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Abstract: 

BREAKPOINT CHARACTERIZATION AND ASSESSMENT FOR POSITION 

EFFECTS IN TWO PATIENTS WITH TOURETTE SYNDROME AND 

REARRANGEMENTS OF CHROMOSOME 18Q22 

Adam Cuker, Matthew W. State, John Greally, and David C. Ward. Department of 

Genetics, Yale University School of Medicine, New Haven, CT. 

The objective of this work has been to identify a gene or genes involved in the 

pathogenesis of Tourette syndrome (TS), a neurodevelopmental disorder characterized by 

chronic motor and vocal tics. Multiple lines of evidence suggest that TS and a spectrum 

of related disorders including chronic tics and obsessive compulsive disorder (OCD) are 

genetically mediated, but research has yet to uncover a gene involved in disease etiology. 

The success of this research, consisting mainly of population genetic approaches, has 

likely been limited by a combination of genetic heterogeneity, uncertainty regarding 

genetic model parameters, and diagnostic ambiguity. 

Molecular characterization of chromosomal rearrangements in rare affected 

patients with cytogenetic abnormalities represents an alternative strategy for disease gene 

identification. Two independently ascertained patients with TS spectrum phenotypes and 

rearrangements of chromosome 18q22 were identified and their cytogenetic 

abnormalities finely mapped. One of the rearrangements mapped to within 

approximately 800 kb of a previously reported 18q22 breakpoint in a TS spectrum 

pedigree. Assessment of the genomic interval defined by these breakpoints identified 

two nearby transcripts, neither of which were physically disrupted. Mutation screening 
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of these transcripts in 96 cytogentically normal TS spectrum patients did not reveal any 

nonsense or missense mutations. 

Fluorescence in situ hybridization (FISH) replication timing studies were used to 

assess the epigenetic characteristics of the interval. These analyses showed significant 

replication asynchrony in one of the patients compared to controls. Replication was 

found to be relatively delayed across at least a 500 kb interval on the patient’s abnormal 

chromosome compared to its normal homologue. These findings reflect broad epigenetic 

dysregulation in the region, and suggest that decreased or silenced expression of one or 

more genes in the interval may be contributing to the patient’s phenotype. 
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Introduction: 

Clinical features ofTS 

Tourette syndrome (TS) is a potentially debilitating neuropsychiatric disorder 

characterized by the presence of chronic motor and vocal tics. The disease usually has its 

onset in early childhood and follows a waxing and waning course. Motor tics are 

stereotyped fragments of normal motor movements. They may be simple, e.g. an eye 

blink or facial grimace, or more complex such as bending down and touching the floor. 

In severe cases, complex motor tics may take the form of copropraxia (obscene 

gesturing), echopraxia (mimicking another’s movements), or self-injurious behaviors. 

Similarly, vocal tics may be classified as simple (e.g. throat clearing) or complex. In 

severe cases, complex vocal tics may manifest as coprolalia, echolalia, or palilalia 

(repetition of parts of words) (1,2). 

TS has a genetic basis 

Evidence overwhelmingly suggests a genetic basis for TS (3). First-degree 

relatives of identified probands have roughly a 100-fold greater risk of TS than 

individuals in the general population (4, 5). Furthermore, twin studies have found 

concordance rates for TS to be greater than 50% for monozygotic twins and less than 

10% for dizygotic twins (6, 7). When study methodology has involved direct patient 

examination and included the diagnosis of chronic tics as well as TS, monozygotic 

concordance has been determined to be as high as 100% (8). 





2 

Nevertheless, two decades of linkage analyses have not succeeded in identifying 

specific genes involved in disease pathogenesis (9). The most promising study to date 

from traditional linkage analysis demonstrated a LOD (logarithm of the odds) score of 

3.24 on chromosome 1 lq23 (10). This finding awaits independent replication and 

identification of a disease-related gene. 

Multiple factors including genetic heterogeneity, uncertainties regarding genetic 

model parameters, and diagnostic ambiguity have all likely hindered parametric linkage 

analyses of TS (11). For example, a particularly high degree of bilineality has been 

found in TS pedigrees (12, 13). This phenomenon involves mating between two affected 

but unrelated individuals. Pedigrees are sought in linkage studies in order to provide a 

relatively homogeneous study population. However, bilineality tends to produce families 

in which affected members have similar but genetically heterogeneous phenotypes. 

Accurate assumptions regarding genetic parameters are also critical to the success 

of traditional linkage analyses. Most TS linkage studies have assumed an autosomal 

dominant mode of transmission with partial penetrance (14, 15), while more recent 

studies have challenged this assumption. Walkup and colleagues found that TS was most 

likely the result of a gene of major effect conferring more than half the overall risk for the 

disorder, with the remainder accounted for by genetic background and environmental 

factors (16). A recent segregation analysis of 108 extended families was unable to 

identify a Mendelian pattern of inheritance (11). 

In addition, there is significant uncertainty regarding the population prevalence of 

TS. Estimates vary widely from a low of 5:1,000,000 to upwards of 1:100 among school 

age males (17). The figure most often cited places the prevalence at 5-10:10,000 (18). 
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Whether a TS gene mutation is assumed to be rare or relatively common has a significant 

impact on the outcome of linkage analysis. 

Linkage studies are also very sensitive to determinations about what constitutes 

an affected individual. With regard to TS, this is a matter of considerable controversy. 

For instance, there is consensus that a significant degree of comorbidity exists between 

TS, Attention Deficit Hyperactivity Disorder (ADHD), and depression. However, there 

is no consensus on whether these disorders represent alternative patterns of expression 

due to a common genetic abnormality, as some investigators have suggested (19, 20). In 

addition, as discussed below, both obsessive compulsive disorder (OCD) and chronic tics 

in some but not all cases appear to constitute an alternative TS phenotype (21). 

Currently, this diagnostic ambiguity does not allow for differentiation between pedigree 

members with these findings who should and should not be considered affected in 

linkage studies. 

As recognition of the obstacles facing traditional linkage studies has increased, 

non-parametric approaches to the study of TS have been undertaken. A sib-pair analysis 

by the Tourette Syndrome Association International Consortium for Genetics 

demonstrated two regions of the genome, one on chromosome 4q and another on 8p, that 

achieved LOD scores of greater than 2 (22). A recent association study of the Afrikaner 

population showed some evidence of association for a number of markers, though none 

corresponded to those identified in the Consortium study (23). 
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Evidence for a genetic relationship between TS, chronic tics, and OCD 

While there is significant diagnostic uncertainty surrounding TS, there is general 

agreement that chronic tics and OCD, in some families, represent an alternative 

phenotypic expression of a common TS genotype. The rate of chronic tics and OCD in 

patients with TS is quite high. As many as 30 to 80 percent of TS probands meet 

diagnostic criteria for OCD, depending on how subjects are ascertained. These rates are 

considerably higher than the 2 to 3 percent prevalence of OCD in the general population 

(14). Moreover, there is a significantly increased risk for chronic tics and OCD in family 

members of TS patients. Probands presenting with TS alone have relatives with 

significantly elevated rates of chronic tics and/or OCD compared with matched controls 

(24, 16). 

Rationale for the mapping of cytogenetic rearrangements 

An alternative strategy for disease gene identification that is considerably less 

dependent on assumptions regarding genetic model parameters than traditional linkage 

analysis is the fine mapping of rare cytogenetic abnormalities in patients with TS and 

related phenotypes. This strategy has been successfully employed in mapping genes 

underlying a variety of single-gene disorders including mental retardation syndromes, 

neurological disorders, cardiovascular disease, and cancer syndromes (25). More 

recently, this approach has been used successfully in the investigation of neuropsychiatric 

and developmental disorders. In 1997, Kishino et al. identified a causative gene for 
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Angelman syndrome, in part through the identification of a patient with an inversion of 

chromosome 15 (26). 

This strategy has also been applied to the study of TS in the hopes of identifying a 

gene or genes of major effect disrupted by a chromosomal rearrangement. A review of 

all published cases of cytogenetic abnormalities identified in TS patients reveals that 

three regions of the genome, on chromosomes 18q, 7q, and 8q, have been reported to be 

rearranged in more than one unrelated individual (27-30). Nonetheless, only one report 

to date has identified a structurally disrupted transcript (30), and its relevance to TS has 

yet to be established. 

An important note regarding the fine mapping of cytogenetic abnormalities in TS 

patients is that it is unlikely to elucidate a common pathway in disease pathogenesis. 

Nevertheless, identification of even rare causal genetic abnormalities that are present in 

only a small subset of patients can be invaluable in elucidating physiologic pathways and 

genes that more commonly contribute to trait development. 

18q abnormalities in two patients identified at Yale 

Two independently ascertained patients with TS-spectrum phenotypes were 

identified in the Yale TS/OCD clinic, both of whom were found to have chromosomal 

abnormalities involving cytogenetic band 18q22. Case 1 involved a young man with 

OCD, chronic tics, and a paracentric inversion inv(18)(q21;q22). Apart from chronic 

motor tics and obsessive-compulsive symptoms including intrusive thoughts and an 

intense preoccupation with exactness, the patient was well developed, in good health, and 

had an above average IQ. The patient had been adopted from a country outside the 
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United States in infancy and his biological family was unknown. A family history was 

therefore not obtainable. 

Case 2 involved a 14-year-old girl with a t(2;18)(p25;q22) translocation and 

severe OCD. She was otherwise healthy and exhibited normal development. The 

translocation was also found in the patient’s father, who carried no psychiatric diagnosis 

and refused to undergo additional psychiatric evaluation. No other immediate family 

members, which included the patient’s mother and a brother, carried the translocation or 

had any history of TS, OCD, or chronic tics. 

Evidence for a gene or genes of etiologic importance on chromosome 18q 

These patients’ 18q22 breakpoints were of considerable interest, not only because 

of their proximity to each other, but also because of their proximity, as determined by 

conventional cytogenetic analysis, to a previously reported 18q22 breakpoint in a TS 

spectrum pedigree. In 1986, a TS patient with a t(7;18) translocation was reported (27). 

Analysis of first-degree relatives demonstrated that all of the proband’s 4 siblings carried 

the translocation and that each showed evidence of tics and/or obsessive compulsive 

symptoms. In addition, the pro band’s father and two paternal aunts carried the 

translocation, though only one of the aunts was determined to be affected based on strict 

diagnostic criteria. Two cytogenetically normal paternal uncles were not affected. By 

conventional cytogenetic analysis, the chromosome 18 breakpoint in this pedigree was 

assigned to band 18q22.1. A decade later, this breakpoint was narrowed to a single YAC 

clone by somatic-cell hybrid and fluorescence in situ hybridization (FISH) analysis (28). 
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In addition to these three cases of 18q22 rearrangements, approximately 100 cases 

of 18q- syndrome have been reported in the literature. This rare disorder involves 

multiple congenital anomalies and, frequently, mental retardation, in association with 

large deletions of chromosome 18q distal to 18q21.1 (31, 32). Although tics are not a 

cardinal manifestation of the 18q- syndrome, case series have demonstrated a high rate of 

psychiatric symptomatology including aggression, impulsiveness, and attention 

difficulties (33). One patient with 18q- syndrome has been reported to have OCD (34). 

There have also been reports of movement disorders associated with the syndrome (35, 

36). At present, it is unclear which gene or genes underlie the neuropsychiatric 

manifestations of the 18q- syndrome, though the Myelin Basic Protein gene on 18q23 has 

been suggested as a candidate. What is clear is that haplo-insufficiency of the distal 18q 

region is related to central nervous system disease, and that phenotypic expression of this 

disease is markedly heterogeneous (37). 

Cytogenetic abnormalities, chromatin characteristics, and gene expression 

There are several mechanisms by which a chromosomal rearrangement can 

disrupt a gene. The direct physical disruption of a gene’s coding sequence is the most 

widely recognized of these. However, cytogenetic abnormalities may also have effects 

on genes distant from the site of rearrangement. Several cases have been described in 

which patients have clearly causative breakpoints as far as hundreds of kilo bases away 

from the gene implicated in the etiology of their disease (38). There are several well- 

described mechanisms by which a chromosomal rearrangement may disrupt the function 

of distant genes. One possibility is that a rearrangement may disrupt a control element 
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lying hundreds to thousands of base pairs outside the coding sequence of a gene. A 

second possibility is that a rearrangement may lead to changes in the chromatin 

characteristics of a given genetic interval, thereby exerting position effects on genes 

within the interval and altering their expression. 

The relationship between chromatin conformation and gene expression has been 

studied extensively in humans. Chromosomes are organized into structurally and 

functionally distinct domains known as chromatin domains. Transcriptionally active 

chromatin domains have the structural characteristics of euchromatin, i.e. they are 

relatively hypomethylated and hyperacetylated and exist in a loose uncondensed form. 

Conversely, non-expressing domains are characteristically heterochromatic, existing in a 

condensed form with a relatively high degree of methylation and low degree of 

acetylation. 

A tight relationship has also been observed between the replication timing of a 

locus and its transcriptional activity (39). Expressed relatively euchromatic loci replicate 

early in S-phase whereas silent heterochromatic loci tend to replicate late. For example, 

housekeeping genes, which are active in all cells, replicate early. Tissue-specific genes, 

in contrast, tend to replicate early in those cells in which they are expressed and late in 

tissues in which they are transcriptionally silent (40). 

The replication timing of loci characterized by mono-allelic expression has also 

been investigated. Studies carried out on imprinted loci have demonstrated replication 

asynchrony with the expressed allele replicating early and its silent homologue 

replicating late (41). Similarly, X-linked loci subject to X-chromosome inactivation have 
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been shown to replicate asynchronously, with the expressed allele replicating early in S- 

phase and its inactivated homologue replicating late (42). 

While genomic imprinting and X-inactivation are normal epigenetic regulatory 

processes that demonstrate replication asynchrony, there are also examples in the 

literature describing chromosomal rearrangements that lead to significant changes in 

chromatin conformation, with a concomitant effect on gene expression and replication 

timing. The best characterized of these involve X;autosome translocations, in which the 

normal silencing mechanism of the X chromosome spreads to contiguous autosomal 

regions, transforming these regions from early replicating euchromatic DNA to late 

replicating heterochromatic DNA (43). 

Several reliable assays exist by which to study replication timing as a marker for 

chromatin conformation and gene expression. The simplest and most widely used of 

these methods involves FISH hybridization of interphase nuclei. This technique allows 

for ready differentiation between replicated and unreplicated loci. Replicated loci are 

demonstrated by two closely approximated fluorescent signals (i.e., a doublet). Loci that 

have yet to undergo replication are represented by only one fluorescent signal (i.e., a 

singlet). The vast majority of homologous loci in the genome replicate synchronously, as 

evidenced by a large preponderance of singlet/singlet or doublet/doublet signals. 

However, those loci at which gene expression has been silenced on one allele replicate in 

an asynchronous fashion, which is manifested by an increased proportion of 

singlet/doublet signals. FISH analysis of interphase nuclei may thus be used to assay for 

replication asynchrony at a given locus, the presence of which suggests that one allele is 

expressing while its homologue is not. 
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While FISH hybridization of interphase nuclei is a simple and reliable assay for 

replication asynchrony, caution must be exercised in interpreting its results. Although it 

has been shown repeatedly that mono-allelic expression of a locus corresponds to 

replication asynchrony, the reverse does not always seem to be the case. For instance, in 

X;autosome translocations where the replication timing of the translocated autosome has 

clearly been affected, the expression of some but not all genes in the region has been 

found to be altered (43). A second caution is that chromosomal abnormalities as well as 

certain other diseases may alter replication timing not only in contiguous regions of a 

chromosome, but widely across the genome. Several studies have suggested that trisomy 

of a single chromosome may lead to genome-wide dysregulation of replication timing, 

and malignancy has likewise been shown to affect replication timing broadly (44-46). 

Despite these caveats and limitations, FISH analysis of interphase nuclei is a 

confirmed strategy for identifying alterations in chromatin characteristics and gene 

expression. It allows for efficient evaluation of large genomic intervals prior to the 

identification of all transcripts in the region of interest. Furthermore, through the use of 

overlapping probes, it allows for determination of the extent and boundaries of 

replication asynchrony around a chromosomal breakpoint, thereby delineating a region 

around the breakpoint in which a disease gene or genes is most likely to reside. 





11 

Statement of purpose and hypothesis: 

The overall objective of this work is to identify a gene or genes involved in the 

pathogenesis of TS and a spectrum of related phenotypes, including chronic tics and 

OCD, through the molecular characterization of rare cytogenetic abnormalities in patients 

with these phenotypes. This approach is based on the hypothesis that all of the identified 

abnormalities of chromosome 18q22 have resulted in structural or functional disruption 

of a common gene or genes and that this disruption, in turn, has produced similar 

neuropsychiatric phenotypes. 
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Methods: 

The research described in this thesis is part of a larger ongoing project that began 

prior to my arrival in the laboratory and represents the collaborative efforts of several 

laboratory members. Elements of this project performed by others are noted as such in 

the text, and are included in order to place my work in a coherent and intelligible context. 

Patients 

Case 1. The patient was a 12 year-old boy of South Korean descent who was 

adopted by an American couple at the age of 3 months. He presented to the TS/OCD 

clinic at Yale for consultation after approximately 2 years of psychiatric treatment for 

obsessive compulsive symptoms, tics, depression, and anorexia. No data were available 

regarding prenatal or family history. The patient had a history of 2 febrile seizures as a 

toddler, each lasting 20-40 seconds and accompanied by fevers of 105-106°F. An EEG 

done several years later was unremarkable. 

The patient had a normal developmental history. He was not noted to be 

dysmorphic on physical examination and demonstrated an above average full scale IQ 

(91st percentile). Chromosomal testing revealed an inversion of chromosome 

inv(18)(q21;q22). Fragile X testing was negative. Routine laboratories including CBC, 

electrolytes, and thyroid function studies done at the time of his initial evaluation were 

unremarkable. 

During his clinical evaluation at Yale, the patient was administered a Yale Global 

Tic Severity Scale (YGTSS), a clinician-rated semi-structured interview developed by 
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Leckman and colleagues for the purpose of evaluating the severity of tic symptoms (47). 

In addition, a self-report version of the YGTSS was completed by the patient’s parents 

prior to his first visit. 

In response to the YGTSS, the patient and his adoptive parents agreed that he 

developed eye-blinking at age 6, shoulder jerking at age 7, and teeth grinding and 

unwanted mouth movements beginning at age 8. Though the tics were described as mild 

and not leading to significant social morbidity, they were noted to be present on a daily 

basis over several years. The patient denied premonitory urges, but did describe a sense 

of relief after having tics. He also reported some feelings of physical tension in his joints 

prior to having tics, and endorsed “just right” phenomena. There was no history of vocal 

tics. The patient’s parents noted a worst ever severity score of 6 out of 12, describing the 

motor tics as extremely forceful but relatively infrequent. 

The patient’s obsessive compulsive symptoms were evaluated using the Y-BOCS 

(Yale-Brown Obsessive Compulsive Scale). This standard diagnostic instrument 

includes a symptom checklist of commonly endorsed obsessions and compulsions, as 

well as a severity rating scale that assesses both current and worst-ever symptoms. 

On the symptom checklist, the patient noted a fear of separation from a close 

family member, a fear of doing something embarrassing, hoarding and saving 

compulsions, an excessive preoccupation with right and wrong, a compelling need to 

know and to “ask and tell,” fears of not saying the right thing, fears of losing things, 

excessive concern about his appearance, intrusive images, repeated checking for 

mistakes, mental rituals, and hair pulling. 





14 

The patient described his current obsessions as occupying more than 8 hours of 

his day. He noted that they were “extremely incapacitating,” causing him “severe 

distress,” and felt that he had little control over his obsessive thinking. With regard to his 

compulsions, he felt that they occupied between 3 and 8 hours of his day and were 

severely incapacitating. His total Y-BOCS score for current obsessions and compulsions 

was 30 out of a maximum of 40 points. At their worst, the obsessions were noted to 

occupy the patient’s thinking for more than 8 hours a day and to cause extreme 

interference and distress. The patient did not feel that he had any control over this 

thinking. With respect to worst ever compulsions: these were performed for more than 8 

hours a day, led to severe interference with daily functioning, and resulted in severe 

anxiety if the patient were prevented from carrying them out. His worst ever severity 

score was 34 out of a possible 40. 

Based on the clinical presentation and scores on standardized instruments, the 

patient met criteria for moderately severe OCD and chronic motor tics. 

Case 2. The patient was a 14 year-old girl evaluated for obsessive compulsive 

symptoms after a brief psychiatric hospitalization for a depressive episode. The patient's 

complaints were assessed in part using the clinician-administered CY-BOCS (Yale- 

Brown Obsessive Compulsive Scale, Child Version) that, like the adult version, consists 

of a symptom checklist as well as severity ratings for obsessions and compulsions. On 

the symptom checklist, the patient endorsed a pervasive preoccupation with and 

scrupulosity regarding schoolwork; intrusive thoughts unrelated to school that interrupted 

her; intrusive sounds, words or music; and a need for symmetry and exactness. She noted 
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repeatedly checking schoolwork for mistakes, rereading, erasing and rewriting, lining up 

objects or arranging them in a specific way, and hording school-related items. 

The patient described her current obsessions as “extreme,” occupying more than 8 

hours of the day. She noted that they interfered “severely” with her social, academic, and 

family functioning, and that they caused “severe distress.” She felt that she had no 

control over her obsessive thinking and that she “completely and willingly” yielded to all 

her obsessions. With regard to her compulsions, she felt that they too occupied more 

than 8 hours per day, caused severe to extreme interference with daily activities, and led 

to severe distress. As with her obsessions, the patient noted that she completely and 

willingly yielded to all of her compulsions and that she had little control over them. Her 

total Y-BOCS score for current obsessions and compulsions was 35 out of a maximum of 

40 points. Based on her clinical history using the standardized instruments, the patient 

met diagnostic criteria for moderately severe OCD. 

The patient had no evidence of tics by history or examination. She had suffered a 

single major depressive episode that required psychiatric hospitalization, and was 

diagnosed at discharge with major depression, OCD, and generalized anxiety disorder. 

There was no evidence of or history for psychotic thinking. The patient’s medical history 

was remarkable for asthma and Lyme disease. Her developmental history was 

unremarkable and there was no evidence of dysmorphology on physical examination. 

Chromosomal testing demonstrated a translocation of chromosomes t(2;18)(p25q22). 

The patient’s father was also noted to posses the translocation but did not carry a 

psychiatric diagnosis and refused psychiatric evaluation. No other family members had a 

history of OCD or tics. 
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Molecular mapping of chromosome 18q breakpoints 

The chromosome 18 breakpoints in both patients were finely mapped using FISH 

as detailed below. Mapping of the telomeric inversion breakpoint in case 1 was 

completed prior to my arrival in the laboratory and is described elsewhere (48). I mapped 

the centromeric inversion breakpoint in case 1 as well as the translocation breakpoint in 

case 2 using the techniques described below. 

Preparation of YAC DNA. 386 well plates containing CEPH B YACs were 

thawed at room temperature and 1 pi of YAC culture was taken from the appropriate well 

and placed in 50 ml of selective media in a culture flask. Cultures were grown at 30°C 

for 4-5 days with shaking (225 rpm). Once the cultures were opaque, they were 

transferred to 50 ml conical Falcon tubes and centrifuged at 6,000 x g for 10 minutes. 

After decanting, the pellet was resuspended in 1 ml of SCEM buffer (75 pi 2- 

mercaptoethanol and 925 pi of SCE buffer consisting of 0.9M sorbitol, 0.1M sodium 

citrate, 0.06M EDTA pH 8.0). The solution was transferred to a 1.5 ml Eppendorf tube, 

covered with paraffin, and rocked at 37°C for 2 hours. The tube was then centrifuged for 

5 minutes at 10,000 x g in a cold room and the supernatant gently poured off. 333 pi of 

50mM Tris/20mM EDTA was added and the pellet was resuspended. 33 pi of 10% SLS 

was added and mixed well by inversion. The Eppendorf tube was again sealed with 

paraffin and placed in a 60°C water bath for 20 minutes. 133 pi of 5M KOAc (pH 4.5) 

was added and the tubes were incubated on ice for 60 minutes. The tubes were 

centrifuged at 10,000 x g at room temperature for 10 minutes. The supernatant 

containing DNA was then poured into a fresh Eppendorf tube and 1 ml of 100% ethanol 

was added. The precipitate was centrifuged at 10,000 x g at 4°C. After decanting the 
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supernatant, the pellet was washed in 1 ml of 70% ethanol and then resuspended in 50 pi 

of TE (pH 8.0). 

Preparation of BAC DNA. 2 ml of LB media with 25 pl/ml chloramphenicol 

were seeded with BACs taken from a RPCI-11 library stored at -80°C. A 20 pi 

disposable pipette tip was gently streaked across the frozen culture aliquot and then 

deposited into 15 ml Falcon tubes containing the culture medium. These were grown 

overnight with agitation at 37°C. 5 ml of this solution was subsequently streaked on 

LB/agarose/chloramphenicol plates prepared using standard methods (49) and grown 

overnight. Single colonies were selected and used to seed 50 ml of LB with 

chloramphenicol and grown for 18 hours. The 50 ml cultures were centrifuged at 6,000 x 

g for 20 minutes. After pouring off the supernatant, the remaining pellet was 

resuspended in 10 ml of solution SI containing 50mM Tris-HCl, lOmM EDTA, 100 

pg/ml RNase A (Nucleobond DNA Purification Kit, Clontech: Palo Alto, CA). After 

fully resuspending the pellet, 10 ml of S2 solution (200mM NaOH and 1 % SDS) was 

added and the tubes were gently inverted 5 times. The suspension was incubated at room 

temperature for 2 minutes. 10 ml of ice-cold S3 solution (2.8M KOAc, pH 5.1) was 

subsequently added and again the tubes were gently inverted 5 times and incubated on ice 

for 5 minutes. The lysate was then poured into funnels containing manufacturer-supplied 

filters that had been pre-wetted with 1 ml of equilibration buffer N2 (lOOmM Tris, 15% 

ethanol, 900mM KC1, pH 6.3). The solution was filtered through a Nucleobond AX100 

column that had also been pre-equilibrated with 5 ml of N2 buffer. The flow-through 

was discarded and the DNA-containing column was washed thrice, each time with 4 ml 

of fresh wash solution N3 (lOOmM Tris, 15% ethanol, 1.15M KC1, pH 6.3). The column 
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was then eluted with 5 ml of elution buffer N5 (lOOmM Tris, 15% ethanol, 1M KC1, pH 

8.5) preheated to 50°C. 900 pi of solution containing purified BAC DNA was aliquoted 

into 1.5 ml Eppendorf tubes and precipitated with 600 pi of isopropanol. The tubes were 

then spun at 10,000 x g in a cold room. After centrifugation, the supernatant was poured 

off and the remaining pellet was washed with 1 ml of 70% ethanol and resuspended in 10 

pi ofTE (pH 8.0). 

Probe labeling using nick translation. For each probe, a solution was prepared 

containing 1 pg of YAC or BAC DNA mixed with 5 pi of 10X nick translation buffer, 5 

pi of 0.5mM dATP/dGTP/dCTP, 5 pi of 0.5mM haptene-conjugated dUTP (biotin-dUTP 

or digoxigenin-dUTP), 5 pi of 0.1 M BME, 3 pi of lOU/pl DNase diluted 1:1000, and 2 

pi of 3U/pl DNA polymerase I. The solution was then diluted with water to a total 

volume of 50 pi and incubated at 15°C for 90 minutes. The quality of the nick translation 

was tested by removing 5 pi and boiling the aliquot for 5 minutes in a screw-top 1.5 ml 

tube. The sample was then placed on ice for 3 minutes and loaded with loading buffer 

and ethidium bromide on a 2% agarose gel. The presence of DNA fragments from 200- 

400 base pairs in length was considered acceptable. If the obtained fragments were too 

long, additional DNase and DNA polymerase I were added and the reaction was 

continued at 15°C. An aliquot was checked again after 15-30 minutes depending on the 

status of the original nick. Once an adequate nick translation was achieved, the 

remainder of the reaction was stopped with 2 pi of 0.5M EDTA and 1 pi of SDS heated 

at 68 °C. The labeled probes were then stored at -70°C until use. 

Probe precipitation with COT1 DNA. In a 1.5 ml Eppendorf tube, 100 ng of 

nicked BAC or YAC DNA was added to 1 volume of 1 pg/pl salmon sperm DNA, 1 





19 

volume of 1 pg/pl COT1 DNA, 0.1 volumes of 3M NaOAc, and 2.5 volumes of 100% 

ethanol. The mixture was incubated either overnight at 4°C or for 1 hour at -80°C. The 

solution was then centrifuged at 10,000 x g in a cold room for 15 minutes. The 

supernatant was decanted and the pellet dried. The pellet was then resuspended in 5 pi of 

80% formamide/15% dextran sulfate. In some cases, 2 probes with different conjugated 

haptenes were co-precipitated using the same reaction conditions. 

Slide preparation,, Metaphase chromosomes were prepared from human 

peripheral blood lymphocytes stimulated with phytohemagglutinin and harvested 72 

hours later from unsynchronized cultures by standard procedures. Cells were spread on 

glass slides and chemically aged per the method described by Henigariu and colleagues 

(50). 

Hybridization and washing. The probe suspension was shaken vigorously for 

20 minutes. After shaking, the probe(s) was placed in a 75 °C heat block for 10 minutes 

and then allowed to pre-anneal in a 37°C heat block for 1 hour. Slides were denatured 

simultaneously with 150 pi of 70% formamide/2X SSC and heating to 75 °C for 90 

seconds followed by immediate cooling to 16°C using a slide block on a PCR cycler. 

The denatured slides were placed in ice cold 70% ethanol for 5 minutes and then 

transferred to ice cold 90% and 100% ethanol baths for 5 minutes each, after which they 

were set aside to air dry. The probe mixture was added to a pre-marked region of the 

slide containing adequate metaphase spreads. A 20 mm x 20 mm cover slip was applied 

and secured in an airtight fashion using rubber cement around the edges of the cover slip. 

The slides were then placed in a humidifying chamber overnight at 37°C. 
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The following day, the slides were removed from the moist chamber. While 

holding the cover slip in place, the rubber cement was removed with forceps. With the 

cover slip still in place, the slide was submerged in a Coplin jar containing 30 ml of Wash 

1 (50% low grade formamide/2X SSC) at 42°C for 5 minutes with gentle agitation to 

allow the cover slip to fall off. The slides were then washed 3 times for 5 minutes each 

with fresh Wash 1 at 42°C. They were washed a fourth time with Wash 2 (0.1X SSC) at 

60 °C for 5 minutes. 

Slides were tapped free of excess solution and 200 pi of blocking solution (3% 

BSA/4X SSC/0.1% Tween-20) was placed in the region of the probe. The slides were 

covered with 24 mm x 60 mm cover slips and placed back in the humidifying chamber 

for 30 minutes at 37°C. During this time, avidin-FITC (1:400 dilution) and anti- 

digoxigenin-rhodamine (1:150 dilution) were added to detection buffer (1%BSA/4X 

SSC/0.1% Tween-20) to make detection solution. Cover slips were again removed from 

the slides and 200 pi of detection solution was added to each slide. New 24 mm x 60 mm 

cover slips were placed on the slides and bubbles were removed by gentle tapping with 

forceps. The covered slides were placed again in the humidifying chamber at 37°C for 30 

minutes. Upon removal from the moist chamber, slides were subjected to 3 5-minute 

washes in Wash 3 (0.1% Tween-20/4X SSC) at 42°C with gentle shaking so that the 

cover slips would fall off. The slides were then counterstained with DAPI (4,6- 

diamidino-2-phenylindoledihydrochloride, 200 ng/ml) for 4 minutes and then submerged 

in a Coplin jar containing 2X SSC for 2 minutes. 1 drop of Vectashield antifade was 

added and the cover slip replaced. Slides were then ready for visualization. A CCD 

camera (PM512, Photometries) was used to visualize fluorescent signals. Grayscale 
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images were obtained sequentially for fluorescein, rhodamine, and DAPI with precision 

filter sets (Zeiss) to minimize the image shifts. The grayscale images were 

pseudocolored and merged. 

Identification of putative coding sequence 

Identification of putative coding sequence in the vicinity of the 18q22 breakpoints 

was carried out by another member of the laboratory using a variety of approaches 

including human-human BLAST homology searches, mouse-human sequence 

comparison, EST database searches, and gene-prediction algorithms. Expression of 

putative coding regions was assessed by PCR amplification from various tissue-specific 

cDNA libraries and reverse transcriptase PCR using several tissues as template. A 

comprehensive account of the methodology employed is detailed elsewhere (48). 

Heteroduplex analysis 

Mutation screening of identified putative coding sequence was undertaken by 

another member of the laboratory using heteroduplex analysis (48). 

Replication timing studies 

FISH was carried out using BAC-derived probes as described above with the 

following modifications: (1) Cell cultures were pulsed with lOpM bromodeoxyuridine 

(BrdU) for 90 minutes prior to harvesting in order to allow for incorporation into newly 

synthesizing DNA. (2) Three color fluorescence imaging was performed. One BAC 

probe was labeled using dUTP-11-digoxigenin and detected with anti-digoxigenin- 
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rhodamine (1:150 dilution). A second BAC probe was direct-labeled with dUTP-DEAC. 

The BrdU-pulsed S-phase cells were detected with a 1:10 dilution of anti-BrdU-FITC 

(Pharmingen). (3) Interphase nuclei were counted with respect to the pattern of 

hybridization present at each locus. As noted, three patterns of hybridization were 

observed, a singlet/singlet (SS) pattern, a doublet/doublet (DD) pattern, and a 

singlet/doublet (SD) pattern. Only those interphase nuclei showing BrdU incorporation 

as a marker for S-phase were counted. (4) Two co-localizing BAC probes were used in 

each experiment to distinguish signals that were representative of true hybridization as 

well to differentiate the abnormal chromosome from its normal homologue. (5) Each 

slide was counted independently by two individuals in the laboratory. Whenever 

possible, the identity of the probes and the source of the cell material were not known to 

the rater. Certain experiments, for instance those involving breakpoint-spanning probes, 

precluded blinding. Inter-rater reliability was calculated using a simple Kappa test. (6) 

Several slides containing cells from a single control were hybridized at different times 

with the identical probe to ensure reproducibility of hybridization and counting. (7) 

Statistical analysis of SD percentages from the replication timing experiments was 

undertaken using a chi-square test with 1 degree of freedom. All reported significance 

levels are two-tailed. 
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Results: 

Molecular mapping of breakpoints 

Identification of spanning YAC clones. Mapping of the breakpoints was 

undertaken prior to the availability of relevant draft sequence from the human genome 

project. Databases at the National Center for Biotechnology Information were used to 

identify sequence tagged sites (STSs) mapping to the 18q21 and 18q22-23 regions 

(http://www.ncbi.nlm.nih.gov/genome/sts/). The website of the Whitehead Institute 

(www.genome.wi.mit.edu) was subsequently used to identify YAC clones corresponding 

to the STSs and mapping to the region of interest. A single contig (WC 18.4) was noted 

to contain YAC clones spanning the chromosome 18q21 -23 region. Representative 

YACs from across this contig were selected and obtained from a CEPH B YAC library. 

These clones were used in FISH hybridizations with lymphocytes from each patient. 

The mapping strategy involved localization of YAC clones to a locus either 

proximal or distal to the breakpoints, thereby allowing for progressive narrowing of the 

genomic intervals of interest until spanning YACs were identified for each breakpoint. 

Expected FISH results employing this strategy are shown for case 1 (Fig. 1) and case 2 

(Fig. 2). In both cases, hybridization of multiple YACs led to the identification of clones 

spanning the chromosome 18q breakpoints. In case 1, YAC 846A2 was found to span 

the 18q22 breakpoint, and YAC clone 804B10 was found to span the 18q21 breakpoint. 

For case 2, the YAC spanning the 18q22 translocation breakpoint was found to be clone 

766F12 (data not shown). 
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Identification of spanning BAC clones. Once spanning YACs were found, 

BAG clones corresponding to these spanning YACs were identified. For case 1, several 

approaches including the screening of a RPCI-11 BAC library with radio-labeled EST 

and STS markers, clone walking using TAIL (thermal asymmetric interlaced) PCR, and 

further library screening with radio-labeled non-repetitive end sequences were employed 

in the search for spanning BAC clones. This search was performed by another member 

of the lab and is detailed elsewhere (48). 

As additional draft sequence was made available through sequencing of the 

human genome, alternative methods for identifying BAC clones mapping to the region of 

interest became available. The High Throughput Genome Sequencing (HGTS) and 

Genome Sequence Survey (GSS) databases, in combination with the BLAST search 

engine (http;//www.ncbi.nlm.nih.gov/blast/htmlblastcgihelp.html#nucleotide_databases), 

provided the means for virtual clone-walking. STS and EST markers of interest were 

first analyzed to identify and mask any repetitive sequence using RepeatMasker 

(http://ftp.genome.washington.edu/cgi-bin/RepeatMasker). Unique sequence was then 

used for nucleotide BLAST searches (http://www.ncbi.nlm.nih.gov/blast). As draft 

sequences from BAC clones were identified, they were screened for repeat sequences and 

unique regions were once again used for BLAST searches. This method resulted in the 

construction of several putative BAC contigs in the regions surrounding the 18q22 

breakpoints in cases 1 and 2. The positions of these BACs were subsequently confirmed 

with FISH and spanning BACs were identified using the same strategy as was employed 

in the identification of spanning YAC clones. The overlapping BAC clones 600G22 and 

644A7 were found to span the 18q22 inversion breakpoint in case 1 (Fig. 3 A). For case 
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2, BAC clones 240N5 and 88B2 were determined to span the 18q22 translocation 

breakpoint (Fig. 3B). 

Delineation of a 5.5 Mb interval on chromosome 18q22 by three cytogenetic 

breakpoints. The position of the translocation breakpoint identified by Boghosian-Sell 

and colleagues (28) was approximated based on the finding that marker WI-3559 mapped 

telomeric to this breakpoint (J. Overhauser, unpublished data). The sequence information 

made available as a result of the human genome project (http:genome.ucsc.edu and 

http://www.ncbi.nih.nlm.gov) allowed for an approximation of the intervals between the 

t(7; 18)(q22-31 ;q22) translocation identified by Boghosian-Sell et al. and the two 

rearrangements identified at Yale. As shown in Fig. 4, the smallest distance between any 

two of these three breakpoints, approximately 800 kb, separated the telomeric inversion 

breakpoint in case 1 and the previously characterized t(7;18) translocation breakpoint 

(28). 

Identification of putative coding sequence 

The genomic interval containing the 18q22 breakpoints was extensively analyzed 

for coding sequence by another member of the lab using BLAST EST homology 

searches, comparison with mouse sequence, and various gene prediction algorithms (48). 

A single EST was identified on BAC 600G22 mapping approximately 100 kb 

telomeric to the inversion breakpoint. The clone was subsequently identified in a fetal 

thymus library and named GTSCR-1 (Gilles de la Tourette Syndrome Chromosomal 

Region 1) (Fig. 4). Upon sequencing, it was found to contain 3 exons and encode a 
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putative product of 138 amino acids. It showed no significant homology to other 

proteins, ESTs, or protein motifs. 

A second putative coding region was found on BAC 4104, mapping 

approximately 150 kb centromeric to the inversion breakpoint. Translation of the longest 

open reading frame in this region was found to be identical to the known gene CIS4 

(cytokine inducible SH-2 containing protein 4) (Fig. 4). 

Mutation screening 

dHPLC evaluation of coding regions and intron-exon splice junctions for the 

transcripts CIS4 and GTSCR-1 was performed by another member of the lab. An analysis 

of 96 cytogenetically normal patients with TS-spectrum phenotypes revealed no missense 

or nonsense mutations (48). 

Assessment of replication timing at the 18q22 breakpoint in case 1 

FISH analyses of interphase nuclei were used to assess for the presence and 

degree of replication asynchrony at various loci. Loci that replicate synchronously show 

either a single hybridization on each homologue (singlet/singlet or SS pattern) or two 

hybridization signals on each homologue (doublet/doublet or DD pattern), depending on 

whether the locus is pre- or post-replication. Loci at which one homologue has replicated 

and the other has not are visualized as a singlet/doublet (SD) pattern of hybridization 

(Fig. 5). 

To assess the degree of replication asynchrony around the 18q22 breakpoint in 

case 1, the spanning BAC 600G22 was hybridized to interphase nuclei from the patient 
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and the nuclei were counted with respect to their pattern of hybridization. In order to 

assess baseline replication timing in the region, 600G22 was also hybridized to S-phase 

nuclei from an unaffected, cytogenetically normal individual. A BAG from the SNRPN- 

SNURF locus, an imprinted locus mapping to the Prader-Willi region of chromosome 15, 

was hybridized to patient cells from case 1 as a control for replication asynchrony. A 

BAG from the synchronously replicating CFTR region was likewise hybridized to patient 

cells as a control for replication synchrony. For each hybridization, a second nearby 

BAC probe was co-hybridized to confirm hybridization of the experimental probe. 

Observation was limited to nuclei in S-phase, as distinguished by BrdU pulsation and 

detection with anti-BrdU-FITC (Fig. 6). For each slide, at least 60 adequately hybridized 

S-phase nuclei were counted. 

Statistical analysis was carried out using a chi square test with 1 degree of 

freedom. The percentage of SD hybridizations found in the patient for BAC 600G22 was 

significantly higher than that for the same probe in a cytogenetically normal cell line 

(0.45 vs. 0.27, p<0.01) (Fig. 7). Similarly, the SD percentage at the breakpoint was 

significantly higher than that for a probe mapping to the CFTR control locus in the same 

patient (0.45 vs. 0.24, p<0.005) (Fig. 7). In contrast, the rate of asynchrony at the 

breakpoint was not different from that at the asynchronously replicating Prader-Willi 

locus in the same patient (0.45 vs. 0.44, p>0.5) (Fig. 7). 

A broader region around the inversion breakpoint was assessed with 

additional BAC probes 644A7 and 650E18, which overlap clone 600G22 on its 

centromeric and telomeric flanks, respectively (Fig. 4). These clones were hybridized to 
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interphase nuclei from the patient as well as to a cytogentically normal control cell line. 

In each instance, the degree of replication asynchrony in the patient was found to be 

significantly higher than that for the control cells. For BAC 644A7, the proportion of SD 

hybridizations for patient and control cells was 0.40 and 0.21, respectively (p<0.05). For 

BAC 650E18, the SD proportion for patient compared to control nuclei was 0.52 versus 

0.27 (pO.Ol). These findings define at least a 500 kb region of abnormal replication, 

presumably due to the patient’s chromosomal rearrangement (Fig. 8). 

The patient’s normal and abnormal chromosomes 18 were distinguishable in 

interphase nuclei via the use of FISH probes lying very close to, but on opposite sides of, 

the inversion breakpoint. With this probe selection, there was co-localization of 

hybridization signals on the normal chromosome, but marked separation of signals on the 

abnormal chromosome (Fig. 9). An analysis of the BAC probe spanning the inversion 

breakpoint demonstrated that 81% of cells found to replicate asynchronously in the 

patient had the singlet (representative of later replication) on the chromosome bearing the 

inversion compared to 19% on the normal homologue (p<0.0001) (Fig. 10). 
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Discussion: 

Two patients with rearrangements of chromosome i 8q22 and TS spectrum 

phenotypes were identified. The fine mapping of these rearrangements using YAC and 

BAC-derived FISH probes delineated a 5.5 Mb region of chromosome 18q22 containing 

three TS-associated rearrangement breakpoints. The smallest distance between any two 

of these breakpoints, approximately 800 kb, separated the telomeric inversion breakpoint 

in case 1 and the previously characterized t(7;l8)(q22-31 ;q22) translocation breakpoint 

(28). Analysis of the genomic interval did not reveal a structurally disrupted gene, but 

did identify two nearby transcripts, CIS4 and the newly identified GTSCR-J. The search 

for additional genes in the region will continue as data from the Human Genome Project 

becomes increasingly refined. 

The known gene, CIS4, mapped approximately 150 kb centromeric to the case 1 

distal inversion breakpoint (Fig. 4). Although the function of CIS4 is not well 

understood, it is believed to play a role in cytokine-induced signaling in the immune 

system. Consistent with this hypothesis, CIS4 expression has been noted to be high in 

several cytokine-dependent hematopoetic cell lines including factor-independent chronic 

myelogenous leukemia (CMK) and human erythroleukemia (hel) (51). 

A possible role for CIS4 in TS pathogenesis is appealing in light of existing 

hypotheses that postulate an immune-mediated mechanism for the disorder. 

Specifically, a post-infectious etiology following Group A beta-hemolytic streptococcal 

(GABHS) infection has been hypothesized. GABHS is known to trigger immune- 

mediated sequelae including acute rheumatic fever and post-streptococcal 
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glomerulonephritis in genetically susceptible individuals (52). One of the major clinical 

criteria for the diagnosis of rheumatic fever, Sydenham’s chorea, presents with 

choreiform movements of the distal limbs. In a substantial number of cases, patients may 

also manifest frank motor or vocal tics as well as obsessive compulsive symptoms (53). 

In addition to similarities in their clinical presentations, TS, OCD, and Sydenham’s 

chorea appear to share common anatomic targets in the central nervous system, 

specifically the basal ganglia and related circuits (54). Taken together, the parallels 

between these disorders suggest that, at least in some cases, they may share a common 

etiopathogenesis. Additional clinical and epidemiologic studies are needed to confirm 

the association between the development of TS spectrum phenotypes and antecedent 

GABHS infection. 

Much less is known about the novel gene GTSCR-1. A range of library screens 

indicates that it is a rare transcript with expression confirmed only in human thymus (2). 

Neither sequence homologies to known genes nor similarities to any functional protein 

motifs were identified and, as such, the function of GTSCR-1 remains unknown. 

However, its expression in thymus raises the possibility that it too may subserve a role in 

the immune system. 

As neither C1S4 nor GTSCR-1 were found to be structurally disrupted by the 

identified rearrangements, FISH replication timing analyses were performed to determine 

if the chromosomal inversion in case 1 might have altered the epigenetic properties of the 

region, potentially leading to altered expression of one or more genes in the vicinity. 

Marked replication asynchrony about the breakpoint and extending over an interval of at 

least 500 kb was identified, with evidence for a relative delay in replication on the 
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abnormal chromosome compared with its normal homologue. Similar analysis of a 

cytogenetically normal unaffected control demonstrated no evidence of asynchrony in the 

region. In addition, expected patterns of replication timing were upheld in patient cells at 

loci expected to demonstrate either asynchronous (SNRPN-SNURF) or synchronous 

(CFTR) replication. 

The relative delay in replication observed on the patient’s rearranged chromosome 

18 is consistent with reduced transcriptional activity in the region, and suggests decreased 

or silenced expression of one or more nearby genes. Given the negative findings on 

heteroduplex analysis of 96 cytogenetically normal TS-spectrum patients (48), it is 

unlikely that mutations in either the CIS4 or GTSCR-1 genes represent a common cause 

of TS. However, the identification of even a rare TS gene or genes could provide 

important insights into the genetic and physiologic mechanisms that underlie the disorder. 

Further exploration of the functions of CIS4 and GTSCR-1 might assist in the elucidation 

of such mechanisms. Moreover, the putative role of one or both of these genes in the 

immune system and the hypothesized role of GABHS infection in TS pathogenesis 

suggests the importance of additional mutation screening in TS spectrum patients with a 

clear history of antecedent GABHS infection. 

Our findings on replication timing analysis also suggest a number of avenues of 

future inquiry, many of which are already underway. First, BACs mapping to each of the 

known genes in the interval of interest will be used as FISH probes in future replication 

timing studies in an effort to gauge the extent to which these genes have been subject to 

position effects. Second, the BAC contig extending in both directions from the case 1 

inversion breakpoint will continue to be assessed with respect to replication timing in 
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order to delineate the boundaries of asynchrony. Third, studies of replication timing on 

the soon-to-be available patient material from the previously identified t(7;18) 

translocation (28) will be undertaken. Similar analysis of replication timing at and 

around the chromosome 18q22 breakpoint in case 2 has already commenced. Mapping 

and comparing the full extent of replication asynchrony for all three cases may assist in 

defining a candidate interval in which to narrow the search for a gene or genes of 

etiologic significance. Fourth, replication timing studies will be carried out in 

cytogenetically normal patients with TS spectrum phenotypes in order to screen for 

epigenetic dysregulation in the region of interest in this population. Fifth, approaches for 

confirming the relevance of our replication timing to the epigenetic properties of the 

region of interest will be pursued including methylation studies and direct comparisons of 

patient versus control gene expression in any transcripts that can be quantified in 

accessible tissue. 

Use of replication timing as an assay for epigenetic phenomena has important 

advantages in the study of chromosomal abnormalities. First, it allows for investigation 

of large regions of the genome compared with alternatives such as methylation-sensitive 

restriction enzymes or bisulfite sequencing. The ability to readily screen regions of 

interest in 100-200 kb segments is particularly valuable in the identification and mapping 

of long-range position effects. In addition, FISH replication timing studies may be 

carried out in peripheral lymphocytes, regardless of whether these cells express the genes 

under study. Although a gene’s absolute replication timing within a given tissue is a 

function of its expression profile in that tissue, synchrony of replication occurs 

independent of cell type. Use of lymphocytes allows for the ready investigation of 
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epigenetic phenomena involving genes that may be expressed in inaccessible tissue, an 

asset that seems particularly valuable in the study of neuropsychiatric illness. 

Despite these advantages and the confirmed use of FISH methodology for 

examining replication timing, several important issues regarding FISH replication timing 

analysis merit further discussion. First, there is little consideration of statistical issues 

with respect to this technique in the current literature (2). Investigators have, by and 

large, employed a ’’rule of thumb” approach to data collection and interpretation. For 

instance, one or a small number of slides per condition are generally evaluated and 100 

nuclei per slide are counted. Among those nuclei, a rate of 30% SD signals is considered 

indicative of replication asynchrony. In an effort to determine the adequacy of this 

approach, the statistical significance of the results was assessed using a chi-square 

test. Power calculations suggested that approximately 60 interphase nuclei per condition 

would need to be counted in order to ascertain a 20% difference in the proportion of SD 

signals between synchronously and asynchronously replicating loci. 

A second important methodological caution pertains to the percentage of SD 

hybridizations found at negative control loci. A baseline SD rate of approximately 10- 

15% has been noted in the literature for bi-allelically expressed loci in normal cells. This 

relatively small rate of SD hybridization is thought to be due to inefficient hybridization 

and/or imaging artifact rather than true replication asynchrony (55). Our methods, 

though seemingly identical to those published in the literature, routinely identified a 20- 

25% SD rate at bi-allelically expressing control loci. Explanations for this discrepancy 

are not obvious. One possibility is that our counting rules, while internally consistent as 

demonstrated by excellent inter-rater reliability, tended to undercount doublets in favor of 
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SS and SD hybridization patterns. This possibility is being further investigated by 

comparing all SS, SD, and DD counts at a number of loci. Nevertheless, the degree of 

difference we detected in SD percentages between synchronously replicating and 

asynchronously replicating control loci, approximately 15-20%, is completely consistent 

with that found in the literature. 

In addition to the limitations associated with assays of replication timing, the 

clinical characterization of our patients and their relevance to the study of TS is worthy of 

discussion. The absence of clear biologic markers for TS and many other 

neuropsychiatric disorders demands that clinician-researchers rely heavily on history and 

presentation in establishing a diagnosis. In an effort to address this issue, standardized 

diagnostic instruments including the Y-BOCS and YGTSS, discussed above, have been 

developed. 

Despite the marked improvement in diagnostic schemes brought about by the use 

of these standardized instruments, there remain instances in which diagnostic issues are 

particularly problematic for genetics research. With respect to mild or sub-clinical cases, 

for example, the boundary between normal and pathologic behavior can be difficult to 

define. The notion of functional impairment has become central to most diagnostic 

schemes in an effort to clarify this boundary. Attempts to measure the subjective distress 

and functional consequences of tics and obsessive compulsive phenomena have thus 

become central elements of standardized diagnostic approaches. The two patients 

identified at Yale were both found to have high levels of distress and functional 

impairment using the aforementioned standardized instruments. These findings suggest 
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that the clinical phenomena observed in these patients represent true psychopathology 

rather than normal variants. 

Despite the limitations in our methodology, the clustering of three TS spectrum- 

associated, independently ascertained, chromosome 18q22 rearrangements suggests that 

the region is a promising candidate for containing a gene or genes of etiologic 

importance. Our finding in case 1 of long-range position effects in the 18q22 interval 

provides a model for how rearrangements mapping to non-coding regions of the genome 

and located hundreds of kb apart from one another may contribute to the production of 

similar phenotypes. Furthermore, our detection of regional epigenetic changes in a 

patient with a TS-related phenotype and a chromosomal rearrangement suggests a novel 

mechanism for neuropsychiatric pathogenesis that may be worth pursuing in related 

disorders. The search for additional patients with TS spectrum phenotypes and 

cytogenetic abnormalities continues in the hopes that molecular characterization of 

patient breakpoints may someday lead to the identification of a TS gene. 
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