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Introduction 

In a study recently to detect biochemical differences between 

malignant and nonmalignant cells to render the former more susceptible 

to chemotherapy^, Sugimura et al showed the inability of Walker 

256 rat breast carcinosarcoma cells to grow on a methionine-deficient 

49 
diet. Halpern et al. extended this work by demonstrating that L1210 

mouse leukemia cells and Jill human leukemia cells also required pre¬ 

formed methionine to grow. Normal cells, alternatively, grew well in 

methionine-free medium as long as the important substrates and co-factors 

for methionine biosynthesis were present, namely, homocysteine, 5-methyl 

tetrahydrofolate (5MTHF), and vitamin B^- The enzyme methionine syn¬ 

thetase, with vitamin as co-factor, catalyzes the methylation of 

homocysteine by 5MTHF to yield methionine and tetrahydrofolate (THF): 

Flomocystei ne Methionine 
+ -^ + 

5MTNF THF 

This difference between normal and malignant cells was exploited 

to the point where it was observed that Walker 256 tumor cells and 

nonmalignant mouse liver fibroblasts placed in culture together grew 

differently depending upon the methionine content of the medium. If 

grown in methionine-deficient medium, all malignant cells died within 

a few weeks, while normal cells thrived. If the medium contained 
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methionine, however, the malignant cells rapidly outgrew the normal 

51 
ones, and the latter shortly all died 

Assay of methionine synthetase activity in several cell lines 

showed decreased absolute activity as well as decreased percent en¬ 

zyme present as holoenzyme, as compared with assay of nonmalignant 

2 
cells . Hal pern postulated in this work that deficient ability to syn¬ 

thesize methionine might account at least in part for the dependence 

of malignant cells on preformed methionine in the growth medium. 

Since the methionine biosynthesis reaction is also closely in¬ 

volved with folate metabolism, Hal pern looked at the reversibi1ity 

of methotrexate (MTX) toxicity in normal and malignant cells in 

50 
vitro . MTX is a potent folic acid analog that causes inhibition of 

THF production and thus disruption of folate metabolism. It was found 

in these studies that leucovorin (LV), a reduced folate often given 

as an antidote or "rescue" agent following administration of MTX to 

tumor patients, readily reversed the effects of MTX on growth inhibi¬ 

tion in both normal and malignant cells. 5MTHF, however, appeared to 

be capable of reversing MTX toxicity only in normal cells, which 

presumably possessed enough methionine synthetase activity to form 

methionine from 5MTHF and release enough THF from this reaction to 

counteract the folate block produced by MTX. 

The results of these studies, while preliminary, seemed exciting. 

We began work to further elaborate the nature of 5MTHF's effect on 

cells treated with MTX. 

In this study, we sought to verify the potentially useful differen- 
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tial reversal of normal vs. malignant cells by 5MTHF through an investi¬ 

gation of the effects of LV and of 5MTHF on the incorporation of 

radio-labelled deoxyuridine ( H UdR) into DMA using MTX-treated cells. 

Mouse leukemia cells (L1210, L5178Y), human acute leukemia cells 

(acute lymphoblastic, acute myeloblastic), and normal human bone marrow 

cells were studied. We used this MTX-sensitive assay to discover 

whether malignant cells could be rescued by 5MTHF as compared to normal 

cells, using LV as well for comparison. 

In addition, we studied the effects of MTX with either LV or 

5MTHF on the growth of LI210 and L5178Y leukemia cells and of Walker 

256 rat breast carcinosarcoma cells during a period of several days 

in tissue culture. Evidence was sought, therefore, from both short¬ 

term and long-term experiments using human and rodent cells in vitro. 





Review of the Literature 

Methotrexate (MTX) is a potent inhibitor of folate and one- 

carbon metabolism which is extremely useful in the chemotherapeutic 

management of malignant disease. In order to better understand the 

relationship between this inhibition and its resulting derangements 

in DNA, RNA, and protein synthesis which lead to cell death, it will 

be useful to briefly review the properties and pathways of folic 

acid and folate intermediates. 

Folate Metabolism 

Folic acid (pteroylmonoglutamic acid) consists of a pteridine 

45 ring attached to para-amino benzoic acid and glutamic acid (Figure 

1). The 2- and 4-positions of the pteridine ring are substituted, as 

indicated in the figure, by an amino group and a hydroxy group, respec 

tively. The 6-position of the ring is the point of attachment of the 

amino end of p-amino benzoic acid, and the carbonyl end of this 

acid is attached via an amide linkage to glutamic acid. 

The 5- through 8-positions of the pteridine ring are of special 

importance, for each of these atoms may be reduced by addition of 

one hydrogen atom, yielding 5,6,7,8-tetrahydrofolic acid, or tetra- 

hydrofolate (THF). This is the principal oxidation-reduction level 

at which most folate reactions occur. One-carbon substitutions at 

the 5- and/or 10-positions result in several important reduced folates 
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Pteridine Ring 
P-Amino 

Benzoic Acid Glutamic Acid 

H 

-ch2-n- // V 

COOH 

ch2 

0 H CH2 
II I I 

-C-N-CH 

COOH 

FOLIC ACID (PTEROYLMONOGLUTAMIC ACID) 

Figure 1. The Structure of Folic Acid. 

Reduction of the pteridine ring yields 7,8-Dihydrofolate (DHF) or 
5,6,7,8-Tetrahydrofolate (THF). 
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Y H 

COOH 
i 
ch2 

0 H CH 
ii i i *■ 

C-N-CH 

COOH 

N METHYL TETRAHYDROFOLIC ACID 

n 
Figure 2. The Structure of N -Methyl Tetrahydrofolic Acid (5MTHF). 

A one-carbon group is substituted at the 5-position. This group is 
donated to homocysteine to form methionine, with THF remaining. 

r Substitution of a formyl (-CH0) group at the 5-position yields 
N -Formyl THF, or LV. 5 

Other possible intermediates include N -Formyl THF, N ,N -Methenyl 
THF, and 0-Methylene THF. The latter two molecules contain a one- 
carbon group bridging the 5- and 10-positions. 
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such as N^-Methyl THF (5MTHF, Figure 2), N^-Formyl THF (citrovorum 

factor, folinic acid, leucovorin, LV), N ^-Formyl THF, N^,N^-Methenyl 

THF and N* * * * 5 * * * *,N10-Methylene THF. 

Folic acid is first reduced to 7,8-Dihydrofolic acid, or dihydro¬ 

folate (DHF), then to THF. The enzyme catalyzing both reductions is 

dihydrofolate reductase (E.C. 1.5.1.5, DHFR, labelled "A" in Figure 3). 

The same enzyme performs both reductions, using NADPH in each case as 

, + 34,121 
a co-factor 

95 
Pure folic acid makes up less than 10% of dietary folates . Most 

forms present in a typical American diet consist of reduced folates, 

often containing polymers of several glutamic acid moieties rather 

20 45 92 
than the single monoglutamate ’ ’ 

A principal metabolic function of THF is to donate a one-carbon 

5 10 
unit from serine to form glycine and N ,N -Methylene THF, as in Figure 

45 
3. This enzyme is a vitamin B^-requiring transhydroxymethylase , and 

is an important source for the regeneration of glycine from serine. 

5 10 
N ,N -Methylene THF engages in two important reactions: an 

essentially irreversible reduction via NADPH to produce 5MTHF^, or 

the donation of its one-carbon unit to deoxyuridylic acid (dUMP). The 

latter reaction forms thymidylic acid (dTMP), which after becoming 

further phosphorylated to dTTP is incorporated into DNA as a pyrimidine 

nucleotide^’The enzyme catalyzing the conversion of dUMP to 

dTMP is thymidylate synthetase (Figure 3, "B"). A product of this 

reaction is DHF, which must be again reduced to the THF reduction level 
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to proceed further in folate pathways. 

Thymidine deoxyribonucleoside (TdR) is able to bypass the thymi- 

dylate synthetase enzyme, as indicated in Figure 3. TdR is directly 

phosphorylated to dTMP by a kinase, and subsequently enters DNA synthesis 

as dTTP. 

The principal role of 5MTHF is the methylation of homocysteine 

6 76 100 
to form methionine and THF ’ ’ . The enzyme catalyzing this reaction, 

5 
methionine synthetase (E.C. 2.1.1.13, N -Methyl THF:Homocysteine Methyl- 

transferase, Figure 3, "C"), requires vitamin in the methylcobalamin 

, , . 27,45 
form as a co-factor 

Other Folate Pathways 

In addition to participation in serine, glycine, homocysteine 

and methionine metabolism, reduced folates also participate in the 

catabolism of histidine (Figure 3). The reduction of histidine to 

formiminoglutamic acid enables the latter molecule to donate its 

5 
formimino moiety to THF, yielding glutamic acid and N -Formimino THF. 

The latter product is cyclo-deaminated, as indicated in the figure, 

to produce N^,N^-Methenyl THF. 

Reduced folate derivatives participate in the de novo synthesis 

5 10 
of purines at two different stages. N ,N -Methenyl THF, the product 

of histidine catabolism just described, donates its one-carbon group 

to glycineamide ribonucleotide (GAR), producing the formyl a ted ribo¬ 

nucleotide FGAR, shown in Figure 3, "D". This step causes incorporation 

of the carbon at the 2-position of the purine ring. 

A few steps later in the build-up of the ring, N^-Formyl THF 
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loses its formyl group to 4-amino-5-imidazole carboximide ribotide 

(AICAR), again yielding a formylated product, FAICAR (Figure 3, "E"). 

FAICAR is dehydrated to yield the common precursor of both purines, 

56 
inosinic acid . In this conversion from AICAR to FAICAR, the carbon 

at the 8-position of the purine ring is incorporated. 

102 
A final important folate intermediate is LV. Silverman et al. 

described the enzymatic transfer of its formyl group to glutamic acid, 

resulting in N-formyl glutamate and the regeneration of THF. In 

88 
addition, Nahas et al. found that LI210 mouse leukemia cells were 

able to rapidly metabolize ^C-labelled LV formyl groups through 

5 10 
the other two principal LV conversion routes, forming N ,N -Methenyl 

THF and N10-Formyl THF (Figure 3). 

Methionine Synthetase 

The methionine synthetase reaction, discussed previously, is 

a crucial source of the amino acid for protein synthesis when pre¬ 

formed methionine is lacking in the medium. The ability to produce 

methionine via this reaction, in turn, is critically dependent upon 

the presence of vitamin B-^ to sufficiently activate the enzyme. 

Rats grown on a methionine-free diet containing homocysteine but 

lacking vitamin B-^ did not grow nearly as well as those on the same 

diet supplemented with the vitamin^. Mangum^ showed similar results 

in several normal and malignant cell lines grown in vitro, and Kutzbach 

74 
et al. found that methionine synthetase activity was totally depen- 

12* 
dent upon the presence of B 
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lt is currently believed that activation of the enzyme in the 

presence of vitamin B,^ is probably due to conversion of inactive 

2 55 71 
apoenzyme to functional holoenzyme ’ * . In baby hamster kidney 

cells grown in vitro, addition of the vitamin to medium containing 

homocysteine in place of methionine resulted in a sudden four-fold 

69 25 
increase in enzyme activity . Similarly, Gawthorne and Smith showed 

that in vitamin B-j ^-deficient ewes methionine synthetase activity in 

liver was almost totally absent. 

Although methylcobalamin is the form of B^ required by the en¬ 

zyme, most mammalian cells are able to utilize the cyano and hydroxy 

forms of the vitamin, presumably by converting them to the methyl 

14 
form . There have been reported in the literature several cases of 

congenital deficiencies in ability of human cells to properly trans¬ 

port or utilize vitamin B^, resulting in homocystinemia, homocystei nuria, 

, , ... . . 86,87 
and hypomethiomnerma 

5MTHF, a substrate in the methionine synthetase reaction, appears 

to be the predominant reduced folate form in mammalian serum and cyto¬ 

plasm^. Administration of ^C-labelled 5MTHF to L1210 and L5178Y 

mouse leukemia cells results in rapid transfer of the methyl group to 

3 
non-folate compounds (i.e., methionine), although 87% of H-labelled 

THF attached to the methyl group was still in the form of 5MTHF after 

60 minutes, illustrating that there is an appreciable intracellular 

91 
pool of 5MTHF . In this study the vast majority of reduced folates 

were metabolized through the methionine synthetase pathway during the 
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assay, and about a third engaged in the thymidylate biosynthetic 

pathway. These results indicate that the 5MTHF species appears to 

be the principal folate accumulating to any substantial degree, and 

that there is an extremely rapid intracellular turnover of reduced 

folates. 

The form in which folates are metabolized has been intensively 

85 
studied. Horan et al. found that derivatives in 1ogarithmically 

growing LI 210 cell cultures were entirely in the form of polygluta¬ 

mates. The authors noted that all enzymes catalyzing intermediary 

folate metabolic pathways are capable of utilizing polyglutamyl as 

well as monoglutamyl folates, and an exception to this has never 

been found. Thus it is felt that polyglutamyl folates may not only 

be a storage form but perhaps a principal form in which folates undergo 

metabolism. 

Structure and Mechanism of Folate Antagonists 

The intimate role of reduced folates in DNA, RNA, and protein 

synthesis is helpful in the design of chemotherapy using antimetabo¬ 

lites. Several structural analogs of folic acid have been developed 

in the past 25 years, of which the most potent are probably aminopterin, 

amethopterin (MTX), and 3',5'-Dichloro MTX^’^ (Figure 4). Each of 

these analogs is a 4-amino derivative of folic acid. 

The function of an antimetabolite is to compete with a true 

metabolic intermediate for an enzyme binding site in an effort to 

either decrease the rate of catalysis of the true substrate, or to 
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COOH 

0 H o 
i c- 

CH„ 

•CONH-CH 

COOH 

METHOTREXATE 

AMINOPTERIN 

COOH 
i 
CH, 

i 2 

<rHa 
CONH-CH 

COOH 

COOH 
l 

CH 
i 

CH 
I 

2 

2 

-CONH-CH 

COOH 

DICHLOROMETHOTREXATE 

Figure 4. The Structure of 3 Principal Folate Antagonists. 

All of these structural analogs of folic acid have 4-amino sub¬ 
stitutions, while MTX and Dichloro-MTX have N^-Methyl groups as well. 

MTX binds almost irreversibly to DHFR, preventing adequate reduction 
of folic acid and DHF to THF by the enzyme. 
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bind to the site in such a way as to render the enzyme useless. The 

mechanism of the antifolate drug MTX is probably related to its 

94 118 
extremely tight binding and consequent inhibition of DHFR ’ . The 

K. of MTX for DHFR is on the order of 10 ^ M, and it binds tightly 

118 
enough to persist in mouse liver and kidney tissue for up to 8 months 

Inhibition of DHFR by MTX is at least partially responsible for 

causing lethal depletion of intracellular reduced folates, disrupting 

nucleic acid and protein metabolism and killing the cell. The mechanism 

of cell death appears to be due at least in part to decreased levels 

of intracellular thymidine following treatment with MTX, preventing 

efficient DNA synthesis and resulting in the so-called "thymidineless 

death". As stated previously, the folate product in the thymidylate 

synthetase reaction is DHF, not THF. This product must be reduced to 

THF in order to further proceed with folate metabolism: inhibition 

of DHFR by MTX, therefore, prevents regeneration of THF and thus 

1 5 
ultimately halts DNA synthesis 

Numerous theories have been proposed to explain in detail the 

33 98 
cause of death in the absence of thymidine ’ , all of which deal 

generally with decreased synthesis and increased degradation of DNA. 

TdR, which can be phosphorylated by a kinase directly to dTTP (Figure 

3), is able to reverse MTX toxicity in cel 1 s^ ^ 

Inhibition of folate reduction would also be expected to affect 

61 
other pathways, such as those of purine biosynthesis. Hryniuk et al. 

emphasized the importance of MTX-induced inhibition of de novo purine 

biosynthesis as contributing to cell death, although the dominant 
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mechanism is probably thymidineless death^’^’^. The relative 

extents to which thymidine depletion and purine depletion each con¬ 

tribute to overall cell kill are not yet fully known. 

In any case, MTX kills cells in the S phase of their growth 

gi /n 44 75 1 1 ? 
cycle, during the period of DNA synthesis ’ * ’ ’ . It is a 

general principal of antimetabolite chemotherapy that rapidly and 

uncontrollably proliferating cells are more susceptible to drugs that 

interfere with DNA synthesis than are slowly dividing or resting 

n 17,58 
cells 

Chemotherapy with Antifolates and Differential Effects of MTX on Normal 

and Malignant Cells 

32 
It was Farber who first used antifolates in the treatment of 

neoplastic disease, observing dramatic responses to administration of 

aminopterin in children with acute leukemia. In an effort to further 

characterize the mechanism of aminopterin and related agents. Jukes 

68 
et al. noted symptoms of folic acid deficiency in animals fed these 

96 
drugs. Philips et al. found that 4-amino folate derivatives were 

especially useful as antagonists, and Skipper^ showed that adminis¬ 

tration of 4-amino antifolates impaired nucleic acid synthesis in mice. 

36 
Goldin did extensive work on the management of LI 210 leukemia 

with antifolates, and found that MTX was the most effective of the 

4-amino derivatives. He pointed out the need for early treatment and 

developed optimum dose schedules for chemotherapy of mouse leukemia: 

frequent low-dose treatment was better for late, advanced malignancies, 
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while intermittent high-dose was the treatment of choice early in 

.. 37 
disease . 

Administration of MTX is toxic to all rapidly proliferating 

cells, including those of the gastrointestinal mucosa, skin, and 
g 

bone marrow as well as those that are malignant. Consequently, 

workers have sought techniques designed to protect normal tissues as 

much as possible from fatal effects of MTX, while preserving anti¬ 

tumor effects. 

18 
Burchenal attempted to administer various folate intermediates 

to counteract MTX effects, and found that LV was much more effective 

19 
than folic acid in this regard . Since his work, administration 

of LV "rescue" following MTX treatment has permitted the adminis¬ 

tration of much higher doses of the antifolate with reduced toxicity 

and higher therapeutic index in a variety of malignancies, including 

acute leukemia, cervical carcinoma, choriocarcinoma, osteogenic sar¬ 

coma, breast and lung malignancies, and tumors of the head and 

neCk!,8,10,11,25,28,30,57,66,79,97,116 

LV probably rescues by several means. Both LV and MTX compete 

88 
for the same cell membrane carrier for transport into the cell , 

and thus the mechanism of LV's reversal of toxicity probably has 

much to do with competing for cellular uptake of MTX or with the 

enhancement of MTX efflux from the cell, as well as with serving 

40 
as a reduced folate antidote to a folate-starved cell 

MTX Transport 

MTX enters cells through a temperature-dependent process that 





. Inside the cell, there are 
,, .. . .39-41 ,103-107 

resembles active transport 

38 
at least two different pools of MTX : a small amount of the drug is 

tightly bound and unexchangeable, while a more substantial quantity, 

if allowed to accumulate, is present in an osmotically active state 

in intracel1ular water. This latter pool of MTX is freely exchangeable 

with external medium through the membrane transport system. In 

addition, a very small amount of the drug is adsorbed on or near the 

membrane, and is probably of minor significance in terms of MTX action 

MTX is transport rapidly and linearly into L1210 and other cells, 

38 
following Michaelis-Menten kinetics . Eventually a saturated intra¬ 

cellular level is reached, which is the steady state level - influx 

and efflux of drug are equal. In the absence of competitive inhibitor 

for uptake, this state is usually achieved within 20 to 30 minutes. 

L1210 cells are able to achieve a ratio of internal to external MTX 

levels of up to 1.29 to 1, consistent with an energy-requiring pro- 

38 44 
cess ’ . As the external drug concentration increases, this ratio 

diminishes even though the actual amount of MTX transported into 

the cell increases. 

During the linear portion of the uptake phase, the tightly- 

binding sites are presumably filled first, followed by the accumu¬ 

lation of free intracellular drug. Cells that are loaded with MTX and 

then resuspended in MTX-free medium rapidly lost this free or exchange 

able portion (within 15 to 20 minutes), and a constant amount of 

MTX remained tightly bound in the cell. 
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LV and folic acid are competitive inhibitors of MTX transport, 

the former substance much more potent than the latter^. Addition 

of large amounts of LV to cells in steady state with external MTX 

results in counter-transport (efflux) of the freely exchangeable 

portion of intracel1ular MTX. For example, addition of 125 pM LV 

to cells at equilibrium with an external MTX level of 2 yM results 

38 
in a rapid exit of exchangeable MTX within 15 to 20 minutes . An 

40 
even more potent competitive inhibitor of transport is 5MTHF , with 

a K. less than half that of LV (see Table I). 

Preloading cells with less than enough MTX to fully saturate 

the tightly-binding sites does not result in appreciable efflux of 

MTX either when the cells are resuspended in MTX-free media or if 

large amounts of a competitive inhibitor of transport are added to 

38 
the suspension . It is postulated that the high-affinity binding 

sites first occupied by MTX at low levels represent DHFR, especially 

in view of the observation that the maximum amount of intracellular 

MTX for which no efflux can be induced, approximately 9 nanomoles 

per gram of cells (dry weight), is comparable to the measured level 

of DHFR in these cells, 10.5 nanomoles per gram (dry weight). 

In addition to tightly binding and inactivating DHFR, MTX may 

also inhibit folate uptake by malignant cells and stimulate efflux 

of intracellular folates. Similarly, LV and 5MTHF may reverse cell 

toxicity not only by providing reduced folates, but also by competing 

for uptake of MTX as well as by enhancing efflux of drug. 
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Table la._MTX Transport Parameters (LI 210) 

K MTX (yM) Inhibitor K. Inhibitor (yM) 

3.13 

Folic acid 228 

LV 4.41 

5MTHF 1.74 

Table lb. MTX Distribution Ratios (L1210, Steady State) 

[MTX]ext (uM) [HTX]int (pH) [HTX]int/[MTX]ext 

0.44 0.54 1.223 

2.2 1.55 0.710 

(Ref: 110) 
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The Role of Free Intracellular MTX 

Although the principal target of MTX is DHFR, saturation by the 

drug of all enzyme binding sites does not result in complete cessation 

of DNA synthesis, nor does intracel1ular accumulation of MTX halt 

when DHFR is fully inhibited. To achieve inhibition of 50% of UdR 

incorporation into DNA in mouse L cell fibroblasts, free intracel1ular 

42 108 
MTX levels of 0.2 to 0.4 pM were required . Sirotnak and Donsbach 

found that an equimolar ratio of MTX to DHFR in cells caused inhibition 

of only 20% of UdR incorporation into DNA: an intracellular level of 

at least 1 pM was required for 50% inhibition in these LI210 cells. 

Interestingly enough, in these cells an external MTX level of 0.4 pM 

was required simply to enable complete saturation of all DHFR binding 

sites, and levels below 0.1 pM externally had no effect whatsoever 

on inhibition of UdR into DNA. 

120 
White et al. have demonstrated that uptake of radio-labelled 

formate into DNA, RNA, and protein of L cell fibroblasts is only 

slightly inhibited by MTX levels just sufficient to saturate the high- 

affinity binding sites. To achieve 50% inhibition of incorporation 

of formate into DNA, RNA, and protein required free intracellular drug 

levels of 0.3, 1.0, and 3.0 pM, respectively. Stokstad et al 

previously suggested that conversion of DHF to THF may continue in 

the absence of exchangeable MTX, since MTX toxicity can be reversed 

by administration of DHF°^. 

These studies were interpreted to indicate that either a "low 

affinity" form of the enzyme DHFR was present, which was not as 
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markedly inhibited by MTX as the high affinity form, or that even 

in circumstances when the enzyme was completely in the E-I complex, 

addition of sufficient substrate (DHF or DHF polyglutamate) enabled 

generation of enough THF to allow thymidylate synthesis to continue, 

since DHFR is not the rate-limiting enzyme for this synthesis. In 

support of the former hypothesis is the fact that several forms of 

DHFR have been shown to exist in both bacterial and mammalian cell 

29 46 84 
lines ’ ’ . Another explanation may lie in direct inhibition of 

108 
thymidylate synthesis by MTX, which occurs at much higher MTX levels 

There is no firm agreement at this time on the nature or the 

existence of a specific low-affinity binding site. Accumulation of 

free MTX above DHFR levels is, however, regarded as crucial for 

attainment of full toxicity. 

MTX Transport and Responsiveness of Cells to MTX 

There have been noted in several studies correlations between 

the ability of human leukemia and other tumor cells to transport 

MTX into the cell and responsiveness of the tumor to MTX, both 

72 73 109 Til vivo and In. vitro \ Sirotnak and Donsbach , in studies of 

mice bearing L1210 leukemia, showed that these cells accumulated 12 

to 40 times as much MTX as there was intracellular DHFR, with persis¬ 

tence of intracel1ular free drug for at least 24 hours. Small intestine 

epithelial cells, on the other hand, were only able to accumulate drug 

to 5 to 8 times the cells' DHFR content and in these cells free drug 

persisted for no longer than 4 hours. Similarly, MTX levels in normal 





liver were lower and persisted for a shorter time than in liver 

infiltrated with leukemic cells. 

Since normal tissues and tissues from responsive and unresponsive 

tumors contain roughly the same amount of DHFR ’ ’ ’ ’ 5 ’ , 

and since DHFR from normal and tumor tissues is inhibited to roughly 

3 13 53 62 65 82 99 119 
the same extent by Mix ’ ’ * ’ * ’ ’ , the ability of malig¬ 

nant cells to maintain higher free MTX levels for a longer period of 

time than non-malignant cells is probably of crucial significance to 

toxicity observed with MTX. 

A further correlation between MTX transport and responsiveness 

was demonstrated in five variably responsive tumor cell lines, S180, 

P288, P388, Ehrlich's ascites tumor, and LI210. Sirotnak and Donsbach 

showed that in these lines the K value for MTX influx was directly 

in accord with each cell line's response to the drug: the more easily 

MTX was transported, the more sensitive the cell was to the drug. In 

all of these lines, steady state levels were reached within 40 to 

50 minutes, and the authors were able to calculate the values for the 

K of MTX and for the K. of the competitive inhibitors folic acid, 

LV, and 5MTHF (Table la). They also report the drug distribution 

ratios for two different external MTX levels, given in Table lb. 

All of the parameters studied reveal that MTX transport exhibits 

concentrative uptake, temperature dependence, and concentration 

dependence of the drug distribution ratio, which are all in accord 

with an active transport mechanism. Several workers have attempted to 
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6 3 
isolate the membrane carrier protein for MTX and folates. Huennekens0 

has found a protein with a molecular weight of 29,000 daltons from the 

membrane of Lactobacillus casei which may be the carrier. He postulates 

that approximately 1000 molecules of glucose must be metabolized for 

each molecule of folate or folate derivative transported by the 

carrier protein. 
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UdR Uptake Studies 

In this group of experiments, cells from mice, in vitro tissue 

cultures, and patients were incubated with MTX and various concentra- 

3 
tions of LV or of 5MTHF. After a period of equilibration, H UdR was 

added to the cells and the uptake of label into DNA, via metabolism 

of UdR to dUMP, dTMP, and dTTP (Figure 3), was monitored as a function 

of time for the different conditions employed. Presumably, healthier 

cells are better able to synthesize DNA than those affected by MTX, 

and this assay was therefore felt to be a reliable indicator of the 

reversal of toxicity by either LV or by 5MTHF. 

Materials and Methods 

Calcium leucovorin and methotrexate were obtained from Lederle 

Laboratories Division, American Cyanamid Co. (Pearl River, N.Y.). 

5 
Chromatographically pure N -Methyl THF was obtained through the cour¬ 

tesy of Dr. John Mangum, and from the Sigma Chemical Co. (St. Louis) 

as the barium salt, purity > 90%. The barium ion was removed by 

precipitation in solution by NaHCO^ and Na^HPO^ at 0° C., and purity 

was verified by checking the absorption maximum for 5MTHF at 290 

47,89 
my 

Eagle's Basal Medium (with Earle's salts and glutamine, EBM), 

Fischer's medium for leukemic cells of mice, and horse serum were 

obtained from the Grand Island Biological Co. (Grand Island, N.Y.). 
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UdR (25 Ci/mmol, 1.00 mCi/ml) was obtained from the New England 

Nuclear Co. (Boston). Mice used for harvesting tumor cells were BDF-j 

males from Jackson Laboratories (Bar Harbor, Me.). 

Approximately 10^ L121 Os (the designation "s" refers to the 

cells being MTX-sensitive) murine leukemia cells were injected intra- 

peritoneally into groups of 3 mice and harvested at log phase on day 

4 by intraperitoneal injection and aspiration of normal saline. LI 210s 

cells and L5178Y murine leukemia cells from tissue culture were grown 

in Fischer's medium with 10% horse serum. Human malignant cells were 

blasts obtained from the peripheral blood of patients with acute leukemia 

who were untreated, or, in one case, 9 days post-chemotherapy. "Normal" 

bone marrow was aspirated from patients with non-hematologic tumors 

undergoing diagnostic work-ups: all marrow slides had normal morphology. 

Murine cells were collected by centrifugation and resuspended in 

EBM with 10% horse serum and 0.2% sodium heparin. Human cells were 

obtained in heparinized Vacutainer tubes and allowed to sediment for 

60 minutes in two volumes of 3% dextran in normal saline, after which 

the serum and buffy coat layers were removed. These were centrifuged, 

and the leukemic cells were resuspended in EBM, horse serum, and heparin. 

MTX was used at a concentration of 2 pM except one case in which 

10 yM was used. LV and 5MTHF were at concentrations of 4 pM, 40 pM, and 

400 pM. Since both LV and 5MTHF were present as racemic mixtures with 

only the L-diastereomers active, the actual molar ratios used with 

respect to MTX were 1, 10, and 100. 
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In "simultaneous rescue" experiments, MTX and rescue drug (LV 

or 5MTHF) were present in solution together from the start of the 

experiment. 1 ml of cell solution containing approximately 3 x 10^ 

cells was added to a 10 ml Erlenmeyer flask containing the appropriate 

amount(s) of concentrated drug(s) for that particular condition. 

These cells were allowed to preincubate for 30 minutes under gentle 

agitation in a water bath at 37° C. 

In "delayed rescue" experiments, cells were first incubated with 

MTX for up to 60 minutes, after which concentrated LV or 5MTHF was 

added, followed by equilibration for an additional 30 minutes. Controls 

containing no drug, MTX alone, and occasionally LV or 5MTHF alone were 

always included with both simultaneous and delayed rescue experiments. 

After preliminary incubation as above, the cells in each flask 

3 
were labelled with 100 pi of FI UdR solution made by adding 90 pi of 

labelled UdR to 1 ml of medium. While the cells continued to gently 

agitate at 37° C., 0.2 ml aliquots were withdrawn from the flasks at 

four or five time points up to 60 minutes after labelling. These 

samples were added to individual centrifuge tubes containing 5 ml of 

10% trichloroacetic acid at 0° C. After overnight precipitation the 

tubes were centrifuged at 800 x g for 5 minutes in an International 

Equipment Co. PR2 refrigerated centrifuge. 

The pellets were washed by aspiration of supernatant, resuspension 

in fresh cold trichloroacetic acid, and vortex agitation. After re¬ 

centrifugation and repeated washing for a total of 3 cycles, the final 
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pellet was dissolved in 0.4 ml of NCS solubilizer. This was added to 

a counting vial containing 15 ml of liquid scintillation cocktail 

made by adding 20 g PPO, 75 mg P0P0P, and 10 ml 100% ethanol to 3800 

ml (8 pints) of toluene. The samples were allowed to cool and were 

then counted for tritium in a Beckman LS230 liquid scintillation 

spectrometer. 

In addition to the above procedures, certain experiments were 

run with and without methionine present in the medium. In such cases, 

cells were initially washed with saline and resuspended in methionine- 

free, folate-free Fischer's medium and 10% horse serum, to which d, 1 - 

homocysteine (20 mg/1) and cyanocobalamin (2 mg/1) had been added. 

Those conditions with methionine had 100 mg/1 of 1-methionine in 

solution as well. Incubations and uptakes were carried out as above. 

A final group of experiments was carried out in which delayed 

rescue cells were washed free of MTX after the initial 60 minute 

incubation. They were suspended and centrifuged in normal saline at 

0° C. for a total of two washings. Resuspension was in MTX-free 

medium containing rescue drug. 

Results 

For each condition, four or five time points were obtained. The 

ideal slope, as computed by the method of least squares, of the resulting 

3 
line showing the incorporation of H UdR into the trichloroacetic acid- 

insoluble fraction over time was calculated. The efficacies of LV and 

of 5MTHF at the various concentrations in reversing MTX-produced inhibition 





of UdR uptake were computed by determining the ratio of the rescue 

uptake slope to the slope of the control condition, in which no drug 

was used. This ratio is reported as "% control", and was compared to 

inhibition caused by MTX alone. Degree of fit was determined by com¬ 

putation of values: the majority of lines had £> 0.98, and vir¬ 

tual ly al 1 had > 0.95. 

Two figures displaying uptake rates for a typical experiment 

using cells from LI 21 Os and human ALL lines are shown in Figures 5 

and 6. Tables II and III give the complete results obtained with 

murine and human cells, respectively. In all cases the rescue values 

(% control) are to be compared to the % control values in the presence 

of MTX alone in order to evaluate reversal. The control slope is, by 

definition, 100%. 

In all cell lines with the exception of those washed free of MTX 

before rescue (Table II, E and F), incorporation of UdR into DNA was 

inhibited to less than 20% of control values by 2 yM MTX, and all 

human leukemia cells were inhibited to less than 5% of control values. 

Simultaneous addition of LV or of 5MTHF resulted in relief of this 

inhibition in all cell lines, usually as a function of concentration 

of the reduced folate. In general, a minimal amount of reversal was 

produced by equimolar concentrations of LV or 5MTHF. When the concen¬ 

tration was 10 times that of MTX, there was partial relief of inhibiti 

and at 100 times the MTX concentration almost complete or better than 

complete reversal occurred. The reversal noted with 5MTHF was equal 
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Figures 5 and 6. Reversal of MTX 
into DNA by LV and by 5MTHF, in LI 210s 
Cel 1s (Figure 6). 

Inhibition 
(Figure 5) 

of UdR Incorporation 
and in Human ALL 

These figures illustrate the results of two typical UdR uptake 
experiments. In each figure, chart (A) shows the results of simul¬ 
taneous rescue experiments, in which MTX and LV or MTX and 5MTHF 
were present in solution together from the start of incubation. Chart 
(B) in each figure shows the results of delayed rescue experiments, 
in which LV or 5MTHF was added to cells after a 60 minute incubation 
in MTX with no other drug added to medium. 

In all charts, line (1) represents the control rate of uptake, 
in which no drug was added, and line (2) represents uptake in the 
presence of 2 pM MTX alone. Lines (3), (4), and (5) show uptake rates 
in the presence of MTX and LV, with LV present in molar ratios of 
1, 10, and 100, respectively, to MTX. Lines (6), (7), and (8) represent 
uptake rates with 5MTHF present, instead of LV, in the same molar 
ratios to MTX. 

Notice that increasing the concentration of LV or of 5MTHF 
results in progressively better incorporation of UdR into DNA over time. 
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Table II. Reversal of MTX Inhibition of UdR Incorporation 
Into DNA of Murine Tumor Cells by LV and by 5MTHF 

3H UDR INHIBITION REVERSAL (‘I Control I 
BY 2 uM MTX LV ADDED ~ ~ ' 5MTHF ADDED 

CELL TYPE (% Control) 4 pM 40 pH 400 pM 4 uM WITH “TOO pM 

A) LI 2!Os from in vitro 
Simultaneous addition 9.5 12.5 31.3 45.1 11.2 28. 0 VI0.9 
60 minute delay 15.1 32.7 65.7 138.1 7.7 92.2 124.5 

B) LI21 Os from in v'vo 
Simultaneous addition 21.0 36.1 78.2 90.5 42.2 65. 9 120.8 
60 minute delay 4.7 8.2 29.5 62.3 8.0 42.4 74.2 

c) LI 21 Os from in vivo at 10 pM MTX 
Simultaneous addition 16.4 (10 pM) 29.8 50.5 108.4 30.3 68.6 1 i 6.0 
60 minute delay 7.5 (10 pM) 2.9 2.1 51.2 0.5 2.9 57.2 

D) L5178Y from in vitro 
Minus Methionine 

Simultaneous addition 3.1 3.6 16.6 74.1 4.4 17.6 51.9 
60 mi nuts delay 

Plus Methionine (100 mg/1) 
0.3 3.3 6.0 2.8 1.3 4.9 8.9 

Simultaneous addition 3.6 7.8 24.7 92.9 5.1 32.3 38.2 
60 minute delay 0.3 0.3 1.4 5.1 0.7 i. 9 13.8 

LI21 Os from in vitro 
Simultaneous addition 
30 minute delay, MTX washed from cells* 

35.1 
39.4 

28.3 
123.5 

78.7 
119.0 

103.2 
105.3 

4^ c, 
ICS is 

108.5 
120.5 

88.8 
123. 1 

L5178Y from in vitro 
Simultaneous addition 
30 mi.lute delay, MTX washed from cel Is* 

24.2 
43.0 

35.5 
97.5 

103.7 
96.9 

105. y 
80.5 

45.0 
83.8 

114.5 
94.S 

72.0 
103.5 

LI210s from in vitro, no MTX 
Dotake in LV or 5MTHF only -- 135.4 145.9 121.4 114.3 120.1 125.0 

*(Uptake values for MTX-treated cells resuspended in EBM without LV or 5MTHF: 

LIPIOs 129. V/, 
L5178Y 118.72 ) 
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Table III. Reversal of MTX Inhibition of UdR Incorporation 
Into DNA of Human Cells by LV and by 5MTHF 

A) 

B) 

C) 

D) 

E) 

F) 

r.) 

3 

CELL TYPE 

Normal bone marrow 
Simultaneous addition 
60 minute delay 

Normal bone marrow 
Simultaneous addition 
60 minute delay 

Acute Lymphoblastic leukemia 
Simultaneous addition 
60 minute delay 

Acute Lymphoblastic Leukemia 
Simultaneous addition 
50 minute delay 

Acute Lymphoblastic Leukemia, same as previous 
patient; 9 days post-Vincristine + Ara-C 
Simultaneous addition only 

Acute Myeloblastic Leukemia 
Simultaneous addition 
60 minute delay 

Acute Myeloblastic Leukemia 
Simultaneous addition only 

H UDR INHIBITION 
BY 2 uM MTX 
{% Control) 4 uM 

REVERSAL ( 
LV ADDED 

40 uM 400 uM 

°l Control) 

4 u PI 
5MTHF ACPi1 

40 |jM 
:d 
400 uM 

7.5 43.0 119.3 37.3 46.8 137.6 126.2 
19.0 33.3 87.7 34.3 30.0 25 2 147.5 

3.0 17.3 74.0 40.3 10.5 56.0 118.1 
1.5 6.5 22.5 19.1 3. i 9.4 5.5 

1.1 4.0 55.4 107.7 5 1 80.1 99.1 
0.1 0.3 0.6 1.9 0.3 1.0 1.4 

2.6 27.6 108.7 119.8 i 4 . 3 107.6 107.8 
2.4 7.3 31.3 43.8 5.1 14.1 40.6 

4.7 25.6 68.1 74.0 0.2 0.3 152.6 

2.4 7.1 40.1 204.3 4.4 75.9 203.1 
1.2 1.6 4.8 3.5 1.4 1.9 1.3 

1 .0 3.7 12.5 74.5 2.0 11.0 51.0 

0.5 1.9 7.0 64.6 1.4 9.8 98.9 
H) Acute Myeloblastic Leukemia 

Simultaneous addition only 
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to or greater than that provided by LV in most cases, although in 

one study using ALL cells (Table III, E), 5MTHF did not reverse sig¬ 

nificantly until 100 times the MTX concentration was used. 

When rescue with LV or 5MTHF was delayed for up to 60 minutes, 

reversal of MTX inhibition was less, although there were again for the 

most part no significant differences in rescue rates. Importantly, 

there appeared to be rm difference in reversal by 5MTHF of MTX inhibi¬ 

tion of DNA synthesis when human leukemia cells and normal human 

marrow cells were compared (Table III, A and B vs. C-H). 

In cells washed free of MTX (Table II, E and F), absolute rates 

of inhibition by MTX in both groups were much less than in other 

experiments. While there was a oroportional increase in reversal 

of inhibition by 5MTHF and LV in the simultaneous rescue portions 

of these two studies, the delayed rescue experiments demonstrated 

uptake of UdR at or near control rates at all concentrations of LV 

or 5MTHF: resuspension in ordinary medium, without any rescue drug, 

caused the same effect (Table II, E and F, footnote). 

There was no significant difference in recovery of UdR uptake 

rates in L5178Y cells incubated with and without methionine (Table II, 

D). Slight enhancement of simultaneous rescue rates in the plus-methio- 

nine experiment was seen over similar values in the minus-methionine 

experiment, and in both cases delayed rescue with 5MTHF produced much 

better uptake rates than delayed rescue with LV at 100 times the MTX 

concentration. 
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Table II, G shows results of a control experiment for LV and 

5MTHF. Uptake of UdR into DNA is slightly improved over control 

values when these folates are added to cell suspensions in the ab¬ 

sence of MTX, although there is no significant relationship between 

individual rates and type or amount of reduced folate added. 

Further discussion and analysis of these studies will be found 

following the next section describing the tissue culture experiments. 
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Tissue Culture Studies 

This group of experiments was performed to evaluate the growth 

of murine leukemia cells and Walker 256 rat breast carcinosarcoma 

cells in vitro in the presence of MTX and after simultaneous or de¬ 

layed addition of LV or of 5MTHF. While cells in the previous set of 

experiments which studied UdR uptake were examined for a period of 

up to one hour, cells in tissue culture were permitted to grow for 

up to 5 days. By measuring increase in cell concentration over time, 

it was possible to judge the effects of various MTX-folate combinations 

upon cell growth. 

Materials and Methods 

All drugs used were obtained from the same sources as in the 

3 
H UdR uptake experiments, with the exception that all were sterilized 

by filtration through a 0.22 y Millipore filter prior to use. 

Cells from 5 or 6 day cultures were added to sterile Fischer's 

medium with 10% horse serum, then divided into various 100 ml culture 

bottles, one for each condition. Approximately 60 to 75 ml of cell 

4 
suspension containing 2 x 10 cells/ml were added to the bottles. 

Appropriate amounts of drug were then added for each of the conditions, 

and cell density was checked by counting in a Model B Coulter Counter. 

The contents of simultaneous rescue bottles were immediately 

apportioned into 15 ml tissue culture tubes, 5 ml per tube, and placed 
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horizontally in a 5% CO^ incubator at 37° C. Cells for delayed rescue 

experiments were kept in the 100 ml culture bottles containing MTX 

for from 4 to 24 hours. After this period, cells were gently centrifuged 

in a warm room at 37° C., washed with Fischer's medium plus 10% horse 

serum, and aseptically resuspended in MTX-free medium containing the 

appropriate amount of LV or of 5MTHF. After counting, these suspensions 

were apportioned into 15 ml culture tubes as described previously. 

Each 24 hours, duplicate culture tubes for every condition were 

randomly removed from the incubator. Cell clumps were disrupted by 

pipetting, and cells were suspended in normal saline at appropriate 

dilutions and counted in the Coulter counter. Duplicate counts were 

taken and averaged for each tube. Average counts between the two tubes 

agreed to within 10%. 

Three experiments were performed. In the first, LI 21 Os, L5178Y, 

and Walker 256 cell lines were grown at a MTX concentration of 0.04 pM, 

a relatively low concentration. LV and 5MTHF were used at concentrations 

of 0.08 pM (equimolar) and 0.8 pM (10 times the MTX concentration). 

L-methionine was present at a concentration of 15 mg/1, and 10 mg/1 

of folic acid plus 0.5 pg/1 of cyanocobalamin were also added. In 

the simultaneous rescue part of the experiment, MTX and rescue drug 

were present for the entire 5 day growth cycle, while cells in the 

delayed rescue part were suspended in MTX alone for 24 hours, then 

washed and resuspended in LV or 5MTHF for the remainder of the experi¬ 

ment. 

The second experiment was performed using a higher MTX dose. 
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identical with that of the UdR experiments, 2 pM. LV and 5MTHF were 

again used at equimolar and at 10-fold ratios to MTX, and the cell 

lines employed were L121 Os and L5178Y. A simultaneous rescue and a 

delayed rescue part were again performed, but the latter group was 

suspended in MTX alone for 4 hours before wash and resuspension in 

LV or 5MTHF. This high-dose experiment was performed in Fischer's 

medium with 10% horse serum, but at a slightly higher methionine con¬ 

centration of 100 mg/1. In both this high-dose and the previous low-dose 

MTX experiments, controls were always used in which cells were grown 

with MTX alone, with no drug, or with LV or 5MTHF alone. 

A third experiment was performed simply to determine the effects 

of external methionine concentration on growth of LI 21 Os and L5178Y. 

Various concentrations of methionine were added to methionine-free, 

folate-free Fischer's medium with 10% dialyzed horse serum. 

Results 

All simultaneous rescue experiments began at identical initial 

cell concentrations, and thus cell number vs. time is plotted to 

reflect growth rate. In the delayed experiments, varying amounts of 

the initial cell population were recovered from the wash and resus¬ 

pension following incubation in MTX. While the concentrations varied 

slightly from condition to condition, the initial values upon resus¬ 

pension in LV or 5MTHF were all within the same decade on a logarithmic 

scale. To avoid confusion in comparing growth curves not beginning from 

exactly the same point, however, the delayed rescue values were converted 
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to total divisions since resuspension, calculated from the formula 

Total divisions = 
1og1C|(Nt/|V 

l°9l02 

where Nq is the initial cell number (following resuspension in 

reduced folate) and N^. is the cell number at time t. Growth curves 

plotted in this way retain the original shape of a curve of cell 

number vs. time, but all curves began at 0 cell divisions, facilitating 

the comparison of the growth rates of each condition. 

The results of the first experiment, at the low-dose MTX level, 

are shown on the following 2 pages (Figure 7). For all 3 cell lines, 

MTX alone inhibited growth in the simultaneous rescue group (curves 

(2), charts (A), (C), and (F)), while LV proportionally reversed this 

inhibition (curves (3) and curves (4)). 5MTHF did not appear to 

affect inhibition by MTX (curves (5) and curves (6)). In the delayed 

group, cells washed of MTX after 24 hours suspension in the drug all 

grew at approximately equivalent rates, roughly similar to control 

values (curves (1) vs. curves (3)-(6), charts (B), (D), and (F)). In 

addition, cells transferred from MTX to ordinary Fischer's medium grew 

at identical rates (curves (2)). 

Table IV illustrates that cells actually increased in number, 

although slowly, in the low-dose concentration of MTX during the 24 

hours of incubation in the delayed rescue experiment. The total number 

of cell divisions is reported and compared with growth of control cells 

suspended in MTX-free medium for 24 hours. 
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Figure 7. Growth of L5178Y, Walker 256, and L121 Os Cells in 
0.04 yM MTX Simultaneously with LV or with 5MTHF, or in MTX-Free 
Medium with LV or with 5MTHF Following a 24 Hour Exposure to 0.04 
yM MTX. 

Charts (A), (C), and (E) represent simultaneous rescue results 
using L5178Y, Walker 256, and L121 Os cell lines, respectively. Charts 
(B), (D), and (F) represent delayed rescue results. 

In the simultaneous rescue experiments, curves (1) show control 
growth (no drug added), and curves (2) show growth in MTX alone. 
Curves (3) and Curves (4) represent growth in the presence of MTX 
and LV, with LV present in molar ratios of 1 and 10, respectively, 
to MTX. Curves (5) and Curves (6) represent growth with 5MTHF, instead 
of LV, present at the same molar ratios, respectively. 

In the delayed rescue experiments, curves (1) represent control 
growth, and curves (2) represent growth following resuspension in 
Fischer's medium and 10% horse serum after a 24 hour exposure to MTX. 
Curves (3) through Curves (6) represent growth in equimolar or 10-fold 
LV or 5MTHF, as in the simultaneous rescue experiments, following a 
24 hour exposure to MTX. The control cells (Curves (1)) were never 
exposed to MTX, but were washed and resuspended as were the other 
delayed rescue conditions after 24 hours. 
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Figure 7. Low-Dose MTX Tissue Culture Experiment 
See Legend. 
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Table IV. Growth of Cells During 24 Hours in 0.04 yM MTX 

Divisions per 24 Hours 
Cell Type Fischer's (MTX) Fischer's (No MTX) 

L5178Y 0.59 2.64 

Walker 256 0.12 1.03 

LI 21 Os 0.30 1.63 
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The results of the high-dose experiment are shown in Figure 8. 

MTX at this concentration (2 pM) totally inhibited growth in all of 

the simultaneous rescue conditions, including at equimolar and 10-fold 

concentrations of LV and of 5MTHF (charts (A) and (D)). Removal of 

cells from MTX after 4 hours and resusDension in normal Fischer's 

medium plus horse serum resulted in only minimal growth (curves (2), 

charts (B) and (D)). Resuspension of the delayed rescue cells in LV 

produced excellent recovery at either equimolar or 10-fold ratios 

to MTX (curves (3) and curves (4)), but 5MTHF only minimally reversed 

inhibition of growth - equimolar 5MTHF resulted in very little recovery 

(curves (5)) while 10-fold 5MTHF (curves (6)) gave slightly better 

recovery, but not as good as with LV. Growth in LV or 5MTHF without 

MTX (charts (C) and (F)) revealed no appreciable effect of these 

reduced folates alone on growth rates. 

The results of the methionine dependence experiment are shown 

in Figure 9. Normal Fischer's medium contains 100 mg/1 of methionine, 

and growth of both cell lines in normal medium is not appreciably 

different from growth in medium with 10 mg/1 or 50 mg/1 of the amino 

acid. At levels below 10 mg/1, however, growth begins to fall off 

until there is no growth whatsoever at a methionine level of 0 

(curves (8)). 

Further discussion of these results and correlation with the 

UdR uptake results will be presented in the Discussion section following. 





-44- 

Figure 8. Growth of LI 210s and L5178Y Cells in 2 yM MTX 
Simultaneously with LV or with 5MTHF, in MTX-Free Medium with LV 
or with 5MTHF Following a 4 Hour Exposure to 2 yM MTX, or in Medium 
Containing LV or 5MTHF Without MTX. 

Charts (A) and (D) represent simultaneous rescue results using 
L121 Os and L5178Y cell lines, respectively. Curves (1) show control 
growth with no drug added, and Curves (2) show growth with MTX alone 
added. Curves (3) and Curves (4) show growth in the presence of MTX 
and LV, with LV present at molar ratios of 1 and 10, respectively, 
to MTX. Curves (5) and Curves (6) show growth with 5MTHF, instead 
of LV, present at the same molar ratios to MTX. 

Charts (B) and (E) represent delayed rescue results. Curves (1) 
show control growth with no exposure to MTX, and Curves (2) show 
growth of cells transferred to Fischer's medium and horse serum 
following a 4 hour exposure to MTX. Curves (3) through Curves (6) 
represent growth in equimolar or 10-fold LV or 5MTHF, as in the 
simultaneous rescue experiments, following a 4 hour exposure to MTX. 

Charts (C) and (F) represent growth of cells with no MTX added. 
Curves (1) show growth in normal medium and horse serum, while Curves 
(3) through Curves (6) show growth at 4 yM and at 40 yM LV or 5MTHF, 
as above, with no MTX. 
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Figure 8. High-Dose MTX Tissue Culture Experiment. 
See Legend. 
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Figure 9. Growth of L5178Y and LI21 Os Cells in Methionine- 
Free Medium with Varying Amounts of Methionine Added. 

Chart (A) represents growth of L5178Y cells, and Chart (B) 
of L121 Os cells. 

Curves (1) show control growth in normal Fischer's medium 
(100 mg/1 methionine) while all other curves show growth in methionine- 
free medium to which the following amounts of methionine have been 
added: 

Curves (2) 100 mg/1 Curves (5) 1 mg/1 
Curves (3) 50 mg/1 Curves (6) 0.5 mg/1 
Curves (4) 10 mg/1 Curves (7) 0.1 mg/1 

Curves (8) 0 mg/1 
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Discussion 

While 5MTHF did not appear to preferentially reverse MTX- 

induced inhibition of DNA synthesis in normal cells vs. malignant 

cells studied in UdR uptake experiments (Tables II and III), a marked 

degree of differential reversal was suggested by two of the tissue 

culture experiments, specifically the low-dose simultaneous rescue 

experiment (Figure 7, Charts (A), (C), and (E)) and the high-dose 

delayed rescue experiment (Figure 8, Charts (B) and (E)). Although 

normal cells could not be included in the long-term tissue culture 

growth studies primarily because of longer generation times, the 

differences in reversibi 1 it.y of MTX-induced growth inhibition 

between LV and 5MTHF seen in these two studies were significant. 

Both experiments in which differential reversal by 5MTHF was suggested 

were performed using MTX levels and drug exposure times which were 

intermediate between two extremes. At these two extremes, preferential 

reversal of malignant cells by LV as compared with 5MTHF was not seen 

(Figure 7, Charts (B), (D), and (F); Figure 8, Charts (A) and (D)). 

DNA Synthesis Studies 

In the studies described in Tables II and III, all of the uptake 

experiments were performed at a MTX level of at least 2 pM, which 

should have enabled achievement of a steady state intracel1ular drug 

level well within the 60 minute incubation time during which cells 
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were exposed to MTX (p. 17, paragraph 1). 

That free intracel1ular MTX is required for maximal inhibition 

of DNA synthesis is exemplified by studies E and F (Table II). When 

cells were washed free of MTX and resuspended in MTX-free medium, 

resumption of DNA synthesis occurred at or near control rates regard¬ 

less of the type or even presence of rescue drug (LV or 5MTHF) added 

after the cells had been washed. This effect, in view of the previous 

discussion of MTX transport and the need for intracellular free drug 

for maximal toxicity, is presumably due to efflux of intracel1ular 

drug into the medium during washing. 

Both LV and 5MTHF are competitive inhibitors of MTX uptake. 

Although the ultimate steady state concentration of MTX intracel1ularly 

will be the same at any given external MTX level, the addition of 

increasing amounts of competitive inhibitor will slow the velocity of 

MTX influx, necessitating a longer period for achievement of steady 

state levels and of the highest attainable levels of free MTX inside 

the cel 1. 

Using simple Michaelis-Menten equations for the velocity of an 

enzyme-substrate reaction with and without the presence of competitive 

inhibitor, it is relatively simple to calculate v^/v, the ratio of 

velocity of reaction with inhibitor present (at R times the substrate 

concentration) to velocity with no inhibitor present. 

The algebraically derived formula is as follows: if [I] is the 

concentration of competitive inhibitor and [S] the concentration of 
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substrate (MTX), with [I] = R[S], the ratio is 

vD K,(K + 1) 
R _ 1 m _ 

v K.(K + 1) + R(K ) 

In this equation, is the Michael is constant for the carrier and 

MTX, and K. is the inhibitor constant for competitive inhibitor, LV 

or 5MTHF (Table I). Thus for concentrations of competitive inhibitor 

equal to 1, 10, and 100 times the MTX concentration, as used in the 

UdR experiments, it is possible to calculate the theoretical fraction 

of uninhibited velocity of uptake occurring in the presence of one 

particular concentration of competitive inhibitor with a specific K.. 

These results for the rescue drugs LV and 5MTHF present at the indicated 

molar ratios to MTX are given in Table Va. The inverse of these values, 

given in Table Vb, shows the number of times longer required for the 

achievement of steady state MTX levels in the presence of inhibitor 

as compared to the 20 to 30 minutes required with no inhibitor- In 

these tables, 5MTHF appears to be an even better competitive inhibitor 

for transport across the membrane than LV: its K. is less and thus a 

longer period of time is required to reach steady state than at an 

equal concentration of LV. 

Using these calculations, we observe that in the UdR experiments 

and in the tissue culture experiments there will result a decreased 

velocity of MTX transport into the cell whenever LV or 5MTHF is present 

in the medium simultaneously with MTX, such as the simultaneous rescue 
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Table Va. Fractional MTX Uptake Velocity 
With Competitive Inhibitor (LI210) 

vR/v 
Inhibitor R=0 R=1 R=10 R=100 

5MTHF 1 0.357 0.053 0.006 

LV 1 0.585 0.124 0.014 

Table Vb. Number of Times Longer Required 
To Achieve MTX Steady State With Inhibitor (L1210) 

Inhibitor R=0 R=1 R=10 R=100 

5MTHF 1 2.80 18.9 167 

LV 1 1 .71 8.1 71 
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experiments. This decrease in velocity of uptake, as suggested in 

Tables Va and Vb, will vary with the magnitude of the concentration 

difference between inhibitor and drug. If inhibitor is therefore 

present at equal molar ratios to MTX, achievement of steady state MTX 

levels will ideally require 1.7 to 2.8 times longer to achieve than 

without inhibitor; at 10 times the MTX concentration, 8 to 19 times 

longer, and at 100 times the MTX concentration, 71 to 167 times longer. 

These values are calculated neglecting other minor factors affecting 

transport, but are indeed illustrative of the probable magnitude of 

the effects of competitive inhibitor on MTX uptake. 

At 2 yM MTX, which in LI210 cells would cause achievement of an 

intracel1ular steady state drug level of about 1.5 pM (Table I), it 

would ideally take several hours to a few days to achieve this level 

at the various molar ratios of LV and 5MTHF to MTX used in the uptake 

experiments. The reversal reported in the simultaneous rescue experiments 

in Table II and III is therefore due in large part to competition 

by LV or by 5MTHF with MTX for uptake into the cell: higher rates of 

UdR incorporation into DNA at LV or 5MTHF levels equal to 10 or 100 

times the MTX level probably represent prevention of toxicity rather 

than actual recovery from toxicity, or "rescue". In some cases, 

however, incorporation still does not quite return to control rates 

at the highest levels of LV or 5MTHF used, indicating at least a 

partial effect of MTX on inhibiting UdR incorporation. 

The delayed rescue experiments represent conditions in which MTX 

has presumably reached steady state concentrations, since cells have 
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been permitted to equilibrate with MTX alone before the addition of 

reduced folate. Again, addition of large amounts of LV or of 5MTHF 

(100 times the MTX level) would probably cause substantial efflux 

of free intracellular MTX and thus result in significant reversal. 

Earlier (p. 18, paragraph 1) it was noted that 125 pM LV added to 

L1210 cells in equilibrium with 2 yM MTX caused complete efflux of 

38 
the freely exchangeable portion of MTX within 20 minutes . The lower 

levels of rescue drug used in the delayed rescue experiments (i.e., 

equimolar and 10-fold compared with MTX) probably reverse MTX inhibition 

also by this mechanism of stimulating efflux of intracel1ular drug, 

but probably to a lesser extent. Pharmacologic rescue, i.e., repletion 

of the reduced folate supply, may play a more significant role in 

reversal seen at these lower levels. 

Human acute leukemia cells may be less permeable to MTX than 

animal cells. Recently, Bender et al.^ have found that at least 160 

minutes were required for 1 pM MTX to produce the steady state levels 

seen in human AML blasts, and that efflux from preloaded cells required 

80 to 120 minutes. As a result, some of the uptake values given in 

Table III for delayed rescue of human cells may reflect preservation 

of DNA synthetic ability by insufficient time allowed for achievement 

of the fullest possible inhibition of UdR into DNA. 

In summary, three principal modes of "reversal" of MTX toxicity 

are possible when reduced folates such as LV or 5MTHF are administered 

to cells in the UdR uptake experiments. Under conditions where folate 
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is added simultaneously with MTX to cells, especially at higher molar 

ratios of folate to MTX, there is probably significant competition 

for transport by the folates, and cells are protected from rapid 

achievement of high intracel1ular MTX levels. Under delayed rescue 

conditions, moderate or large quantities of LV and 5MTHF will again 

affect transport, but probably more by stimulation of eff1ux of free 

intracel1ular MTX to an appreciable extent. Finally, in the delayed 

rescue conditions in which 5MTHF or LV are added at lower concentra¬ 

tions, pharmacologic rescue probably contributes significantly to 

the reversal observed, primarily since the other two factors cannot 

predominate to as great an extent. 

In the majority of the experiments performed and reported in 

Tables II and III, 5MTHF and LV are approximately equivalent in 

causing reversal through each of the above mechanisms, and work 

equally well in normal and in malignant cells in vitro. In short 

term culture, therefore, where DNA synthesis is used as a parameter 

reflecting cell viability, 5MTFIF does not appear to preferential ly 

rescue only normal cells from MTX. 

Inhibition of Cell Growth in Tissue Culture 

Two experiments were performed in which cell growth over 5 

days was used as a parameter reflecting viability. The low-dose 

experiments used an MTX level of 0.04 pM, and the high-dose experi¬ 

ment used an MTX level of 2 yM. These results, as previously described, 

are shown in Figures 7 and 8, respectively. 





Two extremes of growth patterns were seen in these experiments. 

Cells incubated for 24 hours with low doses of MTX were able to 

resume normal growth rates immediately upon removal of MTX from the 

medium. In contrast, cells grown at the higher dose of MTX for a 

full 5 day period in the presence of equimolar or 10-fold LV or 5MTHF 

did not grow appreciably better than cells in MTX alone. In the 

former case (Figure 7, Charts (B), (D), and (F)), the MTX level times 

exposure time appeared to be inadequate for substantial cell kill. 

In the latter case (Figure 8, Charts (A) and (D)), the MTX level 

times exposure time appeared to be severe enough to enable total 

cessation of growth even if LV or 5MTHF were present simultaneously 

with antifolate at 10 times its concentration. 

23 
Chello and Bertino showed that exposure of L5178Y cells to 

only 1 pM MTX for 6 hours resulted in a 95-97% loss of viability. 

In view of this observation, it is probable that levels reached in 

the simultaneous high-dose experiment were high enough to kill most 

of the cells. Intracel1ular MTX levels reached during the delayed 

part of the low-dose experiment, on the other hand, are probably 

insufficient to completely inhibit DHFR: at MTX levels below 0.1 pM 

externally, there is no inhibition of UdR incorporation into DNA of 

LI210 cells, and DHFR is not fully saturated^. Approximately 10% 

to 20% of the DHFR binding sites in LI 210 cells will in fact be 

occupied by MTX during steady state with an external drug concentrati 

108 
of 0.04 pM, as in the low-dose experiment . In human lymphoblasts, 

22 
Chello et al. showed that a 0.01 pM external MTX concentration 





caused no growth inhibition, and that approximately six times this 

concentration was necessary to effect even a 50% inhibition. As 

Table IV illustrates, cell number actually increased in all three 

lines between the start and end of the 24 hour incubation in low-dose 

MTX. 

LV and 5MTHF do not work differently in reversing toxicity and 

growth inhibition in the simultaneous high-dose experiment or in the 

delayed low-dose experiment. In the former case, MTX levels are 

probably high enough to significantly inhibit growth even in the 

presence of 10 times as much reduced folate. In the latter case, 

the simple removal of MTX from the cells after 24 hours results in 

growth resumption, even if they are resuspended in ordinary medium 

containing no LV or 5MTHF (Curves (2), Charts (B), (D), and (F), 

Figure 7). 

Differential rescue between LV and 5MTHF is seen in the other 

two major groups of experiments, high-dose delayed and low-dose 

simultaneous rescue. Presumably the former condition, resulting in 

exposure of cells to the high-dose level for only 4 hours followed 

by complete removal of MTX, is not toxic enough to kill most cells, 

and the latter condition, in which low-dose drug is permitted to 

remain with the cells for 5 days rather than for only 24 hours, resul 

in levels high enough to at least substantially inhibit growth during 

the 5 day period (Curves (2), Charts (A), (C), and (E), Figure 7). 
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In both of these cases, simultaneous low-dose and delayed 

high-dose, LV at equimolar or 10-fold amounts compared with MTX 

enables substantial resumption of cell growth in the face of MTX. 

Neither equimolar nor 10-fold 5MTHF causes any resumption of growth 

whatsoever over the MTX control curve in the low-dose simultaneous 

experiment, while 10-fold 5MTHF in the high-dose delayed experiment 

results in some relief of growth inhibition but not nearly as well 

as LV. Equimolar 5MTHF in the high-dose experiment cannot relieve 

the inhibition to any extent (see Charts (A), (C), and (E) in Figure 

7, and Charts (B) and (E) in Figure 8). 

Therefore, where the presence of LV vs. 5MTHF does make a 

difference in counteracting MTX inhibition of growth in tissue 

culture (i.e., in the simultaneous rescue low-dose and delayed 

rescue high-dose experiments), 5MTHF does not rescue cells as well 

as MTX. We have not used normal cells for comparison in tissue 

culture, but the facts obtained thus far are in support of Halpern's 

50 
findings regarding rescuability of malignant cells by LV vs. 5MTHF 

2 49 
Halpern et al. ’ suggested that lower levels of the enzyme 

methionine synthetase found in malignant cells did not allow sufficient 

regeneration of THF from 5MTHF to counteract inhibition of DHFR by MTX. 

Normal cells, presumably possessing higher activity of the enzyme^’^’^’^ 

could better regenerate reduced folate and resume normal growth. We 

initiated our studies to determine if this difference between rescue 

of normal and malignant cells by 5MTHF could be demonstrated in short 
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and long term cultures of various mammalian neoplastic cells. 

In short term culture, studying the incorporation of UdR into 

DNA of malignant rodent and human cells and in non-malignant human 

marrow stem cells, 5MTHF and LV appeared comparable in their ability 

to reverse MTX toxicity through the combined efforts of competitive 

inhibition for uptake, enhancement of free intracel1ular MTX efflux, 

and pharmacologic rescue. In long term tissue culture, at levels of 

MTX dose and exposure time between two extremes, malignant cell 

growth was significantly better reversed by LV than 5MTHF. 

This differential rescue effect may be due either to better 

competition for uptake by LV than 5MTHF, to better enhancement of 

efflux of MTX, to better pharmacologic rescue, or to a combination 

of these. The first two alternatives are unlikely as major causes 

of this differential effect, since the K. of 5MTHF for the membrane 
l 

carrier is at least half the value of LV's. Furthermore, UdR studies 

at high levels of rescue drug in simultaneous experiments and in 

delayed experiments reveal comparable effects of LV and 5MTHF on 

the handling of MTX by the membrane transport system. 

In light of these facts, the remaining cause of differential 

rescue may lie in preferred utilization of LV over 5MTHF by the cell. 

Such a difference in utilization may like in a deficiency of methionine 

synthetase in malignant cells, or in other factors. 

55 
Recently, Floffman and Erbe have shown that several malignant 

cell lines including Walker 256 and two virally transformed human cell 
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lines have an absolute requirement for methionine for growth, while 

the nonmalignant cells studied grew well in methionine-deficient 

medium supplied with homocysteine. However, the malignant cell lines 

were found to be capable of synthesizing methionine from homocysteine 

at rates at least as high as those of normal cells, so long as a 

trace amount of exogenous methionine was present. Thus, while exogenous 

methionine is required for growth by malignant cells, the reason 

for this requirement appears not to be deficient ability to synthesize 

methionine from homocysteine. Also, it is known that L5178Y cells 

behave similarly: in the presence of high concentrations of vitamin 

B-|2» especially with the transport protein TC-II, folate require¬ 

ments for these cells are met entirely by low concentrations of either 

21 
5MTHF or LV , despite the fact that this cell line has a requirement 

for exogenous methionine that cannot be spared by addition of vitamin 

B]2, TC-II, 5MTHF, and homocysteine. 

Since deficient methionine synthetase activity and thus diminished 

potential to regenerate THF from 5MTHF is probably not a major factor 

in accounting for differential rescue by 5MTHF, the difference must 

lie in other aspects of utilization of the molecule. Recently, with 

the demonstration of the importance of polylgutamyl forms of reduced 

folates in mammalian cel 1 s^6,78,85^ Hoffbrand et al.^ have shown 

that far more radioactivity is found in the form of polyglutamate 

residues when labelled LV rather than labelled folic acid is administered 

to dividing human lymphocytes. Even though MTX decreased the rate of 
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polyglutamate formation from folic acid, there was no effect whatso¬ 

ever by MTX on incorporation of LV monoglutamate into polyglutamate 

folate derivatives. Also, addition of labelled 5MTHF to dividing human 

lymphocytes resulted in no detectable polyglutamate radioactivity 

for up to 72 hours^, suggesting that polyglutamyl forms of folate 

cannot be made directly from 5MTHF. The differential ability of 

LV to rescue malignant cells better than 5MTHF may lie to some extent 

in preferential incorporation of LV into the reduced folate polyglu¬ 

tamate pool, thus enabling it to more rapidly assume a metabolically 

active form. 

83 
In vivo studies by Mead several years ago demonstrated that 

5MTHF administered simultaneously with MTX to LI 210-bearing mice 

caused reversal of antileukemic activity of MTX, comparable to that 

obtained with equivalent doses of LV. Delayed rescue of from 12 to 

24 hours using both LV and 5MTHF iji vi vo showed reversal of toxic 

effects of MTX to approximately equal extents, and these authors con¬ 

cluded that "there is apparently no advantage to be obtained by the 

use of prefolic A (5MTHF) instead of citrovorum factor under these 

experimental conditions". The doses of MTX used in this work, however, 

produced serum levels of 0.1 mM or better, far outside the realm of 

concentrations used in the current studies in which we observed differ¬ 

ential rescue effects. 

Sauer and Jaenicke^ recently demonstrated that 5MTHF at a con- 

4 
centration of 1 mM could reverse the effects of 10 times less MTX in 
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human lymphoblastic cells in vitro with respect to both inhibition 

of cell growth as well as with respect to changes in incorporation 

of TdR into DNA. These studies, however, were only performed in 

4 
the simultaneous rescue fashion, and it is apparent that 10 times 

more competitive inhibitor (5MTHF) would seriously hinder uptake of 

MTX by the cells. 

The current studies suggest several further investigative pro¬ 

cedures to evaluate differential rescue of MTX by 5MTHF. Duplicating 

to some extent the tissue culture studies in which the results were 

obtained, it may be likely that simultaneous infusion of low doses 

of MTX (in the range of 0.04 pM) with equimolar 5MTHF over an extended 

period of time may be a viable protocol to test in vivo for improved 

response to L1210 and other tumors in mice. Similarly, infusion of 

higher doses of MTX, on the order of a serum concentration of 2 pM, 

followed within 4 to 6 hours by equimolar 5MTHF in a continuous 

infusion for several days may be also a worthwhile chemotherapeutic 

protocol to investigate in vivo. 

It is known that LV or folic acid given orally or intravenously 

is rapidly converted to a large extent to 5MTHF, the major folate 

90 93 
transport form in serum ’ . However, the molar ratios of 5MTHF 

and LV as compared with MTX used in current moderate-dose and high- 

dose protocols seldom exceed 0.25 to 0.50. 

The two possible test protocols outlined above will be far more 

difficult to achieve and maintain in vivo due to time required for 

distribution of drug in total body water as well as effects of 
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metabolism and excretion, but a relatively great deal is known about 

the fate of MTX and reduced folates in man, so it should be possible 

to devise protocols in which an average, constant concentration could 

be maintained within reasonable limits for the periods outlined above 

Low-dose or moderate-dose MTX chemotherapy followed by equimolar 

5MTHF rescue appears to be a viable new protocol to further evaluate 

chemotherapeutic management of animal and human neoplasms, especially 

the leukemias. 
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