEC), is relatively 

insensitive to external environmental events. Although sensation 

may elicit frequency and amplitude changes in endogenous rhythmical 

brain activity, no specific waveforms attributable to the occurrence 

of auditory, visual, or somatosensory stimulation are demonstrable in 

the EEC of most individuals. However, if one averages the electrical 

activity recorded following repeated presentations of a stimulus, the 

relatively high amplitude background activity, whose form and time 

course are essentially unrelated to the evoking event, tends to average 

towards zero. Electrical potentials that are temporally associated 

with the stimulus progressively augment and emerge as a series of 

positive and negative waves known as the evoked potential (EP). The 

number of averaging events necessary to reveal a given wave is related 

to its amplitude relative to that of the background noise, i.e., the 

signal-to-noise ratio. For a more thorough discussion of signal aver¬ 

aging see Regan (1972). 

Evoked and other potentials with relatively inflexible associ¬ 

ations to environmental stimuli or motoric behaviors are more generally 

referred to as event-related potentials (ERP). The contingent negative 

variation (CNV) is a surface negative slow ERP that develops in the 

interval between two successive stimuli. In most CNV paradigms the 

first stimulus serves as a warning while the second requires a motor 

response or cognitive action on the part of the subject. 
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Both the GNV and a late positive component of the evoked poten¬ 

tial known as P3 or P300 have been extensively studied in terms of 

their relationships to psychological processes. A number of studies 

(Hillyard, 1969; Hillyard et al.f 1971; Cohen, 1973; Donald and Goff, 

1973) have suggested that the CNV and P3 monitor perceptual efficiency, 

in that their amplitudes were greater in averages of presentations of 

threshold stimuli correctly detected or discriminations correctly made, 

than for trials that resulted in erroneous responses. In addition, 

there is much evidence that CNV and P3 are related to psychological 

attention (Donald and Goff, 1971; Tecce, 1972; Ford et al., 1973)* 

It is reasonable to assume that perceptual efficiency or level of 

attention may, in turn, determine the quantity and quality of infor¬ 

mation available for central processing in the brain. The present 

study was undertaken to investigate the possibility that ERPs would 

reflect the amount of information stored by subjects viewing 

tachistoscopically presented English words in the acquisition phase 

of an incidental learning paradigm. This introduction provides a 

review of the relevant literature in four areasi A) the CNV and 

psychological processes; B) P3 and psychological processes; C) ERPs 

and behavior; and D) the electrophysiological investigation of human 

memory. 

A. The Relationship of the Contingent Negative 
Variation to Mental Processes in Humans 

Experimental paradigms employed in the study of the CNV 

generally include two temporally associated successive stimuli; 

the CNV develops in the interval between the stimuli. The most 
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basic of these and the one responsible for the initial demonstration 

of this phenomenon is the constant period reaction time task (Walter et aL , 

1964). During each trial of this paradigm the subject is presented 

with a warning stimulus (Si) followed by a constant interval, which 

in turn is followed by a second stimulus (S2). The subject is 

instructed to respond as rapidly as possible after detecting the 

onset of S2. During the experimental session his electroencephalogram 

(EEG) is recorded using either a DC coupled amplifier or AG amplifier 

with long time constant to prevent significant attenuation secondary 

to filtering of the low frequency GNV wave. In single trials, ongoing 

random EEG activity obscures the GNV developing between Si and S2; 

averaging of segments of EEG time-locked to the onset of Si allows for 

cancellation of the random background activity and enhancement of the 

stimulus-related GNVs. GNV averages consist of not less than 6 but 

more often 12-20 underlying trials. Its morphology in the constant 

foreperiod reaction time task is that of a negative ramp, which begins 

approximately 250-450 milliseconds (ms) after SI, reaches maximum 

amplitude of approximately 10-20 microvolts (uv) just prior to S2 and 

returns to baseline in an abrupt positive shift approximately 120 ms 

after S2, called the resolution of the GNV. Modifications in experi¬ 

mental design may be reflected by changes in morphology; for instance, 

introduction of a variable rather than constant interstimulus interval 

yields GNVs with increased steepness in the negative-going limb and 

decreased latency to peak negativity. The distribution of the GNV 

across the scalp is typically central and frontal; maximal negativity 

is recorded at the vertex, a smaller but substantial amplitude at 
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frontal leads, and minimal or absent magnitude from posterior recording 

(Walter, 196?). 

A bewildering variety of experimental designs has evolved from 

modifications of the basic GNV paradigm. Stimuli of every modality 

and intensity have been used as SI and S2; single trials may Involve 

1, 2, 3, or more stimuli; a simple, complex, or no motor response at 

all may be demanded by the task. Hillyard (1971» 1973) das devised 

a classification of all GNV paradigms into 4 basic types: a) holding 

a motor response in readiness; b) preparing for a perceptual judgment; 

c) anticipation of a reinforcer (positive or negative); and d) preparing 

for a cognitive decision. Although this scheme does conveniently 

differentiate some of the major themes in CNV research, it does so by 

sacrificing recognition of the full complexity and range of experimental 

situations in which GNVs have been observed. For instance, Roth and 

coworkers (1975) recorded GNVs during a Sternberg memory task which 

required that subjects press one of two telegraph keys to indicate 

whether S2, a visually presented digit from 0-9» had or had not been 

in a previously studied set of digits. This design has characteristics 

of both Hillyard type A and type D paradigms. An important feature 

to note in Hillyard's classification and in fact in all such schemes 

proposed to date is that the divisions are based on arbitrarily chosen 

aspects of the experimental situation; there is no direct relationship 

between characteristics of the various categories and characteristics 

of the GNVs observed in each. In fact, a categorization with true 

functional significance may not be possible at all. This depends, as 

Rebert (Rebert and Tecce, 1973) has suggested, on the still open question 
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as to whether the GNV can be differentiated into a family of task- 

specific event-related slow potentials, or whether a single unitary 

process, common to all situations in which it is observed, will be 

demonstrated. The current level of understanding allows only for 

classification schemes having value principally as mnemonic devices 

which summarize the diversity of preparatory acts accompanied by the 

GNV. 

As a relatively large amplitude, consistently and easily recorded 

cerebral potential sensitive to task demands, the GNV, from the time 

of its initial demonstration, has encouraged investigation and specu¬ 

lation into its meaning and function. The theoretical concepts most 

closely associated with CNV research are expectancy, conation, motivation, 

attention, and arousal. Hillyard (1973) in discussing the utility of 

psychological constructs such as these, pointed out that each term has 

been assigned multiple definitions dependent upon the particular experi¬ 

mental context in which it is invoked as an explanation. In order to 

be useful, definitions must be precise and have clear operational ties 

to observable events. 

As investigation into the CNV progressed, it became apparent 

that one needed to account for the effects of response-variable 

manipulations in any explanation of the phenomenon. Low (1966) 

suggested that the factor common to all situations in which the GNV 

occurs is conation, which he defined as the mental preparation to make 

some response. He was particularly impressed both by his inability to 

reliably demonstrate maintained GNVs in the absence of a motor response 

and by the presence of CNVs in a Sidman-type avoidance task in which 
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subjects were required to respond within a 2 second window every 15 

seconds in order to avoid a noxious auditory stimulus. Low asserts 

that since no stimuli were employed at all in this paradigm, one could 

not appeal to such concepts as expectancy or contingency to explain 

the occurrence of CNVs. However, he is ignoring the fact that the 

occasional shock received by the subject set up a definite temporal 

contingency. One might regard internally generated signals impelling 

successive responses as correlates of Si and S2. Furthermore, the 

averaging techniques employed by Low may have led to measurement of 

readiness potentials rather than CNVs. Nonetheless, other investiga¬ 

tions both prior and subsequent to Low's have lent support to his 

hypothesis; ample evidence exists that GNV is significantly greater 

when a motor response is required to S2 compared to when it is not 

(Walter et al., 1964; Irwin et al., 1966; Rebert et al., 196?). 

However, this is again an incomplete explanation since a number of 

studies have demonstrated development and maintenance of CNVs in 

paradigms in which response to S2 was not required, specifically when 

S2 was novel (Gullickson, 1970), informational (Donchin et al., 1975)» 

or noxious (Miller et al., 1973). 

Motivation, as "an index of the general drive state of the 

organism" (Rebert et al., 1967)t bas also been advanced as a concept 

which integrates various GNV findings. These include the observation 

of increased GNV amplitude when either the effort required to effect 

a motor response is increased or detection of S2 is made more difficult 

(Rebert et al., 1967)» when monetary rewards are offered for rapid RTs 

(Tecce and Scheff, 1968, described in Tecce, 1970), when slow responses 
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to S2 are punished with painful shock (Cant and Bickford, 1967), and 

when subjects voluntarily alter their motivational state (McAdam et al., 

1966). Once again a variety of CNV findings cannot be explained by 

this unitary concept. These include increased amplitude with increase 

in complexity of S2 (Walter, 1965a) decreased amplitude with distracting 

stimulation and thus presumed increased effort (Miller et al., 1973)» 

and decreased amplitude with increase in the interval between SI and 

S2, a manipulation that should have no effect on motivation (McAdam, 

Knott, and Rebert, 1969). 

The most recent and most ambitious hypothetical formulation 

designed to explain all previous CNV data with a limited number of 

psychological constructs is the attention-arousal theory originally 

proposed by Tecce (1972) and extended and modified by subsequent 

investigations (Tecce and Hamilton, 1973; Tecce et al., 1976) into 

the distraction-arousal hypothesis. Tecce defines attention as "a 

hypothetical organismic process characterized by steering functions, 

which facilitates the selection of relevant stimuli ..." and arousal 

as ". . .a hypothetical process that energizes behavior unselectively 

and affects only intensity of response." In his scheme the magnitude 

of the CNV bears a positive monotonic relationship to attention and a 

non-monotonic relation (inverted U) to arousal. Both high and low 

levels of arousal are associated with decreasing CNV amplitude relative 

to an optimal central range. This hypothesis does integrate an 

impressive fraction of the CNV literature. Manipulations which seem 

to demand increased attention to S2, such as requiring a motor response 

to S2 (Low et al., 1966; Walter et al., 1964), decreasing S2 amplitudes 
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(Rebert et al., 196?), selecting for trials with the shortest latency 

reaction times (Rebert and Tecce, 1973) or providing complex or novel 

S2s (Gullickson, 1970), yield increases in GNV amplitude. Signal 

detection theory allows for computation of perceptual sensitivity 

as a measure of selective attention during detection of signals at 

threshold. Analysis of such tasks has demonstrated a relationship 

between GNV amplitude and this measure thereby lending support to 

Tecce's attentional hypothesis (Hillyard, 1973). In addition, task 

modifications designed to result in divided attention or distraction, 

also produce decreased GNV amplitude (Tecce and Scheff, 1969; Tecce 

and Hamilton, 1973; Tecce et al., 1976). 

The evidence concerning the effects of arousal on the GNV is 

substantially less firm and extensive. In most of the previously 

mentioned studies whose findings were explained on an attentional 

basis, one could hypothesize that the manipulations described resulted 

in increased phasic arousal in the SI-32 interval rather than, or in 

addition to, changes in attention. Unfortunately, no objective measure¬ 

ments of autonomic arousal were obtained. If such an arousal effect 

does occur, Tecce suggests that it accounts for the ascending limb of 

his inverted U function. More evidence exists to support the descending 

limb of the proposed relationship. Some of the data comes from Tecce's 

own lab where he has shown autonomic arousal in the form of increased 

frequency of eyeblink and heart rate acceleration associated with 

decreased GNV amplitude during distraction (Tecce et al., 1976). This 

has led him to posit a reciprocal relationship between increasing dis¬ 

traction and increasing arousal, which tends to result in a reduced 





-9- 

CNV. The fact that GNVs are smaller during extremely difficult, and 

thus perhaps arousing, tasks (Delse, Marsh, and Thompson, 1969) provides 

support for Tecce's proposal. 

The concept that arousal bears both a direct and inverse rela¬ 

tionship to the CNV in different ranges of absolute arousal level, if 

applied in a non-rigorous fashion, will suffice to explain virtually 

any CNV change resulting from an experimental manipulation. Physiologic 

measures associated with autonomic arousal must be monitored inde¬ 

pendently if this theoretical construct is to be applied intelligently. 

While Tecce's scheme is consistent with much more of the avail¬ 

able data than previous proposals, the great diversity of CNV findings 

resists explanation by a limited set of psychological concepts. For 

instance, dissociations have been observed between autonomic measures 

and CNV. Administering tranquillizers to experimental subjects decreased 

autonomic hyperactivity but had no effect on CNV (Walter, 1966). In 

another study (Knott and Irwin, 1968) changes in CNV were observed in 

high and low stress conditions without concomitant GSR changes. 

Although no single theory is yet available which accounts for 

all of the observed associations between the CNV and psychological 

factors, the explanations presently being advanced converge upon a 

limited area of mental function. Clearly, CNV does access higher 

mental functions which are involved in the cognitive processing of 

environmental events of importance to the individual. This property 

allows the CNV to function as an especially useful tool in human brain 

research. 
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B. The P3 Component of the Human Evoked Potential 
and Psychological Processes 

P3 Is a late positive wave of the human evoked potential which 

typically reaches peak amplitude approximately 300 ms after stimulus 

onset; however, latencies ranging from 250-600 ms, reflecting varying 

experimental designs, have been reported (Hillyard, in press). The 

very occurrence of P3, as well as its amplitude and latency, are deter¬ 

mined by psychological processes concerned with the reception and 

evaluation of the evoking stimulus. Strictly speaking, this wave is 

not evoked by a stimulus, but rather is emitted in response to certain 

types of events in the environment. It represents what Donchin, Ritter, 

and McCallum (in press) have called an endogenous component in that its 

characteristics are dictated more by the mental state of the subject 

than parameters of stimulus delivery. This quality of P3 is particularly 

evident in paradigms which allow recording of brain potentials generated 

to omission of an expected stimulus. Ford, Roth, and Kopell (1976) 

reported an experiment in which subjects were presented with a series 

of tone pips at a rate of four per second, occasionally and randomly 

interrupted by a tone of different frequency or an omitted stimulus. 

Late positive waves with the classical scalp distribution of P3 were 

elicited by both of these events. Thus P3 is related to a cognitive 

process which may occur in the presence or absence of actual sensory 

input. Further evidence supporting the notion that P3 reflects the 

psychological evaluation of a stimulus rather than pure perceptual 

phenomena comes from innumerable experiments in which physically 

identical stimuli are presented in different contexts. Corby and 
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Kopell (1973) found that P3 was present in auditory and visual EPs 

when stimulus occurrence was unpredictable, but absent when subjects 

could predict the identity of each stimulus prior to its presentation. 

Ford et al. (1973) recorded greatly enhanced P3s for a given type of 

stimulus when subjects were required to respond to its occurrence than 

when they were asked to respond to other types of stimuli. Similar 

findings have been consistently and virtually universally reported 

(Sutton, 1965; Donald and Soff, 1973; Picton and Hillyard, 197^). 

The P3 component is stimulus-independent in another sense, inasmuch 

as it is not modality-specific. Visual, auditory, and somatosensory 

stimuli yield P3s with virtually identical topographic distributions 

across the scalp (Hillyard et al., 1976; Ritter, Simpson, and Vaughan, 

1977). 

Given the observation that cognitive factors are important 

determinants of P3» a great deal of work has focused on defining 

exactly which factors are involved. Unfortunately, each time that 

P3 has been identified in a previously untried experimental paradigm, 

a new psychological construct has been invoked to account for the 

findings. These have included information delivery (Sutton et al., 

1965), selective attention (Donchin and Cohen, 1967; Ford et al., 1973; 

Hillyard et al., 1973)» signal detection (Hillyard et al., 1971)* 

salience (Paul and Sutton, 1972), the orienting response (Ritter and 

Vaughan, 1969). expectancy (Duncan-Johnson et al., in preparation), 

cognitive matching (Squires, Squires, and Hillyard, 1975)* and task 

relevance (Courchesne, Hillyard, and Galambos, 1975)* Many of these 

concepts are poorly defined in the psychological literature and add 
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nothing, either in an explanatory or predictive sense, to the basic 

observations themselves. Gradually, some order has been emerging from 

the plethora of experimental findings. Recent reviews (Donchin, Ritter, 

and McCallum, in press; Hillyard, in press) have managed to organize 

and explain most of the reported P3 data in terms of a limited number 

of reasonably well-defined concepts. 

The probability of stimulus occurrence has clearly emerged as 

an important determinant of P3 amplitude. In one paradigm (Sutton 

et al., 1965) the subject predicts the nature of the stimulus he will 

receive on each trial. P3 amplitude is directly related to the a priori 

experimenter-defined probability of a given event as well as to the 

subject's expectancy, that is, his prediction of trial outcome. 

Unexpected, low probability events yielded the largest P3s. Another 

task that has been widely used in the study of the relationship between 

P3 and probability is one which requires detection of target stimuli 

embedded in a series of non-targets. Over a wide range of probabilities, 

P3 amplitude is inversely related to the relative frequency of the 

eliciting event (Hillyard et al., 1973; Courchesne, Hillyard, and 

Galambos, 1975; Ford, Roth, and Kopell, 1976). The evidence suggests 

that the subject's assessment, whether conscious or unconscious, of 

the likelihood of occurrence of a particular event is an important 

modulator of P3 amplitude. This notion is more precise than and can 

replace past analogous explanatory constructs such as novelty, expectancy, 

and saliency. 

Although many P3 findings can be explained on the basis of 

stimulus probability, this clearly is not the entire story. When 
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subjects are asked to respond to one of two stimuli occurring with 

equal frequency, P3 will be elicited only by the response-requiring 

sensory event (Corby and Kope11, 1973; Hillyard et al., 1973)* The 

decision to classify stimuli as targets or non-targets may be based 

upon a simple sensory dimension, such as intensity (Picton and Hillyard, 

197*0 or a complex cognitive judgment, such as whether or not a test 

*■ 

item was contained in a previously defined set (Comer, Spincuzza and 

O'Donnell, 1976). These and other studies indicate that a stimulus 

must have some degree of task relevance in order to elicit a P3 com¬ 

ponent. In an occasional study, a particularly infrequent or subjectively 

obtrusive stimulus, even when unattended, will elicit a prominent P3 

(Roth et al., 1973; Vaughan and Ritter, 1970). 

Both task relevant targets and obtrusive or rare stimuli are 

subjected to cognitive evaluation. In the case of the former there 

is a match between an internal representation and a detected environ¬ 

mental event; for the latter, there is a profound mismatch between 

psychological expectations and sensory input. Both events give rise 

to a P3 wave. 

The process of comparing sensory input with information stored 

in memory to facilitate stimulus selection and responding was called 

"response set" by Broadbent (1970) and was one of a number of modes 

of attention proposed by him. Hillyard (in press) has been most active 

in applying Broadbent’s concept of response set selective attention to 

analysis of P3 findings. V/orking with a signal detection task (Hillyard 

et al., 1971) he has demonstrated that P3 amplitude is directly related 

to D', a measure of perceptual sensitivity, and thus reflects selective 
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attention. In dichotic listening tasks (Schwent, Snyder and Hillyard, 

1976; Schwent, Hillyard, and Galambos, 1976; Picton and Hillyard, 1974), 

P3 enhancement served as a sensitive indicator of selective attention 

to a target stimulus both within and between sensory channels. Studies 

from Hillyard's laboratory employing both very infrequent and task¬ 

relevant stimuli suggest that the P3s to these two types of events 

may be discriminable in terms of scalp topography (Squires and Hillyard, 

1975). Two sub-components were identified: P3a, a probability dependent 

fronto-centrally distributed wave with a latency of 220-280 ms, and 

P3b, a centro-parietal wave occurring from 310-380 ms and associated 

with task relevance. Ford, Roth, and Kopell (1976) have reported addi¬ 

tional data supporting the existence of more than one type of P3 wave. 

The contribution of behavioral measures to analysis of ERP 

experiments will be discussed in detail in Section I-C of this intro¬ 

duction. Here it is appropriate to briefly consider the impact of the 

work concerning P3 latency and reaction time (RT) on psychological 

theories concerned with the meaning of P3. If P3 in fact reflects 

the outcome of a cognitive process whereby sensory input is evaluated 

with respect to subjective expectancy and stored stimulus representa¬ 

tions, then the latency of this wave should vary with the time needed 

to make such a judgment. To the extent that RT is sensitive to the 

decision time, it should behave in a similar fashion to P3 latency. 

One would predict that as cognitive tasks involving target selection 

are made more complex and thus require increased processing on the 

part of the subject, P3 latency and RT should increase and thus should 

be positively correlated with one another. Such findings have in fact 
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been commonly reported. Ritter, Simpson, and Vaughan (1972) investi¬ 

gated tone identification tasks of increasing difficulty and identified 

concomitant P3 and RT increases of approximately equal magnitude during 

the more difficult tasks. Roth, Ford, and Kopell (1976) generated EP 

averages on the basis of RT to a target. P3 latency was greater for 

the slowest RT trials when compared to the most rapid. In a Sternberg 

short term memory experiment, Corner and his coworkers (1976) demonstrated 

that manipulations known to increase cognitive processing time resulted 

in longer P3 latency. However, other authors (Karlin and Martz, 1973; 

Squires et al., 1976) have failed to observe the expected covariation 

of RT and latency of P3. These discrepant findings can probably be 

attributed to the failure of P3 to index all of the multiple deter¬ 

minants of RT. P3 is most closely associated with stimulus evaluation 

processes while RT encompasses those mental activities related to 

responding and events producing the actual muscular contractions. 

Minor variations in experimental design may have profound effects 

of differential strength on the various factors contributing to RT 

and thus would tend to modify the correlation of P3 latency and RT. 

Support for this hypothesis comes from the work of Kutas et al. (in 

preparation, as described in Donchin, in press), which demonstrated 

a high correlation between P3 latency and RT when the subjects received 

instructions emphasizing accuracy, but a low correlation when instructed 

for speed. Viewed as a whole, the data suggests that to the extent RT 

is determined by cognitive evaluation of sensory input, a positive 

association between P3 and RT is maintained. 
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In summary, P3 is an endogenous component which can be identified 

in the ERPs elicited by infrequent and/or task-relevant stimuli or the 

absence of expected stimuli. It indexes cognitive processes related 

to stimulus identification and as such can serve as an investigative 

tool of psychological events which are only poorly accessed by 

behavioral measures. 

C. Event-Related Potentials and Behavior 

Most studies concerned with investigating the association of 

psychological factors and human cerebral potentials have effected 

manipulation of mental processes through verbal instructions or by 

modifying the conditions of stimulus presentation. This places the 

experimenter in the less than ideal position of formulating a priori 

hypotheses as to the nature of the effect of his intervention on the 

psychological state of the experimental subject. In a restricted 

subset of these studies experimental design has included objectively 

quantifiable behavior on the part of the subject. Event-related 

potentials can and have been correlated with a number of these including 

physiological measures, reaction time, perceptual accuracy, and cog¬ 

nitive performance. Use of such measures allows the experimenter to 

verify the operation of a given mental phenomenon in his paradigm and 

assess its contribution to systematic changes in ERP features. 

Measurements of response latency have commonly been obtained 

in experiments concerned with ERPs, especially in GNV paradigms, the 

very first of which was a constant foreperiod reaction time task (Walter 

et al., 1964). Two reviews of the literature (Tecce, 1972; Rebert and 
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Tecce, 1973) reported consistently negative correlations between GNV 

and reaction time (RT), i.e., larger amplitude CNVs associated with 

increased speed of response; however, the mean correlation of -.365 

for the 19 studies reviewed (Rebert and Tecce, 1973) indicated that 

only a small portion of RT variability (13%) can be accounted for by 

the CNV variation. Moreover, although numerous studies have demon¬ 

strated changes in the expected direction of RT and GNV with various 

experimental manipulations (Tecce and Scheff, 1969; Irwin et al., 1966; 

Walter, 1966), an approximately equal number have shown dissociations 

between the two measures (Hillyard and Galambos, 1967; Rebert et al., 

1967). Rebert and Tecce offered the tentative conclusion, based on 

the small average magnitude of the GNV-RT correlation and the many 

dissociations, that "GNV and RT are essentially unrelated and reflect 

different and relatively independent psychological processes." They 

cited data establishing a low order correlation between physiological 

measures of arousal and RT and implied that arousal might mediate the 

CNV-RT correlation. 

Prior formulations equating RT and GNV have been derived from 

simplistic notions of reaction time as a unitary concept. A more 

realistic view recognizes that a number of components including 

perceptual factors, motor readiness, learning, and motivational 

variables operate in reaction time tasks; consequently, dissociations 

between RT and the GNV, which cannot possibly be related to all of 

these factors, are not unexpected. Nonetheless, when a single process 

is manipulated with adequate control of the others, RT can provide 

valuable information concerning the interpretation of ERP changes. 
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In general, electroencephalographers have viewed bioelectrical 

phenomena generated by structures other than the brain as possible 

contaminants of the EEG, and much work has been directed towards 

definition of the contribution of various biological potentials, 

especially those arising from the globe of the eye and the skin, to 

the EEG recorded from scalp electrodes (for a review see Papakostopoulos, 

1973). However, a few investigators have explored the use of physio¬ 

logical measures of autonomic arousal as a means of more precisely 

defining psychological states during experimental investigation of 

EEG and event-related potentials. This approach has been used in 

studies of GNV and psychopathological states. McCallum and Walter 

(1968) found that neurotic subjects had higher basal heart rates and 

smaller CNVs than normal controls; however, GNV amplitude decrements 

produced by the addition of extraneous stimuli were not accompanied 

by heart rate changes. Galvanic skin response (GSR) was not reliably 

associated with GNV either on a tonic or phasic basis. 

The effects of frontal leukotomy on CNV and cardiac rate in 

psychotic and neurologic patients has also been studied (Lurin and 

Homskaya, 1970; Walter, 1966). Comparison of pre- vs. post-operative 

recordings revealed decreased basal heart rate, decreased heart rate 

reactivity to sensory stimuli, and increased GNV amplitude into the 

normal range from its initially depressed level. 

Autonomic measures have also contributed to investigations of 

psychological processes and event-related potentials. Tecce's (Tecce 

and Scheff, 1969; Tecce et al., 1976) elegant experiments, which 

demonstrated decreased GNV during distraction, provide examples of 
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three effective uses of behavioral measures: l) in these studies the 

presence of enhanced arousal accompanying distraction was verified by 

monitoring EKG and eyeblink frequency; 2) accurate recall of the dis¬ 

tracting items presented in the S1-S2 interval was required in order 

to assure the subject's attention to these stimuli; and 3) lengthened 

reaction times validated the efficacy of the experimental manipulation. 

Dissociations between ERPs and autonomic measures have also been 

reported. Knott and Irwin (1968) found decreased GNV amplitude for 

subjects with high manifest anxiety (Bandig scale) but no GSR changes 

relative to subjects who scored much lower. 

Convincing associations between ERPs and perceptual accuracy 

have been reported from a number of laboratories. The most compre¬ 

hensive studies are those performed by Hillyard concerning auditory 

signal detection. In a preliminary experiment involving detection 

of near-threshold tone pips following a warning tone (Hillyard, 1969)» 

CNV amplitude was greater preceding correctly identified signals when 

compared to signals that were missed. Subsequently, he (Hillyard et 

al., 1971) showed that P3 varied in amplitude directly as a function 

of D' (perceptual sensitivity). Thus, these averaged EEG features 

seemed to index spontaneous fluctuations in the efficiency of auditory 

processing. Donald and Goff (1973) have demonstrated that accuracy 

of performance on a difficult auditory discrimination was related to 

CNV and P3 amplitude to S2. Comparison was made between blocks of 

trials with the most accurate performance and the block with the 

poorest accuracy. In the former CNV was greater and P3 to S2 increased 

relative to the latter. Again, these results suggest that the CNV 
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is related to efficiency of auditory sensory processing. Studies of 

the visual modality have yielded similar results. Cohen (1973) inves¬ 

tigated CNVs preceding words and pictures presented tachistoscopically 

to subjects near their thresholds for identification. CNV amplitude 

was greater before correctly perceived stimuli. In a similar experiment 

(McAdam and Rubin, 1970) the readiness potential was increased prior 

to stimuli that were correctly identified with high confidence when 

compared to stimulus presentations that resulted in responses rated 

by the subjects as guesses. 

Cognitive tasks and the behavioral measures of performance they 

provide can also be useful in research Involving event-related potentials. 

Donald (1970) investigated the resolution of the CNV by interpolating 

mental arithmetic or a short term memory procedure between S2 and the 

motor response in a constant foreperiod reaction time paradigm. McAdam 

and Whitaker (1971) demonstrated lateralization of the readiness 

potential during a verbal task, but not during one involving only 

facial expressions. Johnson and Chesney (197*0 found that a single 

ambiguous stimulus produced different EPs when meaning to the subject 

is manipulated by changes in context. In addition, ERPs have been 

studied during a variety of learning and memory paradigms (Roth et al., 

1975» 1977# 1978; Rubin and McAdam, 1972; Comer et al., 1976). These 

will be discussed in Section I-D. 

D. Electrophysiologlcal Investigation of Human Memory 

The body of literature devoted to electrophysiological studies 

of human memory processes is quite limited, both in terms of the actual 
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number of studies reported and the range of issues which have been 

approached. The principal lines of investigation in this area have 

followed three research strategiest a) observation of EEG changes 

during tasks which require the activation of memory processes; 

b) determination of the relationship between EEG activity during 

learning and retention of information in memory; and c) investigation 

of the effects of arousal, as determined by skin conductance changes, 

during learning and memory. A few authors have reported obtaining 

averaged event-related potentials during learning paradigms. 

The suggestion that human mental activity is reflected by 

changes in electrical activity of the brain was initially made by 

Berger (1930) soon after his first descriptive studies of the human 

EEG. The intervening 50 years have seen a great deal of effort 

expended by many researchers in attempting to delineate the association 

between mentation and EEG; the results have generally been confusing, 

contradictory, and difficult to interpret. 

Special attention has been directed towards the alpha rhythm, 

cyclical activity of 8-12 cycles per second, observed in the EEGs of 

most people. The findings have been somewhat ambiguous. Decreased 

alpha activity has generally been associated with the performance of 

mental tasks; however, not infrequently, increased activity in the 

alpha band with mentation has been reported (for a review see Stigby, 

197?). These discrepant findings may be partially attributed to the 

diversity of techniques and devices used to quantitate the EEG as well 

as to the variety of conditions under which it is recorded (e.g., eyes 

open vs. eyes closed). A reasonably consistent finding has been a 
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global increase in average EEG activity with mental activity (Surwillo, 

1971a). 

In an extensive study designed to allow the simultaneous analysis 

of a wide range of frequencies at a large number of scalp locations 

during a variety of mental tasks, Giannitrapani (1971) demonstrated 

a global decrease of alpha activity and an increase in beta activity 

in the temporal and prefrontal areas. Based on these findings he 

proposed that alpha activity be regarded as a search for sensory 

stimulation; decrements in alpha proportional to the degree of structure 

of the stimulus occurred in the presence of a broad range of percepts. 

Beta activity increased during presentations of unstructured stimuli 

and could be regarded as a correlate of an internal scanning and 

organizing activity which subsided after structuring of the stimulus. 

Application of these techniques to human learning was first 

reported by Thompson and Obrist (1964). In their research employing 

a serial anticipation task, alpha wave incidence was decreased and 

beta (>12 cps) wave incidence increased over the entire learning 

session compared to a nonleaming control condition which contained 

some but not all of the stimulation and response characteristics of 

the experimental period. These results can be interpreted in terms 

of perceptual scanning and structuring of percepts, concepts discussed 

above with respect to Giannitrapani1s work (1971). 

Freedman and his coworkers (1966) analyzed the EEG in a number 

of frequency ranges during a paired-associate paradigm. Yoked control 

subjects received stimulus sequences identical to those presented to 

their respective experimental counterparts but for these controls, 
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feedback information was unrelated to responses, and thus, no learning 

was possible. Alpha activity increased in the experimental group over 

trials, but decreased for the controls. Lower frequency components 

of the EEG behaved in a reciprocal fashion to the alpha activity. 

No significant variation was observed in the higher frequency bands. 

The authors explained their findings by suggesting that prevalence 

of alpha is directly related to level of arousal. Thus, as learning 

progressed, decrements in arousal were accompanied by increases in 

alpha activity. They hypothesized that the control group experienced 

frustration as a consequence of the feedback devoid of informational 

content thereby leading to increased arousal and a progressive decline 

in alpha activity as the experiment continued. A hypothetical per¬ 

ceptual scanning mechanism associated with alpha is not consistent 

with the findings reported in this study. Since EEG sampling was 

interdicted during stimulus presentations, the authors are probably 

correct in ascribing their results to tonic characteristics of the 

experimental situation such as arousal, rather than specific perceptual 

processes. 

Surwillo (l9?la) measured the average frequency of the EEG 

obtained from adolescent subjects during performance of a short term 

memory task with variable memory load (the reverse digit span subtest 

of the Weschler intelligence scale for children). Using as a control 

an auditory reaction time task, which provided sensory stimulation 

and required attention and motor responses on the part of the subjects, 

he demonstrated increased mean EEG frequency during the experimental 

task. No reliable frequency differences were noted with different 
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memory loads. Unfortunately, In this study no attempt was made to 

determine activity in standard frequency bands, thereby preventing 

direct comparison with previous studies; however, these findings are 

consistent with Thompson and Obrist's (1964) observation of decreased 

alpha and increased beta activity during learning, which would translate 

to a mean frequency increase. 

More recently, a large number of ESG features were analyzed 

during an auditory memory task and compared to a control auditory rest 

condition in which white noise was presented to the subjects (stigby, 

Risberg, and Ingvar, 1971). It should be noted that the experimental 

task, which required subjects to press a button whenever three con¬ 

secutive odd numbers occurred in a series of random auditorily presented 

digits, made minimal demands on memory processes. Prevalence of alpha 

activity decreased while alpha, delta, and theta amplitude and overall 

waveform power increased in the experimental condition. The observed 

changes in alpha activity are analogous to the previously cited findings 

of decreased alpha occurring during learning and other types of mental 

activity. Due to a paucity of previous research, the data concerning 

amplitude measures cannot be specifically explained in terms of psycho¬ 

logical processes. This type of analysis merits further investigation 

and may contribute another dimension to the investigation of mentation 

and the EEG. 

The studies which initially purported to establish associations 

between measures of EEG activity and memory were those of Thompson and 

Obrist (1964) and Freedman, Hofner, and Daniel (1966) discussed earlier. 

In the first, alpha activity to presentations of nonsense syllables 
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decllned during the learning period and then recovered. The second 

demonstrated a linear increase in alpha for individual items over 

trials as contrasted with behavioral curves showing all or none 

learning with virtually perfect performance occurring after the last 

error. In both of these studies, the alpha changes are confounded 

with time and may be attributable to habituation effects or tonic 

changes in arousal over the experimental session rather than to 

specific memory processes. 

A more convincing report by Gale (197^) concerned measurement 

of EEG abundance (power) in a band of 11.5 to 12.5 Hz during a short 

term memory task which involved recall of strings of nine digits 

presented in the auditory mode. Task errors in recall increased and 

EEG power during acquisition decreased as a function of serial position. 

Total abundance during acquisition was positively correlated with 

subsequent recall. In addition, abundance during a pretrial resting 

period predicted the level of subsequent performance. As in the case 

of the previously cited studies, serial position and thus time was 

a confounding factor in a number of the reported analyses; however, 

for others this argument cannot be invoked. The striking consistency 

of the finding that poor performance on the memory task was associated 

with Increased EEG abundance holds up for a number of comparisons of 

different type and warrants further investigation. The author's equated 

EEG arousal (decrease in alpha) with psychophysiological arousal, 

asserting that arousal as measured by their techniques was impairing 

task performance. 
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Issues Involving arousal and memory were further explored in 

a study by Warren and Harris (1975). These authors simultaneously 

recorded ESG activity in the band of 8-12 Hz and skin potential during 

auditory presentations of lists of nouns in a free recall task. Records 

obtained during the presentation of each word were scored for the 

presence or absence of a decrease in alpha activity (an alpha block) 

or a skin potential response. Subjects to whom the recall task was 

administered immediately after learning showed increased recall of 

words that were associated with an alpha block, skin potential response, 

or both when compared to words to which no change in the electro- 

physiological measures was noted. Subjects given a delayed recall 

test 45 minutes post list presentation demonstrated no significant 

difference in recall across the categories. Thus electrophysiologic 

measures of phasic arousal were associated with enhanced recall as 

assessed by immediate but not delayed testing. This interaction can 

be construed as supporting a two-stage model of memory consolidation 

(Walker, 1958), a suggestion advanced by the authors, or it may reflect 

the retrieval phenomenon of output interference (Parker and Warren, 

1974) in which cues for the retrieval of one category interfere with 

those of another; in this case, the words associated with physiological 

arousal Interfere with retrieval of the non-arousal words. The 

observed pattern would be obtained if this effect simply diminished 

over time. 

A number of tasks in which changes in basal skin resistance 

level (BRL) were measured during learning focus on the role of 

physiological arousal in human memory. The findings of one group 
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(Kaplan and Kleinman, 1963. 1964; Walker and Tarte, 1963) suggest that 

associations learned under low arousal exhibit high immediate recall 

but rapid forgetting; conversely, high arousal associations exhibited 

a marked reminiscence effect, i.e., low immediate recall and high 

permanent memory. Controlling for serial position in the data analysis 

failed to alter the pattern of the findings. Independent replication 

(Butter, 1970) has been reported; however, similar work from two other 

laboratories failed to demonstrate a reminiscence effect for high 

arousal items. In the first (Maltzman, 1966), recall for high arousal 

associates was superior for both immediate and delayed tests of retention. 

The second (Corteen, 1969) found superior recall for high arousal items 

only on the delayed test. 

The question of the role of attention in human memory processes 

has not been approached at all by electrophysiological techniques. 

Behavioral data in the form of performance on a dichotic listening 

task, which required subjects to attend to one ear while simultaneous 

verbal input occurred in both ears (Wickens, Moody, and Shearer, 1976; 

Massaro, 1970), is relevant to this issue. Even with the use of 

extremely sensitive measures of information storage, these studies 

failed to demonstrate any learning whatsoever of verbal input to the 

unattended ear. This established at least a minimal requirement of 

some attention for learning to occur. The interesting question that 

remains is whether discrete levels of attention can be quantified 

during learning and related to subsequent recall performance. 

A limited number of laboratories have reported findings con¬ 

cerning ERPs recorded during learning paradigms; nevertheless, due 
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to deficiencies in design and analysis, it is impossible to draw any 

firm conclusions concerning the relationship between ERPs and memory 

from these studies. Rubin and McAdam (1972) investigated the readiness 

potential during a recognition task. This potential is a slow negative 

shift which is time-locked to motoric, rather than sensory, events. 

Subjects were allowed five minutes to freely study a printed list of 

words and then the EEG was recorded during tachistoscopic presentation 

of words, half of which had been studied. For each trial the subject 

pressed a single response button as soon as he had arrived at a decision. 

This was followed by a verbal report of his judgment as to whether the 

item had been on the study list, as well as a rating of his confidence 

in that judgment. Averages of the EEG synchronized with respect to 

the button press were computed solely on the basis of the subject's 

confidence rating. No consideration was given to whether a word had 

or had not been on the study list nor to the accuracy of recognition. 

The readiness potential was significantly greater for "on list" judgments 

made with high confidence than for guesses. Insufficient "not on list" 

high confidence responses were obtained to permit averaging. Clearly, 

as analyzed, this is not a memory experiment since attention was paid 

not to the actual recall of the items, but only to the subjects' confi¬ 

dence in their responses. In addition, although no precise recall data 

is provided, the paper does mention that the confidence ratings of the 

subjects were unrelated to accuracy of recognition performance. Thus, 

the comparison in this experiment was between categories related to 

different levels of subjective certainty; it was not an investigation 

of memory processes. 
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Roth and coworkers (1976, 19?7» 1978) have presented a series 

of studies dealing with ERPs during a Sternberg memory task. Subjects 

were presented with a memory set of one to four digits and then 

responded to a test digit by determining whether it was or was not 

in the memory set. They demonstrated that the amplitude of the GNV 

preceding the test digit decreased monotonically as memory set size 

increased. This effect was attributed to enhanced distraction related 

to rehearsal of increasing numbers of items in memory. Furthermore, 

the latency of the resolution of the GNV increased with increasing 

set size. Sternberg (1966) has demonstrated that the larger the set 

size, the greater the time needed to scan it before a decision con¬ 

cerning the test stimulus can be made. Thus, CNV resolution in this 

paradigm appears to monitor the cognitive decision as to whether the 

test digit was in or out of the memory set. In a similar experiment 

reported by Corner et al. (1976), P300 latency rather than GNV resolution 

reflected the decision time. These and other findings reported by the 

two groups relate to the complex cognitive aspects of the Sternberg 

task rather than to issues of information storage. Since performance 

was virtually perfect, no data concerning acquisition or retention of 

memory traces could be obtained. 

This review of the literature concerning the electrophysiological 

investigation of memory reveals a number of significant methodological 

difficulties retarding progress in the field. First, most of the work 

has been done by researchers whose primary training is outside the 

field of cognitive psychology; the result all too frequently has been 

selection of inappropriate learning tasks, omission of necessary controls, 
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and generally poor experimental design. Second, limited and idio¬ 

syncratic methods of EEG analysis are often employed thereby preventing 

meaningful comparisons between the work of different laboratories. 

Finally, the studies frequently confound tonic and phasic changes. 

These difficulties contribute to the high incidence of failures to 

replicate and the notable absence of followup studies on many initially 

interesting findings. Nonetheless, taken as a whole, this literature 

represents a significant beginning in a line of investigation that will 

eventually expand our understanding of the psychological and neural 

underpinnings of memory. 
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II. MATERIALS AND METHODS 

A. Subjects 

Sixteen paid subjects (7 males and 9 females) with a mean age 

of 23.1 years (range 21-30) were tested in this experiment. Payment 

was at the rate of $5 per hour. Fourteen of the subjects were right 

hand dominant; two were left hand dominant. 

B. Recording Apparatus 

The EEG was recorded from Grass subdermal pin electrodes inserted 

at frontal, vertex, and left occipital locations [Fz, Gz, and 01 

respectively, 10-20 International System (jasper, 1958)] and referenced 

to linked Beckman Ag-AgCl disk electrodes placed on the earlobes. 

This technique eliminates the skin potential artifact which may be 

obtained when disk electrodes are used at scalp recording sites (Corby, 

Roth, and Kopell, 1975)* The electrooculogram (EOG) was recorded from 

Beckman disk electrodes placed on the mid right infraorbital and supra¬ 

orbital ridges each 3 cm from the pupil. Recording of the EOG is 

necessary due to the fact that an electrical potential field exists 

across the globe of the eye; eye blinks and vertical shifts of gaze 

result in voltage changes detectable at the scalp which may confound 

the interpretation of the EEG if their source is not recognized. All 

electrodes had an impedance of less than 10,000 ohms. Amplification was 

provided by Princeton Applied Research amplifiers with a gain of 10,000X 

for the EEG and 2,000X for the EOG and set to a bandpass of 0.03-100 

cycles/second, the end frequencies being 3 db points of 6 db/octave 

rolloff curves. A 10 uv calibration pulse was added to the signal at 
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the beginning of each trial (Macpherson and Kopell, 1968). 

G. Experimental 

Subjects were informed that they were participating in an 

experiment investigating the manner in which the mind processes 

different types of visual stimuli. The relevant technical aspects 

of EEG recording were described and consent obtained. The scalp and 

EOG electrodes were then applied and the subject was seated in a 

comfortable chair in an electrically shielded audiometric testing 

booth. The front wall of the booth contained a window behind which 

an oscilloscope screen was placed for presentation of visual stimuli. 

The subject was centered with respect to the eye level screen at a 

distance of 100 cm. He rested the index finger of his dominant hand 

on a response key which was adjusted so that 100 grams of force would 

close the circuit after a 1 mm depression. A period of 20 minutes was 

allowed to pass to permit the electrodes to stabilize. Instructions 

were then read to the subject informing him that he was participating 

in an experiment designed to measure the electrical response of the 

brain to relevant and irrelevant stimuli. He would be presented with 

a series of four-letter nouns, some of which would be animal names and 

constitute the relevant targets. His task was to press the key as 

rapidly as possible whenever he detected one of these targets. Subjects 

were also instructed to maintain their gaze on a fixation point, which 

was continually present in the center of the screen, throughout the 

experiment and to refrain from blinking during or just after stimulus 

presentation. 
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A PDF-12 digital computer controlled the display of stimuli. 

Each trial was initiated by a 100 ms warning tone (frequency = 1000 Hz; 

intensity = 70 db SPL relative to .002 dynes/square cm). The tone was 

produced as a square wave, passed through a Krone-Hite filter and audio 

amplifier, and delivered to the subject by means of earphones. 900 ms 

after the offset of the tone, the fixation point on the screen was 

replaced by a word which was displayed for 200 ms. 

A presentation list was prepared comprising one hundred and 

twenty of the most commonly occurring English four-letter nouns, twenty 

of them animal names, selected from the norms of Thorndike and Lorge 

(1944). All had frequencies of greater than 5 parts per million. 

In order to partially control for order effects each of the items was 

randomly assigned to one of 4 sublists such that each sublist contained 

5 of the target animal names and 25 non-targets. Each subject was 

presented with all four sublists in one of their possible 24 permu¬ 

tations. The 16 different list permutations used were selected so 

that each sublist appeared equally often in every position. The four 

letters composing a word were each generated as points in a 5 x 7 

matrix by the computer and displayed on an oscilloscope equipped with 

a fast relaxation cathode ray tube to prevent persistence of the image 

after stimulus offset. The letters measured 2 x 2.8 cm and subtended 

a visual arc of 1.6 degrees. 

If the word presented was a target (animal name), the subject 

pressed the response key as rapidly as possible. If not, he continued 

to direct his gaze at the fixation point and wait for the next warning 

tone. Reaction times up to 1.5 seconds were recorded by the computer 
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and each trial was categorized as to whether it represented a correct 

identification of a target (hit), lack of response to a non-target 

(correct rejection), response to a non-target (false alarm), or a 

lack of response to a target within 1.5 seconds (miss). The interval 

between the initiation of successive trials was randomly distributed 

between 4.7 and 8.? seconds. 

Three channels of EEG and the EOG were collected for each trial 

and stored individually on computer tape. The initial 600 ms of the 

record, including a 100 ms baseline prior to warning tone onset, was 

digitalized with a dwell time of 5 ms/polnt. During the subsequent 

600 ms, that is, the period preceding the onset of the word., each 

successive group of four points was averaged and stored as a single 

point giving an effective sampling time of 20 ms/point. This rate 

provided ample resolution of the GNV, the only feature present in 

this segment of the record. Finally, 625 ms of activity following 

word onset were sampled with a dwell of 5 ms/point. In all, 1725 ms 

of data were collected for each trial. 

The experimental session began after the EEG and EOG recordings 

had stabilized, with 2 runs of a practice list of 20 three-letter 

nouns, four of them targets. At this time the instructions for speed 

of responding were emphasized. Subjects were required to wear 

corrective lenses if they normally used them for distant vision. 

The main list, which required 13.5 minutes to complete, was then 

presented. Immediately after the final item the subjects were dis¬ 

tracted with a brief conversation about their schooling or work in 

order to eliminate the recency effect of improved memory for the last 
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few items of a list (Postman and Phillips, 1965). The electrodes were 

then removed and the subject told that we were interested in his memory 

for the words he had just seen. A forced choice recognition task was 

administered employing 120 randomly ordered file cards each containing 

four words, one word that had been on the presentation list and 3 

distractors drawn from those remaining of an original list of 480 high 

frequency four-letter nouns after 120 had been randomly selected for 

use in the target identification task. In addition to selecting a 

response the subject was required to provide a confidence judgment 

for each item where 1 represented absolute confidence, 2 reasonable 

confidence, 3 little confidence, and 4 signified a guess. At the end 

of the session inquiries were made about any suspicion on the part of 

the subjects with respect to the delayed recognition test. All denied 

making any attempt to memorize the words during presentation. 

D. Data Analysis 

The EEG and EOG collected and stored for individual trials was 

summated to yield 3 distinct types of averages: 

1) A Correct (C) average for list nouns that were recalled 

on the recognition task; 

2) An Incorrect (i) average for nouns not recalled; and 

3) A Target (T) average for the target items, i.e., animal names. 

For each subject C, I, and T averages were generated from the 3 EEG 

channels plus the EOG channel to produce 12 curves/subject. 

Two additional considerations guided the choice of items for 

averaging. The first was the need to eliminate correct guesses from 
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the G averages. The principal comparison in this experiment is between 

electrical events occurring in the brain around presentations of words 

in 2 categories, those yielding strong memory traces versus those 

yielding weak ones. Correct guesses represent items which were poorly 

enregistered in memory when presented. Including these in the C 

average, which is meant to contain well-enregistered items, confounds 

the two categories and would tend to obscure any effects that might 

be present. The second consideration was the need to delete from the 

I average those items to which an incorrect response was made with 

a high confidence rating on the grounds that such items almost cer¬ 

tainly reflect the operation of different memory processes as compared 

to items which are simply not recalled. For instance, assume that the 

presentation list had included the words "wine" and "king" and the 

subject was subsequently presented with an item on the recognition 

task with "king" as the correct answer and "beer" as a distractor. 

He might choose "beer" with high confidence based upon semantic 

information stored when he had originally seen "wine". Such a choice 

fails to provide precise information concerning the memory strength 

of the trace associated with the item "king" and should be eliminated 

from data analysis. For each subject, the percentage of correct 

responses at each confidence level was computed and used to decide 

whether items should be apportioned to the G average, the I average, 

or deleted entirely. For a confidence rating of 1, all subjects had 

a recognition accuracy of greater than 80thus the correct items 

assigned a confidence rank of 1 were included in the G average in 

all cases and the incorrect items with a confidence judgment of 1 
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were eliminated. At a confidence level of 2, recognition accuracy- 

ranged from 40-937$; at levels 3 and 4 accuracy was always below 6$%. 

The items assigned a confidence rating of 2, in subjects whose recall 

at this level was greater than 63/$, were treated the sane as items 

at confidence level 1. For all other items, the incorrect ones were 

included in the I average, and those that were correct were omitted 

in order to exclude guesses from the G average. In summary, the G 

averages represent those items correctly recalled with high confidence 

when the high confidence was associated with high recognition per¬ 

formance (>63%). The I averages represent those items incorrectly 

recalled with low confidence; such items were invariably associated 

with poor recognition performance (<637$). This scheme produced 

averages with 13-68 underlying trials (Mean: G average=42.8; 

I average=29.4). The T average consisted of all the target items 

(n=20). 
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III. RESULTS 

A. Statistics 

Unless otherwise indicated the statistical test employed to 

determine significance of differences observed was a two-tailed t test 

with repeated measures. 

B. Behavioral Measures 

TABLE 1 

Percent correct recognition by confidence level on incidental memory 
task and mean number of responses per subject in each category. 

Confidence Rating Non-Targets Targets 

N % Correct N % Correct 

1 39.5 94.8 15.7 99.6 

2 27.0 57.3 2.7 80.0 

3 22.5 42.7 1.2 52.6 

4 11.0 38.1 0.4 33.0 

Table 1 presents the data from the recognition task partitioned 

on the basis of confidence ratings. Overall mean percentage of non¬ 

target items correctly recognized was 67.3%-standard deviation (SD) 

of 11.9. Recognition performance decreased with decreasing confidence, 

but remained well above chance level, even when the subjects believed 

themselves to be guessing at a confidence level of 4 (t=2.l6, df=15i 

p<.05). Targets were correctly identified with a mean accuracy of 

92.8fo±8. 
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Serial position curves (Figure l) demonstrate a clear primacy 

effect, i.e., enhanced recall for the non-target items from the initial 

portion of the list, a finding generally reported in the verbal learning 

literature with tasks of this type (Kintsch, 1970, pp. 153-62). The 

target items, however, yield a flat serial position curve. Distraction 

immediately after list presentation was effective in suppressing a 

recency effect, as neither curve manifests enhanced recognition of 

the last few items. The curves presented in Figure 1 also demonstrate 

that a disproportionately large share of the items contributing to the 

G averages and an unexpectedly small fraction of those comprising the 

I average were drawn from the initial one third of the presentation 

list. 

Error rates in the target Identification task were extremely 

low. Ten of 16 subjects had perfect performance. In all 2.8% of the 

targets were missed; false alarms occurred to 2.2% of non-target items. 

Mean reaction time to the targets was 559.6 ms±58.6. 

G, Event-Related Potentials 

Figure 2 presents the superimposed averaged curves of EEG and 

EOG for 8 subjects plus a set of Grand Average curves summated across 

all 16 subjects. The major features to note are: l) the auditory 

evoked potential to the warning tone; 2) the contingent negative 

variation (CNV) apparent after the evoked potential to the tone and 

rising to a maximum just before the presentation of the word; 3) the 

visual evoked potential to the word; riding on 4) the resolution of 

the GNV, a positive shift subsequent to the onset of the word. Four 





Figure 1. Serial Position Curves 

A. Mean number of subjects demonstrating correct recognition 
per item vs. serial position plotted for successive groups 
of 10 non-target items and 2 target items. 

B. Mean number of items included in Correct and Incorrect averages 
vs. serial position. 
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Figure 2. Event-Related Potentials. Negative upward in all curves. 
Onset of warning tone and word indicated by arrows on time 

scale. 

A. ERP features shown for a representative averaged curve from 

an individual subject. 

B. Superimposed averaged EEG and EOG curves of 8 subjects at lead 
Gz for correct, incorrect, and target items depict variability 

of data. 
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Figure 2 

C. Grand average curves for all 16 subjects. Three channels of 
EEC plus EOG for each of the 3 conditions. Peaks are smaller 
and less sharp than for individual curves due to variability 
in latency across subjects. 
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components were consistently identified in the evoked potential to the 

warning tonei a prominent negative peak at approximately 100 ms (Nl), 

a positive peak with a latency of approximately 200 ms (P2), another 

negative wave occurring at about 250 ms (N2), followed by a late 

positivity just beyond 300 ms (P3). Nl and P2 were well defined in 

all subjects thus permitting the use of a simple computer algorithm 

for peak measurement which identified Nl latency as the maximum nega¬ 

tivity in the range of 70 to 130 ms and P2 as the maximum positivity 

between this value and 280 ms. N2 and P3 were not as consistent across 

subjects and, in fact, could not be identified at all in the curves 

of 3 subjects. For the other 13, the experimenter selected the maximum 

negative peak following P2 in the range of 200-325 ms as N2 and the 

largest positive peak in the range N2 to 380 ms as P3 by positioning 

cursors on the curves as displayed on the computer CRT screen. The 

amplitude and latency of the peaks so identified were then calculated 

by the machine. All latencies were determined relative to the onset 

of the tone. Amplitudes were measured with respect to a 100 ms baseline 

just preceding tone onset in units of microvolts of equivalent input 

at the scalp. In addition, a peak to peak measure, N2-P3, was computed. 

These data are presented in Table 2 and Figure 3• Nl and P2 amplitudes 

and latencies were nearly identical for the three types of averages 

as were N2 and P3 latencies. N2 and P3 amplitudes also yielded non¬ 

significant differences across conditions, but the peak to peak measure 

was reliably greater in the G as compared to the I average at lead Gz 

(t=3.78, df=12, p<.0l) and in the T vs. I average as well at both 

Fz and Cz (Fzt t=3*20, df=12, p<.01; Gz: t=2.62, df=12, p<,05). 
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Figure 3* Mean P3 amplitude and standard error of the mean for the 
evoked potential to warning tone. Asterisk indicates 
significant difference computed by t-test. 

The visual evoked potential to the presentation of the word has 

the same major components in leads Cz and Fz as the EP to the tone; 

however,in the occipital lead (01) a positive wave at approximately 

100 ms (Pi), a negative wave with a latency of about 150 ms (Nl) and 

another positivity occurring around 250 ms (P2.) are the only reliable 

features seen. The waveform components in lead 01 were prominent in 

all subjects, again allowing latency and amplitude measurement to be 

made with simple computer algorithms. PI was selected as the maximum 

positivity in the range 80 to 130 ms, Nl as the greatest negativity 

in the range of the latency of PI to 180 ms, and P2 as the maximal 

positive wave between the latency of Nl and 330 ms. The results of 

this analysis are presented in Table 3» There were no significant 
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TABLE 3 

Evoked potential to word at lead 01. Mean (standard deviation) 

Latency (ms ) Amplitude (uv) 

Component G I T G I T 

Nl 153(15) 153(13) 153(15) -7.2(4.3) -7.7(4.1) • -8.1(4.3) 

P2 248(42) 255(41) 267(50) 4.3(3.2) 4.2(3.0) 5.5(4.3) 

differences across conditions for any of these measures. The analysis 

of the visual evoked potential in leads Fz and Gz was rendered more 

complex by the fact that GNV resolution was occurring simultaneously 

with the generation of the EP. The peaks Nl, P2, N2, and P3 were 

identified manually by use of the cursor described above. No waves 

clearly corresponding to N2 and P3 could be found in the records of 

2 subjects; consequently, data from only 14 subjects were used for 

the statistical tests of these measures. The mean peak latencies and 

amplitudes are presented in Table 4 and Figures 4-3. Nl and P2 showed 

no significant differences across conditions. N2 latency at lead Fz 

in both the G and I averages was greater than in the T average (C vs. 

Tt t=2.54, df=13* p< .05; I vs. Ti t=2.51, df=13, p<.05). The ampli¬ 

tude of N2 in the G and T conditions was smaller than in the I condition 

at both leads (Fz—G vs. I: t=3.20, df=13, p<.01; T vs. I: t=3«06, 

df=13, p< .01; Gz—G val: t=3.02, p< .02; T vs.I: t=3.52, p<.0l). 

At lead Fz, P3 latency in the I curves was greater than in the G 

curves (t=2.59, df=13, p<.05). In addition, the amplitude of P3 was 

greater in the T condition than for G or I (T vs Ci t=4.31» df=13. 
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P<•01; T vs. I: t=4.17, df=13* p<.00l). At lead Cz, P3 amplitude In 

the target curves was greater than in the incorrect curves (t=3.49, 

df=ll» p<.05), hut there was no significant difference between the 

target and correct conditions. The N2-P3 measure yielded results 

identical to those for P3 amplitude. 

The height of the GNV was determined as the mean voltage of 

the 100 ms immediately prior to the presentation of the word (S2) 

relative to the 100 ms baseline preceding the tone (Si). This data 

appears in Table 5 and Figure 6. The GNV was greater in the G curves 

than in the I curves at Gz (t=2.55. df=15t p<.025). 

TABLE 5 

CNV amplitude. Mean (standard deviation) 

Lead 

Amplitude (uv) 

G I T 

Fz -6.3(3.8) -5.'4(3.9) -5.5(5.0) 

Gz -8.1(3.?) -6.9(3.8) -7.3(5.3) 

01 -2.2(3.6) -2.0(3.0) -0.5(2.9) 

The serial position curves demonstrated disproportionate 

sampling from the initial 20 items of the presentation list, which 

were relatively over-represented in the G averages and under-represented 

in the I averages. If the CNVs during the early trials tended to be 

greater than those on later trials, this would account for the CNV 

difference observed, but it would reflect merely a non-specific 

temporal effect and bear no relationship whatsoever to memory processes. 
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Figure 6. Mean GNV amplitude and standard error of the mean. 
Asterisk indicates significant difference computed by 
t-test. 

Fz Cz 01 

In fact, Walter (1966) has reported increasing, not decreasing, CNVs 

over the initial few trials of an experiment. An attempt was made to 

eliminate this effect in the current study by providing a total of 

40 practice trials before presenting the experimental list. Beyond 

that, an analysis for possible order effects was performed by generating 

a set of 5 curves per subject. Successive blocks of 20 consecutive 

trials contributed to each of the curves. Target items were excluded 

from averaging, as they do not enter into either the G or I curves. 

Mean CNV amplitudes for these curves are reported in Table 6. A one¬ 

way analysis of variance with repeated measures performed on this data 

yielded a non-significant result (f [l,15] = 0.29) suggesting that no 

serial position effect was present for GNV amplitude. 
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table 6 

GNV amplitude at lead Gz from successive blocks of 20 non-target trials. 
Mean (standard deviation) 

Trials Amplitude (uv) 

1-20 -7.9 (4.5) 

21-40 -7.5 (5.1) 

41-60 -8.0 (4.7) 

61-80 -7.3 (5.0) 

81-100 -7.0 (5.?) 

To summarize, the principal findings of this experiment con¬ 

cerned GNV and P3 amplitude. The GNV was significantly greater prior 

to words destined to be recognized than to words that were not to be 

remembered. The N2-P3 measurement of the evoked potential to the 

warning tone was larger in the target as well as the correct averages 

when either was compared with the incorrect curves. Finally, analysis 

of the P3 component in the visual EP to word onset revealed greater 

amplitude in the target relative to the correct or incorrect averages. 

In addition, significant differences were observed for the N2 

component of the EP to the word, specifically, shorter latency in the 

target curves when tested against the correct or incorrect curves, 

and greater magnitude in the incorrect averages in comparison with 

either of the other two. 
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IV. DISCUSSION 

A. Incidental Memory 

Incidental learning paradigms are particularly appropriate for 

the electrophysiological investigation of memory, as they permit the 

experimenter to exert control over the cognitive activity of the 

subject during presentation of stimuli. Under conditions of intentional 

learning, each subject employs an unknown coding strategy whereas in 

an incidental learning experiment the subject must process the materials 

in a way compatible with or determined by the orienting task. A second 

important, perhaps crucial, feature of these paradigms is the elimina¬ 

tion of rehearsal during inter-stimulus intervals. ERPs as currently 

recorded are restricted to a relatively narrow time period just prior 

and subsequent to physical stimuli. In any experiment in which one 

seeks to demonstrate ERP differences related to disparate behavioral 

outcomes, the probability of a successful result will be maximized if 

the phenomena which contribute to behavioral variability are concentrated 

in the critical period around the stimulus. Rehearsal processes take 

place in the interval between stimuli and are therefore likely to be 

insensitive to ERP measures. As a consequence, if rehearsal determines 

the probability of recall, demonstration of associated changes in ERP 

components is unlikely. However, elimination of rehearsal may permit 

cognitive processes and states (for instance, level of attention), 

occurring in temporal proximity to items which are to be learned, to 

assume the principal role in determining probability of subsequent 

recall during memory tasks. Such processes are most likely to be 
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indexed by ERP components. 

Averaging of single trial EEG activity based upon dichotomous 

response alternatives has been a useful technique in ERP research. 

It has permitted the demonstration of moment to moment changes in 

psychological states, an accomplishment which is beyond the reach 

of simple behavioral measures. The CNV indexes auditory and visual 

perceptual sensitivity (Hillyard, 1969; Cohen, 1973; Donald and Goff, 

1973)* Auditory sensitivity is monitored by P3 as well (Hillyard et al., 

1971). The present study extends the use of this design by investi¬ 

gating ERPs as indices of information storage processes. 

The primacy effect occurs in many types of list learning 

experiments (Kintsch, 1970). It has generally been explained on the 

basis of increased rehearsal of the initial few items leading to 

Improved registration in memory (Atkinson and Schiffrin, 1968). 

Marshall and Werder (1972) tested this hypothesis by examining serial 

position curves from an incidental memory task, in which rehearsal 

is assumed to be eliminated, and found that the primacy effect was 

eliminated as well. They concluded that their data were consistent 

with the rehearsal hypothesis. However, in the current experiment, 

a primacy effect was clearly demonstrated for the non-target items. 

This finding calls into question any rehearsal-based explanation of 

enhanced recall for the first portion of a list. The absence of this 

effect in the aforementioned study is probably due to the low absolute 

level of recall ( 10%) provided by the task that was used, i.e., a 

floor effect. A related explanation can be proposed for the failure 

to observe a primacy effect in the serial position recall curve for 
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the target items in the present experiment. The very high levels of 

recognition (>90/5) probably imposed a ceiling effect thereby preventing 

the development of differential recognition by position. 

Accuracy of recognition of target items was much greater than 

non-targets (93%> vs. 67%). Enhanced memory for items belonging to 

a target class relative to distractors has been previously established 

in incidental learning paradigms employing semantic orienting tasks 

(Hyde and Jenkins, 1973; Schulman, 1971). An additional factor 

accounting for the high target recognition was that virtually all 

common four letter animal names were required to form the set of 20 

used in the presentation list leaving very few to serve as distractors 

in the recognition task. Under these conditions, adopting a strategy 

of responding positively to all but the most unfamiliar animal names 

would result in excellent recognition performance. 

B. N2 Elicited by Word Presentation 

N2 (or N200) is a negative wave occurring with a latency of 

approximately 200-250 ms, most clearly seen in the EP occasioned by 

an omitted stimulus. In auditory or visual EPs, N2 is often obscured 

by the preceding P2 wave. Studies by Simpson, Vaughan, and Ritter 

(1976, 1977) suggest that N200 reflects target detection, the regis¬ 

tration of either omitted or task-relevant stimuli. They have proposed 

that N2 may be elicited in any situation in which P3 occurs and in fact 

may initiate processes which lead to P3 generation. 

In the present study a small N2 component can be appreciated 

in the EPs elicited by word presentations in the records of 14 of the 
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16 subjects. The distorting influence introduced by the positive shift 

of GNV resolution is evident. As a result of this slow potential, mean 

baseline-to-peak amplitude of N2 is positive in two of the three condi¬ 

tions, even though this is nominally a negative wave. The frontal 

distribution of N2 observed here is at odds with previously published 

reports of scalp topography (Simpson et al., 1977). Furthermore, the 

pattern of results at N2 is the mirror image of those for GNV amplitude 

while the I curves manifest less negativity immediately prior to word 

onset, they demonstrate a larger negative component in the EP to the 

word. These findings suggest that the resolution of the GNV, rather 

than any changes in the N2 component, is producing the significant 

differences in the baseline-to-peak measurement. Since N1 and P2 

precede appreciable GNV resolution, a similar effect was not seen for 

these components. Amplitude differences may have been introduced at 

P3 secondary to resolution of the GNV, but these small differences 

would have been overshadowed by the large effect on P3 amplitude of 

responding to the target stimuli. 

In summary, the effect observed for the N2 component of the 

word EPs appears to be artifactual in the sense that it relates to 

resolution of preceding GNVs of different magnitude rather than to 

processes directly associated with N2 itself. 

C. P3 Elicited by Warning Tone 

Analysis of the amplitude of the P3 component of the evoked 

potential associated with the warning tone is complicated by the 

presence of a developing GNV. Latency to appreciable CNV magnitude 
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relative to the onset of SI has been reported to range from 200 ms 

(Walter, 1965^ to 300 ms (Donchin and Smith, 1970). Since the mean 

P3 latency in this experiment is approximately 320 ms, significant 

overlap and summation with CNV would be expected resulting in a reduction 

of apparent P3 amplitude when measured with respect to a pre-stimulus 

baseline. Use of a peak to peak instead of the more traditional 

baseline to peak measure, specifically N2-P3, tends to minimize the 

distorting effects of a superimposed slow negative ramp potential. 

Unfortunately, this technique introduces uncertainty as to whether 

the pattern of results observed represents an N2 effect, a P3 effect, 

or a combination of the two. The fact that the baseline to peak 

measurement of N2 yielded no significant differences among the 

conditions, coupled with the expectation that the developing CNV 

would have a greater effect on the longer latency P3 than on the N2 

component, suggest that the differences found for N2-P3 amplitude 

probably primarily reflect variability contributed by P3. 

The presence of a warning stimulus in a reaction time paradigm 

significantly reduces response time (Loveless, 1973)* Since the sub¬ 

jects in the present study were instructed to maximize their speed of 

responding, the warning tone served as a task-relevant stimulus. Suc¬ 

cessive tones were infrequent events, as the mean interval between them 

was eight seconds. The warning tone, therefore, satisfied the criteria 

for stimuli expected to elicit a P3 component. In fact, the P3 base¬ 

line to peak amplitude was quite small, being approximately 20-50^ 

of the values usually reported for infrequent relevant stimuli (Donald 

and Goff, 1973; Picton and Hillyard, 197^; Ford, Roth, and Kopell, 1976). 
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As suggested above, this reduced P3 is at least partially accounted 

for by cancellation secondary to GNV superimposition. Analysis of 

scalp topography supports this explanation; P3 amplitude in the EP 

to the warning tone was greatest in the occipital lead, progressively 

diminishing at more anterior scalp recording sites. Such a distribution 

is decidedly unusual for P3, but not at all unexpected if a GNV is 

partially suppressing P3 at Fz and Gz. P3 amplitude at 01 should be 

unaffected by GNV since P3 is 70% transmitted to lateral occipital 

leads relative to Gz amplitude (Picton and Hillyard, 1974), while GNV 

is virtually absent at posterior scalp leads (Tecce, 1972). 

In terms of the subject's experience, the underlying trials 

contributing to the G, I, and T averages could not be differentiated 

at the time of warning tone presentation. Since the target stimuli 

occurred at random during list presentation, the EP in the T averages 

represents a random sampling of EEG activity elicited by the tone. 

There was no significant difference at N2-P3 between this curve and 

the G curve in which trials were selected for averaging if the word 

subsequent to the warning tone was recognized with high confidence; 

consequently, there was no P3 enhancement in the C averages. However, 

in the I average, composed of trials in which recall of the word 

following the tone was unsuccessful, there was a significant diminution 

of N2-P3 relative to the other two conditions. 

The magnitude of this peak to peak measure of the late EP 

components appears to monitor a cognitive state of at least one second 

duration that determines the extent to which information concerning 

an event will be stored in memory. The usual factors known to affect 
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P3 amplitude are held constant throughout this experiment; as far as 

the subject is concerned, at the time of tone occurrence, each trial 

is identical to every other trial. Differences observed in the tone 

EP must reflect moment to moment fluctuations in the psychological 

state of the subject occurring throughout list presentation. This 

cognitive variability affects both the magnitude of the late component 

and the probability of forming a memory trace of sufficient strength 

to allow for subsequent retrieval. Specifically, a diminished N2-P3 

component is associated with less than optimal memory storage processes, 

manifested in turn by impaired recognition performance. This hypothesis 

is, of course, a post hoc formulation based upon associations between 

the outcome of a memory task and reconstructed averaged EEC waveforms. 

A critical test would involve segregating items on the basis of warning 

tone P3 amplitude for individual trials and subsequently assessing 

recognition. Performance should be directly related to the size of 

P3. Unfortunately, inasmuch as P3 waves were not identifiable in the 

raw EEG, this analysis could not be performed. 

In this study the warning tone functions not only as a task¬ 

relevant stimulus, but as a probe of the cognitive state of the subject. 

Similar uses of sensory probes have been reported. Hink and Hillyard 

(1976) used simple phonemes to assess attention to complex messages 

during dichotic listening. Donchin (in press) investigated P3 amplitude 

in a series of auditory stimuli presented throughout the course of 

a visual tracking task. The auditory P3 reflected cognitive demands 

of the visual task. It may be that the N2-P3 measure indexes efficiency 

of stimulus processing. Similar concepts have been previously proposed 
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on the basis of associations between P3 amplitude and accuracy during 

signal detection and visual perception (Hillyard et al., 1971; Cohen, 

1973)* It is both exciting and surprising that a fluctuating psycho¬ 

logical state affecting memory processes can be assessed, at least on 

a statistical basis, fully one second before the presentation of the 

stimulus which actually activates informational storage processes. 

As discussed previously, P3 latency appears to reflect the 

duration of cognitive processing in many experimental situations. 

The proposed concept of perceptual efficiency cannot be applied in 

a temporal sense to suggest that enhanced efficiency would result in 

more rapid stimulus evaluation, since P3 latency was constant across 

conditions. 

Decreases in P3 amplitude have commonly been attributed to one 

of two mechanismss l) presumed decrease in the amplitude of the P3 

component in the underlying trials; or 2) increased variability of 

P3 latency producing time jitter during the averaging process and thus 

diminished amplitude in the averaged waveform only. In the absence 

of independent behavioral data monitoring cognitive processing of the 

tone, it is impossible to delineate which of these mechanisms accounts 

for the differences observed. 

D. P3 Elicited by Word Presentation 

Again, as was the case for the warning tone, analysis of P3 

amplitude in the visual EP elicited by word presentation is rendered 

more complex by the superimposition of a contemporaneous slow wave 

process—in this instance, the resolution of the GNV. This positive 
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baseline shift begins well before P3. Walter et al. (1964) have reported 

a latency of 140 ms in a simple constant foreperiod reaction time task; 

in paradigms requiring more complex decisions, values of approximately 

200 ms have been obtained (Donald and Goff, 1973? Roth et al., 1975). 

Summation of the positive CNV resolution and P3 would tend to produce 

artifactually large P3 amplitudes when measured relative to a pre¬ 

stimulus baseline. Variability in the rate of CNV resolution could 

well contribute to the differences observed in P3 amplitude across 

experimental conditions. The P3 component in the word EP was of greater 

magnitude in the target averages as compared to either of the non¬ 

target curves. As discussed in the introduction, enhancement of P3 

amplitude for task-relevant stimuli in simple reaction time paradigms 

has repeatedly and reliably been demonstrated. An identical effect 

has been reported during more complex tasks including phoneme identifi¬ 

cation (Galambos et al., 1975)i selection of rhymes, synonyms, and male 

proper names (Kutus and Donchin, in press in Hillyard, in press), and 

item recognition from short term memory (Gomer, Spicuzza, and O'Donnell, 

1976). The results of the present experiment extend the demonstration 

of P3 enhancement for target stimuli to a semantic categorization task. 

E. Contingent Negative Variation 

With the failure of theories that depend upon one or two psycho¬ 

logical constructs to account for the great diversity of reported CNV 

findings, questions have been raised as to whether the CNV can be 

regarded as a unitary phenomenon (e.g., Hillyard, 1973). This trend 

has been abetted by experiments which claim to demonstrate subcomponents 
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of the CNV (Rohrbaugh, Syndulko, and Lindsley, 1976; Jarvilehto and 

Fruhstorfer, 1970). These authors, using relatively long inter-stimulus 

intervals between SI and S2, recorded an early negative, frontally 

distributed component related to the warning stimulus and a later 

negative slow potential, whose characteristics were similar to those 

of the readiness potential. This line of inquiry may eventually lead 

to significant advances in CNV research; however, it has also led to 

the haphazard invocation of multiple hypothetical components and 

processes in situations where they are not experimentally demonstrable. 

It may be preferable to appeal to parsimony and continue to seek 

unifying explanations. 

The ideas that have been proposed to describe the relationship 

between mental phenomena and CNV do cluster around a single sphere of 

psychological function. They all appeal to the notion that the CNV is 

related to processes activated by the individual to facilitate behavioral 

interactions with the environment. A large body of evidence suggests 

that, at least under certain conditions, CNV indexes the quality of 

a preparatory state. This has been true for simple reaction time 

(Rebert and Tecce, 1973)» auditory signal detection (Hillyard, 1969; 

Hillyard et al., 1971), accuracy of visual perception (McAdam and Rubin, 

1971; Cohen, 1973) and auditory discrimination (Donald and Goff, 1973) • 

In addition, interference with focused preparation by distracting 

stimuli or divided attention tasks results in decreased CNV amplitude 

(Tecce and Scheff, 1969). A potentially valuable direction for research 

is to attempt to further delineate the characteristics of this preparatory 

state indexed by the CNV. 
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In the current study, GNV amplitude was greater prior to words 

that were ultimately recognized with high confidence than before items 

that were to be forgotten. Reasoning conversely, this indicates that 

when CNV was large, storage of information concerning S2 (the word) 

was facilitated and the probability of subsequent recognition was 

enhanced. Smaller GNVs were associated with a diminished chance for 

accurate recognition. CNV amplitude for the target curves was inter¬ 

mediate between the G and I curves, although it did not differ signifi¬ 

cantly from either. As previously discussed, the underlying trials 

contributing to the target averages essentially represent a random 

sample of all trials, and thus, GNV magnitude would be expected to 

fall somewhere between that of the other two conditions. 

The amplitude differences observed for the N2-P3 component of 

the EP to the warning tone and the GNV are similar in that the G aver¬ 

ages showed greater magnitude than the I averages in both cases. 

Moreover, similar theoretical constructs have been advanced here to 

account for these findings. At times a debate has raged in the liter¬ 

ature concerning the relationship of P3 and the GNV. While these ERPs 

may overlap in complex and confusing ways (Roth et al., 19?6), P3 and 

CNV are generally accepted as separate components with distinct psycho¬ 

logical referents (e.g., Donchin, in press). Furthermore, questions 

concerning the interdependence of the two components usually center 

upon the superimposition of GNV resolution and the P3 elicited by S2. 

In the current study, it was P3 in the EP to the warning tone that 

behaved similarly to the GNV; P3 to S2 (the word) manifested a different 

pattern of results consistent with an explanation based upon task 
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relevancy. Although there was probably overlap of the initial portion 

of the GNV and P3 to the tone, the resulting effects on P3 magnitude 

at its peak latency would have been extremely small and, in any case, 

would have tended to produce an effect opposite to the significant 

differences actually seen in the N2-P3 measurement. Therefore, it 

appears from the present data that CNV and P3 serve as Independent 

indices of ongoing cognitive activities. Their amplitudes correlate 

with moment to moment fluctuations in hypothesized preparatory atten- 

tional processes which in turn determine the efficiency of information 

storage. 
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V. SUMMARY 

Sixteen subjects semantically categorized each of a list of 

tachistoscopically presented words while their EEGs and EOGs, for 

individual trials, were recorded and stored. Subsequently, a recog¬ 

nition test was administered to assess incidental learning of the list 

items during the orienting task. Three types of computer-averaged 

curves were generated for each subject: one was composed of the 

electrical activity recorded around the presentation of non-target 

words that were recognized with high confidence; a second consisted 

of the activity associated with non-targets that were not remembered; 

and the third comprised target items from the semantic task. 

The P3 wave elicited by the target items was larger in amplitude 

than those generated in response to either of the two other categories 

of items. This finding lends support to the concept that increased 

P3 magnitude reflects cognitive matching of a stimulus with its repre¬ 

sentation stored in memory. 

The amplitudes of both the P3 wave associated with the warning 

tone, and the GNV, were significantly greater for the correct average 

compared to the incorrect curve. These results suggest that the 

efficiency of information storage processes is at least partially 

determined by fluctuations in the functional state of the brain, 

fluctuations which can be assessed by analysis of ERP components. 
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