
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

2001

Insulin resistance in adolescents with type I
diabetes is related to a failure to suppress lipolysis
Allison P. Stewart
Yale University

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Stewart, Allison P., "Insulin resistance in adolescents with type I diabetes is related to a failure to suppress lipolysis" (2001). Yale
Medicine Thesis Digital Library. 3210.
http://elischolar.library.yale.edu/ymtdl/3210

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/3210?utm_source=elischolar.library.yale.edu%2Fymtdl%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


MED 
Thesis 
T113 
+Y12 
6870 

VALE UNIVERSITY LIBRARY 



YALE 
UNIVERSITY 

CUSHING/WHITNEY 
MEDICAL LIBRARY 



Permission to photocopy or microfilm processing 

of this thesis for the purpose of individual 

scholarly consultation or reference is hereby 

granted by the author. This permission is not to be 

interpreted as affecting publication of this work or 

otherwise placing it in the public domain, and the 

author reserves all rights of ownership guaranteed 

under common law protection of unpublished 

manuscripts. 

Signature of Author 

3 M/W 

Date 



Digitized by the Internet Archive 
in 2017 with funding from 

The National Endowment for the Humanities and the Arcadia Fund 

https://archive.org/details/insulinresistancOOstew 







Insulin Resistance in Adolescents with Type 1 Diabetes is Related to a 
Failure to Suppress Lipolysis 

A Thesis Submitted to the 

Yale University School of Medicine 

in Partial Fulfillment of the Requirements for the 

Degree of Doctor of Medicine 

by 

Allison P. Stewart 

2001 



YALE MEDICAL LIBRARY 

AUG 2 4 2001 

1113 
iYfl 



INSULIN RESISTANCE IN ADOLESCENTS WITH TYPE 1 DIABETES IS RELATED 
TO A FAILURE TO SUPPRESS LIPOLYSIS 
Allison P. Stewart, Rubina A. Heptulla, Staffan Enoksson, Fran Rife, Tony Yong-Zhan Ma, 

Robert S. Sherwin, William V. Tamborlane, and Sonia Capno. Section of Endocrinology, 

Departments of Pediatrics and Internal Medicine, Yale University, New Haven, CT. 

Good metabolic control is often elusive in adolescents with type 1 diabetes (T1DM), partly due to 

significant insulin resistance. The failure of insulin to suppress lipolysis may be related to the 

insulin resistance of adolescents with poorly-controlled T1DM. To explore this question at the 

tissue level, we employed microdialysis to evaluate glycerol in the extracellular fluid (ECF) of fat 

and muscle tissues during a hyperinsulinemic glucose clamp. 10 adolescents with poorly- 

controlled T1DM, and 6 normal adolescents were evaluated. The T1DM group exhibited 39% 

less insulm-stimulated glucose metabolism than the control group. Although basal rates of 

carbohydrate and lipid oxidation were similar, the T1DM group had significantly less 

carbohydrate and more lipid oxidation during insulin infusion than the control group. Despite 

similar baseline plasma glycerol and free fatty acid levels, the T1DM subjects experienced less 

suppression of these metabolites than control subjects. Basal glycerol concentrations in adipose 

(T1DM: 239.1 ± 24.9 pM; control: 241.3 ± 34.6 pM) and muscle (T1DM: 131.4 ± 11.1 pM; 

control: 141.5 ± 10.1 pM) microdialysate were similar between groups. However, in both tissues, 

the T1DM subjects had significantly higher levels of ECF glycerol at the conclusion of the clamp 

than control subjects (muscle: 85.3 ± 7.5 pM for T1DM and 51.5 ± 7.6 pM for control, p = 0.01; 

adipose: 149.6 ± 22.8 pM for T1DM and 82.0 ± 11.4 pM for control, p = 0.047). Considering all 

subjects, the rate of insulin-stimulated metabolism was inversely correlated to glycerol 

concentration in both adipose (r = 0.63, p < 0.01), and muscle (r = 0.63, p < 0.01) microdialysate. 

In summary, our data is consistent with the hypothesis that there exists a failure of insulin to 

inhibit lipolysis in adolescents with poorly controlled T1DM which is closely related to the 

insulin resistance observed in this population. 
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INTRODUCTION 

Type 1 Diabetes Mellitus 

Type 1 diabetes mellitus (T1DM) is a chronic disease of insulin deficiency, 

coexisting with peripheral insulin resistance. It results from the autoimmune destruction 

of the insulin-producing pancreatic beta cells (1). Susceptibility to this disease is 

inherited, and it has been postulated that either an environmental or viral insult triggers 

this destruction of beta cells (1). Patients require exogenous insulin treatment for 

survival, yet insulin action is impaired in Type 1 diabetes, and patients are considered 

resistant to the action of insulin (2). T1DM has its onset primarily in childhood and 

adolescence. 1994 United States estimates placed the prevalence of T1DM in children 

under age 20 at 1.7 cases per 1,000, implying that 127,000 children and teenagers had 

T1DM in this country at that time (3). The incidence of T1DM on an annual basis is 

estimated at 18 new diagnoses per 100,000 in those younger than age 20, which translates 

into more than 13,000 new cases of T1DM diagnosed each year (3,4). The 0.5% risk of 

developing Type 1 diabetes before age 20 is greater than that of many other severe and 

chronic childhood illnesses, including muscular dystrophy and lupus (3). 

Morbidity and Mortality: the DCCT 

Although the 1920s discovery of insulin was heralded as the cure for diabetes (5), 

this treatment introduced new problems in the diabetic population. Micro vascular, 

macrovascular, and neurologic complications became increasingly common in patients 

with Type 1 diabetes as they began to survive into adulthood. In 1982, the National 

Institutes of Health initiated the Diabetes Control and Complications Trial (DCCT) (6) as 

a multi-center study testing the hypothesis that better metabolic control would lead to 





fewer long-term complications of diabetes. A total of 1,441 patients with T1DM were 

enrolled in the study, and each was randomly assigned to receive either conventional or 

intensive treatment. The results of the DCCT confirmed the suspicion that intensive 

therapy, targeted at maintaining near-normal glycemic levels, both delayed the onset of 

retinopathy, neuropathy, and nephropathy, as well as slowed the progression of these 

complications in patients with T1DM (7). However, only 14% of subjects in the DCCT 

were between 13 and 17 years of age, and thus the use of intensive therapy was debated 

in the adolescent population. Therefore, a separate analysis was performed on the 195 

adolescent subjects participating in the DCCT (8). The adolescents were also found to 

benefit from intensive therapy, with a decrease in risk of developing retinopathy of 53% 

and of retinopathy progression of 70%. Based on these results, the DCCT Research 

Group reiterated its recommendations for intensive treatment to prevent long-term effects 

of diabetes, and extended it to specifically include adolescents older than 13 years of age 

(8). 

Insulin Resistance 

Insulin resistant states exist both in health as well as in disease. Insulin resistance 

implies insensitivity to the effects of insulin on metabolism. Patients with insulin 

resistance will require greater amounts of the hormone to achieve the same metabolic 

effect when compared to those who are insulin-sensitive. Adolescents with T1DM are at 

the extreme disadvantage of experiencing several insulin resistant states concurrently, 

which act synergistically to complicate the management of their diabetes. In a 1982 

study utilizing the euglycemic, hyperinsulinemic clamp technique to measure insulin 

sensitivity (9), DeFronzo et al. set out to ascertain if insulin resistance is present in Type 
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1 diabetes (2). They found a severe degree of insulin resistance in their young subjects 

with T1DM, and demonstrated that glucose clearance was 254% better in the control 

subjects versus those subjects with T1DM (2). The DCCT had noted that both the 

intensive and conventional adolescent groups had slightly higher glycated hemoglobin 

than comparable adult subjects, although the differences between the treatment groups for 

adolescents and adults were similar (1.70 ± 0.18% for the adolescents versus 1.90 ± 

0.06% for the adults) (8). The DCCT documented a phenomenon already familiar to 

pediatric diabetes caregivers: in puberty, glycosylated hemoglobin levels typically rise as 

glycemic control deteriorates (10,11), despite rising insulin dosage (12). This metabolic 

deterioration was traditionally ascribed to the social and psychological upheaval that may 

occur during puberty (13). However, the possibility remained that puberty itself, in 

addition to the already established insulin resistance of T1DM (2), might contribute to 

this deterioration. To explore this theory, Amiel et al. employed the euglycemic clamp 

technique to determine the insulin sensitivity of adult, prepubertal, and pubertal subjects 

both with and without T1DM (14). It was possible to demonstrate that puberty is 

associated with a decline in insulin-stimulated glucose metabolism in both adolescents 

with and without diabetes, and that this decline is exaggerated in children who also have 

T1DM due to the additive effects of puberty and diabetes (14). Further studies utilizing 

glucose isotope tracer techniques, indirect calorimetry, and a sequential two-step insulin 

clamp (8 and 40 mU/m -mm), revealed that the insulin resistance of puberty is primarily 

restricted to peripheral glucose metabolism, and has little effect on hepatic glucose 

production, or on circulating levels of essential amino acids or free fatty acids (15). 

Additionally, it was postulated that this resistance is perhaps beneficial in that it 
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facilitates amplification of the anabolic effects of insulin (15). To determine if there 

existed more global effects of insulin resistance in adolescent patients with and without 

diabetes, Caprio et al. used the euglycemic insulin clamp in nondiabetic adolescents and 

young adults, and followed glucose, protein, and fat metabolism using leucine tracers (to 

follow protein metabolism), and indirect calorimetry (16). After comparing these results 

to those in adolescents with T1DM, they found that while the insulin resistance of normal 

puberty is selective for glucose metabolism, the defects in adolescents with T1DM are 

more profound, and affect protein and fat metabolism as well (16). Thus, the poor 

metabolic control of adolescents with Type 1 diabetes can now, at least partly, be 

explained by the synergistic insulin resistance present secondary to T1DM and puberty. 

Mechanisms of Insulin Resistance: free fatty acids 

Almost forty years ago, based on experiments in isolated rat heart muscle and 

hemidiaphragms, Randle et al. proposed a glucose-fatty acid cycle, in which free fatty 

acids (FFAs) compete with glucose for oxidation, resulting in decreased glucose uptake 

and subsequent insulin resistance (17). The key points of this theory are that high FFAs 

lead to elevated acetyl-CoA and citrate levels. Acetyl CoA inhibits pyruvate 

dehydrogenase and thus reduces glucose oxidation. High citrate levels lead to inhibition 

of phosphofructokinase, and thus of glycolysis itself, eventually reducing glucose uptake 

as accumulation of glucose-6-phosphate inhibits hexokinase (17). Early studies found 

difficulty in reproducing Randle’s results (18), but as the traditional emphasis for the 

pathogenesis of diabetes shifted from carbohydrate to lipid metabolism (19), Randle’s 

cycle garnered interest as a possible etiology for multiple insulin resistant states and 

spurred on much more research. 
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As free fatty acid levels were known to be elevated in such diseases as non-insulin 

dependent diabetes mellitus, and obesity, the glucose-fatty acid cycle was of much 

interest to those researching in these areas. In a study of normal subjects mimicking the 

normal fed and diabetic states, Ferrannini et al. were able to confirm Randle’s hypothesis 

that, in the well insulinized state, elevated FFA levels do effectively compete with 

glucose for uptake in the peripheral tissues, and that this inhibition is not overcome by 

hyperglycemia (20). This group further concluded that when insulin is deficient, elevated 

FFA levels lead to hyperglycemia through enhanced endogenous glucose production 

(20). 

While most investigators agreed that high FFA levels inhibited carbohydrate 

oxidation while enhancing lipid oxidation, the effect of elevated FFAs on glucose uptake 

demonstrated by Ferrannini et al. (20) remained controversial (21,22). Further studies 

sought to clarify this issue, and to continue to explore the mechanism of FFA induced 

insulin resistance. In a 1991 study by Boden et al., infusion of lipid in healthy subjects 

during euglycemic hyperinsulinemia was found to increase fat oxidation and decrease 

insulin-stimulated carbohydrate oxidation, but not to decrease glucose uptake for at least 

three hours (23). This decrease in glucose uptake was found to be associated with a 

decrease in muscle glycogen synthase, leading to the conclusion that high levels of lipid 

somehow interfered with glucose storage, and in this way inhibited glucose uptake (23). 

This time delay could explain why other investigators, using shortened experiment times, 

had previously failed to see the effects of elevated FFA on glucose uptake. Further 

studies by Boden et al. elucidated a dose-dependency of free fatty acid mediated 
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inhibition of glucose uptake (24). The mechanism for the inhibition was found to occur 

via two pathways. First, inhibition of carbohydrate oxidation occurred through acetyl- 

CoA-induced inhibition of pyruvate dehydrogenase, supporting Randle’s glucose-fatty 

acid cycle and confirmed by other studies (25). Secondly, this decrease was observed to 

take place through inhibition of glycogen synthesis, both by a fat mediated interference 

with insulin’s ability to stimulate glycogen synthase, and also perhaps by a defect in 

glucose transport or phosphorylation (24). A challenge to the classic Randle cycle 

mechanism comes from recent studies performed by Shulman and his collaborators (26, 

27). In sharp contrast to the Randle cycle prediction, these investigators discovered that 

glucose-6-phosphate decreased in response to lipid infusion. This finding supported the 

theory that the inhibition of transport or phosphorylation occurred early in the pathway, 

and not via the metabolic bottleneck secondary to inhibition of pyruvate dehydrogenase 

(26) suggested by Randle (17). Subsequent investigations by Dresner et al. further 

clarified the mechanism of FFA-induced insulin resistance by measuring glycogen, 

glucose-6-phosphate, and intracellular glucose concentrations in healthy subjects using 

nuclear magnetic resonance spectroscopy during a hyperinsulinemic euglycemic clamp 

procedure following a five-hour infusion of lipid/heparin (28). The results of this 

investigation showed that the insulin resistance observed in response to lipid infusion was 

related to a defect in glucose transport (28). Additionally, muscle biopsy specimens 

obtained from these studies revealed that FFA-induced insulin resistance was temporally 

related to alterations in insulin-stimulated IRS-1-associated phosphatidylinositol (PI) 3- 

kinase activity (28). Therefore, it was concluded that elevated FFAs caused insulin 

resistance through inhibition of insulin-stimulated glucose transport, perhaps related to a 





defect in insulin signaling through IRS-1-associated PI 3-kinase (28). Despite much 

research targeted at proving FFA induced insulin resistance is the mechanism for the 

insulin resistance of diabetes and of obesity, the exact method by which this happens 

remains controversial. 

The glucose free fatty acid cycle also piqued interest as a possible etiology for 

another insulin resistant state. Elevated free fatty acids levels had likewise been noted 

specifically in adolescents (14), along with a failure to suppress these levels in response 

to insulin (16). To explore the Randle cycle as a possible etiology for the insulin 

resistance of puberty, Arslanian et al. studied prepubertal, pubertal, and adult healthy 

subjects using the euglycemic clamp technique, along with the use of glycerol tracers (to 

study rates of lipolysis), and indirect calorimetry (29). They discovered that the rate of 

lipid oxidation was increased during puberty, and was accompanied by a decrease in 

insulin-stimulated glucose metabolism. These results were felt to be consistent with the 

hypothesis that increased lipid oxidation, perhaps regulated by growth hormone secretion, 

might cause the decrease in insulin-stimulated glucose metabolism and insulin resistance 

appreciated during puberty (29), as suggested by Randle et al. (17). 

Amidst the research linking elevated FFAs to the insulin resistance of diabetes, 

obesity, and of puberty through the Randle cycle, or a modification thereof, it has not 

previously been established whether the failure of insulin to inhibit lipolysis is related to 

the level of insulin-stimulated glucose metabolism seen in adolescents with diabetes. To 

examine this theory directly in target tissues of interest, we have employed the use of the 





hyperinsulinemic euglycemic clamp, indirect calorimetry, and the microdialysis 

technique to ascertain the effect of insulin on lipolysis in adolescents with poorly 

controlled Type 1 diabetes mellitus. By using microdialysis, we are able to target the 

study of lipolysis directly to muscle as well as to adipose tissue. Recent research has 

revealed that both adipose and muscle make important contributions to circulating 

glycerol levels (30, 31), although adipose may dominate (30), making the study of both 

tissue sites important in the search to clarify the insulin resistance experienced by 

adolescents with Type 1 diabetes. 

Microdialysis 

The microdialysis technique is an intriguing discovery that allows investigators to 

characterize ongoing metabolism at the tissue level, rather than being restricted to 

analysis of whole body metabolism by sampling from blood. Initially used in studies of 

the rat brain, microdialysis was first used in human research by Lonnroth et al. in 1987 

(32). This group devised a simple, although time consuming, method for in vivo 

calibration of the microdialysis probe, making this technique more accessible for use 

(32). Allowing direct access to the extracellular space and the microenvironment of the 

cell, microdialysis has several advantages. It is relatively non-traumatic, and permits the 

analysis of several substances at once and over long periods of time (33, 34). Given these 

characteristics, it is well designed to facilitate the study of local tissue metabolism in both 

adipose as well as muscle tissue. 

A commonly used and commercially available microdialysis device is a double 

lumen catheter, with an inlet port leading fluid (called perfusate) into the outer lumen 
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towards a semipermeable dialysis membrane. This membrane sits in direct contact with 

the extracellular space. Low molecular weight molecules diffuse towards or away from 

the membrane according to their concentration gradients. The resulting fluid, called 

dialysate, leaves the membrane via the inner cannula to the outlet port, and is collected 

for analysis. The types of substances measured by the technique are determined by the 

permeability of the membrane, and substances that are highly lipophilic, such as FFAs, 

cannot be measured (33). Ideally, this arrangement mimics a blood vessel, with a 

microinfusion pump maintaining a low, constant flow of perfusate entering the exterior 

lumen, equilibrating at the membrane, and exiting as dialysate through the interior lumen 

(33). 

Although free fatty acids are perhaps the most reliable indicator of lipolysis, there 

are multiple roadblocks to using them as a marker. Free fatty acids can be activated and 

re-esterified into new triacylglycerol (35, 36). This flux of FFAs makes them a poor 

candidate for tracking lipolysis. Additionally, as previously mentioned, FFAs cannot be 

measured with the current microdialysis techniques (33). Glycerol, on the other hand, is 

not only permeable to the dialysis membrane, but also is not reesterified to any 

significant extent (37). Although glycolysis is another potential source for glycerol, 

Nuijan et al. found that in the postabsorbtive state, more than 98% of the glycerol that 

appears derives from lipolysis, and thus the rate of appearance of glycerol can safely be 

used to estimate the rates of overall lipolysis in vivo (35). 
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Statement of Purpose and Hypothesis 

The purpose of this study was to determine whether the failure of insulin to 

suppress lipolysis in adolescents with poorly controlled Type 1 diabetes mellitus is 

related to the insulin resistance observed in this population. Our null hypothesis was that 

there is no relationship between the failure of insulin to inhibit lipolysis and the insulin 

resistance seen in adolescents with poorly controlled Type 1 diabetes mellitus. To 

answer this question, we employed the euglycemic hyperinsulinemic clamp technique to 

determine the insulin sensitivity of adolescents with and without diabetes, while at the 

same time utilizing microdialysis to directly follow the appearance of glycerol (as a 

marker of lipolysis) in muscle and adipose tissues. Additionally, fat and carbohydrate 

oxidation was followed by the use of indirect calorimetry. 
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METHODS 

Subjects 

Sixteen subjects in total participated in the study: 10 adolescents with Type 1 

diabetes mellitus, and 6 non-diabetic adolescent controls. The 10 participating subjects 

with diabetes attended the Pediatric Diabetes Clinic of the Yale-New Haven Medical 

Center. They were eligible for the study if their disease duration was greater than one 

year, if they had no symptoms or signs of autonomic neuropathy, if they were receiving 

no medications other than insulin, and if they were not suffering from any other medical 

illnesses. Additionally, all 10 T1DM subjects had poorly controlled diabetes, as 

indicated by a HbAic greater than 9%. The non-diabetic subjects were recruited 

independently, and all were in good health. Prior to the study day, a detailed medical 

history was taken from each patient and a physical exam was performed. Adiposity was 

determined by calculation of body mass index (BMI) using each subject’s height and 

weight, as well as by measurement of body fat mass assessed using dual energy x-ray 

absorption (DEXA) on a subsequent visit to the Yale General Clinical Research Center. 

Subject characteristics are summarized in Table 1. 
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Table 1. Clinical Characteristics (Mean ± S.E.M.) 

T1DM Adolescents Normal Control Adolescents 

N 10 6 

Gender (M/F) 7M/3F 3M/3F 

Age (years) 16.2 ±0.6 15.8 ±0.9 

Height (m) 1.64 ±0.07 1.62 ±0.03 

Weight (kg) 66.8 ±3.2 58.6 ±2.5 

BMI (kg/m2) 23.2 ±0.7 22.2 ±0.8 

HbAlc (%) 10.0 ±0.2 

Total % Fat 18.5 ±23.5 20.7 ±3.6 

The protocol was approved by the Human Investigation Committee of the Yale School of 

Medicine, and prior to the study, informed, written consent was obtained from all 

subjects and a parent of the adolescent subjects. 

Euglycemic Hyperinsulinemic Clamp 

Subjects with diabetes were admitted to the Yale General Clinical Research 

Center the night prior to the study. An intravenous catheter was inserted into their left 

antecubital vein for infusion of insulin overnight, and later for infusion of test substances. 

These patients were then given continuous basal insulin infusion overnight to ensure 

euglycemia, based on plasma glucose measurements obtained every 30 to 60 minutes. 

All diabetic patients maintained their plasma glucose greater than 4.0 mmol/L during the 

evening prior to the study. 
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All subjects were available at 0700 at the Yale General Clinical Research Center, 

following an overnight fast of at least nine hours. Blood pressure and pulse were 

obtained, and patients were placed in the supine position for investigation. During the 

study, patients were allowed to watch movies as they rested. A retrograde cannula was 

inserted into a vein in the dorsum of the right hand, which was then placed inside a 

heated box (approximately 55° C) for sampling of arterialized venous blood (38). 

Infusion of small amounts of normal saline (0.9%) was used to maintain patency of this 

catheter between sampling. On the morning of the study, the nondiabetic subjects 

received an intravenous catheter in their left antecubital vein for infusion of test 

substances. 

Blood samples were collected every ten minutes during the baseline period (forty 

minutes) for measurement of plasma insulin, glycerol, free fatty acid, and glucose levels. 

Following the baseline period, a two-step priming dose of insulin was administered (3.2 

mU/kg/min followed by 1.6 mU/kg/min, each lasting for five minutes), followed by a 

continuous infusion of insulin at 0.8 mU/kg/min for 180 minutes. Plasma glucose levels 

were measured at the bedside every five minutes (Beckman glucose analyzer, Beckman 

Instruments, Fullerton, CA, USA), and glucose levels were kept constant (~4.6 mmol/L) 

by variable infusion of a 20% dextrose solution. Blood samples were taken at 10 to 20 

minute intervals for analysis of plasma insulin, glycerol, and free fatty acids. Respiratory 

gas exchange rates were measured by a computerized open circuit indirect calorimetry 

(Deltatrac, Sensor Medics, Helsinki, Finland) with a ventilated hood system during the 

basal period, and thirty minutes prior to the end of the clamp procedure. 
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Microdialysis 

Two microdialysis catheters with a 30 mm membrane and a molecular weight 

cutoff of 20 kDa (CMA/60, CMA/microdialysis, Acton, MA) were placed: one in the 

gastrocnemius muscle, and one in the anterior abdominal fat tissue. One hour prior to 

placement of catheters, the skin was anesthetized with EMLA cream (Astra, Sodertajee, 

Sweden), and again at insertion with an injection of lidocaine. The muscle microdialysis 

probe was placed in the medial portion of the left gastrocnemius, where the muscle tapers 

to become the Achilles tendon. This allowed the probe to be placed parallel to the fibers 

of the muscle, thus preventing bending on insertion. One probe was placed in the 

periumbilical adipose tissue. This catheter was inserted horizontally in a medial direction 

from an insertion point approximately 8 cm lateral to the umbilicus (39). The input 

tubing of each catheter was connected to a microinfusion pump (CMA/100, CM A 

Medical, Stockholm, Sweden) and continuously perfused with artificial extracellular fluid 

(135 mmol/L NaCl, 3 mmol/L KC1, 1 mmol/L MgCL, 1.2 mmol/L CaCL, 300 pmol/L 

ascorbate, and 2 mmol/L Na phosphate buffer adjusted to pH 7.4). 

After catheter insertion, a fifteen minute flush period ensued; followed by a three 

hour equilibration period designed to eliminate artifact secondary to the trauma of 

insertion of the catheters. Dialysate was collected every sixty minutes. The entire study 

lasted six hours (three hours of equilibration period and three hours of experimental 

period), during which the subjects reclined in bed. 
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Substrate and Hormone Measurements 

Plasma insulin was measured using a double-antibody radioimmunoassay (Linco 

Research, St. Louis, MO, USA). In patients with diabetes, free insulin was also 

determined by precipitating plasma samples at the bedside with polyethylene glycol 

(PEG), with all measurements being performed within one month of the study. The 

recovery in healthy subjects following addition of PEG was 99 ± 3%. Total HbAic was 

measured by high-performance liquid chromatography using Bio Rad (Hercules, CA, 

USA) equipment with a normal reference range of 0.045 - 0.059. Plasma free fatty acids 

were measured by the colorimetric method. Dialysate and plasma glycerol was measured 

in duplicate by an enzymatic fluorometric method using an automated multianalyzer 

(CMA/600, CMA/Microdialysis, Stockholm, Sweden). 

Calculations 

During the insulin clamp study, the amount of glucose infused to maintain 

euglycemia provided a means of determining insulin-stimulated glucose metabolism. 

The glucose infusion rate was calculated at 20 minute intervals, and corrected for 

deviations from the target plasma glucose level, as previously described by DeFronzo et 

al. (9). Respiratory gas exchange rates were measured by a computerized open circuit 

indirect calorimetry (Deltatrac, Sensor Medics, Helsinki, Finland) with an ventilated 

hood system. Oxidation rates for carbohydrate, fat, and protein before and during the 

clamp procedure were calculated from the measured O2 consumption, CO2 production, 

and urinary nitrogen excretion, by assuming that each gram of urinary nitrogen is derived 
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from the oxidation of 6.25 grams of protein, and that each gram of substrate oxidized 

consumes O2 and generates CO2 in the following amounts: carbohydrate, 0.829 liters of 

O2 and 0.829 liters of CO2; fat, 2.020 liters of O2 and 1.428 liters of CO2; protein, 0.905 

liters of O2 and 0.781 liters of CO2 (40). 

Statistics 

All values are presented as mean ± standard error of the mean (S.E.M.). Repeated 

measures analysis of variance (ANOVA) was performed with a single factor to compare 

the responses of the different groups over time. SPSS (version 10.0) was used for 

statistical analysis. 

The thesis author performed the majority of the subject recruitment of the diabetic 

subjects and assisted with these microdialysis studies. Further recruitment and 

microdialysis studies of the control subjects were done by Dr. Rubina Heptulla and Dr. 

Sonia Caprio. The thesis author assisted in the compilation of the data, and was assisted 

by Dr. Tony Ma in the statistical analysis. 
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RESULTS 

Insulin Basal plasma insulin was not significantly different between the subjects with 

T1DM and the normal controls (13.4 ± 1.5 pU/ml for T1DM versus 11.8 ± 1.3 pU/ml for 

controls) (p = 0.49). During the hyperinsulinemic euglycemic clamp procedure, both 

groups reached similar steady-state plasma insulin levels during the last hour of the study 

(38.8 ± 2.0 pU/ml for T1DM versus 41.7 ± 2.8 pU/ml for controls) (p = 0.41). 

Glucose Basal plasma glucose levels were significantly different between groups (119.0 

± 5.9 mg for T1DM versus 91.8 ± 2.5 mg for controls) (p < 0.05), but became and 

remained similar as the clamp study proceeded (96.6 ± 2.6 mg for T1DM versus 87.5 ± 

3.7 mg for controls, at 30 minutes from initiation of clamp) (p > 0.05), and care was 

given to maintain plasma glucose at ~ 89 mg (5mM). 

Glucose Metabolism 

The amount of glucose infused to maintain euglycemia during the clamp 

procedure serves as an index of insulin-stimulated glucose metabolism. During the 

clamp procedure, this “M” value was 39% lower in subjects with poorly controlled 

diabetes (120.0 ± 15.8 mg/m -min) when compared with normal controls (196.8 ± 39.8 

mg/m2-min) (p = 0.051 assuming a nonparametric distribution, Figure 1). 





Basal carbohydrate oxidation rates were similar in the poorly controlled T1DM 

group (32.8 ± 3.9% of total energy expenditure (EE)) when compared to the normal 

control group (44.3 ± 5.1% of total EE) (p = 0.09). However, during insulin infusion, 

while the control group increased their carbohydrate oxidation significantly by 43% 

(from a basal value of 44.3 ± 5.1% of total EE to a clamp value of 63.6 ± 5.0% of total 

EE) (p = 0.003, Figure 2A), the T1 DM group also increased their carbohydrate oxidation, 

but not significantly (from basal value of 32.8 ± 3.9% of total EE to a clamp value of 

44.1 ± 6.1% of total EE) (p > 0.05, Figure 2 A). As a result, rates of carbohydrate 

oxidation during the clamp were significantly lower in the T1DM group (44.1 ± 6.1% of 

total EE) when compared to the control group (63.6 ± 5.0% of total EE) (p < 0.05, Figure 

2A). 

Fat Metabolism 

There was not a significant difference in basal rates of fat oxidation between the 

T1DM group (53.8 ± 4.2% of total EE) and the normal control group (40.2 ± 5.1% of 

total EE) (p = 0.06, Figure 2B). However, during the infusion of insulin, the control 

group significantly suppressed their rate of fat oxidation by 44% (from a basal value of 

40.2 ± 5.1% of total EE to a clamp value of 22.5 ± 4.7% of total EE) (p = 0.002, Figure 

2B), whereas in the T1DM group, fat oxidation changed minimally (from a basal rate of 

53.8 ± 4.2% of total EE to a clamp value of 42.8 ± 6.3% of total EE) (p = 0.06, Figure 

2B). Therefore, rates of fat oxidation during the infusion of insulin were significantly 

higher in the T1DM group (42.8 ± 6.3% of total EE) when compared to the control group 

(22.5 ± 4.7% of total EE) (p < 0.05, Figure 2B). 
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Basal plasma free fatty acid levels were similar between groups (500.8 ± 73.3 pM 

for the T1DM group versus 663.2 ± 129.1 pM for the control group) (p = 0.26). During 

the infusion of insulin, the T1DM group showed significantly less percent suppression of 

plasma FFA from baseline in the second hour (62.9 ± 6.2% for T1DM versus 84.4 ± 

5.8% for control) (p = 0.035, Figure 3) and in the third hour (49.5 ± 8.1% for T1DM 

versus 85.1 ± 4.1% for control) (p = 0.006, Figure 3) when compared to the control 

group. 

Basal plasma glycerol levels were similar between groups, as shown in Figure 4. 

During insulin infusion, plasma glycerol remained near baseline in the T1DM group, 

while the control group experienced a decrease in plasma glycerol. The T1DM group 

had a significantly higher plasma glycerol at the end of the clamp procedure when 

compared to the control group (p < 0.05). 

Glycerol Concentrations in Adipose Microdialysate 

Basal values of glycerol present in adipose microdialysate were similar in both the 

T1DM group (239.1 ± 24.9 pM) and the control group (241.3 ± 34.6 pM) (p = 0.96, 

Figure 5 A). However, during the second and third hours of the clamp procedure, 

glycerol concentration in adipose microdialysate were significantly higher in the T1DM 

group compared to the control group (149.6 ± 18.5 pM for T1DM versus 89.2 ± 7.3 pM 

for controls during the second hour, p = 0.03, and 149.6 ± 22.8 pM for T1DM versus 

82.0 ± 11.4 pM for controls during the third hour, p = .047, Figure 5A). This change is 
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similarly reflected in Figure 5B, which shows a significantly lower percent suppression 

of glycerol from baseline experienced in the T1DM group during the second (36.6 ± 

3.7% for T1DM versus 59.7 ± 5.5% for controls) (p = 0.003) and third hours (38.0 ± 

4.8% for T1DM versus 63.2 ± 6.5% for controls) (p = 0.007) of the clamp procedure 

when compared to the control group. 

Glycerol Concentrations in Muscle Microdialysate 

Basal muscle glycerol concentrations in microdialysate were similar in the T1DM 

group (131.4 ± 11.1 pM) and the normal control group (141.5 ± 10.1 pM) (p = 0.55, 

Figure 6 A). By the third hour of the clamp procedure, the T1DM group had a 

significantly higher muscle glycerol concentration in microdialysate when compared to 

the control group (85.3 ± 7.5 pM for the T1DM group versus 51.5 ± 7.6 pM for the 

control group) (p = 0.01, Figure 6A). This failure to suppress glycerol production in 

muscle is also reflected in Figure 6B, where the percent suppression of glycerol from 

baseline in muscle microdialysate is significantly lower in the T1DM group at hour two 

(29.8 ± 4.2% for T1DM versus 47.7 ± 3.36% for control) (p = 0.01) as well as at hour 

three (33.6 ± 3.9% for T1DM versus 63.5 ± 4.8% for controls) (p < 0.001), when 

compared to control subjects. 

Insulin-stimulated Glucose Metabolism and Dialysate Glycerol Concentration 

An inverse relationship is observed between all subjects’ insulin-stimulated 

glucose metabolism, represented by their M values, and the concentration of glycerol in 

the extracellular fluid of adipose and muscle tissues at the end of the clamp period (after 
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three hours of euglycemic hyperinsulinemia). This relationship is demonstrated in 

Figures 7 A and 7B. In adipose tissues, this relationship is defined by an r = 0.63 (p < 

0.05, Figure 7A), and in muscle tissue, an r = 0.63 is observed (p < 0.05, Figure 7B). 

This correlation persists even when the subjects are separated into individual groups and 

analyzed independently (data not shown). 
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Figure 1. Reduced insulin stimulated glucose metabolism in subjects with Type 1 diabetes versus normal 

controls as an indication of insulin resistance. The single asterisk denotes p = 0.05 for adolescents with 

diabetes versus the control group. 

Figure 2A. Rates of oxidation of carbohydrate from calorimetry analysis before and during the glucose 

clamp procedure for T1 DM and control groups. The single asterisk denotes p = 0.003 for the control group 

during the clamp versus this group’s basal value. The double asterisk denotes p < 0.05 for the T1DM group 

when compared to the control group during the clamp procedure. 
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Figure 2B. Rates of oxidation of fat from calorimetry analysis before and during the glucose clamp 

procedure for T1DM and control groups. The single asterisk denotes p = 0.002 for the control group during 

the clamp versus this group’s basal value. The double asterisk denotes p < 0.05 for the T1DM group when 

compared to the control group during the clamp procedure. 





23 

Plasma FFA % Change 

o> 
05 
c 
re 
.c 
O 
< 

0 

-20 

-40 

-60 

-80 

■100 

T 

1st Hour 2nd Hour 3rd Hour 

□ T1DM 

□ Control 

Figure 3. Percent change from baseline in plasma free fatty acids for the T1DM and control groups during 

the three-hour course of the glucose clamp procedure. The negative percents imply a net suppression of 

free fatty acid concentration in plasma. The single asterisk denotes p < 0.05 for the T1DM group versus the 

control group. 
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Time (hours) 

Figure 4. Concentration of glycerol in plasma during the course of the glucose clamp for T1DM and 

control groups. The single asterisk denotes p < 0.05 for the T1DM group versus the control group. 
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Figure 5A. Absolute concentration of glycerol in microdialysate from adipose tissue during the three-hour 

course of the glucose clamp procedure. The single asterisk denotes p < 0.05 for the T1DM group versus 

the control group. 
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Figure 5B. Percent change from baseline in glycerol concentration from adipose microdialysate during the 

glucose clamp procedure. The negative percents imply a net suppression of glycerol concentration in 

adipose tissue extracellular fluid. The single asterisk denotes p < 0.01 for the T1DM group versus the 

control group. 
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Muscle Glycerol 

Figure 6A. Absolute concentration of glycerol in microdialysate from muscle tissue during the three-hour 

course of the glucose clamp procedure. The single asterisk denotes p = 0.01 for the T1DM group versus 

the control group. 
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Figure 6B. Percent change from baseline in glycerol concentration from muscle microdialysate during the 

glucose clamp procedure. The negative percents imply a net suppression of glycerol concentration in 

muscle tissue extracellular fluid. The single asterisk denotes p = 0.01 for the T1 DM group versus the 

control group. The double asterisk denotes p < 0.001 for the T1DM group versus the control group. 
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Figure 7A. Absolute concentration of glycerol in adipose microdialysate at the end of the three-hour 

glucose clamp procedure versus M value. The inverse correlation observed is defined by r = 0.63, 

and p < 0.01. 
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Figure 7B. Absolute concentration of glycerol in muscle microdialysate at the end of the three-hour 

glucose clamp procedure versus M value. The inverse correlation observed is defined by r = 0.63, 

and p < 0.01. 
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DISCUSSION 

In designing the present investigation, we set out to explore a potential 

mechanism by which a defect in insulin action might lead to the substantial insulin 

resistance encountered in adolescents with Type 1 diabetes. To accomplish this task, we 

used the technique of microdialysis, the glucose clamp procedure, and indirect 

calorimetry to evaluate insulin’s action on lipolysis in adolescents with poorly controlled 

Type 1 diabetes, and compared the observed response to that of normal adolescents. By 

utilizing the microdialysis technique to monitor glycerol concentration in the extracellular 

fluid, we were permitted to target the study of lipolysis directly to tissues of interest, 

specifically adipose and muscle, with minimal invasiveness. In our study, we have noted 

a specific failure of insulin to suppress lipolysis in the T1DM group as compared to the 

normal controls which is correlated with their degree of insulin resistance. 

In our adolescent subjects with Type 1 diabetes, we found a significant 

derangement of insulin-stimulated glucose metabolism when compared to the control 

group of adolescents. Insulin-stimulated glucose metabolism in total was reduced, 

indicated by the smaller glucose infusion necessary to maintain euglycemia during the 

clamp procedure (and reflected by a lower “M” value) in the T1DM group when 

compared to the control group. This reduction can be partly explained by decreased 

utilization of carbohydrate fuel in the T1DM group versus the control group during 

insulin infusion. Although basal rates of carbohydrate metabolism were similar between 

the two groups, the response to infusion of insulin was not. While the control group 
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significantly increased their rate of carbohydrate oxidation in response to insulin infusion, 

the T1DM group also increased, but not significantly. Overall, the T1DM group 

experienced significantly less carbohydrate oxidation during the insulin infusion than did 

the control group. In general, T1DM group was less able to react appropriately to the 

infusion of insulin by utilizing available carbohydrates, as reflected by lower “M” values 

and reduced rates of carbohydrate oxidation, when compared to the normal control 

adolescent group. 

Profound difficulties with the management of fat metabolism in response to 

insulin infusion were observed in our adolescents with diabetes when contrasted to the 

control group. Although basal lipid oxidation rates were similar in both groups, the 

control group appropriately suppressed fat oxidation in response to insulin infusion, while 

the T1DM group suppressed much less. This translated into a significant difference in 

suppression of lipid oxidation between the two groups during the clamp procedure, with 

persistent utilization of lipid fuel by the T1DM group. These findings were echoed at the 

tissue level. Using the microdialysis technique in both muscle and adipose tissues, we 

discovered that adolescents with Type 1 diabetes failed to suppress the appearance of 

glycerol in the extracellular fluid compartments of both of these tissue sites. A 

significant difference between the experimental and control groups in glycerol 

concentration in the microdialysate samples from adipose tissue was observed after as 

little as two hours of insulin infusion. Since glycerol can appropriately be used as a 

marker of lipolysis (35-37), our findings imply a failure of insulin to inhibit lipolysis in 

adipose and muscle tissues in the T1DM group when compared to the control group. 
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This failure of suppression was also recognized at the whole body level, as the T1DM 

group was found to have higher concentrations of free fatty acids and glycerol in plasma 

during insulin infusion than did their normal counterparts. These results suggest that the 

adolescents with diabetes failed to react appropriately to the infusion of insulin by 

slowing lipid metabolism via reduced oxidation of fat and decreased lipolysis. 

The effects on glucose and fat metabolism seen in the group of adolescents with 

Type 1 diabetes in this study illustrate a generalized insulin resistance. The reduction in 

insulin sensitivity we observed is not wholly unexpected, as adolescents typically have 

poorer metabolic control (10,11) and require higher insulin dosage (12) than their adult 

counterparts. This insulin insensitivity can be partly explained and substantiated by the 

results of two previous studies. The insulin resistance of Type 1 diabetes has been 

previously described by DeFronzo et al. (2), and is undoubtedly a factor contributing to 

the lack of insulin sensitivity that we have observed. In addition to this is the insulin 

resistance related to puberty, first described by Amiel et al. in 1986 (15). Our 

experimental group of subjects is at the intersection of these two insulin resistant states, 

and thus their reduced insulin sensitivity was anticipated. 

The clarification of the mechanism of the insulin insensitivity seen in adolescents 

with Type 1 diabetes, and demonstrated in this study, was the ultimate goal of this 

investigation. In general, the mechanism by which insulin resistance occurs is 

controversial. Since Randle first proposed his glucose-fatty acid cycle in 1963 (17), free 
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fatty acids have been the focus for much of the research in this area. Many have tried to 

elucidate a mechanism that would link insulin resistant states to elevated circulating 

FFAs, and have succeeded to varying degrees (20-29, 41). Elevated FFAs have been 

noted in adolescents (14), accompanied by a failure to suppress lipolysis in response to 

insulin (16). These observations prompted investigation into the mechanism of the 

insulin resistance of puberty (29). Arslanian et al. found elevated rates of lipid oxidation 

and decreased insulin-stimulated glucose metabolism in pubertal subjects when compared 

with prepubertal and adult subjects. Based on these findings, they concluded that the 

insulin resistance of puberty is related to insulin’s impaired suppression of lipid oxidation 

(29). More recently, Shulman has proposed a mechanism, based on his (28) and others’ 

investigations, to account for the insulin resistance associated with increased FFAs (41). 

He theorizes that the accumulation of free fatty acid metabolites prevents the appropriate 

action of the insulin receptor, leading to failure to activate IRS-1-associated 

phosphatidylinositol 3-kinase and resulting in decreased activation of glucose transport 

(41, 28). The present study was undertaken to investigate whether the failure of insulin 

to suppress lipolysis is an important influence on the insulin resistance seen in 

adolescents with T1DM. Additionally, we sought to clarify the role of adipose and 

muscle tissues in this failure of inhibition, given recent research that has unmasked the 

importance of these sites in the regulation of fat metabolism and insulin resistance 

(30,31). In the current investigation, we have observed an inverse correlation between 

the absolute concentration of glycerol in adipose and muscle microdialysate during 

insulin infusion and insulin-stimulated glucose metabolism (“M” value). Although 

causation cannot be concluded from the correlation we have noted, our data does suggest 
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that the insulin resistance seen in adolescents with Type 1 diabetes may in part be due to 

the failure of insulin to inhibit lipolysis, and that this failure occurs at the tissue level. It 

is conceivable that the unchecked lipolysis demonstrated in this study induces insulin 

resistance through FFA-induced inhibition of IRS-1-associated PI 3-kinase, as suggested 

by Shulman and his collaborators (28, 41). Our study underscores the importance of 

examining the effects of insulin on metabolic fuels other than glucose, since, as we have 

demonstrated, there exists an extensive network of interrelations between the metabolism 

of many insulin-sensitive fuels. 

In summary, we have observed that the insulin resistance that normally develops 

during puberty is exaggerated in the presence of poorly controlled Type 1 diabetes, and 

that a failure of insulin to suppress lipolysis may partly explain this phenomenon. In 

addition to documenting this deficiency at a total body level, by pioneering the use of the 

microdialysis technique in this population of patients, we were able to directly target our 

study of lipolysis to the muscle and adipose tissues believed to be crucial to the 

regulation of lipolysis. Although causation cannot be inferred from the correlation we 

have demonstrated, our data is consistent with the hypothesis that a failure of insulin to 

inhibit lipolysis in adolescents with T1DM leads to elevated FFAs, which compete with 

glucose for utilization, ultimately causing the marked insulin resistance seen in these 

patients. 





32 

REFERENCES 

1. Atkinson, M.A., and Maclaren, N.K. 1994. Mechanisms of disease: The pathogenesis 
of insulin-dependent diabetes mellitus. N Engl JMed. 331 (21): 1428-1436. 

2. DeFronzo, R.A., Hendler, R., and Simonson, D. 1982. Insulin resistance is a 

prominent feature of insulin-dependent diabetes. Diabetes. 31:795-801. 

3. American Diabetes Association. 1996. Diabetes 1996 Vital Statistics. Alexandria, VA: 

American Diabetes Association. 

4. National Institute of Diabetes and Digestive and Kidney Diseases. 1995. National 

Diabetes Data Group: Diabetes in America, 2nd Edition. National Institutes of Health. 

NIH Publication No. 95-1468. 

5. Tamborlane, W.V., and Ahem, J. 1997. Implications and results of the Diabetes 

Control and Complications Trial. Pediatr Clin NAm. 44(2):285-299. 

6. DCCT Research Group. 1986. The Diabetes Control and Complications Trial 
(DCCT): Design and methodologic considerations for the feasibility phase. Diabetes. 

35:530-545. 

7. DCCT Research Group. 1993. The Diabetes Control and Complications Trial 
(DCCT): The effect of intensive treatment of diabetes on the development and 

progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J 

Med. 329:977-986. 

8. DCCT Research Group. 1994. Effect of intensive diabetes treatment on the 
development and progression of long-term complications in adolescents with insulin- 
dependent diabetes mellitus: Diabetes Control and Complications Trial. J Pediatr. 

125(2): 177-188. 

9. DeFronzo, R.A., Tobin, J.D., and Andres, R. 1979. Glucose clamp technique: A 

method for quantifying insulin secretion and resistance. Am J Physiol. 237:E214-E223. 

10. Blethen, S.L., Sargeant, D.T., Whitlow M.G., and Santiago, J.V. 1981. Effect of 
pubertal stage and recent blood glucose control on plasma somatomedin C in children 

with insulin-dependent diabetes mellitus. Diabetes. 30:868-872. 

11. Mann, N.P., and Johnston, D.I. 1982. Total glycosylated haemoglobin (HbAi) levels 

in diabetic children. Arch Dis Child. 57:434-437. 

12. Galloway, J.A., and Bressler, R. 1978. Insulin treatment in diabetes. Med Clin N Am. 

62(4):663-680. 





33 

13. Tattersall, R.B., and Lowe, J. 1981. Diabetes in adolescence. Diabetologia. 20:517- 
523. 

14. Amiel, S.A., Sherwin, R.S., Simonson, D.C., Lauritano, A.A., and Tamborlane, W.V. 
1986. Impaired insulin action in puberty: A contributing factor to poor glycemic control 

in adolescents with diabetes. N Engl J Med. 315(4):215-219. 

15. Amiel, S.A., Caprio, S., Sherwin, R.S., Plewe, G., and Haymond M.W., et cil. 1991. 

Insulin resistance of puberty: A defect restricted to peripheral glucose metabolism. J Clin 

Endocrinol Metab. 72(2):277-282. 

16. Caprio, S., Cline, G., Boulware, S., Permanente, C., and Shulman, G.I., et al. 1994. 

Effect of puberty and diabetes on metabolism of insulin-sensitive fuels. Am J Physiol. 

266:E885-E891. 

17. Randle, P.J., Garland, P.B., Hales, C.N., and Newsholme, E.A. 1963. The glucose 

fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes 
mellitus. Lancet. 1:785-789. 

18. Schonfeld, G., and Kipnis, D.M. 1968. Effects of fatty acids on carbohydrate and 
fatty acid metabolism of rat diaphragm. Am J Physiol. 215(2):513-522. 

19. McGairy, J.D. 1992. What if Minkowski had been ageusic? An alternative angle on 
diabetes. Science. 258:766-770. 

20. Ferrannini, E., Barrett, E.J., and Bevilacqua, S. 1983. Effect of fatty acids on glucose 
production and utilization in man. J Clin Investig. 72:1737-1747. 

21. Wolfe, B.M., Klein, S., Peters, E.J., Schmidt, B.F., and Wolfe, R.R. 1988. Effect of 
elevated free fatty acids on glucose oxidation in normal humans. Metab Clin Exp. 

37:323-329. 

22. Bevilacqua, S., Buzzigoli, G., Bonadonna, R., Brandi, L.S., and Oleggini, M., et al. 

1990. Operation of Randle’s cycle in patients with NIDDM. Diabetes. 39:383-389. 

23. Boden, G., Jadali, F., White, J., Liang, Y., and Mozzoli, M., et al. 1991. Effects of fat 

on insulin-stimulated carbohydrate metabolism in normal men. J Clin Investig. 88:960- 
966. 

24. Boden, G., Chen, X., Ruiz, J., White, J.V., and Rossetti, L. 1994. Mechanisms of 

fatty acid-induced inhibition of glucose uptake. J Clin Investig. 93:2438-2446. 

25. Kelley, D.E., Mokan, M., Simoneau, J., and Mandarino, L.J. 1993. Interaction 

between glucose and free fatty acid metabolism in human skeletal muscle. J Clin 

Investig. 92:91-98. 





34 

26. Roden, M., Price, T.B., Perseghin, G., Petersen, K.F., and Rothman, D.L., et al. 

1996. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Investig. 

97(12):2859-2865. 

27. Cline, G.W., Magnusson, I., Rothman, D.L., Petersen, K.F., and Laurent, D., et al. 

1997. Mechanism of impaired insulin-stimulated muscle glucose metabolism in subjects 
with insulin-dependent diabetes mellitus. J Clin Investig. 99(9):2219-2224. 

28. Dresner, A., Laurent, D., Marcucci, M., Griffin, M.E., and Dufour, S., et al. 1999. 

Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 

3-kinase activity. J Clin Investig. 103:253-259. 

29. Arslanian, S.A., and Kalhan, S.C. 1994. Correlations between fatty acid and glucose 
metabolism: Potential explanation of insulin resistance of puberty. Diabetes. 43:908-914. 

30. Hagstrom-Toft, E., Enoksson, S., Moberg, E., Bolinder, J., and Amer, P. 1997. 
Absolute concentrations of glycerol and lactate in human skeletal muscle, adipose tissue, 

and blood. Am J Physiol. 273:E584-E592. 

31. Jacob, S., Hauer, R., Becker, S., Artzner, P., and Grauer, K., et al. 1999. Lipolysis in 
skeletal muscle is rapidly regulated by low physiological doses of insulin. Diabetologia. 

42:1171-1174. 

32. Lonnroth, P., Jansson, P.-A., and Smith, U. 1987. A microdialysis method allowing 
characterization of intercellular water space in humans. Am J Physiol. 253:E228-E231. 

33. Amer, P., and Bulow, J. 1993. Assessment of adipose tissue metabolism in man: 

comparison of Fick and microdialysis techniques. Clin Sci. 85(3):247-256. 

34. Lonnroth, P. 1997. Microdialysis in adipose tissue and skeletal muscle. Horm Metab 

Res. 29(7):344-346. 

35. Nuijan, N., Kennedy, F., Consoli, A., Martin, C., and Miles, J., et al. 1988. 

Quantification of the glycolytic origin of plasma glycerol: Implications for the use of the 
rate of appearance of plasma glycerol as an index of lipolysis in vivo. Metab Clin Exp. 

37(4): 386-389. 

36. Edens, N.K., Leibel, R.L., and Hirsch, J. 1990. Mechanism of free fatty acid re¬ 
esterification in human adipocytes in vitro. J Lipid Res. 31:1423-1430. 

37. Shapiro, B., Chowers, I., and Rose, G. 1957. Fatty acid uptake and esterification in 

adipose tissue. Biochim Biophys Acta. 23:115-120. 

38. McGuire, E.A.H., Helderman, J.H., Tobin, J.D., Andres, R., and Berman, M. 1976. 
Effects of arterial versus venous sampling on analysis of glucose kinetics in man. J Appl 

Physiol. 41(4):565-573. 





35 

39. Amer, P., Bolinder, J., Eliasson, A., Lundin, A., and Ungerstedt, U. 1988. 

Microdialysis of adipose tissue and blood for in vivo lipolysis studies. Am J Physiol. 

255:E737-E742. 

40. Frayn, K.N. 1983. Calculation of substrate oxidation rate in vivo from gaseous 
exchange. JAppl Physiol. 55:628-634. 

41. Shulman, G.I. 2000. Cellular mechanisms of insulin resistance. J Clin Investig. 

106(2): 171-176. 













YALE MEDICAL LIBRARY 

3 9002 0 035 0339 

HARVEY CUSHING/JOHN HAY WHITNEY 
MEDICAL LIBRARY 

MANUSCRIPT THESES 

Unpublished theses submitted for the Master’s and Doctor’s 
degrees and deposited in the Medical Library are to be used only with 
due regard to the rights of the authors. Bibliographical references 
may be noted, but passages must not be copied without permission of 
the authors, and without proper credit being given in subsequent 
written or published work. 

This thesis by 
has been used by the following person, whose signatures attest their 
acceptance of the above restrictions. 

NAME AND ADDRESS DATE 




	Yale University
	EliScholar – A Digital Platform for Scholarly Publishing at Yale
	2001

	Insulin resistance in adolescents with type I diabetes is related to a failure to suppress lipolysis
	Allison P. Stewart
	Recommended Citation


	Insulin resistance in adolescents with type I diabetes is related to a failure to suppress lipolysis

