
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

1978

Automatic coding of medical problem lists
Seth M. Powsner
Yale University

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Powsner, Seth M., "Automatic coding of medical problem lists" (1978). Yale Medicine Thesis Digital Library. 3041.
http://elischolar.library.yale.edu/ymtdl/3041

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3041&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3041&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3041&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3041&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/3041?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3041&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu




YALE 

MEDICAL LIBRARY 





Digitized by the Internet Archive 
in 2017 with funding from 

The National Endowment for the Humanities and the Arcadia Fund 

https://archive.org/details/automaticcodingoOOpows 







Automatic Coding of Medical Problem Lists 

by Seth M Powsner 

ESEE Massachusetts Institute of Technology 1979 

A Thesis Submitted to the 

Yale University School of Medicine 

in Partial Fulfillment of 

the Requirements for the Degree of 

Doctor of Medicine 

March 1, 1978 





To Dr and Mrs Thomas R Forbe 





Acknowledgements 

A number of people deserve thanks for their help in preparing this 

thesis. Tom Chappel, Mariann Ogilvie, and Ed Rupp all helped program 

even while pursuing their undergraduate studies at the Georgia Institute 

of Technology (GIT). The faculty and staff of the GIT Computer Science 

Department generated a friendly atmosphere and many stimulating 

lunch-hour discussions. Martha Hansert, Marshal Mandelkern, and 

Neal Ryan kindly donated their time to edit earlier drafts of the thesis 

itself. A very special thanks is due Dr Katherine Finseth who assisted 

in the ever-so tedious testing of the final program. She and Dr Brunjes 

are responsible for setting-up the clinical event coding system used in 

the thesis. 

To close I would like to thank my advisors Dr Brunjes and 

Dr Seligson, not only for supervising this work, but for taking the time 

and interest four years ago to convince me that Yale Medical School was 

the place to pursue my interests in medical computing. 

This work funded in part by a research grant from the U.S. Public 

Health Service and a training grant from the National Library of 

Medicine. 

page 1 





Table of Contents 

section 

Introduction - -- -- -- -- -- -- I 

Problem Statement -----------II 

Overview ------------- - II.A 

Specific Issues ----------- II.E 

Clinical Event Concept ________ H.B.1 

Problem Lists ___________ H.B.2 

Review of the Literature -------- III 

Natural Language Processing ______ III.A 

Medical Coding III.B 

Case Retrieval without Coding _____ III.B.2 

International Classification of Diseases - III.B.2 

Systematized Nomenclature of Pathology - - III.B.3 

Clinical Event Coding ------- - III.B.*4 

Other Coding Systems -------- III.B.5 

Automated Medical Coding _______ III.C 

General Observations -------- III.C.1 

The "Fruit Machine" ________ III.C.2 

The NIH Pathology Diagnosis Encoder - III.C.3 

X-ray Report Coding ________ III.C.M 

page 2 





section 

General Approach - -- -- -- - -- --IV. A 

Clinical Event Coding - IV 

Words in Context ----------- IV.B 

The Dictionary for Encoding ------- IV.C 

Preprocessing - -- -- -- -- -- - IV. D 

Spelling Correction ---------- IV.E 

Expected Shortcomings --------- IV.F 

Possible Improvements iv.G 

Notable Features ----------- IV.H 

Methodology _______--_---V 

Hardware and Software Environment ----- V.A 

"Encode": The Encoder’s Main Control Routine - - V.B 

Auxiliary Routines ---------- V.C 

Results - -- -- -- -- -- -- --VI 

Overall Performance - -- -- -- -- - VI.A 

Sample Encodings ----------- VI.B 

"Foot pain" - - - - - - - - - - - -VI.B.1 

"Cold sore head cold" --------- VI.B.2 

"UR I" - -- -- -- -- -- -- VI. B. 3 

Difficulties ____________ VI.C 

Conclusions VII 

Bibliography - VIII 

page 3 





I Introduction 

There is valuable data in medical records which presently requires 

human processing for use. For individual patients, important aspects of 

their medical histories may literally be burried in their "old chart". 

For the hospital and the community at large medical trends may be 

observed by tabulation of the illnesses recorded. For the researcher the 

clinical course, family history, and environmental factors may already 

be noted for a disease in question if the approriate charts can be 

retrieved. All of this, the traditional medical record, is written in 

longhand in a free form style. Aside from the difficulties presented by 

physicians' handwriting, mechanical processing of this information is 

very complex because it is english prose. 

Attempts are being made to improve the quality and increase the 

availability of information in medical records. The problem-oriented 

record introduces more structure to clarify the status of data noted in 

hopes of clarifying the purpose and approach of the treatment 

undertaken. Medical centers hoping to obtain some of the benefits of 

automated processing and retrieval have introduced multiple-choice 

check-off forms for the review of systems and physicals. Perhaps the 

greatest benefit is the elimination of a few of the scrawled pages. Even 

the most complete of these multiple-choice forms for medical records 

still include prose histories, problem lists, and comments. 

However stylized, medical charts are collections of ordinary 

language. Natural language processing techniques allow computers to 

handle typed prose if it is limited in form and content. Understanding 

page 4 section I 





natural language, "english as she is spoke", remains a major research 

area in computer science. When reading even simple prose, human beings 

bring to bear knowledge derived from years of living in the world and an 

innate ability for language comprehension. For practical application of 

natural language processing techniques the subject area must be 

precisely defined. If it is not, only statistical observations on word 

usage may be possible. As only the simpler grammars may be rapidly 

parsed, the form of the text must also be limited. 

Automated systems for processing medical prose have been 

constructed. This has generally been done in an ad-hoc fashion based on 

semantics. These systems have been used to index records based on 

diagnositic phrases. In part, their ad-hoc nature may reflect an 

emphasis on producing a practical system. Linguistically, it reflects a 

limited understanding of the construction of "ungrammatical" sentence 

fragments so common in daily discourse. Are these fragments, often noun 

phrases, truly examples of incorrect grammar? A semantic approach can 

avoid this issue. It is a semantically based technique that is used in 

this thesis. 

A procedure was developed in this thesis to encode problem lists 

from a general clinic. While the goal of this thesis was to develop a 

functioning program to solve an existing problem, the program is 

discussed in relation to general approaches to natural language 

processing and medical coding. 

page 5 section I 





II Problem Statement 

A — Overview 

The problem addressed is the development of a computer program 

capable of encoding problem list entries keypunched from general medical 

clinic charts with the constraint that the encoding used be compatible 

with the numeric codes used to store the rest of the charts. Clinic 

visits were recorded on forms which allowed most information to be 

recorded with check-marks. The forms were designed for keypunching, and 

over a number of years a computer data-base was constructed from them. 

Not all information was in check-off form. Areas of the form contained 

blank lines for the physician to write comments; and, on the front of 

the form, the problem list was written out. The problem list and any 

comments were keypunched as best the typist could read them and stored 

without editing in the data-base. 

Previous work tabulating the various types of medical problems seen 

in the clinic led to the compilation of a dictionary of terms used in 

the problem lists. A great deal of manual effort was expended to create 

this dictionary and a list of spelling corrections to facilitate its 

use. However, the content of the dictionary was never checked as the 

initial tabulation was completed without it. 

The numeric code used to store most of the information in the 

records was developed along the lines of the Systematized Nomenclature 

of Pathology. The major revisions have been to allow appropriate coding 

of signs and symptoms making up a large portion of the data in a general 

clinic, but almost never part of anatomic pathology reports. 

page 6 section II.A 





To limit its scope, this thesis does not delve into the problems of 

consistency, utility, and privacy of automated medical record keeping. 

Computer based storage of data makes incosistencies in records glaringly 

apparent. Practically, there may be no significant difference between 

"strep throat" written as a temporary problem list entry and "sore 

throat" checked-off as a common pediatric complaint. The critical datum 

will be the bacteriology results which are not available when the 

initial chart entry is written. However,"strep throat" and "sore throat" 

will have to be encoded and stored in some form when they are first 

noted. A consensus of the record system users will have to be reached 

around this coding problem and a watch maintained to insure the 

consistent encoding of all data entered. It is assumed that overall, an 

automated medical record system would be cheaper than the present manual 

methods. That certainly is the experience of any large organization in 

keeping records of its business activities. However, the high salaries 

of the people whose actions will have to accommodate any automation and 

the nature of the data to be recorded require serious consideration of 

the economics. Further complication is caused by the development costs 

that will be incurred by any organization attempting medical record 

automation at this time. The problem of privacy is equally important. 

While sufficient safeguards can be implemented, these would increase the 

already expensive development of an automated medical record system. 

Finally, attention to privacy and security would complicate access to 

medical records for physicians and nurses who are accustomed to simply 

picking up any chart they need. 

page 7 section II.A 





II — Problem Statement (cont) 

B — Specific Issues 

1 — Clinical Event Concept for Medical Coding 

The numeric coding system for clinical records is based on a 

fundamental hypothesis: medical records are listings of discrete datum 

describing clinical events and a clinical event may be completely 

characterised by listing its values along a small number of dimensions 

[BRU71, PRA731- For automated records it is a great simplification if 

the record can be divided into smaller pieces rather than being forced 

to deal with it as an amorphous whole. Making each of these pieces a 

small collection of numbers affords easy storage and retrieval. The 

question, which is never fully answered, is whether something 

significant is "lost in the translation". 

The major dimensions of a clinical event are organ system affected, 

specific topography, function or dysfunction, and etiology. Taken with 

the fundamental hypothesis, this says that a medical record is a 

collection of statements about the functioning of organ systems and the 

suspected etiology of any abnormality. Some descriptive power is added 

by the minor dimensions. Nevertheless, statements can not be formulated 

about interrelationships between clinical events. Empirically the 

majority of information in medical charts does not require desciption of 

clinical interrelationships. Systemitized Nomenclature of Pathology 

(SNOP) [CAP65] codes pathology reports in a similar style very 

sucessfully. A SNOP coding does not specify a system dimension, only 

topography. In addition, it does allow morphology to be specified which 

page 8 section II.B.1 





is important to pathology reports. 

To clarify clinical event coding some examples of information from 

a medical chart is presented followed by its encoding. The use of 

letters as part of a "numeric" code is not meant to confuse the reader. 

It may be imagined that these codes are stored in base 36. 

i) Patient complains of pain in his lower abdomen. 

System: SE120 No system specified. Function Only (Sign or 

Symptom) 

Topography: TY424 Hypogastric Region 

Function: F320F Pain, not otherwise specified 

Etiology: E0000 Not specified 

Source: Patient 

ii) WBC 12,000 

System: S9700 Leukocyte Line 

Function: FCBAO Lab Test 

Quantity: 12000 

iii) Appendicitis 

System: S6400 Lower Gastrointestinal 

Typography: T6600 Appendix, not otherwise specified 

Function: F420F Inflamation, not otherwise specified 

Etiology: E0000 Not specified 

Within a computer only the codes themselves would be stored. Example ii 

would simple be stored as S6400 T6600 F420F E0000. 

The values of the major dimensions are numbers denoting a place in 

hierarchy of possible codes. A portion of the code list appears below. 

page 9 section II.B.1 





System Codes 

0000 Psychological 
1000 Nervous System 
2000 Eye 
3000 Ear 
4000 Respiratory 

4200 Breathing 
4400 Upper Respiratory 
4460 Lower Respiratory 

5000 Cardiovascular 

Function Codes 

1000 Basic Functions 

1600 Cessation of Function 
1620 Paralysis 
1640 Absent Function 

1642 Function Cessation Due to Aging 

2000 Dysfunctions 

2C00 Unusual Movements 

3000 Pain & Itching 

3200 Pain 

4000 Inflamation & Infection 

4400 Infection 

4440 Bacterial Infection 

A hierarchical coding system allows specification of 

narrow ranges of interest for information retrieval. 

Function=4440 would imply interest in only bacterial 

search for Function=44-- would imply interest in any 

This approach has proved quite successful in SNOP. 

either broad or 

A search for 

infections. A 

type of infection. 

page 10 section II.B.1 





The minor dimensions are time, information source, subject if other 

than the patient, and modifiers of dimenstions. A chart might include 

"parent reports younger brother had 3+ sugar in urine" which would be 

coded: 

System: S7200 Urological 

Topography: T7X10 Urine 

Function: FCA40 Lab Test for Sugar 

Quantity: +++ 

Source: Parent 

Subject: Younger Brother 

A complete list of acceptable values for the minor dimensions has not 

been formulated, but the principle should be clear. 

page 11 section II.B.1 





II — Problem Statement (cont) 

B — Specific Issues (cont) 

2 — Problem Lists 

The problem list serves as the index for a medical record and thus 

as an important synopsis of the record. Weed set out the purpose of a 

problem list in his scheme for problem oriented medical records [WEE69]. 

At any point in time a physician should be able to identify the 

patient's current medical difficulties as well as any significant 

previous difficulties from the problem list. The problem list is placed 

at the front of the chart and numbered for easy reference to serve as 

the focus of a clear image of the patient's medical status. Dates 

indicating when a problem was first noted and when it resolved allow a 

time course to be seen. This is particularly important in effective 

outpatient care where long intervals between visits make continuity 

difficult to maintain. In the Community Health Care Center Plan 

"Encounter Form" for recording clinic visits [CHC7^] space for the 

problem list is reserved on the face sheet. 

Community Health Care Center Plan, Inc. (CHCP) is a prepaid health 

maintenance organization located in New Haven, Conneticut. It first 

opened in October 1971 [LYN75] . CHCP was one of a number of such health 

maintenance organizations initially sponsored by the goverment to test 

the feasiblity and effectiveness of preventive medicine, general 

practice oriented medical centers. From the outset, a concerted effort 

was made to maintain a computer data-base of the medical records. It was 

hoped that this would simultaneously increase efficiency in record 

page 12 section II.B.2 





handling and in general operation by providing accurate tabulation of 

the quantity and types of service most needed. While the computer 

data-base never replaced the regular chart for daily use by clinicians, 

it did serve it's purpose in providing accurate information about the 

medical service being provided. 

From previous work on the problem lists [LYN75], the number of 

entries was set at about 130,000. The average length of an entry in a 

problem list is two words. The most common was "general care" which is 

to be expected in a health maintenance clinic. 

An initial dictionary and spelling correction list of 2000 defined 

words and 4000 misspellings had been manually compiled. Each word was 

defined in terms of the system and/or function code it implied. The 

accuracy of the dictionary was never tested until this thesis work was 

begun. More importantly the dictionary was not designed to function with 

any specific encoding procedure. Any dictionary must be keyed to the 

person or procedure which will be referencing its entries. In spite of 

these shortcomings it was planned to use both the definitions and the 

misspellings as the basis for the dictionary needed for this work. 

The CHCP data-base is derived mainly from clinic visits over the 

period October 1971 to October 1974. These were recorded on the standard 

form and then keypunched. About 140,000 visits by 16,000 patients are 

stored. CHCP serves employees of participating businesses in New Haven 

and surrounding communities, an environ of about half a million 

residents. The participants in the health care plan are mainly white 

middle class families. The twelve most common problems were general 

page 13 section II.E.2 





care, pain, upper respiratory problems, visual problems, trauma, fever, 

malaise, hypertension, rash, otalgia, and obesity [LYN75]. 

page 14 section II.B.2 





Ill Review of the Literature 

Before considering work done to automatically code medical phrases 

it is useful to review work in natural language procesing and medical 

coding which form the foundation for automatic medical coding. In spite 

of the ad-hoc nature of much of the automatic coding, linguistics can 

provide a conceptual framework. A medical coding system provides a form 

for output and may also provide a structure for medical semantics and 

medical knowledge within an automatic coding program. 

III.A — Natural Language Processing 

Natural language processing covers a variety of computer techniques 

that all take prose directly as input [DAM76]. This includes programs 

that "understand" english and the work that continues to improve their 

performance [RAP76]. It also includes a wide range of work from 

concordance compilation to automatic literature indexing. Verbal speech 

processing might also be included although this is usually taken 

separately from techniques that assume typed input. Handwriting 

recoginition is also often not included. 

Historically the impetus for language processing programs was 

interest in automatic translation. Partially spurred by the cold war, 

the initial hope was for automatic translation of russian texts. 

Although a lot of time and money was spent in the late 1950’s and early 

1960's, quality translations were never achieved. At least one of the 

programs developed is still in use providing rough translations of 

scientific literature [JOR77]. Perhaps the best known results of this 

page 15 section III.A 





work are the jokes about a paper concerning "hydraulic rams" which 

translated into a paper on "water goats". 

The attempt at automatic translation should be credited with 

stimulating a number of advances in linguistics and computer science. 

Mathematical linguistics dates from this period. The complexity of the 

programming involved led to the development of a new programming 

langage, COMIT [YNG72]. 

Chomsky's mathematical formalization of language provided linguists 

with a more powerful tool for dealing with grammar and sentence 

formation [KIM73> CH057]. Further, it was rapidly introduced into 

computer science as a means to describe computer languages. Both natural 

linguistics and computer language developement benefitted from the 

studies which followed on automatic parsing based directly on the formal 

description. Briefly, the formal description of a language's grammar 

consists of four parts: a starting symbol, a list of production rules, a 

set of intermediate forms, and the vocabulary or set of symbols which 

will finally form the sentence. For english the intermediate forms could 

be entities such as <noun clause>, <predicate>, and <prepositional 

clause>. The production rules indicate how to proceed from a sentence 

vacuously comprised of the start symbol to various combinations of 

intermediate forms and finally to a well formed sentence. An example 

follows: 

Start Symbol: <START> 
Vocabulary: a after and broke came crown down fell fetch hill 

his Jack Jill of pail ran the to tumbling water up 
Intermediates: <DETERMINANT> -(INTRANSITIVE VERB> <TRANSITIVE VERB> 

<NOUN> -(OBJECT CLAUSE> PREPOSITIONAL PHRASE> 
<PREDICATE> <SUBJECT> 

page 16 section III.A 





Productions: <START> -> <SUBJECT> <PREDICATE> 
<START> -> <SUBJECT> <PREDICATE> and <START> 

<SUBJECT> -> <NOUN CLAUSE> 
<SUBJECT> -> <NOUN CLAUSE> and <SUBJECT> 
<NOUN CLAUSE> -> <NOUN> 
<NOUN CLAUSE> -> <DETERMINANT> <NOUN> 
<NOUN CLAUSE> -> <DETERMINANT> <NOUN> 

<PREPOSITIONAL CLAUSE> 
<NOUN CLAUSE> -> <NOUN CLAUSE> and <NOUN CLAUSE> 
<PREDICATE> -> <INTRANSITIVE VERB> <ADVERBS> 
<PREDICATE> -> <INTRANSITIVE VERB> 

<PREPOSITIONAL CLAUSE> 
<PREDICATE> -> <TRANSITIVE VERB> <OBJECT CLAUSE> 
<PREDICATE> -> <PREDICATE> and <PREDICATE> 
<PREPOSITIONAL CLAUSE> -> <PREPOSITION> 

<NOUN CLAUSE> 
<PREPOSITIONAL CLAUSE> -> <PREPOSITION> <PREDICATE> 
<PREPOSITIONAL CLAUSE> -> PREPOSITIONAL CLAUSE> 

<PREPROSITIONAL CLAUSE> 
<ADVERBS> -> <ADVERB> 
<ADVERBS> -> <ADVERB> <ADVERBS> 
<DETERMINANT> -> a his the 
<NOUN> -> crown hill Jack Jill pail 
CINTRANSITIVE VERB> -> came fell ran went 
<TRANSITIVE VERB> -> broke fetch 
<PREPOSITION> -> of to up 
<ADVERB> -> after down tumbling 

This grammar is capable of generating the well known nursery rhyme: 

Jack and Jill went up the hill 

to fetch a pail of water. 

Jack fell down and broke his crown 

and Jill came tumbling after. 

This particular grammar is quite inadequate as it also generates: 

A crown and the hill went to Jill. 

Water broke tumbling after down. 

The importance of Chomsky's formalization was not that it 

adequately described english or any other natural language. Rather, it 

provided a framework for classifying languages in terms of complexity 

page 17 section III.A 





and the types of mechanisms that would be required for parsing. Grammars 

could now be classified into four major types. Basically, type 0 

grammars are unrestricted and thus the most difficult to parse. Type 3 

grammars are the most restricted and easily parsed. Programming 

techniques have developed to the point that certain type 2 

(context-free) grammars may be easily parsed. Natural languages are type 

0 and no general programs for parsing them are available. 

Transformational grammars based on type 2 base grammars plus a 

collection of transforms were developed in an attempt to generate 

english without resorting to a type 0 grammar. As this approach has not 

proven fruitful in automated language parsing, although it is 

linguistically interesting, it will not be discussed. 

Yngve devloped COMIT, the forerunner of SNOBOL and other string 

processing and pattern matching computer techniques for linguistic work 

[SAM69, YNG72], Previous computer languages had only allowed operations 

on characters and simple groups of characters. COMIT was the first 

language to allow easy manipulation of strings and substrings as 

required for linguistics. The fundamental COMIT statement was based on 

the production rule of formal grammars. An intermediate form could be 

selected and replaced with its expansion. If this was done repeatedly, 

sentences would be formed. However, it was also possible to work in the 

reverse direction: portions of sentences could be matched and replaced 

with a symbol indicating the type of clause. If this was successfully 

repeated a parsing would be obtained. 

A major improvement in natural language processing occurred with a 

page 18 section III.A 





balanced approach utilizing both semantics and formal syntax [MCC68]. 

Ref/ering back to the example presented earlier, consider the sentence: 

A crown and the hill went to Jill. 

One possibility is that this is ungrammatical. A more adequate grammar 

would classify "went" as verb requiring an animate subject and if an 

object is present, one that is a place. This leads to a proliferation of 

word classes. Another possibility is to consider the sentence 

grammatical but obviously false: it describes a situation which could 

only happen in nursery rhymes (Hey diddle diddle, the cat and the 

fiddle, the cow jumped over the moon ...). Some early programs which 

took natural language input operated almost solely on semantic clues 

[GRE63, LIN63]• This is not to imply that semantic approaches should 

have primacy over syntactic ones or vice versa. For certain types of 

input one may be much simpler than the other. 

Winograd's SHRDLU program is the classic example of a program which 

is sophisticated about accepting english input [WIN72]. SHRDLU 

"understands" commands and questions about a collection of children's 

blocks. It operates in this very restricted "play" environment so that 

it can semantically disambiguate and verify the meaning of its input. If 

told to 

"pick up the red block on top of the green one" 

it can check the coordinates of all the objects it has noted as red 

blocks and see which if any are located above an object noted as a green 

block. In every day conversation the sentence 

Harry ran to the ball 

page 19 section III.A 





is understood to mean "Harry ran to the dance" or "Harry ran deep into 

left field to get to the baseball" depending on what the listener 

remembers of the previous conversation. 

The SHRDLU program incorporated grammatical rules in the form of a 

program specifically for grammatical parsing. While the parsing 

proceeded primarily on syntactic clues, ref/erences were made to the 

semantic model of the blocks to test the appropriateness of alternative 

parses. Since then the favored approach to specifying semantically 

guided syntax rules has become the use of augmented transition networks 

(ATN). The sketch of an ATN looks like a finite state machine diagram. 

Unlike a finite state machine, an ATN may recursively invoke other ATNs, 

and even itself, to parse a sentence [W0070]. Futher, when making state 

transitions an ATN may change the contents of storage registers which 

will affect later states. This facility can be used to test aspects of 

the semantic model and modify the model. The major limitation is that 

the semantics of all but carefully chosen subject matter has proven 

intractable. 

A notable program dealing with everday discourse was put together 

by Schank. It exploited a list of primitive actions and relationships 

which had to be assembled into a consistent stucture before the program 

would claim to have understood a sentence [SCH73]. The sentence 

John gave Mary an apple to eat 

generates a structure using the primitives give-physically-transport 

twice and ingest once. The first give-physically-transport describes the 

apple's motion from wherever it was to Mary through John's action. The 

page 20 section III.A 





second describes the apple’s motion to Mary's mouth which is a 

pre-condition for the ingestion primitive. There is a different "give" 

primitive to describe 

John gave Mary a headache. 

This approach to semantics is very appealing in that it allows a natural 

formulation for requirements such as ingestion presuming that a food 

type object has been transported to the subject’s mouth. Defaults can be 

listed for objects of the primitive actions. Ingestion normally applies 

to edibles. The normal defaults could be changed to suit the context of 

the conversation, be it MacDonald's or the Waldorf-Astoria. It has been 

suggested that plans of actions covering standard situations are stored 

as "frames" retrieved in appropriate contexts [MIN75]• 

Over the same period of time as the work directly aimed at 

"understanding" prose, techniques were developed to deal with prose on a 

more limited basis [BOR68, TH075] . Classical scholars were interested in 

studying concordances. With automation, frequencies of word usage and 

other statistical parameters could be measured which were previously 

much too time consuming. Programs to perform these statistical 

measurements were much simpler than those attempting to determine the 

"meaning" of their input. Usually no syntactic parsing was performed so 

that the two sentences 

Smoking is not good for you and is expensive. 

Smoking is good for you and is not expensive, 

would appear identical in terms of word counts. This may or may not be a 

problem depending on the subject matter and the reseacher's particular 

page 21 section III.A 





interest. 

The tremendous volume of published scientific literature spurred 

developement of automated indexing techniques. Statistical procedures 

were developed to find key words and phrases. These programs also 

operated without any "understanding" of the text. The basic approach was 

to identify those words or phrases which occured often enough to 

represent something integral to the subject matter, but not so often as 

the common words of the language or fundamental terms in the field. 

The Linguistic String Project attempted to improve the capabilities 

of automatic indexing by using a linguistic approach. A type 2 grammar 

was developed which would be common to any english scientific text. 

Restriction rules were formulated to guide parsing much as the semantic 

guides described above. Small modifications to the grammar and to the 

restriction rules could easily be made if required for peculiar word 

usage or jargon. Making use of the syntactic clues for parsing, the 

indexing program could make note of all unrecognized vocabulary and then 

try to determine its gramatical class by statistical techniques [SAG72]. 

The Linguistic String Parser is quite sophisticated. Its major 

shortcoming as a general approach to english language understanding is 

that it forms no semantic model. Instead it attempts to group words in 

sufficently well refined catagories to avoid reading 

John eats today 

as "John ingested Monday instead of something more substantial" [SAG75]. 

Readers are probably aware that of all the approaches tried, author 

supplied keywords and manual indexing by trained readers are the main 

page 22 section III.A 





indexing systems in use at present. The citation index is also very 

popular. It is also based on direct use of author supplied information 

rather than statistically culling through the text. 

Content analysis was another area which applied natural language 

processing. The General Inquirer was designed to provide consistent 

measures of content in written or transcribed language specimens 

[ST066]. A dictionary giving the general import of words to be checked 

has to be supplied along with the text to be scanned. With a dictionary 

that rated "murder", "mugging", "rape", and "arson" as having high 

violence content it was possible to scan news articles and rate their 

relative violence content. 

Text processing systems are perhaps the simplest examples of 

natural language processing. Their purpose is to reduce the human effort 

required to prepare printed documents. So-called "word" processing 

systems are becoming popular in business offices. These typically allow 

a document to be rough typed, edited, and then a final copy made without 

overall retyping. After changes have been marked on the rough copy they 

can be incorporated in a machine copy, usually on magnetic tape 

cassettes or card. Only the changes and new text need be typed before 

making the final copy. More sophisticated systems automatically adjust 

the right margin, hyphenate when necessary, paginate, and make font 

changes. This results in a significant reduction in labor and an 

increase in accuracy of the final printed text when used for papers or 

books. 

While no existing system "understands" discourse over as large a 

page 23 section III.A 





domain as most people compass in the course of a day, there are an 

increasing number of systems which accept english input within a well 

delineated subject area. This greatly simplifies their use. Primarily 

this has been done for data-base systems to make their information 

available to relatively untrained personnel. This trend will undoubtedly 

continue. 

page 24 section III.A 





Ill — Review of the Literature (cont) 

B — Medical Coding 

Originally, medical coding systems allowed uniform tabulation of 

international mortality statistics. Presently they are increasingly 

oriented towards indexing clinical data for research [WH077, PRA73J- To 

some extent this echoes the increasingly microscopic and molecular focus 

in medicine. 

III.B.1 — Case Retrieval without Coding 

The problem of retrieving pertinant clinical records can be handled 

the same way as retrieving pertinant articles in scientific literature. 

If key-words are automatically culled from the medical text no 

classification system is needed at all [LAM66] . A thesaurus turns out to 

be very helpful for formulating retrieval requests for this sort of 

system. Indeed, as the thesaurus becomes more sophisticated, listing 

close and distant synonyms, subsuming and subcategories, it becomes a 

form of coding system. The system referred to, [LAM66], was used for a 

large pathology report collection with good results. A notable 

shortcoming was the inability to recognize negation. This is not 

suprising as no grammatical parsing was performed. 

III.B.2 — ICD: International Classification of Diseases 

The International Classification of Diseases (ICD) and its adapted 

forms are the most widely used coding systems. Presently in its ninth 

revision, ICD is maintained by the World Health Organization. In 

page 25 section III.B.2 





summarizing the goals of this classification scheme the authors quote 

work on British mortality figures from the 19th century: 

"The aims of a statistical classification of disease cannot 
be better summarized than in the following paragraphs 
written by William Farr a century ago: 

[Registrar General of England and Wales, Sixteenth 
Annual Report, 1856, Appendix, 75-76] 

'The causes of death were tabulated in the early Bills 
of Mortality (Tables mortuaires) alphabetically, and this 
course has the advantage of not raising any of those nice 
questions in which it is vain to expect physicians and 
statisticians to agree unanimously. But statistics is 
eminently a science of classification; and it is evident, 
on glancing at the subject cursorily, that any 
classification that brings together in groups diseases that 
have considerable affinity, or that are liable to be 
confounded with each other, is likely to facilitate the 
deduction of general principles. 

'Classification is a method of generalization. Several 
classifications may, therefore, be used with advantage: and 
the physician, the pathologist, or the jurist, each from 
his own point of view, may legitimately classify the 
diseases and the causes of death in the way that he thinks 
best adapted to facilitate his inquiries, and to yield 
general results. 

'The medical practioner may found his main divisions of 
diseases on their treatment as medical or surgical; the 
pathologist, on the nature of the morbid action or product; 
the anatomist or the physiologist on the tissues and organs 
involved; the medical jurist on the suddenness or the 
slowness of the death; and all these points well deserve 
attention in a statistical classification. 

'In the eyes of national statists the most important 
elements are, however, brought into account in the ancient 
subdivision of diseases into plagues, or epidemics and 
endemics, into diseases of common occurrence (sporadic 
diseases), which may be conveniently divided into three 
classes, and into injuries, the immediate results of 
violence or of external causes.' " [WH077] 

ICD may legitimately trace it origins back to the Bills of Mortality and 

after nine revisions still serves the same purpose. 

In this country ICDA (International Classification of Diseases — 

Adapted) maintained by the U. S. Public Health Service and ICDA-H 

page 26 section III.B.2 





(Hospital Adaptation of ICD) maintained by the Commission on 

Professional and Hospital Activities are the most popular coding systems 

[CPH73]. Salient characteristics of all the ICD based codes are: 

they are linear lists 

they are oriented to statistical tabulation, not individual 

case retrieval 

they are inconsistent about sign and symptom code placement 

Classifications based on linear lists are limited in their ability 

to group "like" entities. It is not possible to arrange the list so that 

pneumonia is at the same time close to lung cancer and also to cholera. 

As Farr noted, it not possible to satisfy both the anatomists and the 

microbiologists. 

A classification scheme oriented to statistically significant 

divisions is likely to gloss over the individual findings in a medical 

case in favor of the final diagnosis. The problem is one of purpose. 

Mortality tables are used at a national level and so emphasize diseases 

of fatal or very morbid outcome. A reseacher attempting to establish the 

validity of a particular diagnostic finding requires access to all cases 

regardless of morbidity or mortality. 

The problem with ICD's coding of signs and symptoms is also related 

to it original purpose and orientation. It has only been of late that 

there has been increasing interest in the common-place findings which 

cause little gross morbidity but occupy a fair portion of physicians' 

time. Having been added only of late these codes often are chosen from 

the end of the list. The reader should examine the coding examples given 

page 27 section III.B.2 





in the following table: 

COUGH COLD 
SORE 

THROAT 
STREP 

THROAT 

779-3 460 777.6 034.0 ICDA-H 

F7131 E931 4 M4100 
T2410 

E1681 
T2410 

SNOP 

S42-44 
F2C20 

S4000 
F4420 

S4600 
F3260 

S4600 
F4440 

Clinical Event 
Coding 

— Coding Examples — - 

page 28 section III.B.2 





Ill — Review of the Literature (cont) 

B — Medical Coding (cont) 

3 — SNOP: Systematized Nomenclature of Pathology 

The Systematized Nomenclature of Pathology is a well established 

classification for pathology findings which was designed specifically to 

facilitate automated case retrieval. SNOP does not use a simple list of 

codes as does ICD. It is multi-dimensional in that it classifies along 

more than one axis. From the introduction to SNOP [CAP65] 

"Diseases may be defined in terms of four areas of 
information: 1) the part of the body affected (Topography); 
2) the structural changes produced (Morphology); 3) the 
etiologic agent (Etiology); and 4) the functional 
manifestations (Function). This code is divided into four 
separate, interdependent fields comparable to these areas: 
Topography, Morphology, Etiology, and Function. Within a 
field, terms are assigned a four-digit number. The first 
(left hand) digit indicates the section of the field. The 
other numbers indicate progressively finer subdivisions. 
These grouping relect, as far as possible, natural 
relations. This structure and organization are given in the 
Table of Contents and numeric portions of the code. An 
alphabetic listing of terms is included to permit coding. " 

The major benefit of multi-dimensional code is that it allows 

pneumonia to be assigned a code close to that of lung cancer along one 

dimension while being assigned a code that is close to that of cholera 

along another dimension. This is especially well suited to the anatomic 

and surgical pathologist who may wish at one time to compare a specimen 

to other specimens from the same site in the body and then at another 

time wish to compare a specimen with other specimens of similar 

morphology. This would be of little help in preparing mortality tables. 

Statistical tabulations could be made from SNOP indexed data by 

page 29 section III.B.3 





preparing a list of code groups to be summed together. Since SNOP codes 

make finer divisions of the data it would in principle be possible to 

prepare ICD type lists from SNOP coded cases. 

The other major feature of SNOP is its use of hierarchical code 

assignments. This allows retrievals of not just specific entities but 

also subsuming or subcategories. This is true to some extent of ICD as 

well. Lampson's work [LAM66] achieved this capability only through the 

use of a relatively complicated thesaurus. Appropriately assigned 

numeric codes require only that the retrieval request indicate the 

number of digits that are desired for a match. A match of only the left 

most digit retrieves any grossly related case. A match of all four 

digits retrieves only identically coded cases. 

The main shortcoming of SNOP is that it does not code signs and 

symptoms. This is an unfair criticism in that SNOP was never meant to 

serve as a coding system for general medicine. Ref/ering back to the 

table of coding examples (end of section III.B.2) the reader will note 

the wide variety of codes assigned to common clinic upper respiratory 

complaints. It may be additionally noted that M4100 is a morphologic 

code for inflammation which is not quite the same as "sore" in "sore 

throat". 

III.B.4 — Clinical Event Coding 

Clinical event coding was designed to classify all of the medical 

information collected in a general clinic in a form facilitating 

atuomatic storage and retrieval [BRU71]. This approach has already been 

page 30 section III.B.4 





described in section II.B.1 but a short discussion is included here. 

Like SNOP, clinical event coding is multi-dimensional and uses a 

hierarchical assignment of code values. The major differences are that 

clinical event coding allows more dimensions to cope with the greater 

diversity of data in a general medical clinic and a special effort has 

been made to cogently assign values to common signs and symptoms. 

Clinical event coding uses four major dimensions and seven minor 

dimensions. These are listed below with the major dimensions first: 

System — personality, respiratory, digestive ... 

Topography — head, neck, abdomen, ... 

Function — pain, inflammation, fracture, ... 

Etiology — streptococcus, lye, ... 

Quantity — 104 degrees F, 10 pounds, +++ ... 

Flag — chief complaint, problem number, ... 

Time — 3 days ago, 4/6/54, ... 

Modifiers of Signs and Symptoms — aggravated by _, relieved by 

Function Modifiers — increasing, stable, improving, ... 

Source — patient, family, witnesses at accident, ... 

Who — patient, siblings, relatives, ... 

Other — related to event _, see dictation, ... 

Of the major dimensions, three are very similar to SNOP. Topography 

and Etiology are taken directly from SNOP. Function is reorganized and 

shows an orientation to a general clinic. System, however, has no SNOP 

counterpart and Morphology is not used as a clinical event dimension. 

page 31 section III.B.4 





The separate System dimension allows accurate coding of data where the 

Topography is known, for example a patient complaining of lower abdomenal 

pain, but whether the digestive or urogenital organs are involved is not 

known. Similarly, complaints about changes in personality may be 

properly assigned a System without having yet determined if any organic 

lesion is present. 

The minor dimensions are not all well-formulated although the basic 

information to be recorded is indicated. The Source and Who dimension 

solve problems of differentiating nursing notes from family reports on 

information that may pertain to the family or the patient and yet allow 

simple retrieval of all data. 

The Other dimension if used for reffering to other recorded events 

could allow coding of relationships like "secondary to". This becomes 

important in a coding scheme which strives to code entire medical 

records. 

An additional minor dimension RLBUML has been suggested as a 

adjunction to the Topography dimension. The name comes from the first 

letters of "right, left, bilatera/l, upper, middle, lower". 

III.£.5 — Other Coding Systems 

A number of codes are in use: COMIT, local Blue Cross classifications, 

SNO-MED, and others. None of these present a significantly different 

approach from the major codes presented. Medical coding systems are not 

static. New disease syndromes are described. New, hopefully more 

fundamental,disease relationships are discovered, and different 

page 32 section III.B.5 





applications require greater or lesser detail in different areas. 

page 33 section III.B.5 





Ill — Review of the Literature (cont) 

C — Automated Medical Coding 

1 — General Observations 

While automated translation or encoding of medical phrases falls 

within the realm of natural language processing, much of the work has 

been done in a quite ad-hoc manner. There are a number of reasons for 

this. Diagnostic phrases are usually very short requiring little or no 

syntax analysis. The semantics of medical statements have not been well 

formalized. Medical coding is usually undertaken without the 

computational tools and expertise brought to bear on computer linguistic 

projects. 

In spite of the short-comings in this work, the results have been 

of practical utility. Medical coding is an onerous task. Any scheme that 

automatically processes a fair percentage of its input is helpful. Once 

the medical records have been indexed, chart studies can be done that 

would otherwise be impossible. 

The major approaches for automated encoding will be described in 

historical order. These demonstrate increasing complexity and 

sophistication but suprisingly decreasing comprehensiveness. 

III.C.2 — The "Fruit Machine" 

The so-called "fruit machine" method [HOW68, GRE72] was one of the 

earlier automatic encoders. It was very clever. Its approach can not 

really be described as either semantically or syntactically based. 

Perhaps it is best described as a phrase retrieval system. It dealt with 

page 3^ section III.C.2 





phrases as irreducible entities. 

The procedure is aptly descibed by the authors: 

"In the conventional fruit machine [one-armed bandit], 
the ’jackpot' is obtained when the lemons appear in line. 
Similarly, in this method of diagnosis coding, the 
’jackpot' (the correct code number) is obtained when a code 
number appears which is common to all words in the 
diagnsosis (Fig. 1) [below]. In the main fruit machine 
dictionary each significant word of a diagnosis is stored 
with all the code numbers with which it has been 
associated. 

Acute 727- Appendicitis 552- Perforation 603- 
Acute 600.0 Appendicitis 551—* Perforation 578- 

— Acute 550.1-Appendicitis 550.1-Perforation 550.1 —> 
Acute 550.0 Appendicitis 550.0 

"Fig. 1. — Computer coding of the diagnosis 'Acute 
Appendicitis with Perforation' " [HOW68] 

An asterix marks the appropriate code for single word phrases. In this 

sample of the dictionary 551- is the prefered code for the phrase 

"Appendicitis". 

The procedure is notable for its speed and simplicity. However, it 

becomes apparent that this is just an algorithm for recognizing 

permutations of catalogued phrases! 

As noted before, this procedure uses neither semantics nor syntax. 

It incorporates no knowledge of medicine except that it only recognizes 

the phrases listed in its dictionary. 

The "fruit machine" method makes use of three word lists or 

dictionaries. The primary dictionary consists of entries listing a word 

followed by all the codes assigned to phrases in which the word has 

appeared. A secondary dictionary is required to resolve cases where the 

appropriate code is not apparent from the matching process alone. 

page 35 section III.C.2 





"An example of a cross-over which occurs in practice is 
shown in Fig. 2 [below]. As 'myocardial insufficiency' is 
coded as 422.2 and 'myocardial infarction' as 420.1, both 
code numbers are stored in the dictionary with 
'myocardial'. Similaryly, 420.1 and 422.2 for 
'insufficiency' are derived from coronary insufficiency 
and, of course, from myocardial insufficiency. 

Myocardial 431- Insufficiency 578- 
—Myocardial 422.2-Insufficiency 422.2--> 
—Myocardial 420.1-Insufficiency 420.1 —> 

Myocardial 197.1 

Fig. 2.—Coding of 'Myocardial Insufficiency' by the 
fruit machine dictionary." [HOW68] 

The third dictionary is a list of words to ignore such as "with" and 

common synonyms such as "malignant neoplasm", "ca", and "carcinomatous" 

all of which are treated as "carcinoma". 

The only preprocessing which is performed on the phrases is to 

remove parenthetical comments. This allows information for other 

purposes to be keypunched on the same card. 

The "fruit machine" makes no provision for spelling correction. 

Common misspellings could be entered as synonyms. A number of approache 

to spelling correction have been tried in other applications [MOR70, 

ALB67, DAM64]. The two basic techniques are to develop some measure of 

"closeness" to allow the selection of a word from the dictionary that 

might be the one intended or to extract the "important" features of the 

misspelled word, its consonants for example, and match those to a 

dictionary entry. To some extent it is suprising that spelling 

correction algorithms are not a common part of computer language 

compilers. Compilers process large amounts of human typed text. 

There are two major drawbacks to the "fruit machine" approach. 

page 36 section III.C.2 





There is no "leverage". Each entry in the dictionary allows only one new 

phrase to be encoded. Indeed if cross-over occurs a second entry may be 

necessitated to generate the approriate encoding. The second shortcoming 

is that the technique can not cope with phrases containing two 

diagnosises. 

Some improvements could easily be added. Simple spelling correction 

could be included. The simplest would be to allow a word not found in 

the dictionary to match the first word found differing by only one 

letter. Preprocessing to remove common suffixes would reduce the number 

of dictionary entries required. 

To conclude, the notable features of the fruit machine approach are 

listed: 

simple to program 

fast execution 

dictionaries may be built-up slowly as needed 

proven effectiveness and accuracy of about 95% 

page 37 section III.C.2 





Ill — Review of the Literature (cont) 

C — Automated Medical Coding (cont) 

3 — The NIH Pathology Diagnosis Encoder 

This program is used at the National Institues of Health to classify 

pathology reports according to SNOP catigories [DUN77, PRA73]- The coded 

pathology reports are then entered into an automated system for case 

retrieval. The NIH Encoder is based on an unconventional approach of 

matching the input phrases to the english text used to describe the SNOP 

categories. 

The encoding procedure involves a number of steps. First 

punctuation, prepositions, and phrases like "due to" are marked. Then 

words are looked-up in the exception dictionary. The exception 

dictionary includes the following sorts of entries: 

feet -> foot, plural noun 

renal -> kidney, noun 

Keep in mind that the program must translate words into the standard 

vocabulary found in the SNOP manual. Words still remaining are 

categorized by their endings to determine the root form, part of speech, 

and associated forms [PRA69, DAM76, KLE63]- As a simple example 

cortical -> cortex, adjective 

After all the words have been examined a right to left scan is 

performed. The program ignores preposition and other phrase delimiters 

at this point and simply seeks to find a word which matches the first 

word of one of the standard SNOP phrases. The right to left scan saves 

time because the key-word of a noun often is the last word. A version of 

page 38 section III.C.3 





this program for processing french [WHI77J scans from left to right 

since in french adjectivesusually follow the noun. 

Once a word has been found which matches the beginning of a 

standard phrase the programs scans in both directions around the word 

found to match other words to the standard phrase. Three words on either 

side are checked, but the program will stop sooner if a word or 

punctuation marked as a phrase delimiter is encountered. 

Words from the input do not have to precisely match standard phrase 

words. Having been reduced to their root forms, it sufices that the root 

or the root with a standard suffix matches the words found in the 

standard phrases. 

Scanning continues until all the words have been matched into one 

or more phrases. At this point the codes associated with the matched 

phrases are merged together to form SNOP quadruples (Topography, 

Morphology, Etiology, and Function). After the basic quadruples have 

been formed syntactic clues are used to allow negation and phrases like 

"metastatic to" to operate on the formed quadruples. 

The NIH Pathology Diagnosis Encoder operates with a simple semantic 

model. Medical information contained in a pathology report is presumed 

to consist of a collecton of quadruples specifying values along the four 

SNOP dimensions. If a value has not been supplied at least for the 

Topography and Morphology or Function dimension then either there has 

been a missunderstanding or the input is not well formulated. 

Alternatively if more than one value has been specified for a dimension 

then presumebly more than one complete pathology finding is being 

page 39 section III.C.3 





described. 

A number of dictionaries are used in the first phases of encoding. 

They are briefly described below: 

Full Word List — contains entries giving the root form and 

part of speech for words like "feet" 

Word Endings List — a list of common suffixes, how to derive 

the root form, part of speech, and alternate suffixes 

that may be used during matching 

Sepcial Terms — lists punctuation, prepositions, and words 

like "probably"; phrase delimiters are included 

Non-Key Word List — contains "tissue", "space", and other 

words which can never be key-words in a standard phrase 

Ignorable SNOP Words — Words used to describe SNOP 

classifications that would never be used in actual 

pathology reports 

No preprocessing is necessary. Pathology reports are directly 

submitted to the program; neither is any attempt made at spelling 

correction. 

The most significant shortcoming of this approach is that input 

vocabulary is limited by the vocabulary used to describe SNOP codes. 

Some training is required of the pathologists. For usage in a general 

medical setting the limitations of SNOP would also be a problem. 

The only simple enhancement that could be made of this system would 

be to add spelling correction. Some extension of its input vocabulary 

could be achieved by adding entries to the full word dictionary. 

page 40 section III.C.3 





In conclusion the notable features of the NIH Pathology Diagnosis 

Encoder are : 

works with a well tested coding and retrieval system 

has the capacity to reject some forms of nonsense 

has the capacity to parse multi-part phrases 

•""" ognizes some syntactic forms including negation 

performs very complete suffix analysis 

III.C.4 — X-ray Report Coding: The Linguistic String Parser 

This work utilizes a highly developed syntactic parser, giving it 

the ability to analyze full sentences as well as sentence fragments 

[HIR76, SAG75, GRI73, SAG72]. Conceivably, an extension of this work 

could encode daily notes in a medical chart. The Linguistic String 

Parser was discussed earlier in section III.A. 

To parse sentences from x-ray reports, the Linguistic String Parser 

is primed with a context-free grammar and a list of restriction rules. 

The context-free grammar is only a slight adaptation of one used for 

parsing scientific english. Some modification is necessary since 

radiologists commonly write 

Chest x-ray — negative. 

Other sentence fragments and "ungrammatical" forms are also common. This 

particular form is handled by treating "—" as a verb. The fragment then 

becomes 

Chest x-ray is negative. 

The restriction rules have to be specific for the subject matter. 

page Hi section III.C.H 





"Being" can not act as a noun in the sentence 

No report of x-rays being taken. 

In science fiction writing one might encounter 

No report of inter-galactic being taken on the evening shift. 

The parser then accepts x-ray reports and parses them according to 

the grammar and restriction rules. The context free grammar by itself 

would generate many unacceptable parses. The actual output is created by 

performing a series of formating transformations on the final parse 

tree. 

The output format was formulated by examining the sentences in the 

input sample and noting what kinds of information are recorded. The 

final form contained about 30 different headings. It is much too 

detailed to present here, but the overall effect is much the same as 

breaking the statement of a medical finding into the dimensions of a 

clinical event. For a more detailed description of the encoding process 

the reader is reffered to [HIR76] . Sager's work, [SAG75, SAG72] should 

be consulted for more details about the Linguistic String Parser. 

As mentioned before, the Linguistic String Parser does not operate 

with a semantic model. Semantic rules are incorporated into the 

restriction rules for the subject area. This is an advantage in that it 

does not require programs to be written to manipulate and test 

interelationships in the semantic model to verify the approriateness of 

a particular parsing. 

The authors do not explicitly discuss any dictionaries used. 

However, the dictionary is probably a list of words with an indication 

page 42 section III.C.4 





of their part of speech. 

No preprocessing of the x-ray reports was required, and no spelling 

correction was performed. This may be less of a problem with dictated 

reports like x-ray reports. 

The major shortcoming of this work was the limited scope of the 

reports processed. The input sample consisted of less than 200 x-ray 

reports on patients followed after treatment for breast cancer. Further, 

almost half the reports were a simple phrase indicating no findings. 

Another problem is the very non-standard output format. 

Simple improvements that could be made would be some provision for 

spelling correction. Output of standard code should be possible with 

appropriate revision of the output transformations. 

In conclusion notable features of this work are: 

it builds on a general system for parsing english and can 

benefit from improvements in those techniques 

its strong syntactic underpinning easily handles problems of 

negation and conjunction, and makes possible parsing of 

forms like "... leading to ..." 

it may be possible to process present medical records verbatim 

page 43 section III.C.^ 





IV -- General Approach 

A _ Clinical Event Coding as the Semantic Model 

An ad-hoc procedure based on the semantics of the clinical event 

model was chosen for the encoder developed in this thesis. Examination 

of the problems lists showed little syntactic structure. Normally two 

word noun phrases appeared. Use of syntactic rules would undoubtably be 

useful with longer phrases, but seemed an unnecessary complication for 

problem list coding. 

Both [HIR76] and [PRA73] indicate that the meaning of simple 

medical phrases can be adequately recorded in a form similar to that of 

the coded clinical event. As in the NIH Pathology Diagnosis Encoder it 

would be possible to recognize well formed encodings when they were 

obtained. Phrases composed of two separate clinical events could be 

detected and encoded as was done in [DUN77] and [WHI77]. Beyond this it 

would be possible to recognize obviously false encodings such as 

"hemorrhage of the personality system". Presumebly no physician would 

write such a phrase so the encoding program could assume it was 

pursueing the wrong parse and try another. 

The encoder could first reduce phrases from problem lists to coded 

clinical events and then process negation and conjunction words if 

present. "And" would imply that two clinical events share some 

dimensions in common as in "back and leg pain" which should encode to 

"back pain" and "leg pain". "Not" or "no" could be taken to mean that 

either an entire clinical event was not reported or be taken to modify 

one dimension. Consider 

page 44 section IV.A 





no back pain 

hypertension, no change 

Using the coded clinical event as the semantic model would also 

provide another test of its adequacy for representing medical 

information. Succesful construction of the encoder would at least imply 

that some useful amount of information was represented and could be 

manipulated as coded clinical events. It should be noted that it would 

not mean the same thing to simply output encodings as coded clinical 

events. That would just indicate that some transform could be programmed 

which converted the encoder’s internal structures into clinical event 

format as was done in [HIR76]. 

IV.B — Words in Context 

A major difficulty in processing natural language is that it is 

based on a context sensitive grammer. The simplest example of context 

sensitivity appears as idiomatic word usage. This is quite common in 

medical problem lists. Although it does not appear in the problem lists, 

cold sore head cold 

serves as a good test case for idiomatic word usage and at the same time 

has a number of possible parsings. 

"Cold" in the example takes on two meanings: "cold sore" implies a 

herpetic lesion and "head cold" generally means a viral respiratory 

infection. Within the Connecticut Health Care Plan problem lists "cold" 

is also used in the phrases "cold feet" and "cold thyroid nodule". Only 

in the phrase "cold feet" does "cold" take on its normal meaning. 

page 45 section IV.B 





The other two words in the example appear to take on their common 

meanings. "Sore" is usually taken to mean inflammed and "head" usually 

means the body region above the neck. However, "head" in "head cold" 

really only reffers to to upper respiratory involvement and should be 

taken idiomatically. "Sore" similarly should be understood 

idiomatically. 

To deal with idiomatic word usage three types of adjacent word 

interactions were recorded in the dictionary. Hyphenation is the first 

of these. It is used in defining the words in the example. "Cold" is 

entered in the dictionary with a number of definitions. One of these 

begins with the term "H_SORE" which indicates that this particular 

definition is only valid if "cold" is parsed in the context "cold-sore". 

Correspondingly, "sore's" definitions include one begining with "Y_COLD" 

indicating that this is the second half of a Hyphenated definition. 

Similar entries define "head-cold". 

The other types of adjacent word interactions are forward linking 

and back linking. Foward linking is used in creating the dictionary 

entry for "rheumatic" to allow the encoder to chose the appropriate 

definition when "rheumatic" is followed by "heart". A different 

definition should be chosen if "rheumatic" is followed by "arthritis". 

This later definition begins with the term "F_ARTHRITIS". Back linking 

is used in the definition of "mellitus" to indicate that the definition 

is only meaningful if the previous word was "diabetes". The definition 

for "mellitus" begins with the term "B_DIABETES". 

The presence of context sensitive word definitions is by no means a 

page 46 section IV.B 





complete solution. The fact that "... head cold ..." may be parsed as 

"... head-cold ..." does not guarantee that that is the proper parsing. 

Consider 

hit head cold limbs. 

An unlikely problem list entry, but, it should be parsed as if it were 

an elipsis of "the patient hit his head and presently his limbs are 

cool". 

In parsing any but the simplest subsets of natural language 

ambiguous phrases will arise. The simple phrase "head cold" is generally 

taken to mean viral repiratory infection. There must be some way for the 

people to eliminate the parsing of "head cold" as short for "the 

patient's head feels cold". Presumebly, interpretations of "head cold" 

other than the common are eliminated on the basis of knowledge that it 

is rather uncommon for someone's head to be cool to touch. It is not 

impossible, but uncommon enough to ignore that interpretation of "head 

cold" unless the context of the utterance forces it. 

A direct approach was chosen to resolve amiguities as noted above, 

the encoding program includes a routine to reject unlikely or impossible 

clinical events. This also means that a parsing would be rejected only 

after it was complete and the clinical events formulated. The relative 

inefficiency was hoped to be small. The advantage of waiting until the 

clinical events had been formulated was that medical knowledge to be 

drawn upon could also be formulated in terms of clinical events. 

A large amount of simple, "common sense", medical knowledge can be 

formulated in clinical event codes. The phrase 

page 47 section IV.B 





social bleeding 

is either a mistake or it means "socially triggered bleeding". The 

clinical event that corresponds to "disruption of blood vessels 

supplying the social relationships" can be eliminated by a simple matrix 

which indicates which function codes are reasonable with which system 

codes. "Bleeding" would not be allowed with "psychological" or "social" 

system codes. "Cold", meaning reduced temperature, would only be allowed 

with extremities. 

Even without a matrix of permitted function and system codes some 

very simple constraints on clinical events can be formulated. A function 

code must be present. This permits the terse problem list entry 

trauma 

while disallowing 

feet 

which indicates a body part but nothing else. Then when parsing 

cold feet 

the reading "upper respiratory infection and feet" can be eliminated 

because it would require a body part to stand on its own as a problem! 

IV.C — The Dictionary for Encoding 

The requirements for the dictionary were that it allow rapid access 

to definitions of words for encoding and that it also allow rapid 

revision of definitions when mistakes were noted. Storage and retrieval 

based on open hashing was chosen to provide rapid access. Dictionary 

entries were to be stored as variable length text strings to provide 

page 48 section IV.C 





flexibility in dictionary content. 

The basic format for a dictionary entry was 

Word definition 

and if there was more than one definition 

Word First definition; Second definition ... 

Each definition consisted of one or more parts separated by spaces. 

Normally a definition would consist of codes such as "F4420" (Function 

code, infection, not otherwise specified). If a definition was context 

sensitive the hypenation or linking term would be included with the 

codes. Definition terms which referenced other words simply included the 

word as text. No file pointers were permitted within dictionary entries. 

Since the dictionary used hashed indexing no significant speed 

improvement would result from using direct file pointers. A benefit of 

eliminating file pointers within definitions was that the dictionary 

could be saved for backup storage or shipment to other systems in simple 

readable form. 

IV.D — Preprocessing 

The problem lists had been stripped of extraneous punctuation 

during previous investigations. This had removed quote marks, 

parenthesis, brackets, and other symbols that were assumed to be 

keypunch errors. The preprocessing did leave semicolons in entries such 

as 

hypertension; no change. 

It also left periods in abreviations such as 

page 49 section IV.D 





U. R. I. 

The physicians' use of punctuation was not uniform. While it was hoped 

that punctuation would provide clues to phrases comprised 

above, the periods and semicolons are in the middle of single e 

Since a meaningful role for punctuation could not be discerned, 

punctuation symbols were entered in the dictionary as words to 

ignored. The dictionary was programmed to accept any non-blank sequence 

of characters as a "word". No difficulty occurs in ignoring the 

punctuation in the hypertension phrase above, but abreviations proved to 

be somewhat of a problem as will be described later. 

page 50 section IV.D 





XV — General Approach (cont) 

E — Spelling Correction 

As previously mentioned, a list of misspellings paired with correct 

spellings had been manually prepared. To incorporate this into the 

dictionary with a minimum of effort, dictionary definitions were allowed 

to indicate the correct spelling. This same mechanism would also 

function for synonyms such as "finger" and "digit". 

A dictionary entry for the misspelling "NECL" might be 

M_NECK. 

The "M_NECK" implies that the dictionary should be referenced again for 

the word "NECK". For flexibility, definitions found while referencing 

the correct spelling are appended to the misspelling indicator. This 

allows abbreviations like "inf" to be defined as 

M_INFARCTION; M_INFECTION; ... 

The encoder had to be designed so that when a word was being treated as 

a misspelling or synonym,and thus as if it were another word,context 

sensitive definitions could function as if the correct spelling were 

actually present. This too was facilitated by the technique of appending 

the definition of the word referenced to the misspelling indicator. 

IV.F — Expected Shortcomings 

Since the approach chosen ignores syntax it is unable to handle 

sentences expressing relationships between clinical events. This should 

not present any difficulty coding problem lists, but does represent a 

limitation on other possible coding tasks. 

page 51 section IV.F 





The encoder’s "knowledge" is initially to be programmed-in. There 

is no file of information such as the fact that psychological systems 

can not bleed (in reference to the example in section IV.B). Instead 

there will be programmed tests for this type of clinical event. This 

makes it necessary to reprogram and debug any changes. The dictionary is 

very easy to correct and critera for reasonable clinical events should 

be equally easy to modify. 

As has perhaps not explicitly been mentioned, the encoder must test 

all possible parses of a clinical event. This may be desirable in that 

problem list entries should be unambiguous. However, much of the 

ambiguity found by the encoder will be due to lack of knowledge about 

improbable clinical events. The most serious problem that will arise is 

that phrases which at one point were encoded properly may no longer 

encode properly because new definitions have been added. 

IV.G — Possible Improvements 

It may seem premature to discuss improvements to a program even 

before its performance has been reported. However, on the basis of the 

design alone one should be able to predict limitations on program 

capabilities, as noted above, and know which of these may easily be 

removed. 

The simpler syntactic forms such as "... is secondary to ..." and 

"... metastatic to ..." could be processed in much the same way negation 

and conjunction are to be processed. First the surrounding clinical 

events or partial clinical events are encoded and then a separate 

page 52 section IV.G 





routine may attempt to combine or relate them. 

A spelling correction algorithm could be implemented. Some spelling 

correction algortihms would be very difficult to implement using the 

present dictionary because it is based on hashed indexing. The most 

interesting possibility would be to develop a method which proposes a 

number of possible corrected spellings and then determines which leads 

to the most likely encoding. Presumably some "corrections" would lead to 

absurd encodings or none at all. A very clever technique would be to 

examine other parts of the medical record, especially past problems, to 

determine the most likely meaning of a misspelling. 

Suffix processing should be reasonably easy to add as a 

prepocessing step. Words could be reduced to their root forms and then 

checked in the dictionary. This might greatly reduce the size of the 

dictionary. The suffix processing algorithm could be written as in 

[PRA69]. 

IV.H — Notable Features 

As was done with the works reviewed, the salient features of the 

approach outlined are listed: 

works with a previously tested coding system 

designed for a general medical clinic it should also be 

applicable to most specialty practices 

the vocabulary is not limited to any pre-existing document; 

words can easily be added 

there is "leverage"; each new dictionary entry may make a 

page 53 section IV.H 





number of new phrases understandable 

it is possible to reject some nonsense input 

page 54 section IV.H 





V — Methodology 

A _ Hardware and Software Environment 

The programming was done in "C", an Algol-like language, 

actually a "BCPL" derivative. Unlike "BCPL" it does recognize a few 

variable types. Like "BCPL” it is not block-stuctured. Only local and 

global scopes are available. 

»C" and all the other software used ran under the UNIX timesharing 

system on a PDP-11/45. The UNIX system and a goodly number of utility 

programs were developed at Bell Laboratories [RIT7M]. The encoding 

program was implemented to run as a normal user job which meant it was 

to run in less than 64K bytes. 

A number of string-handling routines were written as well as some 

list processing routines which operated on strings. Natural language 

processing is usually more effectively programmed in a list or string 

based language. LISP or SNOBOL would be the most appropriate. At the 

time the programming was undertaken, LISP was not available and the only 

SNOBOL was a subset of version 3 and unsupported. In retrospect it mig 

have been more efficient to have written a simple LISP interpreter 

rather than programming a package of many small string and list 

routines. 

V.B -- "Encode": The Encoder’s Main Control Routine 

The top level routine for the encoding program was written as a 

subroutine to allow the encoder to be used in a variety of 

circumstances. For initial debugging "encode" was called by a test 

page 55 section V.B 





routine which accepted a problem list entry from the programmer's 

console. Later on, "encode" was called by a routine that read successive 

problem list entries from a file. In the future it will be called by a 

routine that retrieves problem lists from the CHCP data-base and places 

the encoded results back into the data-base. 

"Encode" takes as its input arguments an entry from a medical 

problem list and the file number of the dictionary file. It tests all 

combinations of the definitions of the words in the problem list entry. 

The logic to run through all the combinations is fully contained within 

the "encode" routine. The logic for most of the rest of the encoding 

process is in subroutines which "encode" invokes in the appropriate 

sequence. 

"Encode" owns the main (global) variables which collectively 

comprise the parse state. At any point in time, examination of the 

values of the parse state variables will show which definitions the 

encoder is considering and what clinical events it has formulated. 

Processing first centers around the Word vector which holds the words of 

the phrase and their dictionary entries. The simple variable Wordnumber 

indicates which specific word is being considered. The Clinical_event 

vector contains one entry for each word. Its entries come to contain the 

clinical events as they are built-up word by word. The Merged_event 

vector contains one entry for each word to indicate whether the 

Clinical_event entry for the word has been merged with the 

Clinical_event entry for the previous word. If a word's Clinical_event 

entry has not been merged then either the word defines a complete 

page 56 section V.B 





clinical event by itself or it is the first of a series of words 

describing a clinical event which has been built-up. Since the 

dictionary entry for a word may include a number of definitions the 

Definition_active vector contains one entry for each word to indicate 

which definition is being considered. 

The actual program is complicated by the fact that "C" does not 

recognize strings. The Word and Clinical_event vectors are declared as 

arrays of characters to simulate a vector of strings. Some further 

confusion results from the fact that "C" starts all array indices at 

zero. When reference is made to the "first" element of a vector the 

"zeroth” element is implied. 

The basic steps of encoding are as follows — 

"Encode" invokes the subroutine "findwords" which arranges the words, 

punctuation, and numbers making up the problem list entry into the Word 

vector. Words and punctuation are normally found in the dictionary and 

the entire dictionary entry is placed into the vector. It is during this 

stage that misspellings are handled. "Findwords" invokes the 

"expand_definition" routine to actually look-up the correct spellings or 

synonyms. 

If any of the words do not appear in the dictionary, "findwords" 

returns an error indication. It places markers in the encoding string so 

that the encoding string, when printed underneath the input phrase, 

shows which words could not be found. 

Assuming "findwords" was sucessful, "encode" begins the actual 

parsing using the first definition of each word. "Local_context_ok" is 

page 57 section V.B 





called to verify that the use of each word's definition does not 

conflict with any context sensitive terms in the definition. 

"Local_context_ok" operates in a somewhat obscure manner because it is 

actually called separately for each word and it does not assume that it 

can examine the words to the right of the one it has been called to 

check. This causes no difficulty in testing back links or the second 

half of a hyphenation definition. However, forward links and the first 

half of a hyphenation definition are tested during the check on the next 

word. An exception is made for the last word in a phrase whose forward 

linked definitions cannot possibly be used in a parsing. 

"Local_context_ok" is programmed not to look to the right so that 

"encode" does not have to commit itself to an entire parsing at once. 

Later-on "encode" will backup and try a different definition for the 

last word. Since "local_context_ok" approved the parsing one step at a 

time it will need only check the new definition for the word that is 

taking on a different meaning. 

After the use of a particular definition has been "okayed", 

"make_clinical_event" copies relevant information from the definition 

into the corresponding entry in the Clinical_event vector. The 

"cl_dimension" routine determines which parts of the definition are 

clinical event coding values which must be copied. Context sensitive 

terms, gramatical flags for negation and conjuction, and "X_IGNORE" 

terms are not meant to be part of a clinical event. The key to a term's 

type is its first two characters. If the second character is an 

underscore then what follows the underscore is a word and not 

page 58 section V.B 





meant to be a clinical event code. The first character indicates the 

type of value for clinical event codes. The "F" in "F4420" implies that 

this is a function value. 

"Try_to_merge_clinical_events" is then invoked to build_up a more 

complete coding of the clinical event if possible. If the last 

Clinical_event entry contained only a system value and the present 

definition for the word currently being scanned specifies just a 

function code then presumably these words are acting together and the 

information can be merged. If the Clinical_event entry built-up for the 

previous word already specifies a function value then presumably 

another, separate, clinical event is being described and merging should 

not take place. The corresponding Merged_event entry is marked true or 

false accordingly. 

After ''local_context_okM, "make_clinical_event", and 

"try_to_merge_last_clinical_events" have been invoked for each of the 

words an encoding has hopefully been obtained. "Encode" now calls 

"reasonable_encoding" to determine if the clinical event(s) generated 

for this parsing is plausible. "Reasonable_encoding" can examine the 

Clinical_event and Merged_event vectors to determine what the encoding 

is. This is the routine which embodies whatever medical knowledge or 

"common sense" "encode" can demonstrate in its work. At present 

"reasonable_encoding" simply checks each individual coded clinical event 

to assure that at a minimum it specifies a function. It also tests 

explicitly for events such as 

head cool. 

page 59 section V.B 





Eventually it should include a matrix of allowed system and function 

combinations. 

The reason that "encode" waits until the very end of a parse to 

test that its work is reasonable is to allow negation and conjunction 

processing to occur after the entire basic parse. Negation and 

conjunction were not actually programmed in the present implementation, 

but they could be effected as described in the general approach. At the 

point "reasonable_encode" is invoked the problem list entry has been 

parsed into simple clinical events or parts of clinical events. The 

negation and conjunction markers appear between these events for a 

routine to process. In the parse of 

back and neck pain 

"back" would appear as a partial clinical event separated by a 

conjunction marker from the clinical event "neck pain". The conjunction 

module would note that "back" defines a typography as does "neck". The 

conjunction must therefore imply that "pain", a function, is to be 

copied to complete the partial event. Invoking "reasonable_encode" prior 

to forming the conjunction would eliminate the parsing on the grounds 

that "back" cannot act by itself as a clinical event. If efficiency 

demanded it, an "unreasonable_event" routine could be programmed to 

check much earlier for events or partial events which are totally out of 

the question. This could be done after "merge_last_clinical_events" is 

invoked and could cause "encode" to move right on to the next 

definition. 

As "encode" works through all the possible parsings it keeps track 

page 60 section V.B 





le that "less is more" to of all the reasonable encodings. It uses the ru 

pick the encoding it will finally return. At any one time it really only 

stores the encoding(s) comprised of the fewest number of separate 

clinical events. When all the parsings are exhausted "encode" returns 

the shortest encoding(s) and indicates an error if none was obtained or 

more than one was obtained. It is an unresolved question as to whether 

or not there is some better way to chose among alternative encodings of 

a phrase. If "encode" were being used to code phrases as they were 

typed-in then perhaps the typist could decide between alternative 

encodings. To this time, each phrase that has resulted in alternative 

encodings has demontrated a bug or shortcoming in "reasonable_event". 

page 61 section V.B 





V -- Methodology (cont) 

C — Auxiliary Routines 

A number of auxiliary routines were programmed in the course of 

developing the encoding program. The most important of these are 

described here. The routines fall into two categories: those to aid in 

debugging the encoder and those for dictionary maintenance. 

"Test_encode" was the most advanced of the routines used to run 

"encode". "Test_encode" was a main program which could be run under UNIX 

given a number of parameters. If no parameters were specified 

"test_encode" accepted phrases directly from the program console and 

passed them to "encode". The encoding returned, along with the error 

code if any, would then be printed. If a file name was given as a 

parameter "test_encode" would read successive problem list entries from 

the file and pass them to "encode". Eoth the problem list entries and 

"encode's" results were then printed. For further flexibility a 

beginning and ending line number could be specified along with the file 

name. If the letter "p" was also specified "test_encode" would pause 

between lines from the file. It would proceed when a carnage return was 

struck on the program console. With these options "encode's" performance 

could be tested against a standard file of phrases while working on a 

cathode-ray (television) terminal. 

The other important debugging routine was "testpt" (test point). 

"Testpt" served the same purpose as electrical test points m circuit 

checking. At any point in "encode" or any of its subroutines, if a 

particular condition should hold or it was simply important that 

page 62 section V.C 





processing had reached that point "testpt" could be invoked. "Testpt" 

took as its first argument the name of the subroutine and the name of 

the particular point within the subroutine separated by a space. Its 

second argument was a boolean expression testing the condition that 

should hold. If either the test point had been named at the beginning of 

"encode's" execution or the condition was found not to hold then 

"testpt" returned the value true. "Testpt" is actually a function. When 

it is very first invoked it would inquire at the program console which, 

if any, test points should always be turned on. When a subroutine 

invoked "testpt" it checked the value returned and if true would print 

any appropriate variables. "Testpt" would print the name of the test 

point before returning to the subroutine so that it was clear where the 

printing was occuring. 

"Testpt's" utility lay in the fact that normally all the test 

points were off and no debugging printout occured. However, if some 

previously valid condition was no longer true, printing would occur 

immediately rather than the program silently continuing with incorrect 

intermediate values. An additional feature was that if any question 

arose as to the source of an incorrect encoding, the encoder could 

simply be run again with appropriate test points turned on to display 

intermediate steps in the parsing. "Testpt" was not just used with 

"encode", but with all routines. Normally, test points were established 

at the entry to a routine and at its exit. At these points the input and 

output conditions could be checked. 

The main dictionary maintenance routine was "update" which could be 

page 63 section V.C 





used to change entries in the dictionary and also to list the total 

contents of the dictionary. "Update" operated by invoking the following 

routines: 

"define" — creates a new dictionary entry or replaces an old 

one 

"delete" — removes a dictionary entry 

"lookup" — finds the dictionary entry for a word; also used 

by "findwords" for encoding 

"scan" ■— retrieves successive entries from the dictionary for 

listing (the order of the entries appears quite random 

because hashed indexing was used) 

"i_dictionary" — initializes a file to serve as a new 

dictionary 

"hash_word" — returns a value in the range [0,1) for any 

non-blank text string to serve as its index value 

As an aside, a "dictionary" was kept of clinical event codes. The 

value of the code, "F4420" for example, took the place of a word in an 

entry and instead of a coded definition the english phrase describing 

the code appeared. This "dictionary" was never used by "encode", but was 

used by "test_encode" and the dictionary listing formatter to print 

understandable english along side the numeric codes. Since the 

dictionary maintenance routines really only expected text strings and 

not any particular content, both the regular word dictionary and the 

"code dictionary" could be maintained by the same "update" program. Only 

the name of the dictionary file had to be supplied. 

page 64 section V.C 





Readable listings of the dictionary and the clinical event codes 

were produced by programs which sorted and then formatted the "scan" 

list produced by "update". The UNIX "pipe" facility was used to take the 

"scan" listing and run it through the UNIX permuted-index utility 

program "PTX". The "pipe" facility then carried the permuted listing to 

the "formatter" routine. The permuted-index utility program is meant for 

producing keyword-in-context listings. When applied to a dictionary 

"scan" listing it results first in an alphabetically sorted list of 

words and then a list of all the words whose definition includes a 

certain code value. The "formatter" program took this listing and 

converted it to a form more appropriate for a dictionary. 

The UNIX "sort" utility and a second formatting program were used 

to process the "scan" listing of the "code dictionary". The result was a 

listing similar to the one shown in section II.B. 

page 65 section V.C 





VI Results 

A — Overall Performance 

Manual verification of "encode" indicated proper coding of >80% of 

the problem list entries from the Community Health Care Plan. For most 

phrases "encode" requried less than one second to perform the encoding. 

Determination of the true number of correct encodings was limited 

by the manual effort required to check them. Approximately 1000 

different phrases where checked. These were the phrases that occured 

most commonly. If more phrases were examined the percentage of verfied 

phrases would be greater. The majority of the errors noted were due to 

incorrect dictionary entries. 

As noted, conjunction processing was not implemented. This adversly 

affects about 0.5$ of the problem list entries. About half the time 

"and" occurs, it occurs in a phrase like 

sore throat and runny nose 

which "encode" correctly interpretes by ignoring "and". 

Negation processing also has not been implemented. This mainly 

affects phrases like 

hypertension; no change. 

Only a minor dimension is affected so that the basic coding is correct. 

The basic clinical event is increased blood pressure. The "no" applies 

only to the function modifier "change". 

page 66 section VI.E 





VI.B — Sample Encodings 

To demonstrate the operation of "encode" three examples are given below. 

The shortest is desribed in step by step detail. The steps described are 

a summary of the information printed when test points are turned on in 

"encode*s" main subroutines. 

VI.B.1 — "Foot pain" is a straight foward phrase for "encode" to 

process. 

a. "Encode" invokes "findwords" to obtain the following from the 

dictionary: 

Word[0]=F00T SC5C0; 

Y_FLAT SC5CE; 

Y_ATHLETES SA768; 

Word[1]=PAIN F320F; 

b. "Local_context_ok" will report favorably on the use of "FOOT's" 

first definition, SC5C0, since no context exits yet for conflict. 

c. "Make_clinical_event" will copy the system code SC5C0 into 

Clinical_event[0]. 

d. "Try_to_merge_last_two_clinical_events" has nothing to do when 

invoked by "encode" since only Clinical_event[0] has been set-up. 

e. Moving foward to "PAIN" "local_context_ok" will again report 

favorably. The definitions for "FOOT" and "PAIN" presently under 

consideration are not context sensitive. 

f. "Make_clinical_event" will copy the function code F320F into 

Clinical_event[1]. 

page 67 section VI.B.1 





"Try_to_merge_last_two_clinical_events" will merge the clinical 

event value set-up by "FOOT" into the clinical event set-up by 

"PAIN" resulting in SC5C0 F320F being stored in 

Clinical_event[1]. It will also indicate that Clinical_event[1] 

now subsumes Clinical_event[0] by marking Merged_event[1] as 

TRUE . 

). "Reasonable_encode", using Merged_event as the index to the most 

inclusive clinical events, invokes "event_reasonable". In this 

case only ClinicaLevent[1] is examined and with favorable 

results. 

L. "Encode" invokes "record_encoding" to save SC5C0 F320F as a 

possible encoding. "Encode" notes that it now has an encoding 

which sums up the entire phrase in one clinical event eliminating 

the need to save any future encodings requiring more than one 

clinical event. 

j. For completeness "encode" proceeds to consider "FOOT's" alternate 

definitions. Both of these will be rejected by 

"local_context_ok." The second and third definitions of "FOOT" 

are only applicable in the contexts "flat foot" and "athletes 

f oot". 

k. "Encode" will return the single encoding SC5C0 F320F and an 

errorcode indicating that no error occured. 

page 68 section VI.B.1 





VI.B.2 — "Cold sore head cold" requires simultaneous recognition of 

idiomatic word usage and multiple clinical events. While this 

phrase never appeared in the CHCP problem lists it best 

demonstrates "encode's" capabilities, 

a. "Findwords" determines the following from the dictonary: 

Word[0]=COLD S4000 F4420; 

Y_HEAD S4000 F4420; 

FA140; 

F_THYR0ID F2220; 

H_S0RE X_IGN0RE; 

Word[1]=S0RE F3230; 

Y_COLD SA238 F4540; 

Word[2]=HEAD SC100; 

H_C0LD X_IGN0RE; 

Word[3]=COLD S4000 F4420; 

Y_HEAD S4000 F4420; 

F_THYR0ID F2220; 

H_SORE X_IGN0RE; 

b. Listed below are the encodings passed to "reasonable_encode". 

This is done rather than review step by step the operation of 

"local_context_ok", "make_clinical_event", and 

"try_to_merge_last_two_clinical_events". The words themselves are 

used rather than the num^eric codes. Brackets are used to 

indicate the effects of merging into clinical events. "COLD" is 

to be taken as "head cold". "COOL" is written when "COLD" is to 

page 69 section VI.B.2 





be understood as in "cold feet". 

c. 

d. 

e. 

VI .B 

a. 

b. 

1) COLD [SORE HEAD] COLD 

2) It II II COOL 

3) It II [HEAD- -COLD] 

M) COOL [SORE HEAD] COLD 

5) 1! II II COOL 

6) ft II [HEAD- -COLD] 

7) [COLD—SORE] HEAD COLD 

8) " " [HEAD COOL] 

9) " " [HEAD—COLD] 

"Encode" dutifully saves #1 - #6 as possible encodings which 

parse the phrase into three clinical events. 

"Reasonable_encode" will reject #7 and #8. 

"Reasonable_encode" will accept #9- "Encode" then notes that this 

encoding parses "cold sore head cold" into only two clinical 

events and therefore it can discard all the previous encodings. 

•3 — "U R I" demonstrates the use of the misspelling definition for 

abbreviations or synonyms. 

Because "U", "R", and "I" are separated by spaces each is 

considered an individual word by "findwords". 

Initially "findwords" retrieves the following from the 

dictionary: 

Word[0]=U MJJPPER; 

Word[1]=R M_RESPIRATORY; 

M_ROUTINE; 

page 70 section VI.B.3 





Word[2]=1 M_INFARCTION; 

M_INFECTION; 

M_INFLAMATION; 

After "expand_definition" has processed the definitions: 

Word[0]=U M_UPPER H_RESPIRATORY X_IGNORE; 

Word[1]=R M_RESPIRATORY S4000; 

M_RESPIRATORY Y_UPPER S4400; 

M_ROUTINE U0000 ; 

Word[2]=I M_INFARCTION F6448; 

M_INFECTION F4420; 

M_INFLAMATION F420F; 

c. The presence of the M_"correct spelling" in the expanded 

definition allows context checks to work as if a word had truly 

been replaced by its correct spelling, synonym, or full spelling. 

d. Another interesting aspect of this encoding is that three 

possible clinical events result: 

#1 UPPER—RESPIRATORY INFARCTION 

#2 UPPER—RESPIRATORY INFECTION 

#3 UPPER—RESPIRATORY INFLAMATION 

None of these is shorter than the others so "reasonable_event" 

must be able to eliminate #1 and #3• 

e. It would be well to consider preprocesing to condense "U_R_I" and 

"U.R.I." to "URI" which would be considered one word. 

page 71 section VI.B.3 





VI — Results (cont) 

C — Difficulties 

A problem arose while developing dictioary entries to code the 

following problem list phrases: 

1 Allergy Shot 7 Allergic Conjunctivitis 

2 Allergic Reaction 8 Allergic Rhinitis 

3 Pennicillin Allergy 9 Allergic Rash 

4 Allergic to Pennicillin 10 Atopic Rhinitis 

5 Allergy 11 Atopic Dermatitis 

6 Allergies 12 Contact Dermatitis 

13 Dermatitis 

The first and second phrases are quite different in meaning from all 

the rest. #3 through #6 imply that "allergy", "allergies", and 

"allergic" can be used to describe a clinical event which may 

optionally have an etiology specified. #7 through #11 show "allergic" 

and "atopic" acting to modify a word which by itself specifies a 

clinical event. 

Initially "allergic rhinitis" was coded with a different function 

code than "rhinitis". This meant that for the encoder "allergic 

rhinitis" was idiomatic and a context sensitive definition required 

for both words involved. If this tack is taken for all phrases like #7 

through #12 a very large number of context sensitive definitions must 

be stored. 

The problem can be resolved if the following situation can be 

represented: 

page 72 section VI.C 





System: Nasal Passages 

Function: Inflaraation 

Etiology: see clinical event —>System: Immunological 

Function: Increased 

Etiology: Ragweed 

which corresponds to the statement "patient suffers from rhinitis due 

to ragweed allergy. A similar representation would be used for 

"diabetic neuritis" which also appears among the CHCP problem lists. 

Phrase #12 above, "contact dermatitis" is still problematic. It 

may mean "dermatitis due to contact with an allergin" in which case it 

is similar to #11, "atopic dermatitis". Or, it may mean "mild chemical 

burn" in which case it is best dealt with as an idiomatic expression. 

A less serious problem was that of implicit values for 

dimensions. "Rash" very definitely indicates a function value. 

However, if no value is specifically indicated for the system 

dimension, skin should be assumed. A tempting solution would be to 

implement a new type of context sensitive definition, one that could 

be used whenever a dimension had not been specified. The tenitive 

solution was to let the system dimension go unspecified. The best 

solution is probably to add another step just before an encoding is 

returned. At this new step default system and typography, perhaps even 

etiology and other dimensions, could be filled-in. This relates to the 

next problem to be discussed, coding for effective case retrieval. 

"Diabetes" is encoded as: 

System: Islets of Langerhans 

page 73 section VI.C 





Function: Decreased 

which is technically correct. The problem which arises is, when should 

a record be retrieved if one of the listed medical problems is 

"diabetes". With the present encoding it would be retrieved if 

"diabetes" were requested or, the subsuming category, endocrine 

disorders. But within a health maintenance organization it should be 

possible to retrieve all the diabetic cases when scheduling 

opthamologic exams. The question becomes one of how clever can the 

data-base be. Certainly it is resonable to make sure that all cases of 

"rash" are retrieved when dermatologic cases are reviewed. And this 

could easily be facilitated by added the step described above which 

would fill-in skin as the default system. For "diabetes" the situation 

is more complex. Perhaps entire events should be created by default to 

flag the patient's record for optharaology, podiatry, and the renal 

unit if these common complications are not explicitly mentioned. 

Parenthetically, this last problem raises once again questions of 

knowledge and language understanding. A common expression on a medical 

teaching ward is "as soon as you hear 'diabetes' you should immdiately 

think 'retinopathy, nephropathy, and neuropathy'." Is this also true 

for an effective encoding program? Is this one of those "frames" of 

knowledge described by Minsky [MIN75]? 

page 74 section VI.C 





VII Conclusions 

It is possible to automatically encode problem lists from a general 

medical practice. This work did achieve its objective of programming a 

functioning encoder for the Community Health Care Plan problem lists. 

The estimate of the encoder's accuracy is very conservitively 80$. It 

will probably demostrate an accuracy well above 90$ with further manual 

verification and minor corrections to the dictionary. 

The encoding program presently runs on a time-sharing minicomputer. 

Processing problem list entries in under one second, it is very 

inexpensive and could be used interactively for data entry. 

The coded clinical event model functions well as a structure for 

organizing the encoding process. Serving as the encoder's semantic model 

it allows medical information to be easily manipulated and tested. This 

is critical if the encoding program is to be "intelligent" in its 

operation. It must have some store of medical knowledge, however 

mundane, to be able to eliminate uncommon or absurd interpretations of 

its input. 

Extension of this work is possible to provide an even more 

comprehensive program. 

page 75 section VII 





VIII — Bibliography 

ALB67 Alberga, C.N.: String Similarity and Misspellings. Communications 

of the ACM 10(1967)302-313 

BOR68 Borko, H.: Automated Language Processing. (New York: John Wiley 

and Sons 1968) 

BRU71 Brunjes, S.D.: An Anamnestic Matrix Towards a Medical Language. 

Computers and Biomedical Research 4(1971)571—5pL 

CAP65 College of Ammerican Pathologists: Systematized Nomenclature of 

Pathology. (Chicago, Illinois 1965) 

CHC74 Conneticut Health Care Center Plan, Inc.: Clinical Visit Form 

Version 5. (New Haven, Conneticut 1974) 

CH057 Chomsky, N.: Syntactic Structures. (The Hague: Mouton,8th printing 

1969) 

CPH73 Commission on Professional and Hospital Activities: Hospital 

Adaptation of ICDA. (Ann Arbor, Michigan 1973) 

DAM64 Damerau, F.J.: A Technique for Computer Detection and Correction 

of Spelling Errors. Communications of the ACM 7(1964)171 

DAM76 Damerau, F.J.: Automated Language Processing. Annual Review of 

Information Science and Technology (Vol. 11). (Washington, D.C.: 

American Society for Information Science 1976) 

DUN77 Dunham, G.S., Pacak, M.G., Pratt, A.W.: Automatic Indexing of 

Pathology Data. (Bethesda, Maryland: NIH Division of Computer 

Research and Technology) to appear in the Journal of the American 

Society for Information Science 

GRE63 Green, B.F., Wolf, A.K., Chomsky, C., Laughery, K.: Baseball: An 

page 76 section VIII 



ki 



Automatic Question Answerer . Computers and Thought, 

Feigenbaum, E.H. and Feldman, J. editors. (New York: McGraw-Hill 

1963) 

GRE72 Greenwood, R.M.: Kodiac: A System for Disease Coding by a 

Medium-sized Computer. Bio-Medical Computing 3(1972)128-134 

GRI73 Grishman, R., Sager, N., Raze, C., Bookchin, B.: The Linguistic 

String Parser. AFIPS Conference Proceedings Vol. 42, 1973 

National Computer Conference. (Montvale, New Jersey: AFIPS Press) 

HIR76 Hirschman, L., Grishman, R., Sager, N.: From Text to Structured 

Information — Automatic Processing of Medical Reports. AFIPS 

Conference Proceedings Vol. 45, 1976 National Computer 

Conference. (Montvale, New Jersey: AFIPS Press) 

HOW68 Howell, R.W., Loy, R.M.: Disease Coding by Computer: The "Fruit 

Machine" Method. British Journal of Preventive Social Medicine 

22(1968)178-181 

JOR77 Jordan, S.R., Brown, A.F.R., Hutton, F.C.: Computerized Russian 

Translation at ORNL. Journal of the American Society for 

Information Science 28(1977)26-33 

KIM73 Kimball, J.P.: The Formal Theory of Grammar. (Englewood Cliffs, 

New Jersy: Prentice-Hall 1973) 

LAM66 Lampson, B.G., Glinski, B.C., Hawthorne, G.S., Soutter, J.C., 

Russell, W.S.: Storage and Retrieval of Uncoded Tissue Pathology 

Diagnoses in the Original English Free Text Form. User's Manual I 

-- A Natural Language Information Retrieval System. 

(IBM#320-2606: 1966) 

page 77 section VIII 





KLE63 Klein, S., Simmons, R.F.: A Computational Approach to Gramatical 

Coding of English Words. Journal of the ACM 10(1963)334 

LIN63 Lindsay, R.K.: Inferential Memory as the Basis of Machines Which 

Understand Natural Language. Computers and Thought, 

Feigenbaum, E.H. and Feldman, J. editors. 

LYN75 Lynch, J.T.: Prevalence of Medical Problems in an HMO Population: 

A Computerized Medical Record Approach. MPH Thesis, Yale 

University (1975) 

MCC68 McCawley, J.D.: The Role of Semantics in Grammar. Universals in 

Linguistic Theory, Bach, E. and Harms, R.T. editors. (Holt, 

Rinehart, and Winston, Inc. 1968) 

MIN75 Minsky, M.: A Framework for Representing Knowlege. The Psychology 

of Computer Vision, Winston, P.H. editor. (New York: McGraw-Hill 

1975) 

MOR70 Morgan, H.L.: Spelling Correction in Systems Programs. 

Communications of the ACM 13(1970)90 

PRA69 Pratt, A.W., Pacak, M.G.: Identification and Transformation of 

Terminal Morphemes in Medical English. Methods of Information in 

Medicine 8(1968)84-90 

PRA73 Pratt, A.W.: Medicine, Computers, and Linguistics. Advances in 

Biomedical Engineering (Vol. 3)- (New York: Academic Press 1973) 

RAP76 Raphael, B.: The Thinking Computer: Mind Inside Matter. 

(San Fransico, California: W.H. Freeman and Co. 1976) 

RIT74 Ritchie, D.M., Thompson, K.: The UNIX Timesharing System. 

Communications of the ACM 17(1974)365-375 

page 78 section VIII 





SAG72 Sager, N.: Syntactic Formatting of Science Information. AFIPS 

Conference Proceedings Vol. *11, 1972 Fall Joint Computer 

Conference. (Montvale, New Jersy: AFIPS Press) 

SAG75 Sager, N, Grishman, R.: The Restriction Language for Computer 

Grammers of Natural Language. Communications of the ACM 

18(1975)390-400 

SAM69 Sammet, J.E.: Programming Languages: History and Fundamentals. 

(Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1969) 

SCH73 Schank, R.C: Identification of Conceptualizations Underlying 

Natural Language. Computer Models of Thought and Language 

Schank, R.C. and Colby, K.M. editors (San Fransico, California: 

W.H. Freeman and Co. 1976) 

ST066 Stone, P.J., Dunphy, D.C., Smith, M.S., Ogilvie, D.M.: The 

General Inquirer: A Computer Approach to Content Analysis. 

(Cambridge, Massachusetts: The MIT Press 1966) 

TH075 Thompson, F.B., Thompson, B.H.: Practical Natural Language 

Processing: The REL System as Prototype. Advances in Computers 

(Vol. 13), Rubinoff, M. and Yovits, M.C. editors. (New York: 

Academic Press 1975) 

WEE69 Weed, L.L.: Medical Records, Medical Education, and Patient Care 

(Cleveland, Ohio: The Press of Case Western Reserve 1969) 

WHI77 White, W., Barkman, B., Bernier-Bonneville, L., Cousinequ, L.: A 

Method for Automatic Coding of Medical Information in Patient 

Records. Methods of Information in Medicine 16(1977)1-10 

WIN72 Winograd, T.: Understanding Natural Language. (New York: 

page 79 section VIII 





Academic Press 1972) 

WH077 World Health Organization: Manual of the International 

Statistical Classification of Diseases, Injuries, and Causes of 

Death, (Ninth Revision). (Geneva 1977) 

W0070 Wood, W.A.: Transition Network Grammar for Natural Language 

Analysis. Communications of the ACM 13(1970)591-606 

YNG72 Yngve, V.H.: COMIT II. (Cambridge, Massachusetts: The MIT Press 

1972) 

page 80 section VIII 





* 









YALE MEDICAL LIBRARY 

Manuscript Theses 

Unpublished theses submitted for the Master's and Doctor's degrees and 
deposited in the Yale Medical Library are to be used only with due regard to the 
rights of the authors. Bibliographical references may be noted, but passages 
must not be copied without permission of the authors, and without proper credit 
being given in subsequent written or published work. 

This thesis by has been 
used by the following persons, whose signatures attest their acceptance of the 
above restrictions. 

NAME AND ADDRESS DATE 




	Yale University
	EliScholar – A Digital Platform for Scholarly Publishing at Yale
	1978

	Automatic coding of medical problem lists
	Seth M. Powsner
	Recommended Citation


	Automatic coding of medical problem lists

