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ABSTRACT 

CENTRAL NERVOUS SYSTEM REGENERATION: Survival of Retinal Ganglion 

Cells and Optic Nerve in Mouse Following Axotomy and Grafting. 

Matthew Raymond Moore 

1986 

Central nervous system regeneration was studied using the 

C57BL/6J mouse visual system as a model. The qualitative and 

quantitative effects of location (intraorbital, intracranial) of 

optic nerve transection on blood supply, ganglion cell survival, 

and optic axon growth was examined. Further, the comparison was 

made between ganglion cell survival following intracranial optic 

nerve transection alone versus transection and grafting of an 

autologous sciatic or neonatal optic nerve segment. 

Data are presented which show that an intracranial 

transection of the optic nerve maintains ganglion cell layer 

blood supply whereas, intraorbital transection causes complete 

retinal deterioration. Cell survival was significantly increased 

in specific ways within the inner retinal zones of mice receiving 

intracranial grafts. Finally, qualitative electron micrographic 

evidence indicates axonal survival and attempted remyelination/ 

elongation at three months following intracranial transection. 
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When mammalian central nervous system axons are cut or 

crushed, only the initial fundamental features of a regenerative 

response are seen. In contrast, transection of peripheral nervous 

system axons (Gutman,'45; Moore,'80; Kieman,'79; Cole,'69; 

Mark,'75; Engh,’72) or lower vertebrate central nervous system 

(CNS) fibers (Reier and Webster,'74; Murray,'76; Lanners and 

Graf stein,'80; Misantone et al.,'81; Murray,'82) results in 

extensive regrowth and functional reestablishment of target 

connections. Such extensive regrowth may occur in the CNS of 

higher vertebrates but it is often difficult to demonstrate due 

to the complexity of the CNS. 

The rodent visual system however offers several advantages 

for studying regenerative growth by CNS neurons. Originating from 

a single cell class, the optic nerve forms a compact, isolated 

bundle of fibers with readily accessible parent cell body and 

axon (Zeman and Innes, '63; Shepard,'74). Since retinal ganglion 

cells are isolated from other CNS cell groups, direct application 

of agents via intraoccular injections can be made without 

involvement of other CNS constituents. The electrophysiology 

(Kuffler,'53; Hubei and Wiesel,'62; Wiesel and Hubei,'63; Brooks 

and Jung,'73), anatomical growth (Hinds and Hinds,'74; Keating, 

'76; Jacobson,'78; Pei and Rhodin,'70), and neurochemistry 

(McGeer et al.,'78; Ames and Pollen,'69; Straschill and Perwein, 

'75), of the normal eye and its projections are known in detail 

and provide the necessary basis for studying regenerative growth 
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in the visual system. 

Early experiments reported complete ganglion cell death in 

mammals after optic nerve section directly behind the eye (Cajal, 

'28; James/33; Eayrs,'52; Polyak,'57). Neuronal survival in 

other regions of the CNS has been documented if the injury takes 

place under certain circumstances, such as when the blood supply 

to the parent cell is not compromised (Bjorklund and Stenevi, 

'79; Madison et al.,'84) and the injury takes place at a 

sufficient distance from the cell body. Recent work by Aguayo and 

colleagues has clearly demonstrated the ability of adult rodent 

CNS neurons to grow lengthy axons from one region of brain or 

spinal cord to another when offered a segment of peripheral nerve 

to serve as a bridge (David and Aguayo,'81; Benfey and Aguayo, 

'82). Others (Kalil and Reh,'82; Reh and Kalil/82) have 

demonstrated that mammalian CNS axons can regrow to some degree 

within the environment of undamaged CNS. 

Understanding the normal sequence of events in 

embryogenesis may serve as a possible model for regeneration. In 

the mouse, the earliest retinal ganglion cell axons form within 

the vitreal margin of the dorsal retina on embryonic day 12 (E12) 

and grow toward the dorsal rim of the optic fissure. By the end 

of E13, fibers enter the disc area from below and form a 

continuous ring of retinotopically organized fascicles which 

completely encircle the hyloid vessel. As optic axons pass 

through the disc, fascicles from ventral retina are split apart 

at the open fissure into two bundles (nasal & temporal) which 
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both shift laterally, changing an annulus into a flattened plate. 

At E13.5 the dorsal tier of the optic stalk has pigmented 

neuroepithelial cells and the bottom half serves as the region 

for the outgrowing axons. Proximally, optic fibers develop so as 

to bring the early outgrowing nasal and temporal fibers together. 

The flattened plate of optic fascicles is then reshaped again 

into a marginal annulus. At E14, the stalk cell nuclei begin to 

migrate outward into the marginal zone. The region of the 

ventrotemporal retinal fibers is composed of a network of 

radially arranged glial cell processes separated by a "highly 

anastomotic system" of wide bored extracellular spaces not 

alligned as channels (the future optic tract). The area of the 

ventronasal fibers contains primitive glial cells forming a very 

dense "knotlike" structure with peripheral cell bodies and 

centripetally alligned processes (Silver,'84). Similarly arranged 

glia and wide bore extracellular spaces have been noted by many 

in regenerating CNS following axotomy. Also within 

transplantation and grafting experiments, as discussed in detail 

later, the importance of a flat linearly arranged plate of 

advancing fibers following surface contours has been noted. 

The growth cones of developing retinal ganglion cells were 

found to have in vivo elongation rates of 32 microns/hour (Harris 

et al.,'85). In vitro growth rate on various substrates over 

collagen, as tried in CNS implants, has failed to achieve more 

than 60% of this rate. In development, growth cones are found 

along pial surfaces but they did not maintain adhesive contact. 
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Ultrastructural studies of a given neuron in embryogenesis 

reveals that its processes may have highly differentiated 

terminal arborization while still retaining growth cones on the 

ends of its branches (Reh and Constantine-Paton, '85). A similar 

structure would be hypothesized in the case of an adult fiber 

after axotomy with its attempted regenerative sprouting from a 

mature axonal trunk. 

Within the developing vertebrate CNS many investigators have 

noted periods of naturally occurring neuronal death. There is a 

similarly predictable and reproducible period of cell death 

during abortive regeneration with sprouting processes. In the 

rat, retinal ganglion cell numbers follow a programed sequence of 

postnatal elimination: D1 200K, D3 160K, D5 143K, DIO 117K, and 

Adult 109K (Perry et al.,'83). These studies suggest that cell 

death may play a role in the regular spacing of ganglion cells 

within the retina and in the removal of transient connections. 

Optic axons are all unmyelinated at D5 and only a few are 

myelinated at DIO (Perry et al.,'83; Sefton and Lam,'84). 

Interestingly, there are no gross signs of (programed) axonal 

degeneration since the optic nerve diameter remains unchanged. 

However, microscopically the decreased axonal density is equaled 

by individually increased axonal cross-sectional areas. 

Hypotheses to explain the underlying process responsible for 

programed CNS cell death in development and in regeneration have 

been proposed. Limited physical space for efferent target 

connections may reduce ganglion cell number. Support for this 
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proposal comes from studies that show that decreasing competition 

through neonatal unilateral enucleation results in supranormal 

numbers of the contralaterally surviving ganglion cells (Sengelaub 

et al.,'83). Another theory suggests cell electrical activity as 

a determinant of retinal ganglion cell survival. Such an idea is 

supported by studies showing reduced cell survival following 

newborn intraoccular tetrodotoxin injections (Fawcett et al. 

,'84). Further support for this theory comes from studies by 

Kierstead et al.('85). These investigators have recorded 

electrical activity in single regenerating rat retinal ganglion 

cell axons within sciatic nerve grafts after light stimuli. Their 

experiments support the initial presence of electro-chemical 

activity in sprouting axons where subsequent continued viability 

depends upon (correct?) synapse formation within a predetermined 

period. What determines this critical period or even "correct" 

synapse is only speculative at this time. 

Neurogenesis of a functional adult visual system involves 

intimate interactions of neural retinal cells with nonneuronal 

CNS cells. Thus, a review of the embryogenesis of nonneural CNS 

cells is also important. Curing development and also following 

local neuronal injury, glia have been noted to release various 

inhibitory and growth associated proteins (Pellegrino et al.,'82; 

Skene and Shooter,'83). Within the rat optic nerve before D5 only 

two nonneuronal cell types are distinguishable, glioblasts and 

astrocytes. Although oligodendrocytes are not recognizable at 

this time period, there are many glioblasts with large nuclei. 
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Oligodendrocytes are seen after D5 and their maturation proceeds 

through a regular sequence of light, medium, and darkly staining 

cells. Onset of their differentiation seems to proceed in two 

phases with an initial signal triggering cessation of glioblast 

mitosis and a second inducing maturation (Valat et al.,'83). In 

regenerating mouse CNS, it has even been noted that 

oligodendrocytes start dividing before clearance of myelin debris 

from an injury site. Although not required the presence of axons 

can subsequently influence proliferation and migration of these 

cells (Arenella and Herndon, '83). 

Early studies by Brodal ('40) reported greater sensitivity 

of neonatal neurons to axotomy and was called the "Gudden 

effect". Since the neonate is essentially within the period of 

neurogenesis and is believed to have greater plasticity, 

experiments investigating reaction to axotomy will be reviewed as 

a transition before the adult regeneration studies. Recently, 

investigators (Perry et al.,'83; Goldberg and Frank,'81; Eysel 

and Peichl,'85) have seen rapid axonal degeneration, increased 

ganglion cell loss, and lack of attempted regeneration following 

retinal lesions until postnatal days 20-50. Yet, contrary to 

these reports. Miller and Obendorfer ('81) found that the 

majority of neonatal rat ganglion cells survive. 

The distance between axotomy and parent cell body is also 

thought to be an important determinant of sucessful regeneration 

(Lui,'54; Richardson et al.,'84; So and Aguayo,'85). Lesions made 

within the retina create axotomy at very short (<2mm) distances 
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from the ganglion cell body. Allcutt et al.('84a,b) made lesions 

at greater distance from the ganglion cell body by intraorbital 

optic nerve crush. Crush injuries created with forceps are 

believed to differ from surgical transections in that the 

resilience of blood vessels within the nerve preserves a patent 

blood supply. Neonatal cells were found to be significantly more 

sensitive than adult cells in magnitude of the decrease in mean 

cell frequency. Large ganglion cells were particularly vulnerable 

with negligible recovery months following crush. In the neonate 

there was no evidence of longterm axonal regeneration although 

transient collateral sprouting of cells occured. 

In the adult CNS, questions of regenerative capacity have 

been a longstanding interest with neuroscientists since Cajal 

('28). Early studies (James,133; Leinfelder,'38; Polyak,'41; 

Kupfer,'53; Anderson,'73; Fulcrand and Privat,'77; Quigley et 

al.,'77; Goldberg,'76) transecting mature optic nerve in mammals 

reported retrograde degeneration with chromatolysis and near 

complete dissolution of ganglion cells by 20 days post-lesion 

(dpi). At 30-60 dpi large ganglion cells are rarely found in the 

retina. Nearly all studies utilized an intraorbital lesion which 

in the mouse may disrupt the blood supply to the retinal ganglion 

cell layer (Madison et al.,'84). In studies of optic nerve 

transection in adult mammals it is again important to review the 

results in groups according to lesion location. Intraretinal 

lesions stimulate initial vigorous sprouting characterized by 

multiple bifurcations, caliber changes, and randomn fiber course 
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(Eysel and Peichl,'85). In these studies however, reconnection 

with the optic nerve and distal targets was unsuccessful. After 

survival of months to two years, lesioned retinas showed regions 

free of ganglion cells. Although neither adult nor neonate 

ultimately retains many injured cells, the adult triggers a 

regenerative sprouting which only later is aborted. After 

intraorbital crush in adult mouse, ganglion cell size classes 

were examined (Allcutt et al.,'84a,b). At 10 dpi large and 

intermediate cell numbers had decreased 60-80 percent, while 

small cell loss was 40-60 percent. With longer survival to 80 dpi 

the large and intermediate class decreased further to 80-100 

percent as did small cells to 60-80 percent. The mean frequency 

of cells in the crush group in all size catagories was 

significantly less than in controls yet the cell area mode (30-50 

sq. microns) remained constant. Some of the small cells were 

thought to be displaced amacrine cells whose axons were undamaged 

by optic nerve crush and not vulnerable to effects of this 

procedure. At the lesion site the majority of fibers grew for up 

to 20 dpi in the myelinated retinal stump then degenerated. Axons 

elongated within the retina and deep to the ganglion cell layer. 

Misantone et al.('84) studied cell survival after adult rat 

optic nerve crush intracranially at the optic foramen. At one 

month survival they noted 50% cell size shrinkage across the 

range accompanied by loss of large (>90 sq. micron) neurons. 

Later, at 3-8 months post-crush partial recovery appears: some 

large neurons and size distribution approached normal. Different 
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from other studies, classic dhromatolysis was never seen and loss 

of cell number occured only after an initial delay. Density of 

neurons in the ganglion cell layer remained normal until three 

months, then fell 40 percent at six months. Newly synthesized 

proteins decreased over the first two months and late cell loss 

was thought secondary to trophic loss, as discussed later under 

transport and trophic factors, respectively. In another study by 

these authors (Misantone et al.,'81), 7 days post-crush ganglion 

cells had decreased RNA and axonal signs of degeneration. By 14 

dpi there was significant axonal loss, increased glial cytoplasm, 

and decreased nerve diameter. In contrast, in goldfish, where 

functional regeneration is effected, cells hypertrophy, RNA 

metabolism and axonal transport increase (Misantone et al.,’81). 

Grafstein and Ingoglia('82) examined ganglion cell size and 

number changes after intracranial transection of adult mouse 

optic nerve. Three days after transection, ganglion cell number 

had decreased by 20 percent and cross-sectional area by 25 

percent. At three months, the cell number further decreased to 50 

percent but cross-sectional areas were back to normal levels. 

There was no unequivocal evidence of axonal regeneration at any 

time at the lesion site. Some surviving axons in the retinal 

stump showed terminal bulbs which decreased with time, suggesting 

impaired axonal transport. Comparing intraretinal, intraorbital, 

and intracranial lesions, it appears that with increasing 

distance from axotomy to cell body, there is greater ganglion 

cell survival yet decreased regenerative axonal sprouting. Some 
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of the variability of cell numbers among comparable studies may 

be due to difficulty in identifying ganglion cells from amacrine 

cells and to a lesser extent the clear identification of glia. 

Indeed, verification of these experiments in the future should be 

done using newly developed and highly specific monoclonal 

antibodies (Balkema and Drager,'84; Akagawa and Barnstable,'84). 

The studies reviewed above have attempted to describe in 

detail the reaction to axotomy in neonatal and adult optic nerve. 

The general lack of successful regeneration found by these stud¬ 

ies results in several theories to explain regenerative failure. 

Nine hypotheses to explain regenerative failure are presented 

below without regard to any particular order of significance: 

A) absence of nonneuronal cell guides for sprout 
elongation (Cajal,'28; David and Aguayo,'81; 
Benfey and Aguayo, '82; Weiss and Taylor, ’46) 

B) physical barricade of connective and astrocytic 
scar (David and Aguayo,'81? Benfey and Agauyo,'82; 
Reier et al.,'81; Guth et al.,'81; Windle,'56; 
Agauyo et al.,'81; Neuman et al.,'83) 

C) local autoimmune reaction at injury and sprouting 
site (Sparrow et al., '84; Berry and Riches, '74; 
Zalewski and Silver,'80) 

D) growth termination after early synapse formation 
(LeGros Clark,'42a,b; Berstein and Berstein,'71) 

E) differences in blood-brain and blood-nerve 
barrier (Kiernan,'79) 

F) failure to retrogradely transport trophic 
factors (Misantone et al.,'84; Grafstein 
and Ingoglia,'82; Smalheiser et al.,'81; 
Redshaw and Bisby,'81) 

G) toxic extracellular components and increased 
retrograde transport load (Grafstein and 
Ingoglia,'82; Pelligrino et al.,'82) 
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H) excessive axoplasmic and cytoplasmic volume 
loss (Grafstein and Ingoglia, '82; Meiri and 
Grafstein,'84) 

I) inability to undergo genetic shift to exhibit 
regeneration program (Hadani et al.,'84). 

The actual cause of regenerative failure is likely to 

involve a combination of these theories. It is logical now to 

review "interventional" attempts to increase the regenerative 

response based on the acceptance of given failure theories. As a 

start it is believed that neural-glial cell interactions are 

intimately associated in order to bring about normal development, 

and through various trophic influences seem to have a role in CNS 

regeneration. Clinically, it has been demonstrated that 

peripheral nervous system unlike CNS, can survive axonal 

transection and regrow functional axons to their original 

targets. Rat sciatic nerve has been studied after transection and 

placement into various tubes (Lundborg et al.,'82; Williams and 

Varon,'84; Seckel et al.,'84). Regrowth progressed through stages 

of fluid accumulation (neuronotrophic in cell cultures), 

continuous coaxial fibrin matrix formation, cellular replacement 

of matrix, and axonal elongation/myelination. Biochemical 

isolation of factors effecting growth were tested in vivo. 

Extrapolating to CNS, whole sciatic grafts or various isolated 

growth associated proteins were tried. Initially, investigators 

noted glial reactivity and de novo synthesize of a factor called 

reactive glial protein (Pellegrino et al.,'82), a 37kDa soluble, 

acidic protein secreted from distal denervated sheath cells 
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(Skene and Shooter,'83). Antibodies were made to this protein in 

four related forms (Ignatius et al.,'84; Snipes and Freeman,'84) 

from adult rat optic nerve, sciatic nerve, neonatal sciatic 

nerve, and normal rat serum. This protein is synthesized at 

maximal rate 2 weeks post-lesion and continues through the fourth 

week. Recently, protein synthesis from nonneuronal sheath cells 

in injured, intact, and developing sciatic and optic nerves was 

examined. The 37kDa molecule was increased with denervation, the 

51 and 54kDa were found in intact mature nerve sheath, and a 

70kDa was present only after axotomy (Muller et al.,'85). The 37 

kDa protein accumulated within adult sciatic nerve but not optic 

nerve, and correlates with axon growth. It has striking homology 

to apolipoprotein E and may play a role in assembly/maintenance 

of myelin or axonal membranes in development and regeneration 

(Ignatius et al.,'85). Similarly, a 15kDa acidic protein called 

glial maturation factor (Lim and Miller, ’83) was isolated and 

found to stimulate astrocytic proliferation and differentiation. 

Another group has found that implanting substances from 

regenerating fish optic nerve or neonatal optic nerve triggered a 

cell body response in adult mammalian CNS (Schwartz et al.,'84; 

Lavie et al.,'85; Stein-Izsak et al.,'85). This growth associated 

triggering factor (GATF) was a lOkDa protein from nonneuronal 

cells which induced synthesis of specific neuronal polypeptides 

and sprouting of new fibers after optic nerve injury. 

The preceeding studies present evidence for a trophic 

influence of the nonneuronal cell environment while others 
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believe the target tissue itself expresses important factors. 

Experiments removing neonatal rat superior colliculi (Dreher et 

al.,'83) cause a 60 percent ganglion cell loss. As noted 

previously and in their controls, natural ganglion cell decline 

was only 35 percent. With target removal the loss occurs over the 

same natural time course thus supporting the importance of target 

tissue trophic factors. 

Recently, a glycoprotein on basement membrane and cell 

surfaces called laminin was found to be more highly adhesive and 

promoted superior axonal outgrowth from retinal explants than 

either collagen (type I or IV) or fibronectin (Smalheiser et 

al.,84). This protein is synthesized in schwann cells and 

astrocytes. Studies filling nerve guide lumens with 80 percent 

laminin and extracellular matrix components induced growth of a 

nerve cable at 2 weeks post-lesion while controls had nothing 

following sciatic nerve transection (DaSilva et al.,'84; Madison 

et al.,'85). 

Other studies of regeneration have involved trying to alter 

the response following lesions without using animal-derived 

trophic factors. Systemic administration of antimitotic AraC has 

been reported to inhibit gliosis following rat optic nerve crush 

(Politis,’85) thus providing a more supportive millieu for 

regeneration. Also, X-irradiation (Neuman et al.,'83) and direct 

calcium ionophore applicaton (Meiri and Grafstein,'84) were found 

to enhance regenerative capacity of goldfish retinal ganglion 

cells. In contrast, intraperitoneal colchicine or vincristine 
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sulfate (Davis and Benloucif,'81), intraoccular acetoxycyclohexi- 

mide (McQuarrie,'85) and antibodies to gangliosides (Sparrow et 

al.,'84) all inhibit the regeneration of goldfish optic nerve 

following crush or transection. 

Some investigators have emphasized the biophysical aspects 

of growth in development and regeneration. Thus, the 

extraneuronal environment has been examined for guides in 

rectilinear elongation. In culture, retinal ganglion cell 

survival and growth was greatest when plated over immature 

astrocytes which are both glial fibrillary acidic protein 

positive and flat in shape (McCaffery et al.,'85). As mentioned, 

development seems to be along surfaces (flattened plates). Such 

directed growth is also seen in grafting experiments where 

uniformly, maximum labeling of ingrowing axons is seen 

circumferentially. Three theories of rectilinear growth are: I) 

existence of small caliber alligned extracellular matrix fibrils 

(Silver,'84), II) contact inhibitory interactions between the 

very earliest growing fibers maintain parallel growth (Dunn 

,*71), III) greater preferential affinity between early fibers 

and their glial environment than for each other (Silver, *84). 

Regeneration may not be successful in adulthood because these 

guiding fibrils or surface affinities of embryogenesis have 

disappeared. 

Similarly investigations have examined the intraneuronal 

biophysics with regard to protein and transport rate changes. 

Development of optic nerve is associated with a programed 
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sequence of induction of rapidly transported proteins in rat 

ganglion cells (Bock et al.,'84). Three transport classes were 

found: a large class remaining at constant rate, a second of 20 

and 43kDa proteins only neonatally, and a final class of 29kDa 

proteins solely in adulthood. Comparing this to axotomy in adult, 

Redshaw and Bisby (’81) found that in peripheral nerves fast 

axonal transport of a 23kDa protein increased relative to a 28kDa 

protein. In contrast, transecting optic nerve caused no increase, 

and transport activity disappeared by 4 dpi. Yet, Misantone et 

al.('84) also in rat optic nerve reported transport up to 2 

months post-lesion. Athwal et al.('84) saw a transient increase 

at 6 dpi with decrease to 75 percent normal at 14 dpi. It is 

unknown in the CNS whether transport failure is the primary event 

or that it may be secondary to trophic loss or absent genetic 

reinduction. 

Since schwann cells may secrete trophic factors and 

peripheral nerves have the capacity to successfully regenerate 

over great lengths, investigators have attempted to recreate this 

environment locally in CNS through nerve grafts. Grafting 

experiments allow one to direct the course of sprouting axons and 

then determine their source, direction, and target terminations. 

From Aguayo's laboratory, studies have demonstrated extensive 

elongation of CNS spinal axons (David and Agauyo,'81; Benfey and 

Agauyo,'82; Richardson et al.,'84; Salame and Dunn,'84) into 

sciatic nerve grafts. Regenerating fibers were frequently 

ensheathed by schwann cells in their course through the graft. 
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The role of local environment is further demonstrated by the 

reverse experiments where CNS fiber tracts grafted peripherally 

abort or decrease the normally vigorous regrowth (Aguayo et 

al.,'81; Agauyo et al.,'78; Weinberg and Spencer,'79). 

In grafting studies using rodent visual system as a model 

for CNS regeneration, it is again important to review results in 

groups according to axotomy to cell body distance. With short 

distances, So and Aguayo ('84,'85) recently presented evidence of 

extensive axonal sprouting and elongation when sciatic nerve was 

grafted intraretinally, directly through sclera without optic 

nerve injury. Axons of ganglion cells were thus transected in the 

stratum opticarum en route to the optic nerve head. Yet, within 

the retina there may be a factor confounding the distance 

variable which is related to the lack of oligodendrocytes until 

the optic nerve head. McConnell and Berry ('82) believe 

oligodendrocytes (central myelin) release axonal-growth 

inhibiting factor (AGIF) which normally prevents successful CNS 

regeneration. All intraretinal grafts contained myelinated and 

unmyelinated axons whose soma size histograms were similar to 

control animals. No cells could be doubly labelled from the graft 

and optic nerve thus eliminating the case of sprouting from 

undamaged collaterals or uninjured cells. These sciatic grafts 

ended blindly after running subcutaneously over the skull, thus 

refuting the importance of target-guided growth at least for the 

initial outgrowth of regenerating axons. 

In experiments grafting sciatic nerve to transected optic 
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nerve head (Vidal-Sanz et al.,'85), ganglion cells of various 

sizes throughout the retina regenerated axons the length of the 

graft. Cell number and size classes were not presented. 

Intraorbital graft experiments using sciatic (Politis and 

Spencer,'82) and neonatal optic nerve (Hadani et al.,'84) have 

shown a small proportion of myelinated axons can sprout and 

elongate into grafts. Surviving ganglion cell bodies however were 

not quantified. 

Richardson et al. ('82) examined the retinal stump and 

ganglion cell layer after intracranial optic nerve transection 

and sciatic nerve grafting in the rat. At this distance, axonal 

sprouting was less than 0.5 mm and not enhanced by peripheral 

nerve grafts. At 2 weeks after transection, there were few axons 

in the graft yet retinal architecture was reportedly preserved 

with no infarction or ganglion cell loss. Retrograde axonal 

degeneration was then rapid with fiber numbers near the globe 

falling to less than 10 percent at four weeks. 

The present study first tested the hypothesis that 

inadvertent destruction of the blood supply to the ganglion cells 

of the retina contributes to the commonly observed cell death, 

and that maintenance of a patent blood supply allows some of 

these ganglion cells to survive. The effects of optic nerve 

transection with and without retention of a patent blood supply 

are compared and the vascular anatomy in the mouse is examined. 

The second part of the study compares the number and size class 

of surviving retinal ganglion cells after: a) intraorbital, or 
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b) intracranial optic nerve transection, or c) intracranial 

transection with grafting of autologous sciatic, or heterologous 

neonatal optic nerve. 

Intracranial transection is a useful model of CNS 

regeneration. Intraorbital and intraretinal lesions are likely to 

disturb blood supply to the ganglion cell body, and axotomy 

within the retina, with its absence of oligodendrocytes, is not 

an accurate representation of the vast majority of CNS tracts to 

which regeneration progress will be applied. 
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MATERIALS AND METHODS 

Optic nerves and retinas of male C57BL/6J mice from our 

departmental colony were examined in these studies. Before and 

after surgery the mice were maintained under standard controlled 

conditions of temperature and humidity with 12-hr on-off light 

cycles and were furnished mouse breeder chow (Wayne Co.) and 

water ad lib. Intraperitoneal injection of Avert in anesthesia 

(0.5g tribromoethanol dissolved in 0.25g 2-methyl-2-butanol and 

19.5 ml water) was used for all operative procedures. 

Optic nerve transection and grafting 

Intracranial exposure of a 2 mm segment of the right optic 

nerve midway between the optic chiasm and foramen was attained 

through a small craniotomy just anterior to the coronal suture 

overlying frontal cortex. After opening dura mater, careful 

aspiration and hemostasis of underlying cortex and subcortical 

structures within a rostrally oriented path along the temporal 

bone was performed. Upon reaching basal dura, the pial plexus of 

capillaries and the anterior cerebral artery was gently retracted 

medially. Using fine microscissors, the optic nerve was 

completely transected perpendicular to its axis after gentle 

elevation into the open blades. A microhook was then passed 

through the transection to insure total axotomy. In the group 

receiving intracranial transection alone (N=4), the nerve stumps 
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were realligned en face into their original position with 

replacement of overlying pia and arteries using minimal direct 

handling. The entry cavity was filled loosely with Gelfoam 

(Upjohn) and the wound closed. 

In the group receiving an intracranial graft (N=7), the 

approach was identical but now required two transections 1 mm 

apart in order to remove a segment of adult optic nerve. The gap 

was immediately filled by an equal length of autologous sciatic 

nerve (from the hip region) removed at the time of optic nerve 

exposure. Longitudinal fiber orientation was maintained and nerve 

stump faces gently apposed without sutures to minimize local 

trauma and scarring. Similarly, in some animals a segment of 

neonatal day 1 mouse optic nerve was used to bridge the 

intracranial gap. The closure was as described previously. 

For intraorbital transection (N=4), the right eye was 

rotated medially and the lateral canthus and limbus were opened 

to reveal the extraocular muscles. Lateral and superior rectus 

muscle were cut allowing the fat and Tenon's capsule to be 

retracted laterally exposing the optic nerve. Using microscissors 

the nerve was carefully transected perpendicular to its course 

and hemostasis maintained at 1 mm behind the globe. The orbital 

contents were then released and the eye returned to its normal 

rotation thus closing the lateral incision. This surgical 

manipulation severs the optic nerve as well as the ophthalmic 

artery, thus compromising blood supply to the retina while 

retaining perfusion to other orbital components. 
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Blood supply 

The retinal and optic nerve blood supply was assessed in 14 

mice either before or after optic nerve transection. The patency 

of the vascular system was examined after a brief transcardial 

flush with heparinized saline followed by perfusion of red vinyl 

latex (N=12) or black indian ink (N=2). After various post-lesion 

survival times, five animals with intracranial optic nerve 

transection, four with intraorbital optic nerve transection, and 

five unoperated controls were perfused. Immediately, the 

vasculature was documented photographically as the optic nerve 

and orbital contents were carefully dissected. 

Retinal wholemount preparation 

The retinas of 16 mice were prepared as flat mounts. At the 

end of a 7-9 month postoperative survival time, animals were 

anesthetized with Avert in (0.03 ml/g body wt) and perfused 

transcardially with 20 ml 0.9% saline immediately followed by 100 

ml of 20% formalin (commercial 38% formalin diluted 1:5 in 

saline) at 5 ml per minute. A shallow superior orienting cut was 

made from ora serrata to the middle of the cornea and the eyes 

were then dissected out in saline. Both transected and non- 

transected side retinas were prepared as wholemounts (Fig. 1) 

similar to the method of Stone (*66). Wholemounts were immersed 
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in a solution of 95% ethanol/4% formalin and pressed vitreal side 

up onto gelatin-coated slides by the use of Teflon tape and three 

10-g brass weights for 30 minutes. The slides were transfered 

into 97% ethanol/3% glacial acetic acid for 30 min and then 

stained with 0.3% cresyl violet V (Schmid & Co., Stuttgart) for 1 

min at 57'C. Following dehydration for 1 min in 95% ethanol and 3 

min in absolute ethanol, the slide was cleared in Terpineol for 

30 minutes. The retinas were then washed in Xylene for 2 min with 

agitation, coverslipped with Permount, and pressed under two 10-g 

weights for 24 hours. Both retinas, ipsilateral transection and 

contralateral control were mounted on the same slide and thus 

processed identically. 

Data collection and ganglion cell analysis 

All data collection and analysis were performed within the 

departmental Image Graphics Laboratory using a VAX 11/780 

computer (Digital Equipment Corp, Maynard, MA) interfaced with an 

interactive, realtime Megatek Corp (San Diego, CA) 7210 graphics 

display system, and a Zeiss (New York, NY) microscope with 

automatic three axis motor-driven stage. Cells within a 

wholemounted retina were traced on an interactive data tablet 

using a camera lucida arrangement which allows simultaneous 

viewing of the user generated Megatek outline image over the 

microscope field. 

Without the correct microscope filter's, the metachromatic 

cells of the ganglion cell layer have a density and color 
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approximately equal to each other. The difference between darkly 

blue-staining glial cells and pink ganglion cells was maximized 

using 3 filters: Orange 81C, dydinium-doped glass, and blue 82A 

(Bessler Co). Since ganglion cells range widely in size, their 

identification was further based on the presence of nissl 

substance, irregular cytoplasmic boundaries, a large pale, 

vesicular nucleus and darkly stained nucleoli (Fig. 2). Displaced 

amacrine cells were not always discounted as easily as glial and 

endothelial cells. 

After calibrating the microscope, data tablet, and graphics 

display, the wholemount perimeter outline was traced at 2Ox 

magnification. While still at low power, each wholemount quadrant 

was divided into inner, middle, and outer zones. Zone bondaries 

were established as 1/3 and 2/3 of the radial distance from the 

optic nerve head to the wholemount outer border. Retinal ganglion 

cell size and location was tabulated at 1600x from each group 

(control, intraorbital transection, intracranial transection + /- 

graft) according to the quadrant (superior, inferior, nasal, 

temporal) and zone. All cells meeting the above criteria were 

entered from a given high magnification field which was 

represented as one square within the overlayed sampling grid 

(Fig.s 3 & 4). Grid squares within a zone were selected at 

randomn by the computer and digitized until approximately a 2% 

sample was quantified. Cells whose center of mass was outside the 

square bondaries were rejected automatically after being 

digitized. A schematic display of cells traced as well as their 
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number minimized counting errors. Occasional slight sample field 

adjustments were required at retinal edges and large blood 

vessels. Since quantitative data on cell numbers and sizes are 

highly variable, nonparametric Kolnogorov-Smimov could not be 

used. Thus, the SAS statistical package (SAS Institute Inc, Cary, 

NC) was run to analyze and compare retinal cell densities and 

frequency-cell area class histograms. 

Electron microscopy 

Optic nerve ultrastructure of eight mice was examined after 

standard processing for electron microscopy. Two groups of four 

animals each were sacrificed at 1 month and 3 months following 

intracranial transection alone. At the time of initial surgery 

each group had two adults and two neonates (P8-10). 





25 

RESULTS 

Blood supply 

In the rat and mouse the ophthalmic artery arises from the 

palatine branch of the pterygopalatine artery (Janes and 

Bounds,'55; Bugge,'70; Anderson,'70). From here, the murine 

ophthalmic artery runs along the lateral border of the trigeminal 

nerve's first division in the alisphenoid canal, enters the orbit 

through the anterior lacerated foramen and gives rise to the 

central retinal, ciliary, and corneoscleral arteries 

intraorbitally just proximal to the globe. Thus, the course of 

the main retinal blood supply is well separated from the optic 

nerve intracranially. In other animals, however, particularly 

higher primates, the ophthalmic artery and its central retinal 

branch run intracranial ly along the optic nerve as a branch of 

the internal carotid artery. 

Using the intracranial surgical approach described above, 

the optic nerve was transected midway from foramen to chiasm 

thereby maintaining a patent blood supply to the retinal ganglion 

cells. In contrast, inadvertent intraorbital optic nerve 

transection disrupts blood supply to the retina, choroid, sclera, 

and ciliary body. With a different, recently developed, 

intraorbital transection technique (not described here) requiring 

careful extraction and isolation of the proximally penetrating 

central retinal artery, blood supply may be preserved. The 
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vascular supply to the nerve and eye was outlined by transcardial 

red vinyl latex perfusion in an unoperated control, intracranial 

and intraorbital optic nerve transection groups. After hardening, 

the latex maintains the vasculature in anatomic position for 

dissection and photography. In figures 5-7 the blood supply is 

illustrated for various survival times and surgical groups. In 

all five animals examined following intracranial optic nerve 

transections after one to nine month survivals, the vasculature 

was readily followed and patent to all eye components. Indian ink 

perfusion in two animals further confirmed the results. Thus, 

complete optic nerve transection of all components; vascular, 

neuronal and glial within its perineurial sheath; maintains 

retinal blood supply when performed intracranially, yet 

interrupts it when done intraorbitally. 

Retinal ganglion cell analysis 

The pattern of stained neurons over the retinal wholemount 

ganglion cell layer appears to be arranged in densely packed rays 

extending out from the optic nerve head, as best demonstrated in 

a control retina at mid power magnification. This well organized 

radial arrangement, in parallel with ganglion cell axons and 

central retinal artery main trunks, becomes increasingly 

disturbed in going from control to intracranially transected 

alone (Fig. 8), with complete deterioration seen in the 

intraorbitally sectioned mice. The individual ganglion cells 

themselves were of normal morphology in both transected and 
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grafted animals with no signs of chromatolysis. 

Ganglion cells were not labelled or assigned to the three 

various classes; W, X, and Y; as described earlier (Stone and 

Fukuda/74; Rowe and Stone,'76). On reviewing frequency by cell 

area class histograms as in Figures 9-17, clear trimodal 

distributions are not evident to define three distinct area 

classes. Thus, hypotheses on a particular cell classes' viability 

and regenerative capacity following optic nerve manipulation are 

not made. 

Since retinal cell areas and densities are not normally 

distributed, nonparametric and parametric statistics were run. 

Parametric tests comparing transected, grafted, and control 

animals in cell density overall, by zone, and by 10 square micron 

area classes were run using the Waller-Duncan K-ratio T test 

(minimizes the Bayes risk under additive loss), the Duncan's 

Multiple range test (controls type I comparisonwise error rate), 

and the Student-Newman-Keuls test (controls type I experimentwise 

error rate under the complete null hypothesis). In Table 1, the 

values for cell density (# cells/sq. micron) and mean cell area 

(sq. microns) are presented. For each retina within a group, data 

is tabulated by zone (inner, middle, outer) and overall. The 

overall values required a weighted averaging of densities and 

mean areas by zone size. 

The mean overall (combined inner, middle, and outer zone) 

cell density for transected, grafted, and control groups was 

0.20812, 0.25799, and 0.44225 cells/sq. micron respectively 
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(Table 2). Statistical tests showed that these density 

differences were significant at the 0.05 level for both 

experimental versus control animals. Although grafted animal 

overall mean cell density was higher than that of transection 

alone, this difference was not significant at the K ratio 100 

level. 

In examining collected data by zone, control and grafted 

cell density both decrease with increasing distance from the 

optic nerve head. Controls changed from 0.49237 inner, 0.47730 

mid, to 0.38976 cells/sq. micron outer, while grafts decreased 

from 0.31304, to 0.26674, to 0.22432 cells/sq. micron. The 

largest percentage change in cell density when comparing inner to 

outer zone values occurred in the grafted animals (Fig. 18) where 

the decrease was 28%. Interestingly, the mean cell density by 

zone was low and nearly constant across retinas having received 

optic nerve transection alone. This cell density change by zone 

is illustrated in Figures 19-21. Analysis of variance using the 

General Linear Models procedure was done. In cell areas 21-30 sq. 

microns the control inner cell density was significantly 

different(P<0.01) from transected inner density, but not from 

grafted (Table 3) by all tests. Control retina middle zone was 

significantly different from both transection mid and grafted mid 

at this cell size. In the 31-40 sq. micron class, control inner 

was significantly different from both transected and grafted 

(P=0.0006) which was again true for control mid versus grafted 

and transection middle zones. The next four 10 sq. micron size 
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classes also each had controls significantly (PcO.OOl) different 

from both experimentals. 

Nonparametric comparisons using Wilcoxon 2-sample, Kruskal- 

Wallis, and Median 2-sample tests to compare inner retinal 

densities between transection and grafted animals also indicate 

significant differences. The probability values for the 

significant difference of inner density means (Table 4) using 

these tests were all less than 0.05. With a parametric 

comparison, the T-test also supports a significant (P<0.05) 

difference between transection and grafted inner zone cell 

density. There is thus an indication that a sciatic and neonatal 

optic nerve intracranial graft may be promoting survival of 

neurons whose bodies lie within the inner retina. 

Unlike cell density, overall mean cell area in control and 

experimental groups was not significantly different. As shown in 

Figures 9-11, the control animal cell histogram shapes and mean 

areas were very similar to other studies (Grafstein and 

Ingoglia,'82; Allcutt et al.,'84a). As mentioned, control cell 

sizes are not normally distributed but rather are skewed to 

larger size classes from a modal area lying between 21 and 30 sq. 

microns in the inner, mid, and outer retina. The grafted animals 

also had a constant cell size mode across retinal zones, yet it 

was in the 11-20 sq. micron cell class, thus smaller than that of 

controls. Transected animal cell mode however increased from 11- 

20 to 21-30 sq. microns in going from inner to middle or outer 

retina. 
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Following transection alone or grafting the mean percentage 

of cells in the modal class area increased. In controls 24.9 % of 

the cells were in the mode while this increased to 31.7% in 

transected, and 34.0% in grafted animals. Experimental retinas 

had a smaller proportion of cells in the larger cell area 

classes. 

The overall mean cell area decreased from control 36.98, 

transected 29.30, to grafted 27.00 sq. microns. Mean cell area by 

zone decreased from inner to outer retinal zones in controls 

(8.6%) and transected animals (16.7%) whereas grafted mean cell 

area was nearly constant at 27 sq. microns, rising only slightly 

in the middle zone. Comparing zones between retinal groups, there 

is a 17% reduction from control in transected inner mean cell 

area and 30% in grafted animals. Within the middle zone the 

decrease from control was 20% in transected and 26% in grafted 

mice. The change in outer retinal mean cell area for both 

transected and graft was 24%. 

Coupled with the above finding of significantly increased 

cell density in the grafted inner retina, there appears to be an 

increase in the number of small cells surviving in grafted versus 

transection thus decreasing the overall mean calculated and 

shifting the mode. 

Electron microscopy 

The optic nerves of adult mice were examined with the 

electron microscope one month (N=4) or three months (N=4) 
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following intracranial transection alone. Upon nerve dissection 

the region of previous experimental transection, although now 

continuous, could be identified by its decreased caliber and 

yellowed color. Skip serial sectioning was done on a 3-4 mm optic 

nerve segment removed en bloc to include transection site with 

proximal and distal segments. Several thin sections (electron 

microscopy) and one micron sections (light microscopy) were cut 

followed by skipping 100 one-micron sections throughout the full 

nerve piece. By this method, the axonal reaction distal and 

proximal to the transection was reviewed comprehensively. 

At one month following transection alone in an adult mouse, 

Figure 22 shows many axons in the proximal nerve stump. Some 

axons are clearly degenerating, yet in another group the myelin 

sheath and axoplasm appear normal. Electron micrographs of an 

optic nerve 3 months following transection still show some normal 

looking axons in the stump proximal to the transection (Fig. 23) 

with appearance of remyelination. 

Since sections closer to the eye had qualitatively more 

myelinated axons than sections more distal in the proximal stump, 

a process of remyel inat ion may be proceeding along an eye-to- 

diencephalon gradient. Similarly, myelination in the early 

postnatal rat develops in this direction (Skoff et al.,'80). 

Others have suggested that functional recovery and survival may 

be determined by the success of this remyel inat ion after injury 

(Clifford-Jones et al.,'80; Wender et al.,'81). 

In this group receiving transection alone without grafting, 
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there were many proximal nerve segments with both myelinated and 

unmyelinated fibers extending up to, but not across the point of 

transection. Careful serial one micron and thin sections showed 

an absence of healthy axons in the distal nerve segment. The 

point of surgical transection appears to present a barrier to 

further rectilinear growth if not abutted by a nerve graft. In 

Figure 24, the fibers seem to be changing course and thus running 

longitudinally in this axially cut section. There is clear 

evidence that the necessary prerequisites for regeneration are 

present with ganglion cell survival and axonal viability up to 

the lesion. Elongation and increased cell survival may be 

promoted through the improved microenvironment presented by 

implants in the grafted animal group. 
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DISCUSSION 

These experiments have examined the problems of CNS 

regeneration by both a qualitative and quantitative approach. 

Several important points have been demonstrated through using a 

well-defined rodent visual system as a model. 

First, the intracranial surgical approach described and 

developed here for transection of the optic nerve clearly 

preserves blood supply to the retina and orbital contents. The 

difference between intraorbital and intracranial optic nerve 

transection is anatomically well demonstrated by intravascular 

latex injection shown in Figures 6 and 7. Inadvertent 

intraorbital transection, as use! in earlier CNS regeneration 

studies in the rodent visual system, destroys blood supply. Thus, 

the second point found here that patency of the central retinal 

blood supply as it enters the back of the eye is a prerequisite 

for any ganglion cell survival and regeneration. In Figure 8, the 

change in cell size and density over the wholemount at nine 

months following intracranial optic nerve transection versus 

control is shown. Third, quantitative retinal ganglion cell 

wholemount analysis demonstrates significant and specific effects 

of an intracranial graft. The control group cell density and area 

data agree well with other mouse studies (Grafstein and 

Ingoglia,’82; Allcutt et al.,'84a). Finally, qualitative evidence 

of surviving myelinated and unmyelinated optic axons by electron 
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microscopy is presented (Figures 22-24) for animals receiving 

intracranial transections one and three months earlier. 

In the report by Misantone et al. ('82) ganglion cell 

number in rat after intracranial crush was stable at one month 

with decreased cell ENA content. Yet, there was no quantitative 

data presented nor mention of the difference between crush and 

transection lesions. Vidal-Sanz et al. ('85) grafted sciatic 

nerve to optic nerve head but again exact cell numbers were not 

given. Grafstein and Ingoglia ('82) presented actual surviving 

cell numbers and areas for control versus intracranially 

transected over time. Each of the time points, however, had small 

N-values, either one or two mice. Their study did not attempt to 

examine the effects of an intracranial graft. Allcutt et al. 

(’84) looked at intraorbital crush in mice and reported that only 

10% of cells survived at one month. Similarly to this report, he 

found a greater proportion of small cells survive. Yet, a crush 

injury, particularly intraorbitally, may not be comparable. 

In the rat following intracranial optic nerve transection 

and grafting, Richardson et al. (’82) noted survival and 

regeneration of some axons. Sciatic nerve grafting was also 

attempted and was found not to enhance axonal survival. These 

investigators reported that retinal architecture was preserved 

with little ganglion cell loss, yet quantitive data was not 

presented. 

As mentioned earlier in the introduction, others using the 

optic nerve and retina model in various animals have simply 
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described ganglion cell survival or axon numbers following 

section. However, this project attempted to increase cell 

survival and thus regeneration by further examining variables of 

axotomy distance, blood supply, and grafting. In reviewing the 

literature, it is noted here first that there appears to be 

greater ganglion cell survival with increasing distance from 

axotomy to cell body, yet there is decreasing regenerative axonal 

sprouting. Many experiments have confounded their model by using 

crush lesions which create unknown and unreliable 

neuronal/vascular changes or by sectioning in an environment not 

representative of central nervous system, such as the retina 

lacking oligodendrocytes. 

Since projected total cell numbers and density values depend 

upon the assumption that the analysis perimeter size of a 

wholemounted retina equals the actual in vivo area of the globe, 

processing shrinkage could cause errors. Hughes ('75) observed 

for the cat that shrinkage was most marked around the periphery 

of the retina and along cuts or tears in the tissue. Once the 

retina was fixed to the gelatinized slide a minimal change in 

total retinal area was observed. 

Axotomy induced shrinkage and redistribution of area class 

(ie. with shrinkage medium-sized neurons are now tabulated as 

increasing the small cell class population) may be another 

problem. The data may be further skewed toward smaller area 

values by the inevitable mistaken inclusion of glial cells as 

small neurons. However, Allcutt et al. ('84a) believe that within 
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retinas of lesioned animals the constancy of relative 

distributions with time suggests that a change in cell size 

distribution is due to varied cell death by size and not 

shrinkage. With any formalin fixation procedure an unknown amount 

of perikaryal shrinkage may effect absolute numbers in a set area 

class but not relative numbers between classes. Wassle et al. 

(•75) reported that individual cell bodies shrunk by 20-30% as a 

consequence of histological processing of wholemounts. The soma 

areas here were derived from stained, dehydrated, and mounted 

retinas and not corrected for shrinkage. 

Clearly these experiments demonstrate the ability of small 

and intermediate cell area classes to survive transection of 

their axons intracranially. This is especially true when compared 

to intraorbital transactions. After the addition of either 

sciatic or neonatal optic nerve grafts intracranially, the number 

of surviving cells within the retina is significantly increased. 

Further, the increased viability is in the small ganglion cell 

sizes as the mode of mean cell area has shifted down to the 21-30 

sq. micron area class and increased the proportion of cells 

within it substantially. 

Trophic influences provided by a graft may be retrogradely 

transported only limited axonal distances thus effecting cells 

closer to the optic nerve head preferentially. Also consistent 

with these results is the theory of programed cell death which 

would not be aborted in outlying neurons by receiving trophic 

factors before a critical survival time point. 
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The data comparing overall cell density by group, as well as 

by size classes in transection vs. graft had consistent 

differences which were very close to being significant. Trends in 

this data are quite evident yet, due to the small N-values(5,4 & 

7) within these groups, significant differences, particularly in 

multigroup analysis, could not be confirmed. In order to solve 

this problem an increased N with more animals would be necessary. 

Since these experiments would then require many resources with 

substantial manpower and time required for data collection, the 

added result would be costly. 

It appears now that ganglion cell survival, and axonal 

sprouting with effective elongation are controlled by different 

factors. These results, however, have demonstrated that axonal 

transection (while maintaining blood supply) is not a lethal 

event and that cell survival is significantly increased in 

specific ways with peripheral and neonatal nerve grafts. The 

first step prerequisite to any mammalian CNS regeneration must be 

survival of the parent cell body. Factors maximizing this would 

be necessary for optimal promotion of axonal elongation and 

ultimately, functional regeneration. 
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UST OF FIGURES 

1. Control retinal wholemount overview (4Ox) with high power 

inset. 

2. Control retina, middle zone (504x), identification of neurons 

in the ganglion cell layer. 

3. Wholemount perimeter and zone boundaries with actual 2% 

sampling areas used in RE17, intracranialiy grafted animal. 

4. Wholemount perimeter and zone boundaries with actual sampled 

cell areas, comparing 6% to 2% sample size. 

5. Unoperated control mouse blood supply. 

6. Intracranial optic nerve transection blood supply after 9 

month survival. 

7. Intraorbital optic nerve transection blood supply after 10 

day survival. 

8. Photomicrograph of cell size and density after 9 month 

survival; intracranial optic nerve transection v. contralat. 

control. 
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9. Histogram, control mouse, inner zone retinal cell size 

distribution. 

10. Histogram, control mouse, middle zone retinal cell size 

distribution. 

11. Histogram, control mouse, outer zone retinal cell size 

distribution. 

12. Histogram, transection alone mouse, inner zone retinal cell 

size distribution. 

13. Histogram, transection alone mouse, middle zone retinal cell 

size distribution. 

14. Histogram, transection alone mouse, outer zone retinal cell 

size distribution. 

15. Histogram, grafted mouse, inner zone retinal cell size 

distribution. 

16. Histogram, grafted mouse, middle zone retinal cell size 

distribution. 

17. Histogram, grafted mouse, outer zone retinal cell size 

distribution. 
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18. Graph of cell density by zone comparing groups. 

19. Control mouse; inner, middle, and outer fields. 

20. Transection alone mouse; inner, middle, and outer fields. 

21. Grafted mouse; inner, middle, and outer fields. 

22. Electron micrograph, proximal nerve stump, 1 month following 

intracranial transection alone. 

23. Electron micrograph, proximal nerve stump, 3 months following 

intracranial transection alone. 

24. Electron micrograph, site of transection, 3 months following 

intracranial transection alone. 

Figures 1, 5-7,and 22-24 are used with permission from this 

author's paper with Madison and Sidman. 
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FIGURE 1: 

Control retinal wholemount. This retina was prepared from the 

contralateral side of a mouse receiving optic nerve transection 

alone nine months earlier. Since both retinas were mounted on one 

slide, processing of control and transection wholemounts was 

identical. 

A) Low power (40x) overview of wholemount showing radial cuts 

made to allow retina to lie flat. Choroid and pigmented 

epithelium are stripped away and the central retinal artery 

paths can be seen at low power as tracks void of darkly 

staining cells. 

B) Higher power field from the outlined inset in the above. 

Finer branches of arteries are seen however, cell 

digitization was done at even higher magnification. Size bar 

= 20 micron. 
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FIGURE 2: 

Photomicrograph of cells in the retinal ganglion cell layer at 

504x magnification. Since cells within this frame are not all in 

the same focal plane, fine focusing was varied to best visualize 

cell outlines when digitizing their perimeters. Note the 

different sizes of ganglion cells(g) with their nissl 

substance(ns), large pale nucleus(nu), and dark nucleoli(n). 
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FIGURE 3: 

Computer drawn plot of retinal wholemount analysis perimeter. 

Each retinal leaf was separated into 3 zones; inner, middle, and 

outer; established as 1/3 and 2/3 of the radial distance from the 

optic nerve head to the outer edge. Due to the large central 

retinal artery trunks, the optic cup, and the high axon density 

at the optic nerve head (physiologic blind spot) few neurons are 

present here. Thus, the inner zone does not include this small 

area in analysis. Each marked "+" represents an area of cell 

digitization making up a 2% sample size in this animal grafted 

intracranially nine months earlier. Calibration bar = 1 mm. 
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FIGURE 4: 

Computer drawn plot of retinal wholemount analysis perimeter 

comparing 6% to 2% sampling grid. Frequency analysis run on two 

sampling levels reveals that 2% sampling is sufficient and 

accurately represents the whole population of a zone. All data 

was therefore collected and analyzed at this later sampling 

level. Calibration bar = 1 mm. 
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FIGURE 5: 

Unoperated control mouse blood supply. Photographs taken through 

operating microscope, dorsal view of control mouse injected with 

red vinyl latex (mouse anterior is at the top, posterior at the 

bottom). 

A) The frontal pole of the brain has been removed to the optic 

chiasm. The eyes are visible as large black masses on either 

side of the head. Anterior cerebral arteries are filled with 

red latex (a). Solid arrow indicates intracranial portion of 

optic nerve where transection would occur. Open arrow head 

indicates palatine artery on the lateral border of the 

trigeminal nerve (5x). 

B) The ophthalmic artery is shown by double arrowhead. The 

palatine portion of the pterygopalatine artery enters the 

orbit through the anterior lacerated foramen with the 

trigeminal nerve and branches into the ophthalmic (superior 

and inferior) and posterior superior alveolar arteries(7.5x). 

C) The posterior superior alveolar artery leaves the orbital 

fossa (open arrow). The palatine artery (open arrowhead) and 

entrance of the ophthalmic artery (double arrowhead) into the 

back of the eye are shown. Orbital portion of optic nerve is 

seen as a solid arrow(12x). 

D) The eye is opened and removing the lens with vitreous allows 

visualization of the latex filled retinal arteries, thus 

demonstrating patent blood supply to the ganglion cell layer 

(12x). 
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FIGURE 6: 

Intracranial optic nerve transection alone blood supply. 

Photographs taken and oriented identically to above in an animal 

receiving intracranial transection alone nine months earlier. 

A) As in control figure, anterior cerebral arteries are filled 

with red latex (a). Intracranial optic nerve transection site 

(open arrow) is shown (5x). 

B) Increased magnification of transection site (open arrow). A 

cable of gelatinous material is filling the transection site. 

The internal carotid and anterior cerebral arteries are seen 

with many new arterial twigs representing revascualrization 

(12x) . 

C) Dorsal aspect of the orbit has been removed and a patent 

blood supply is maintained. The ophthalmic (double arrowhead) 

and anterior cerebral (a) arteries are noted. Suture needles 

indicate a short segment of superior alveolar artery that was 

incompletely filled with latex. The intraorbital portion of 

optic nerve is noted by a curved arrow (12x). 

D) The eye is opened, lens and vitreous material removed to show 

retinal arteries are still being filled nine months after 

intracranial transection (12x). 
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FIGURE 7: 

Intraorbital optic nerve transection blood supply. Surgical 

approach for intraorbital optic nerve transection 10 days earlier 

has largely allowed survival of patent blood supply to other 

orbital components, yet not the retina. 

A) Blood supply to lacrimal gland and other dorsal orbital 

contents. Anterior cerebral artery (a) is filled with latex 

(12x). 

B) The lacrimal gland has been removed to expose the contents of 

the orbit. Both the intracranial portion of optic nerve (solid 

arrow) and site of intraorbital optic nerve transection 

(double arrowhead) are shown. Red vinyl latex fills the 

posterior superior alveolar and ophthalmic arteries to the 

point of transection (7.5x). 

C) Higher magnification view of above. The posterior superior 

alveolar artery is reflected dorsally and medially (open 

arrow) to expose the branch point of the ophthalmic artery. 

The double arrowheads indicate the position where the 

transected ophthalmic artery would have entered the back of 

the eye with the optic nerve. Proximal and distal stumps are 

shewn with two small curved arrows (12x). 

D) The eye is opened as before and lens with vitreous removed. 

There is no red latex visible to indicate a surviving 

ganglion cell layer blood supply. The eye cup is enveloped 

with collagenous scar tissue and markedly shrunken overall 

(12x) . 
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FIGURE 8: 

Mid magnification micrographs comparing cell size and density in 

the retinal ganglion cell layer, intracranial transection versus 

contralateral control. 

A) Retina ipsilateral to intracranial transection alone 

performed nine months earlier. Calibration bar = 10 microns. 

B) Contralateral control wholemount to above, both mounted and 

processed together on the same slide. Note the densely packed 

radial organization of cell bodies separated by blood 

vessels. Calibration bar = 10 microns. 
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FIGURE 9: 

Histogram, inner zone of control retina. Cell frequency by 10 sq. 

micron area classes is plotted for a representative control 

wholemount, RE18. Cumulative frequency, percent, and cumulative 

percent are given. The two following figures are the middle and 

outer zones of this same retina for verticle comparison. 
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FIGURE 10: 

Histogram, middle zone of control retina. Cell frequency by 10 

sq. micron area class is plotted for this representative control 

wholemount, RE18 (same as previous Figure). Cumulative frequency, 

percent, and cumulative percent are given. 
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FIGURE 11: 

Histogram, outer zone of control retina. Cell frequency by 10 sq. 

micron area classes is plotted for this representative control 

wholemount, RE18 (as previous two figures). Cumulative frequency, 

percent, and cumulative percent are given. Verticle comparison 

should be made with the previous two figures. 
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FIGURE 12: 

Histogram, inner zone of transection alone retina. Cell frequency 

by 10 sq. micron area class is plotted for a representative 

transection wholemount, RE14. Cumulative frequency, percent, and 

cumulative percent are given. The two following figures are the 

middle and outer zones of this same retina for verticle 

comparison. 
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FIGURE 13: 

Histogram, middle zone of transection alone retina. Cell 

frequency by 10 sq. micron size class is plotted for this 

representative transection alone wholemount, RE14 (as in the 

previous figure). Cumulative frequency, percent, and cumulative 

percent are given. 
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FIGURE 14: 

Histogram, outer zone of transection alone retina. Cell frequency 

by 10 sq. micron area class is plotted for this representative 

transection alone retina, RE14 (as previous two figures). 

Cumulative frequency, percent, and cumulative percent are given. 

A verticle comparison within the group can be made with the two 

previous figures. 
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FIGURE 15: 

Histogram, inner zone of grafted retina. Cell frequency by 10 sq. 

micron area class is plotted for a representative intracranially 

grafted animal, RET7. Cumulative frequency, percent, and 

cumulative percent are given. The two following figures are the 

middle and outer zones of this same retina for verticle 

comparison. 
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FIGURE 16: 

Histogram, middle zone of grafted retina. Cell frequency by 10 

sq. micron area class is plotted for this representative 

intracranially grafted wholemount, RET7 (as the previous figure). 

Cumulative frequency, percent, and cumulative percent are given. 
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FIGURE 17: 

Histogram, outer zone of grafted retina. Cell frequency by 10 sq. 

micron area class is plotted for this representative 

intracranially grafted wholemount, RET7 (as the two previous 

figures for verticle comparison). Cumulative frequency, percent, 

and cumulative percent are given. Horizontal comparisons across 

groups should be noted in inner(Fig.s 9, 12, 15), middle (Fig.s 

10, 13, 16), and outer(Fig.s 11, 14, 17) zones. 
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FIGURE 18: 

Graph of cell density by zone from data in Table 2. In moving 

from optic nerve head to outer retina cell density decreases 21% 

in control, and 28% in grafted animals. Note however, mean cell 

density of transected animals is low and nearly constant across 

the retina. This is illustrated in micrographs (Figures 19-21). 
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FIGURE 19: 

Photomicrographs illustrating the natural cell density decrease 

from inner, to middle, to outer retinal zones in a control 

wholemount. Magnification for all micrographs is identical(320x). 

Comparison with experimental animals in Figures 20 and 21 is 

made. 
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FIGURE 20: 

Photomicrographs illustrating transection alone retinal cell 

density as low and relatively constant across the wholemount. 

There is actually a small increase in moving from inner to middle 

retinal zones. Magnification for all micrographs is identical and 

equal to that in Figures 19 and 21 (320x). 
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FIGURE 21: 

Photomicrographs illustrating grafted retinal cell density 

decrease from inner to middle zone. A further small decrease in 

moving to the outer zone is also noted as with controls. 

Magnification for all micrographs is identical and equal to that 

in Figures 19 and 20 (320x). 
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FIGURE 22: 

Electron micrograph of optic nerve one month following a complete 

intracranial transection alone. Section is from proximal stump of 

nerve (retinal side) approximately 1 mm proximal to site of 

transection. A group of normal appearing axons from within the 

dashed box is shown at higher magnification in the inset. 

Although there are axons in various stages of degeneration, 

others (inset) have normal myelination and axoplasm. 

Main micrograph is 15,000x and size bar = 1 micron. 

Inset micrograph is 100,000x and size bar =0.5 microns. 
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FIGURE 23: 

Electron micrograph of optic nerve from intracranial transection 

alone animal at three months survival. Section is from proximal 

nerve stump at a position midway between the optic nerve head and 

optic foramen. 

A) Low power micrograph from central portion of cross-sectional 

area of the optic nerve. A centrally located blood vessel (bv) 

is seen with several healthy small myelinated axons (arrows). 

(5,OOOx) 

B) A healthy appearing myelinated axon from A). The area 

surrounding the axon is largely filled with astrocytic 

processes. Normal axoplasmic contents are noted: 

neurofilaments (nf), microtubules (mt) and mitochondria (m). 

(36,OOOx) 

C) High power view showing probable remyelination of optic axon. 

Only three concentric layers of myelin(arrowhead) seen with 

wide periodicity. Axoplasmic contents are normal appearing as 

well: neurofilaments (nf) and Microtubules (mt). (150, OOOx) 
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FIGURE 24: 

Electron micrograph of optic nerve from intracranial transection 

alone animal after three months survival. This micrograph is from 

the same proximal nerve segment as the previous figure but at the 

site of intracranial transection. A myelinated axon (open 

arrow) is seen among a cross-sectional area largely filled with 

astrocytic processes some of which are labeled with an (a). At 

least two unmyelinated axons (solid arrows) with one cut 

longitudinally (curved arrow) are seen in this axial section. A 

longitudinally oriented axon is usually not found in the normal 

optic nerve at this position midway between optic chiasm and 

foramen. Yet, at this level in these transverse sections many 

such axons were found. They may represent sprouting (unmyelinated) 

axons turning back from the transection site as if there were a 

barrier to rectilinear growth. (40,000x) 
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LIST OF TABLES 

1. The individual retinal wholemount data for cell density (# 

cells/ sq. micron) and mean cell areas (sq. microns). BASE 

corresponds to the wholemount name, and GROUP refers to 

control (CON), transection alone (TRN), and grafted animals (GRF). 

The columns in order across the top represent; overall density, 

inner zone density, middle zone density, outer zone density, 

overall mean area, inner zone mean area, middle zone mean area, 

and outer zone mean area. 

2. The combined average of the means in Table 1 by group. The 

standard deviations are also presented. Headings and abreviations 

are the same as above. 

3. Parametric Duncan-Waller test for difference of mean cell 

density by zone and group for the area class 21-30 sq. microns. 

Nine groups are compared; control inner zone (COIN), control 

middle zone(COMD), control outer zone (COOT), transection inner 

zone(TRIN), transection middle zone(TRMD), transection outer zone 

(TROT), grafted inner zone (GRIN), grafted middle zone(GRMD), and 

grafted outer zone (GROT). This analysis was run on all 10 sq. 

micron area classes. 

4. Nonparametric analyses comparing the inner zone cell 

density (INDNS) between transection (TRN) and grafted(GRF) animals 

using Wilcoxon, Kruskal-Wallis, and Median 2-sample tests. 
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ANALYSIS FOR VARIABLE INDNS CLASSIFIED BY VARIABLE GROUP 

ANALYSIS OF VARIANCE 

LEVEL 

TRN 
GRF 

N MEAN AMONG MS 
0,0250707 0 

4 0,21 
7 0.31 F VALUE 

WITHIN MS 
, 00 5 37 97 A 

P R 0 B > F 
0.059 2 

WILCOXON SCORES (RANK SUMS) 

LEVEL 
SUM OF EXPECTED STD DEV 

N SCORES UNDER HO UNDER HO 
M E A N 

SCORE 

TRN 
GRF 

4 13,00 24,00 5,29 
7 53,00 42,0 0 5,2 9 

-j rr 
tJ ♦ -X— U 

/ f j / 

WILCOXON 2-SAMPLE TEST (NORMAL APPROXIMATION) 
(WITH CONTINUITY CORRECTION OF ,5) 

S = 13,00 Z--1,9843 PROS >121=0.0472 

T-TEST APPROX, SIGNIFICANCES ,0753 

KRUSK AL-WALLIS TEST <CHI-SGU ARE APPR0X IM AT10N) 
CHISQ = 4,32 DF= 1 PROB > CHISG=0,037 

MEDIAN SCORES (NUMBER POINTS ABOVE MEDIAN) 

LEVEL 
SUM OF EXPECTED STD DEV 

N SCORES UNDER HO UNDER HO 
MEAN 

SCORE 

TRN 
G R F 

4 0,00 1,82 0,83 
7 5,00 3,18 0.83 

0,00 
0,7 1 

MEDIAN 2-SAMPLE TEST (NORMAL APPROXIMATION) 
S= 0.00 Z = -2.1822 PR0B >IZ1=0.02 91 

MEDIAN 1-WAY ANALYSIS (CHI-SQUARE APPROXIMATION) 
C HIS Q = 4,76 DF-- 1 PROB > CHISQS.0291 

TABLE 4 
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