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ABSTRACT 

 

Bone marrow-derived cells (BMDCs) have significant plasticity allowing 
them to give rise to various non-hematopoietic cell types including epithelial cells of 
the lung, liver, gut, and skin. These findings offer tremendous possibilities for the 
use of cell therapy to treat tissue injury and disease. However, the specific 
populations of cells responsible for this phenomenon are still unclear with 
considerable controversy over the mechanism of this transformation. 

 In this study, we sought to compare the epithelial engraftment ability of two 
populations enriched for hematopoietic stem cells (HSCs), specifically the 
fractionated, lineage-depleted, and homed subset (FLH) and the lineage-Sca-1+c-Kit+ 

sorted population (LSK), to whole bone marrow (WBM). Plasticity capability was 
assessed by examining the engraftment of type II (T2) pneumocytes in the lung 
following sex-mismatched bone marrow transplantation in mice. The recipient mice 
were knockouts of surfactant protein C (SPC), a T2-specific protein, thereby 
allowing detection of the transplanted wild-type cells in the lung using 
immunofluorescence for SPC on paraffin sections and cytospins. Additionally, 
quantitative PCR (qPCR) for SPC transcripts provided a sensitive method of 
detecting engraftment of these BMDCs.  

 Our data suggest that the FLH and LSK populations engraft in the lung at 
least as well as the control WBM. Despite our effective detection techniques, only 
exceedingly rare donor-derived T2 cells could be found by both microscopy and 
qPCR. Therefore, fluorescence-activated cell sorting (FACS) of the digested lung was 
tested and found to be reliable in isolating and enriching for these conversion 
events.  

 Vav ancestry mice were also utilized in a similar transplantation model to 
directly evaluate the engraftment ability of the hematopoietic and non-
hematopoietic fractions of the bone marrow. Preliminarily, the hematopoietic 
populations showed higher levels of epithelial engraftment by both 
immunofluorescence and qPCR. Interestingly, a second dose of targeted lung 
irradiation was necessary to elicit this effect suggesting that greater levels of tissue 
damage may be necessary for this model's success.  

 When taken as a whole, our results seem to implicate HSC subpopulations as 
enriched for highly plastic cells which are able to engraft as T2 cells in the lung. The 
mechanism behind this conversion still remains to be studied but we hypothesize 
that both cell fusion and incidental entrapment of transplanted BMDCs are 
responsible. 
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INTRODUCTION 
 

Lung Structure and Function 

 The lung's primary function is to exchange gases, predominantly oxygen and 

carbon dioxide, between inspired air and blood. This respiratory function occurs in 

the distal most regions of the lung in alveolar sacs that are the blind ends of the lung 

parenchyma but contiguous with the outside world. Alveoli are the site of gas 

exchange and, in cross-section, appear open and with incomplete walls. There is a 

rich capillary network associated with each alveolar sac. To separate the capillary 

endothelial cells from the alveolar lining epithelial cells, there exists a very thin 

basement membrane and surrounding interstitial tissue. 

 Alveolar epithelium itself is a continuous layer composed of two principal 

cells types: type I and type II pneumocytes. Type I cells appear flattened, plate-like, 

with small nuclei, scant cytoplasm and cover 95% of the alveolar surface while 

comprising only 8% of the total cells in the lung. This specialized morphology makes 

these cells highly optimized for gas exchange. In contrast, type II (T2) cells are 

secretory cells with osmiophilic lamellar bodies containing surfactant. In addition to 

producing surfactant, T2 cells are the main cell type involved in the repair of 

alveolar epithelium after destruction of type I cells. It is for this reason that T2 cells 

are sometimes considered the intra-organ stem cells of the respiratory unit since 

they can give rise to type I cells along with additional type II cells. 
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 Alveolar macrophages also reside in the alveoli loosely attached to the 

epithelial cells or lying free within the alveolar spaces. Microscopically, these 

macrophages are large, pleomorphic, and heterogeneous in cell shape and surface 

morphology. These cells are derived from blood monocytes and belong to the 

mononuclear phagocyte system. They are often filled with carbon particles and 

other phagocytosed material (1). 

 

Surfactant Protein C (SPC) 

 Pulmonary surfactant is a complex mixture of lipids and proteins that 

reduces surface tension, increases compliance, minimizes fluid accumulation, and 

maintains alveolar size (2). Surfactant is secreted at the air-fluid interface in the 

lung by T2 pneumocytes along with the non-ciliated columnar epithelium of the 

larger airways. The surfactant apoprotein itself is bound to the lipid 

dipalmitoylphosphatidylcholine such that secreted surfactant contains both 

hydrophobic and hydrophilic regions. While surfactant proteins A, B, and D have 

been detected in multiple organs (such as the blood and gastrointestinal tract), 

surfactant protein C mRNA and protein have only been noted to be produced and 

secreted by the T2 cell in the lung (3). This makes SPC an ideal reporter protein for 

type II pneumocyte structure and function. 

 Whereas surfactant protein B (SPB) gene deletion is lethal in early life (4), 

SPC knockout mice demonstrate a more subtle phenotype in which there are 

abnormalities in lung elasticity and stabilization of other surfactant proteins. In 
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humans, SPC deficiency results in adult onset interstitial lung disease that may be 

related to abnormal processing of SPC protein which leads to its accumulation in T2 

cells (5). The murine models mirror this result with chronic inflammation leading to 

increased lung fibrosis, emphysema, and dysplastic T2 cells (6, 7). 

 

Stem Cells 

 Stem cells hold great promise for the future approaches to medicine in the 

areas of regenerative medicine, cell-based tissue repair in cancer treatment, and 

gene therapy (8). Many tissues are candidates for therapeutic treatment but a better 

understanding of general biological principles in these unique cells is necessary 

before this vision can materialize (9). Even with our currently incomplete level of 

understanding, the biology of hematopoietic stem cells in particular has led to a 

number of medical advances in cancer therapy, transplantation, and autoimmunity. 

 Stem cells are biological units which are responsible for the development and 

regeneration of tissues and organ systems. Since the 1960s, stem cells are generally 

defined as clonogenic cells, which are capable of both self-renewal and multilineage 

differentiation at the single cell level (10). There are many categories of stem cells, 

which are mostly human semantic constructions to deal with the complexity of 

these diverse entities. Stem cells can be divided into a long-term subset, capable of 

infinite self-renewal, as well as a short-term subset that self-renews for a defined 

interval. Stem cells also undergo differentiation and must give rise to non-self 

renewing oligopotent progenitors. The earliest stem cells in ontogeny (those from 
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the zygote to the inner cell mass of the blastocyst) are classified by their 

developmental potential as totipotent meaning that they are able to give rise to all 

embryonic and extra-embryonic cell types. Embryonic stem cell lines, which are 

derived from the inner cell mass of the gastrula, are considered pluripotent in that 

they can give rise to all three germ layers of the embryo but not the extra-embryonic 

tissues. Adult stem cells are believed to be more restricted in their differentiation 

ability and merely able to regenerate specific cells types within a tissue; type II 

pneumocytes of the lung, gastrointestinal crypt cells, and oval cells of the liver 

demonstrate this capacity. 

  

Hematopoietic Stem Cells 

 Hematopoietic stem cells (HSCs) are a well-studied population, with a single 

HSC being capable of reconstituting the entire hematopoietic system following an 

otherwise lethal dose of radiation (11). These HSCs are very rare in mice and 

account for approximately 1 in 100,000 nucleated cells in the bone marrow (12-14). 

In order to study and characterize these cells, multiple isolation protocols have been 

developed. Typically these protocols begin with a lineage deletion step in which 

cells displaying surface markers consistent with mature lineages are removed. The 

lineage removal antibody cocktail contains Ter-119 for erythrocytes, CD11b for 

macrophages and granulocytes, CD3 for T-cells, and B220 for B-cells. This resulting 

lineage-negative population is enriched for HSCs 10- to 100-fold. This lin- 

population can then be further purified for HSCs using CD34+ cells (15), c-
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Kit+Thy1loSca-1+(KTLS) (16), or exclusion of rhodamine and Hoechst dyes 

(RhodamineloHoechstlo) (17). But cell surface markers are not the only way to 

isolate potential HSCs. A protocol which utilizes cell migration and survival involves 

purifying lin- cells, and then separating this population based on size using an 

elutriator. These cells are then injected into a lethally irradiated recipient mouse. 

After 48 hours the cells that were able to home to the bone marrow are collected as 

so called elutriated, lineage-depleted, and homed cells (ELH) (18). A single KTLS or 

ELH cell can provide long-term hematopoietic reconstitution in about 20% of 

lethally irradiated mice (16, 19).  

 The same purification techniques that enrich for HSCs also enrich for cells 

that are capable of engraftment as epithelial cells. Since there is no evidence yet that 

these cells were ever committed to hematopoiesis prior to their differentiation into 

epithelial cells, these cells will be referred to as bone marrow-derived cells (BMDC), 

and cells that are committed to hematopoiesis (e.g. KTLS) as HSCs. Until it is proven 

that a cell can be committed to hematopoiesis, and then differentiate into a mature 

functional epithelial cell without fusion, the term “transdifferentiation” will not be 

used. 

 

Plasticity 

 Many exciting discoveries have demonstrated that BMDCs have more 

potential than previously suggested. In fact, they have been shown to develop into 

tissue specific cells in the lung (19-23), heart (24), brain (25), skeletal muscle (26, 
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27), bone (28), liver (29, 30), kidney (31, 32), pancreas (33, 34), eye (35), skin (36), 

and gastrointestinal tract (37). This phenotypic flexibility is termed “plasticity” and 

refers to the ability of adult stem cells to cross lineage barriers and adopt the 

expression profiles and functional characteristics of cells unique to other tissues. In 

1999, this transformation phenomena was first noticed in lethally irradiated female 

rats and mice that had received male bone marrow cells. When examining the livers 

of these animals, Y chromosome-positive hepatocytic oval cells were noted (30, 38). 

This data has since been corroborated but with widely varying engraftment rates of 

0.01 to 2%. This discrepancy is most likely due to the differences in experimental 

conditions such as the number and type of cells transplanted, the methods of 

detection, and the degree and type of liver injury. As more sophisticated methods of 

detection were developed to reduce cell overlay and exclude blood and endothelial 

cells (with CD45 and cytokeratin staining), the donor-derived hepatocyte 

engraftment rate was revised to approximately 0.1% (39). 

 

The Importance of Tissue Damage in the Lung 

 Many of these previous studies utilize some form of organ injury to induce 

engraftment in mice. The best studied mechanism for lung damage is ionizing total 

body irradiation at lethal levels greater than 1,000 cGy. At this dose, severe lung 

injury occurs as demonstrated by capillary breakdown and extravasation of 

erythrocytes into the alveolar spaces. This damage worsens from day 0 to day 5 

with restoration of alveolar septal integrity by about day 7. This high level of injury 
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is necessary for BMDC to engraft as lung epithelial cells while lower doses of greater 

than 400 cGy were conducive to high rates of hematopoietic engraftment (40). This 

data demonstrate a threshold effect for inducing lung damage such that BMDC can 

engraft in this niche. 

 Bleomycin is another agent which has been used to induce lung injury. 

Bleomycin is a glycopeptide antibiotic, which is used clinically as a 

chemotherapeutic. However, it is also one of the most extensively studied and 

reproducible experimental models for lung fibrosis. When bleomycin is delivered 

into the airway, it produces acute lung epithelial injury, followed by a prolonged 

inflammatory response which leads to lung fibrosis that eventually resolves (41). 

 

Bone Marrow-Derived Cells in the Lung 

 Early work in the field of lung engraftment demonstrated that bone marrow 

cells (specifically mesenchymal precursor cells) could adopt a collagen producing 

phenotype in the murine lung (42). However, the first evidence that BMDCs could 

become lung epithelial tissue was published in 2001 (19). These experiments used 

lethally irradiated mice which were then transplanted with a single sex-mismatched 

ELH HSC. At the time of sacrifice 11 months later, multiple epithelial compartments  

were populated with Y chromosome containing cells which must be the progeny of 

this originally transplanted ELH cell. In particular, the bronchi and alveoli showed a 

significant amount of engraftment (12.58% and 2.32%, respectively). This outcome 

was observed using colocalization of FISH staining for Y chromosome along with 
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either FISH for SPB or immunostaining for SPB. However, a follow-up study by a 

different group utilizing multiple different methods (e.g., starting donor cell, 

detection methods, timing at sacrifice) was unable to reproduce these results (43). 

 Mirroring the initial findings by Krause et al (19), Theise et al (22) used the 

CD34+Lin- subset of HSCs and a shorter time to sacrifice of 5 days to 6 months. They 

found similar results that donor-derived cells had engrafted as 2%-14% of the total 

type II pneumocytes. Grove et al (21) expanded the clinical implications of these 

techniques by demonstrating that HSCs could be delivery vehicles for gene therapy.  

They used whole bone marrow enriched for HSCs using 5-FU and then retrovirally 

transfected the eGFP gene before systemically injecting the cells into a irradiated 

host. Donor-derived T2 cells, which also stably expressed eGFP, were found in all 

recipients at time points from 2 to 11 months. 

 In contrast to these results, Kotton et al (20) intravenously delivered lacZ-

labeled, plastic adherent mesenchymal stem cells (MSCs) after bleomycin-induced 

lung injury. They detected marrow-derived cells engrafted as type I cells by 

morphological and molecular phenotype but no T2 pneumocytes. Using the same 

model, Ortiz et al (23) showed that donor MSCs localized to the zones of bleomycin 

tissue injury and reduced fibrotic and inflammatory damage. However, the low 

numbers of donor-derived cells engrafting the lung did not appear sufficient to 

account for the therapeutic response, suggesting that donor stem cells may have 

other local effects mediated through paracrine factors (44).   
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 Nevertheless, there are numerous studies to the contrary utilizing 

discernibly different methods to demonstrate a lack of plasticity for adult stem cells. 

Wagers et al (43) used two approaches to test their hypothesis: a chimeric mouse 

produced via bone marrow transplantation with GFP-expressing KTLS HSCs, and 

parabiotic animals which joined the circulation of a transgenic GFP mouse and a 

wild type mouse. Both groups had the expected reconstitution or chimerism in their 

hematopoietic system, but there was very little evidence for plasticity and 

engraftment. In the transplantation approach, only 1 cell in 13.2 X 106 in the brain 

and 7 cells out of 4.7 X 106 in the liver expressed the donor GFP marker. 

Furthermore, there was no evidence of epithelial engraftment in the lung. Similarly, 

the parabiotic model demonstrated no HSC engraftment beyond the hematopoietic 

system. But this result is not surprising given the need for tissue damage to elicit 

engraftment as explained above. 

 Kotton et al (45) used an SPC-eGFP reporter mice as a donor and 

transplanted either whole bone marrow or side population (SP) cells, which are also 

enriched for HSCs. So called SP cells have the unique ability to efflux Hoechst dye, and 

when examined by fluorescence-activated cell sorting (FACS) analysis they fall within a 

separate population that is to the "side" of the rest of the cells on a dotplot of emission 

data. Three months following irradiation, the mice were analyzed and, while they had 

good hematopoietic reconstitution, there was no evidence of donor cells being T2 

pneumocytes by either FACS, fluorescence microscopy, or real-time PCR.  

 Chang et al (46) added to the field by discovering that these supposedly SPC and 

eGFP coexpressing cells were in fact microscopic artifact. Using deconvolution 
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microscopy, which is able to render a three dimensional image of the lung, these 

initially engrafted cells were actually false positives with endogenous SPC signal 

residing just outside of the donor-derived eGFP expressing cells with less than 300 nm 

separating the two. 

 An important aspect of plasticity studies is the number of variables which can 

affect the conversion outcomes; the timing of the transplant and analysis, the cell dose 

and number of cell infusions, the method of cell delivery, the functional state of the 

marrow cell delivered, and the nature of the marrow population or subpopulation are 

all influential. It should be noted that many of these negative studies utilized GFP 

transgene expression alone, which has been shown to be a relatively insensitive method 

of detection for BMDC lung epithelium because of inconsistent expression (47). Current 

standards in this field demand either confocal or single-cell analysis of marrow-derived 

epithelial cells to rule out the possibility of overlay. The addition of CD45 for 

hematopoietic antigens to staining protocols is appropriate along with phenotypic 

analysis of epithelial cell-specific markers to reduce microscopy artifact (39). A 

summary of publications on this topic can be seen in Table 1. 
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 Cells/route Damage model Findings  

M
S

C
 

IV Irradiation Engraftment of collagen transgene producing cells (42) 
IV Bleomycin Type I (potential artifact) (20) 
In vitro Co-culture BMDE, fusion (48) 

IV Bleomycin 
Engraftment (epithelial-like cells) w/ Bleo 
 Fibrosis  

(23) 

IV  
6h post Bleo 

Bleomycin ± 
busulfan 

 Survival/repair 
 G/GM-CSF 
 Inflammatory cytokines 

(49) 

In vitro Co-culture 
Epithelial-like morphology, CFTR+ epithelial cells 
in vitro 

(50) 

IV  
(WBM too) 

Naphthalene Rare airway epithelial cells (CFTR+) (51) 

IT LPS IT 
 Survival/repair 
 Inflammation/edema 

(31) 

IV IP LPS 
Prevention of LPS induced 
inflammation/injury/edema 

(52) 

A
d

h
 B

M
 

Adherent BM 
(7d) 

IP Naphthalene BMDE cells identified after damage (53) 

W
B

M
/

H
S

C
 

IV Irradiation Rare BMDE cells (54) 

IV Irradiation BMDE by concurrent Y-FISH, CK, and SPB (19) 
IV Irradiation BMDE by concurrent Y-FISH, CK, and SPB (22) 
IV  Irradiation GFP+ alveolar epithelial cells (21) 
IV LPS GFP+ alveolar epithelial cells (55) 
IV Irradiation 

No BMDE (43) 
Parabiosis None 
IV Irradiation No BMDE (45) 

IV Irradiation 
No BMDE (deconvolution microscopy revealed 
false positive cells) 

(46) 

SP/IV Polidocanol IT 0.83% tracheal epithelium (56) 

IV (rat) BMT Asbestos Epithelial cells, BADJ localization (57) 

IV (human) 
BMT 

Chemotherapy Epithelial cells, endothelial cells (58) 

IV (SP cells) Irradiation 
Type I, alveolar cells, rare bronchial epithelium,  
but not Type II engraftment 

(59) 

IV 
Radiation + 
elastase 

↑ Engraftment and BMD cell repair following 
ATRA and G-CSF treatment 

(60) 

O
th

e
r 

Parabiosis 
Radiation  
elastase 

Type I cells (61) 

Circulating 
precursor 

Tracheal 
transplant 

Recipient-derived epithelial cells (62) 

Type II IT Bleomycin Decreased fibrosis, Y+ cells localized to fibrosis (63) 

Circulating 
precursor 

Lung transplant 
(human) 

Epithelial cells (64) 
Epithelium in bronchi and alveoli (65) 
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Table 1: Summary of Publications Discussing Bone Marrow-Derived Epithelial 
Cells in the Lung  

Figure adapted from Krause (66). References are in the last column. Abbreviations: 
intravenous (IV), intratracheal (IT), intraperitoneal (IP), bone marrow 
transplantation (BMT), Bleomycin (Bleo), Y chromosome positive (Y+), side 
population (SP), hematopoietic stem cell (HSC), whole bone marrow (WBM), bone 
marrow derived epithelial cell (BMDE), day (d), cytokeratin (CK), surfactant protein 
B (SPB), alveolar macrophage (AM), lipopolysaccharide (LPS), granulocyte colony 
stimulating factor and granulocyte macrophage colony stimulating factor (G/GM-
CSF), broncho-alveolar duct junction (BADJ), all-trans retinoic acid (ATRA). All 
studies performed in mice except where indicated. 
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Bone Marrow-Derived Epithelial Cells in Humans 

 The appearance of bone marrow-derived epithelial cells is not just a research 

anomaly seen in experimental animals. When liver tissue from two women who had 

undergone bone marrow transplantation from male donors was examined, Y 

chromosome-positive hepatocytes could be identified in up to 12% of the liver 

specifically around the periportal area (67). Interestingly, the highest rates of 

engraftment could be seen in a separate patient who had developed recurrent 

hepatitis C infection. This again demonstrates that severe tissue injury can serve as 

a necessary impetus for significant engraftment. 

 With regards to the lung, Suratt et al studied (58) lung specimens from 

biopsy or autopsy from two female patients that had pervious sex-mismatched bone 

marrow transplants. They found chimerism in the alveoli with donor-derived 

epithelium (2.5-8.0%) and endothelium (37.5-42.3%) when merging images for Y 

chromosome FISH along with immunohistochemistry for cytokeratin (epithelial 

marker) and CD31 (endothelial marker). Of interest, there was a third patient 

examined in this series which did not demonstrate epithelial or endothelial 

chimerism but this patient was unique in that she had not received a conditioning 

regimen of total body irradiation. These findings have been echoed in other 

experiments in which lung transplantation recipients were seen to have recipient-

derived type II (9.1-20%), bronchial epithelial (5.7-25.5%), and glandular (9.1-

24.2%) cells (65). These robust results have since been tempered in a more recent 

study which demonstrated T2 cellular engraftment in the lung to be between 0% 

and 0.55% (68). 
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Functional Effects of Bone Marrow-Derived Cells 

 Although there has been significant discussion concerning the importance of 

these plasticity observations (69), in at least a few models it has been shown that 

these BMD epithelial cells can be quantitatively significant and functionally relevant. 

Lagasse et al (70) used a fumarylacetoacetate hydrolase (FAH) knockout mouse, 

which is an experimental model for hereditary tyrosinemia type 1. These mice 

necessarily die from liver failure due to the buildup of toxic metabolites of tyrosine. 

Amazingly, purified FAH+ KTLS HSCs and adult bone marrow cells could produce 

large numbers of functional hepatocytes (30-50% of liver mass) that were able to 

restore the biochemical function of the liver and rescue the mice from liver failure 

and certain death.  

 Orlic et al (24, 71, 72) have also shown that directly injected whole bone 

marrow or c-kit+ BM cells could restore some cardiac function in mice with 

myocardial infarctions. The Krause lab has published data proving that BM-derived 

gut epithelial cells can partially restore functional electrophysiological activity to 

the GI tract of cystic fibrosis transmembrane regulator (CFTR) knockout mice (73). 

Additionally, Zhao et al (74) demonstrated that human BMDCs can ameliorate 

stroke manifestation in rats. Interestingly, the beneficial effects of these cells in 

ischemia injury are not necessarily due to epithelial engraftment but rather could be 

the result of altered cytokine expression or engraftment as endothelial cells. This 

source of controversy remains an open question. 
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 BMDCs have also been shown to be beneficial in a model of ischemic renal 

disease by differentiating into renal tubular cells (75). Wild-type mice underwent 

BM transplantation using Lin-Sca-1+ cells ubiquitously expressing β-galactosidase, 

and then were subjected to a period of renal ischemia by surgical clamping of the 

renal artery. The normal rise in blood-urea-nitrogen (BUN) concentrations induced 

by renal ischemia was significantly reduced in mice after transplantation with the 

Lin-Sca-1+ cells compared with controls. Furthermore, β-galactosidase-positive 

renal tubule epithelial cells were present as early as 48 hours after ischemic injury, 

which correlated with the protective effect. In contrast, no β-galactosidase-positive 

renal tubules were present in mice whose renal ischemia was preceded by the 

transplantation of Lin+ cells. The epithelial phenotype of the β-galactosidase-

positive cells was confirmed by immunohistochemistry for megalin (a surface 

marker of tubular epithelia) and the lack of CD45 expression. 

 Functional effects of BMDCs in the lung have also been demonstrated. 

Inflammatory responses induced by either lipopolysaccharide (55) or elastase (60) 

could be reduced in the lung with the supplementation of BMDCs. Both of these 

papers used radiation conditioning as a precursor to bone marrow transplantation. 

It is suggested that the improvement in respiratory pathology is due to the 

temporary engraftment of type I, type II, and endothelial cells. However, both these 

studies have weaknesses because they lacked relevant non-irradiated controls.  

 A significant survival advantage was also conferred by administering BMD 

mesenchymal cells into mice that were myelosuppressed and then injured with 
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bleomycin (49). In these mice, BMDCs engrafted as both type I and type II 

pneumocytes. This protection was also associated with increased circulating levels 

of G-CSF and GM-CSF (known for their ability to promote the mobilization of 

endogenous stem cells) and with a decrease in inflammatory cytokines. However, 

this study raises the question whether epithelial engraftment itself or induction of 

reparative growth factors played the major role in protection from injury and 

fibrosis. All these studies seem to suggest that engrafting BMDCs are most beneficial 

in response to acute injury caused by genetic deficiency, infarction, or exogenous 

toxin. A summary of relevant literature is again presented in Table 1. 

 

Vav Ancestry Mice 

 The vav protein was first described as an adapter protein based on its SH3 

domains without an obvious enzymatic domain. However, it has since been 

determined that vav also plays critical roles in signaling via GTPase and other 

pathways (76). The particular usefulness of the vav protein promoter sequence lies 

in the demonstration that only cells committed to hematopoiesis express this 

sequence. Stadtfeld et al (77) first created transgenic mice, called vav ancestry mice, 

that express Cre recombinase on the vav promoter. When the vav ancestry mice are 

crossed with a Cre reporter strain that expresses YFP only after Cre-mediated 

excision, any cell that ever expressed vav would permanently express YFP (unless 

there was chromosomal deletion or promoter inactivation).The investigators used 

this tool in an effort to directly test whether cells that have committed to the 
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hematopoietic lineage are able to differentiate into epithelial cells normally in vivo. 

They hypothesized that if cells committed to hematopoiesis became hepatocytes or 

endothelial cells in vivo, then YFP-positive cells would be detectable over time 

without the need for tissue injury. Indeed they did find a very rare YFP+ hepatocyte 

(1/75,000) but no YFP+ endothelial cells.
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STATEMENT OF PURPOSE 
 

Bone marrow-derived cells have significant plasticity allowing them to give 

rise to various non-hematopoietic cell types including epithelial cells of the lung, 

liver, gut, and skin. These findings offer tremendous possibilities for the use of cell 

therapy to treat tissue injury and disease because BMDCs may represent a 

renewable pool of epithelial precursors. At present, bone marrow to epithelial cell 

engraftment levels in the lung are too low to be of clinical relevance. However, if 

these levels could be increased, there could be multiple therapeutic implications of 

this work. By better understanding the capabilities of subpopulations involved and 

the mechanisms by which they become epithelial cells, we will be able to design 

strategies to increase engraftment of these cells. Theoretically autologous BMDCs 

with the capacity to differentiate into mature pulmonary cells could be isolated and 

cultured in vitro to serve as target cells for gene therapy or as a resource for organ 

reconstitution and repair. However, selective long-term delivery of genes to the lung 

has not yet been highly successful. The immediate targets of these gene therapy 

projects could include inherited diseases of the respiratory tract such as surfactant 

protein deficiencies, cystic fibrosis, idiopathic pulmonary fibrosis, or α-1 antitrypsin 

deficiency.  

 Based on currently available evidence in the murine model, it is not clear if 

purified stem cell populations offer an engraftment advantage in the lung compared 

to whole bone marrow. Therefore, we designed an experiment to compare the use of 
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whole bone marrow to ELH and LSK populations to determine if any one group 

offers a higher conversion rate. A summary of experimental design is presented in 

Figure 1. Using SPCKO mice as recipients and WT mice as donors for 

transplantation, SPC mRNA and protein can be used as a donor-derived T2 

pneumocyte cell marker measuring engraftment. Untransplanted SPCKO and WT 

mice were included as negative and positive controls, respectively. Additionally as a 

negative control for transplantation and radioprotection cell effects, SPCKO whole 

bone marrow cells were transplanted into an SPCKO recipient. The mice were 

sacrificed and analyzed three months later. We hypothesize that the ELH population 

by virtue of its homing ability will show improved engraftment when compared to 

WBM and LSK populations. 

 In this investigation, SPC production was detected by using 

immunofluorescence on paraffin and cytospin digestions of the lung. To 

complement these studies, quantitative PCR for SPC was utilized on the digested 

lung. These mice were also assessed for hematopoietic engraftment.  

 In an effort to investigate a better detection strategy for these rare BMD T2 

cells, FACS analysis from GFP-positive donor mice into wild-type recipients was 

tested. The resulting donor-derived lung cells were then examined by confocal 

microscopy. 

 Lastly, to explore the potential of different BMD populations, the vav ancestry 

mice were used as donors into lethally irradiated SPCKO recipients. Specifically, this 

design allowed a comparison of engraftment capability between hematopoietic and 
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non-hematopoietic cell types, which are both resident in the bone marrow. The 

hematopoietic and non-hematopoietic fractions were divided based on vav-YFP 

expression using FACS. Again SPC mRNA and protein were used as a donor-derived 

T2 cell marker. The WBM population served as the control. The mice were sacrificed 

and analyzed one month later. We hypothesize that the YFP+ population 

representing the hematopoietic population will show better engraftment based on 

the previously purported plasticity of HSCs. Additionally, this transplantation model 

was used to determine if engraftment of these donor cell groups could be enhanced 

through a second dose of targeted lung irradiation. A summary of this experimental 

design is presented in Figure 2. We hypothesize that a second round of irradiation 

could further enhance engraftment by inducing additional damage and 

opportunities for BMDCs to engraft. 
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Figure 1: Schematic Showing the Experimental Design and Analysis 

Panel A presents the transplantation scheme. NB The number of transplanted mice 
is not equal to the final number of mice analyzed due to expected animal loss. 
 
Panel B shows the analysis steps for each animal.  
 
Panel C is a table showing the interpretation of immunofluorescence patterns of 
lung cells seen under microscopy.  
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Figure 2: Schematic Showing the Experimental Design for Vav Ancestry 
Studies 

Panel A demonstrates the genetic design of vav ancestry mice. At top, the vav-Cre 
bicistronic transgenic vector showing the hypersensitivity sites (HS) of the vav 
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elements, the insulator sequences (INS), and the IRES-YFP element which is not 
functional in vivo (as indicated by the lowercase letters). The middle and bottom 
sequences show the ROSA26R-YFP locus floxed before and after Cre-mediated 
excision of the stop cassette. The resultant F1 generation expresses YFP only in the 
hematopoietic system. Figure adapted from Stadtfeld et al (77). 
 
Panel B presents the experimental transplantation schemes. NB The number of 
transplanted mice does not equal the final number of mice analyzed due to expected 
animal loss following irradiation. 
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METHODS 
 

Transgenic Mice 

 SPC knockout mice (SPCKO) were obtained from the laboratory of Dr. Jeffrey 

Whitsett (Children’s Hospital, Cincinnati, OH). These mice were generated by 

targeted insertion of a 5.6 kB PKG Neomycin cassette into the polyvaline region of 

exon 2 that gives SPC its hydrophobic functional properties. These mice completely 

lack mRNA by Northern blot and RT-PCR, and protein by Western blot for mature 

SPC and immunohistochemistry (IHC) for pro-SPC. On a 129/Sv background, this 

deletion confers regional emphysema and interstitial pneumonitis with respiratory 

insufficiency (7). Wild-type 129/SvJ mice were used as donors and controls and 

obtained from The Jackson Laboratory (Bar Harbor, ME).  

 The experiment involved with isolating engrafted type II pneumocytes by 

FACS utilized constitutively expressing eGFP mice under the ubiquitin-C promoter 

on a C57BL/6 background which were donated by Jiankan Guo (Yale University, 

New Haven, CT). Recipient mice were C57BL/6J-Tyrc-2J/J albino mice that carry a 

mutation in the tyrosinase gene. This alteration results in a complete absence of 

pigmentation in the skin, hair, and eyes, which was irrelevant for this study (The 

Jackson Laboratory).  

 Vav ancestry mice were previously described by Stadtfeld et al (77). The 

details of their construction has already been presented in the Introduction, 
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Statement of Purpose, and Figure 2 of this work. These mice were the gift of Thomas 

Graf  (Albert Einstein College of Medicine, New York, NY). Basically, vav ancestry 

mice were created by crossing vav-Cre transgenic mice with ROSA26R-YFP reporter 

mice. Mice with YFP+ cells of dendritic morphology were classified as vav ancestry 

mice. These mice were then bred for homozygosity on a C57BL/6 background by 

crossing female vav ancestry mice with male ROSA26R-YFP.   

 

Stem Cell Isolations 

(The FLH isolations were performed with the collaboration of Lin Wang.) 

 Donor animals were anesthetized using isoflurane, sacrificed by cervical 

dislocation, limbs removed, and bone marrow harvested by crushing the bones with 

mortar and pestle in 3% fetal bovine serum (FBS) in phosphate buffered saline 

(PBS). 

 Fractionated, lineage-depleted, and homed (FLH) cells were harvested using 

a multi-step process based on the previously described ELH technique by Krause et 

al (19) with slight modifications. Without a functional elutriator, harvested cells 

were separated based on size using a percoll gradient. The purified HSCs reside at 

the bottom of the 3rd fraction corresponding to a density of 1.081-1.087 g/ml. 

Instead of using "rotor-off" cells as previously published, short-term reconstituting 

radioprotection cells were provided by unfractionated whole bone marrow cells 

identical to the recipient.  
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 In a summary of the following steps, these cells were then depleted of mature 

differentiated hematopoietic cells using immunomagnetic lineage depletion cocktail 

against Ter-119 for erythrocytes, CD11b for macrophages and granulocytes, CD3 for 

T-cells, and B220 for B-cells (BD Biosciences, San Jose, CA) as described in the BD 

iMag Cell Separation System protocol. The resultant population was labeled with the 

fluorescent tracking dye PKH26 (Sigma-Aldrich, St. Louis, MO) and transplanted into 

lethally irradiated (1100 cGy) recipient mice. Two days after transplantation, the 

bone marrow was harvested using the crushing technique from the primary 

recipient, and PKH26+ cells that have homed to the bone marrow were collected by 

FACS. A summary of this purification is presented in Figure 3. These FLH cells are 

then used for further transplantation studies. 
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Figure 3: A Schematic Representation of the Purification of FLH cells 

 

 The LSK population and its isolation have already been well described (78). 

Briefly, whole bone marrow was erythrocyte lysed, lineage depleted using 

immunomagnetic separation (as above), and then sorted using FACS for cell surface 

markers. The lineage depleted cells were stained at the standard concentration of 1 

µg/ 1 million cells with Sca-1 Alexa 647, c-Kit PE-Cy7, and biotinylated lineage mix 

PE F9 (BD Biosciences). The first gate collected living cells of appropriate size and 

granularity using forward and side scatter. The second gate sorts for the lineage- 

fraction. Finally these cells were sorted to contain the Sca-1+c-Kit+ fraction. A sample 

of the results for this sort can be seen in Figure 4. 
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 Six week-old vav ancestry mice were sacrificed and their bone marrow 

harvested using the crushing technique. As with the LSK cell isolation, the whole 

bone marrow was then erythrocyte lysed and sorted using FACS. This time cells 

were stained for CD3 PE (BD Biosciences) as a marker for T cells. After forward and 

side scatter gating, the CD3- fraction was used in an effort to reduce T cells and the 

possibility of donor and recipient incompatibility. This was a remote concern since 

the donor mouse is on a C57BL/6 background and the recipient mice are on a 

129/SvJ. Our lab's experience suggests that there is no risk of rejection or graft 

versus host disease, but this precaution was still taken. YFP positive and negative 

populations were separated using endogenous fluorescence and the resultant CD3-

YFP+ and CD3-YFP- populations used for transplantation. A sample of the results of 

this sort can be seen in Figure 4. 
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Figure 4: FACS Data Demonstrating LSK and Vav-Cre YFP Separations 

Panel A contains a representative FACS plot for LSK sorts. The P1 polyhedron 
contains the living cells based on forward and side scatter. The P4 fraction contains 
the lineage negative cells. The P5 rectangle represents the final lineage-Sca-1+c-Kit+ 
population which was transplanted. This population represents ~26,000 cells or 
about 3.4% of starting input. This was the typical yield for this population.  
 
Panel B contains a representative FACS plot for vav-Cre YFP sorts. Again, the R1 
polyhedron gates based on forward and side scatter for living cells. The R3 box 
contains the CD3-YFP- fraction which is ~20,000 cells or about 5% of the starting 
input. The R4 box represents the CD3-YFP+ fraction which contains ~261,000 cells 
or about 65% of cells. Both the CD3-YFP- and the CD3-YFP+ populations were 
transplanted as described in the experimental design. The R5 rectangle is used to 
show the entire CD3- fraction but is not relevant in this study. 
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Bone Marrow Transplantations 

(Transplantations were performed with the assistance of Sharon Lin. The vav 
ancestry studies performed with the collaboration of Susannah Kassmer.) 
 
 After myeloablation with 1000-1100 cGy total body gamma irradiation using 

a Mark I-68A Cesium-137 Irradiator (JL Shepherd  & Associates, San Fernando, CA), 

6 to 8 week-old male SPCKO mice received isoflurane anesthesia and a 150 µl retro-

orbital injection of transplanted cells which were resuspended in Improved Minimal 

Essential Medium (IMEM; Gibco) supplemented with 1X 

penicillin/gentamicin/streptomycin (100 µg/ml). There were 4 donor groups all of 

which were age-matched and sex-mismatched: 1 million unfractionated nucleated 

wild-type 129/SvJ WBM cells (n=5), 1 million unfractionated nucleated SPCKO WBM 

cells (n=5) as a transplantation control for radioprotection cells only, 1000 wild-

type FLH cells along with 100,000 SPCKO WBM radioprotection cells (n=9), and 

1000 wild-type LSK cells along with 100,000 SPCKO WBM radioprotection cells 

(n=9) (refer to Figure 1). The basics of this method have been previously described 

(40). Additional untransplanted controls included WT and SPCKO strains. (NB 

Radioprotection cells must be transplanted in order for the mice to survive the 

otherwise lethal dose of radiation. To reduce confounding, the number of cells 

transplanted was determined to be the smallest number possible such that around 

50% of the animals survive. These cells are identical to the recipient and typically 

have a survival of less than 3 months which means that at the time of analysis they 

should make no contribution to the surviving animal.) Following transplantation, 
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the mice received sulfatrim and autoclaved food and water for 1 month, after which 

they received routine daily care by the Yale Animal Resources Center (YARC). 

 A similar method was used for the investigations involving the isolation of 

engrafted T2 pneumocytes using FACS sorting. Female albino 6 to 8 week-old 

C57BL/6 recipient mice (n=14) were irradiated with 950 cGy and then transplanted 

with 1 million male unsorted nucleated WBM cells from the ubiquitin-GFP+ mouse. 

Injection was performed through the tail vein and 4 unirradiated/untransplanted 

recipient mice were left as controls.  These transplanted mice then underwent the 

same care as above at YARC and were sacrificed and analyzed at a 6-month time 

point. 

 The vav ancestry studies were also performed using similar methods and tail 

vein injection. Recipient 6 week-old SPCKO mice (n=20) were irradiated with 1000 

cGy and then transplanted with one of three populations from the vav ancestry 

mice, which were age-matched and sex-mismatched: 106 vav-Cre YFP unsorted 

nucleated WBM cells (n=8), 2 X 106 FACS-sorted CD3-YFP+ cells (n=7), or 5 X 105 

FACS-sorted CD3-YFP- cells along with 106 unsorted nucleated SPCKO WBM for 

radioprotection (n=5). (NB This last group needed supplemental SPCKO WBM cells 

since the YFP- population does not contain hematopoietic cells and would have 

otherwise died from radiation toxicity.) The unsorted vav-Cre YFP WBM population 

served as the control against which the sorted populations would be compared. The 

differing number of cells transplanted was a result of the differing values of cells 

yielded after FACS analysis. These transplanted mice then underwent the same care 
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as above in YARC. At the 1-month time point, half of these animals were sacrificed 

and analyzed. The other half experienced a second dose of targeted lung irradiation 

at the 3-month time point. One month following this treatment, this group of 

animals was sacrificed and analyzed. 

 

Targeted Lung Irradiation 

(Performed with assistance from Susannah Kassmer.) 

 Three months following transplantation of vav-Cre YFP bone marrow into 

SPCKO recipients (n=8), the right lung was selectively irradiated with 1050 cGy 

using a Siemens Stabilipan 250kV unit (Malvern, PA). Custom fit lead shields were 

used to localize the dose of radiation.  

 

Mouse Sacrifice and Lung Tissue Harvest 

 Mice were sacrificed at 3 months post-transplantation unless stated 

otherwise. Mice were anesthetized with urethane IP injection and bronchoalveolar 

lavage with 2 ml of PBS was performed using a 23G angiocatheter (Becton-

Dickinson, Franklin Lakes, NJ) into the trachea. Then right ventricular perfusion was 

performed using the standard method of a median sternotomy approach such that 

the right heart is punctured with a 23g needle and flushed with 10 ml of PBS into 

the pulmonary circulation. The lungs were then inflated with 1 ml of 1% low melt 
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agarose in PBS at 42°C through the angiocatheter in the cannulated trachea. The 

agarose was then allowed to cool and solidify over a couple of minutes.  

 

Tissue Fixation and Cytospin Preparation 

 The murine right lung was placed into 4% buffered formalin for 4 hours and 

then transferred to 70% ethanol prior to paraffin embedding and sectioning. The 

left lung was divided into 2 pieces based on lobe segments. One piece was placed 

into RNAlater stabilization reagent (Qiagen, Valencia, CA) and frozen in -80°C per 

manufacturer's recommendations for later use in RNA isolation. The other piece 

was used for single cell lung digestion, immunodepletion, and cytospins. 

 This preparation involved multiple modifications from the originally 

described procedure by Corti et al (79). The resulting lung piece was minced with a 

fresh razor blade then digested for 90 minutes at 37°C using a fresh 5 ml solution of 

Dulbecco's Modified Eagle Medium (DMEM, Gibco, Invitrogen) supplemented with 

dispase (2.4 U/ml, Roche), collagenase (133 U/ml Worthington Biochemical 

Corporation, Lakewood, NJ), and DNAseI (100 U/ml, Roche). The digested tissue 

was then ground through a 40 micron strainer (Falcon, Oxnard, CA) and the filter 

flushed with an additional 5 ml of DMEM. The cells were centrifuged at 800g for 10 

minutes and the supernatant removed. In order to remove erythrocytes, 2 ml of 1X 

Pharmlyse (Pharmingen, San Diego, CA) was added for 5 minutes at room 

temperature (RT) per the manufacturer's instructions. The cells were then washed 
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in PBS, counted, and resuspended in 3 ml of PBS supplemented with 3% BSA and 

5mM EDTA at 1,000,000 cells per ml.  

 The concentrated and digested lung cells were then immunodepleted using 

magnetic bead separation per manufacturer's protocol (BD Biosciences). Anti-

mouse CD45 and anti-mouse CD11b biotinylated antibodies (1µg/million cells) 

were added to the cells and mixed so as to remove hematopoietic cells and 

macrophages from the digestion. This mix was incubated at RT for 15 minutes then 

streptavidin magnetic beads (5µl/million cells) were added and the entire solution 

refrigerated at 4°C for 30 minutes. The contents were then placed in the BD iMagnet 

for 8 minutes after which the CD45-CD11b- supernatant was removed and the cells 

were counted.  

 The immunodepleted cells were then spun (20,000 cells/slide) onto 

Surgipath (Richmond, IL) precleaned slides in a Thermo-Shandon cytospin 

(Pittsburgh, PA) at 700 rpm for 7 minutes after which they were fixed in 4% 

paraformaldehyde (PFA) for 15 minutes.  The slides were rinsed with dH2O and air 

dried at RT for at least 1 hour prior to storage at -80°C. From the starting population 

of approximately 2 million lung cells per animal, typically greater than 300,000 cells 

remained following immunodepletion. 
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Immunofluorescence on Paraffin Sections and Cytospins 

 Slides were deparaffinized with heat at 60°C and washed with Citrisolve. 

They were then rehydrated using successive ethanol baths of 100%, 95%, and 70%. 

Following a brief wash with PBS, the sections underwent an antigen retrieval step if 

necessary. This involved adding boiling BD Retrievagen citrate pH 6 solution (BD 

Pharmingen, San Diego, CA) to the slides in coplin jars. The slides were then kept in 

a steamer for 30 minutes and allowed to cool to RT, followed by a wash in 1X PBS 

with 0.25% Triton-X for 10 minutes. The slides were blocked with 3% BSA in 1X 

PBS with 0.25% Triton for 1 hour in a moisture chamber at RT and then incubated 

overnight at 4°C with the primary antibody mix under a coverslip to localize the 

antibodies and avoid evaporation. The primary antibody mix included either 

polyclonal guinea pig α mouse SPC 1:1000 (courtesy of Jeffrey Whitsett) or 

polyclonal rabbit α mouse pro-SPC 1:50 (Chemicon, Millipore, Billerica, MA). 

Additionally, the mix contained rat α mouse CD45 and F4/80 in a 1:50 dilution (both 

from Abcam, Cambridge, MA). Following a washing step with PBS/Triton, secondary 

antibody mix of either α guinea pig or α rabbit AF488 at 1:500 and α rat AF 547 at 

1:250 in blocking buffer was added for 1 hour at RT. The slides were again washed 

and mounted with VECTASHIELD containing DAPI (Vector Labs, Burlingame, CA, 

USA). 

 Cytospin slides were thawed to RT and permeabilized with PBS/Triton 

before primary antibody mix was added. The subsequent steps were the same as for 

the above paraffin section protocol. Antigen retrieval was never used on these 

slides. 
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Microscopy 

(Confocal work completed with the collaboration of Susannah Kassmer.) 

 Light microscopy was performed on an Olympus BX51 microscope equipped 

with a SensicamQE camera. IPLAB software was used to capture images. Confocal 

microscopy images were obtained on a Leica TCS SP5 Confocal Microscope 

equipped with 405 Diode, Argon, Helium/Neon 543, and Helium/Neon 633 lasers. 

These images were collected and analyzed by Leica LAS AF software. Confocal 

microscopy with 3-dimensional z-stack analysis was used to reimage these cells.  All 

microscopic analyses were performed with the investigator blinded regarding the 

identity of the slides analyzed. 

 

RNA Isolation and Quantitative Real-Time PCR 

 All tools and surfaces were either autoclaved with diethylpyrocarbonate 

(DEPC) water or treated with RNase Zap (Ambion, Austin, TX) prior to usage. Total 

RNA was extracted from approximately 30 mg of lung tissue which was previously 

stored in RNAlater. The RNeasy Mini kit (Qiagen) was used per manufacturer's 

recommendations with the addition of an RNase-free DNase I (Qiagen) digestion 

step to eliminate genomic DNA. The resultant RNA was qualified and quantified 

using the NanoDrop ND1000 Spectrophotometer (Thermo Scientific, Wilmington, 

DE), and then reverse transcribed using Superscript II Reverse Transcriptase 

(Invitrogen) and random hexamer primers (Invitrogen) to create cDNA. 
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 Quantitative real-time PCR was performed using a BioRad CFX96 Real Time 

System (Hercules, CA). Amplification was performed for 40 cycles (10 seconds 

denaturation at 95°C, 30 seconds annealing at 60°C, and 30 seconds elongation at 

72°C) using approximately 200 ng of cDNA in a SYBR green master mix (Applied 

Biosystems) as directed. All reactions were performed in triplicate and any samples 

that were greater than 1 cycle difference in their threshold calculation (termed C(t)) 

were repeated. Primer for ribosomal 18s or β2-microglobulin was used as the 

internal control for total RNA content. All reactions included non-template controls, 

non-reverse transcriptase controls for DNA contamination, WT positive control, and 

SPCKO negative controls.  

 SPC primers spanned the disrupted exon 2 insertion site to the end of the full 

length mRNA and were designed as follows: Fwd 5’-ATG GAG AGT CCA CCG GAT 

TAC-3' and Rev 5’-ACA GAC TTC CAC CGG TTT CTG-3'. These primers amplify a 664 

base pair fragment. 18s rRNA primers were designed as follows: Fwd 5'-CGG CTA 

CCA CAT CCA AGG AA-3' and Rev 5'-GCT GGA ATT ACC GCG GCT-3'. β2-

microglobulin primers were designed as follows: Fwd 5'-CAT ACG CCT GCA GAG 

TTA AGC A -3' and Rev 5'- GAT CAC ATG TCT CGA TCC CAG TAG-3'. All primers had a 

melting temperature of 58-62°C. The difference in cycle threshold (termed Delta 

C(t)) was calculated by subtracting the mean C(t) of 18s or β2 by the mean C(t) of 

SPC for each individual sample. Statistical significance between groups was 

confirmed at p-values less than 0.05 and calculated using the 1 tailed, 

homoscedastic, t-test . 
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FISH For Y-Chromosome 

 To determine levels of hematopoietic engraftment, blood smears and bone 

marrow cytospins from sacrificed mice were prepared and fixed in formalin as 

described above. The slides were washed with PBS, and Y-probe (developed by 

degenerate oligonucleotide primed-PCR using 6AI primer = 5'-CCG ACT CGA GNN 

NNN NTA CAC C-3' supplied by Lin Wang, Yale University) was added to heated 

slides at 60°C and incubated overnight at 37°C. Following washes with 2X SSC, slides 

were blocked with 4xSSC/3%BSA/0.1%Tween-20 for 30 min at 37°C, washed again, 

and stained with anti DIG-rhodamine (Roche, Mannheim, Germany) at 1:10 in 

blocking buffer for 45 minutes at 37°C . The detection solution was washed away 

and the slides were mounted with VECTASHIELD including DAPI. 

 

Fluorescence Activated Cell Sorting Analyses 

 All FACS sorts were performed on either a BD FACSAria Special Order System 

or MoFlo XDP Cell Sorter (Beckman Coulter, Brea, CA). FACS data was analyzed with 

FlowJo 8 Analysis Software (Ashland, OR). Regarding the GFP+ into wild type 

transplantations, engrafted donor-derived T2 lung cells were described as 

GFP+CD45-CD11b-CD31- and these cells were sorted onto a poly-L-lysine coated 

glass bottom dish containing DMEM supplemented with 3% FBS and 1X 

penicillin/streptomycin. The sorted cells were allowed to attach to the plate 

overnight at 37°C and subsequently fixed with 4% PFA before being examined by 

immunofluorescence as above.
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RESULTS 
 

Establishing and Validating Methods 

 Before our experimental investigations, we had to determine that our 

method of detecting target genes was satisfactory. In particular, we were concerned 

with the sensitivity and specificity of immuno-staining for SPC in both paraffin-fixed 

sections and single cell suspensions on cytospins. Wild-type mice (WT) lungs were 

used as the positive control while knockout mice for SPC (SPCKO) lungs served as 

the negative control. Various preparation techniques were utilized with or without 

antigen retrieval. Additionally, two different antibodies (guinea pig-raised 

polyclonal and rabbit-raised polyclonal, refer to Methods for details) were used to 

assess the clearest staining with the least amount of background. The comparison of 

these stainings in paraffin sections can be seen in Figure 5. As expected, the SPC 

staining pattern was vesicular in nature and located in the cytoplasm. The brightest 

staining for SPC in WT mice was observed using the guinea pig-derived antibody 

without the use of antigen retrieval. This finding coupled with the lack of significant 

background fluorescence seen in SPCKO mice made this combination most desirable 

for future investigations, and determined that in our hands SPC positive T2 cells 

could be detected. 
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Figure 5: A Comparison of SPC Staining Protocols for Mouse Lungs 

Four different combinations of antibodies and slide preparations are shown here. 
WT images (in left panels) represent the positive control for SPC staining whereas 
SPCKO is the negative control (in middle panels). Guinea pig antibody without an 
antigen retrieval step seemed to yield the best results with definitively SPC-positive 
cells in the WT and a low amount of background in the SPCKO. A magnified image of 
the WT lung is shown to demonstrate the vesicular nature of SPC staining (right 
panel). Staining: DAPI (blue) for nuclei, SPC (green) for T2 pneumocytes. Images 
were produced using light microscopy on 40X objective magnification. 
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 Single cell digested cytospin stainings were also optimized in the same 

manner as paraffin sections. Since these original lung digestions were unsorted (i.e., 

there was no lineage depletion step for contaminating blood cells) and T2 cell 

morphology is lost during digestion, CD45 (a pan hematopoietic cell surface marker) 

and F4/80 (a macrophage marker) staining antibodies were included.  This 

additional staining was of particular importance in recognizing macrophages, which 

are known to show spurious SPC staining and mimic T2 pneumocytes, either due to 

invagination of SPC in vivo or due to autofluorescence. Positive CD45 and F4/80 

staining is typically diffusely distributed throughout the cell membrane and this 

pattern was observed in many of the cells on these slides. Type II cells were 

SPC+CD45-F4/80- which would make them appear green only; whereas 

macrophages were either SPC-CD45+F4/80+ or SPC+CD45+F4/80+ resulting in a red 

or yellow color, respectively, on multi-color merged images. Upon examination, the 

same combination of guinea pig-derived antibody with no antigen retrieval resulted 

in the clearest cytospin data as seen in Figure 6. These cytospins provided excellent 

visualization of the WT positive controls and the SPCKO negative controls; however 

the rarity of BMDC in the next experiments will necessitate an additional selection 

step to enrich for T2 cells. 
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Figure 6: Successful SPC, CD45, and F4/80 Staining of Lung Cytospins 

Two examples of clear staining with SPC, CD45, and F4/80 using positive (WT in left 
panels) and negative (SPCKO in right panels) control slides. The WT slides 
contained many SPC+CD45-F4/80- cells, which are T2 pneumocytes while the 
knockout slides did not have any SPC+ cells. Many blood and tissue macrophages can 
be seen in these images as CD45+F4/80+. These results validated that our detection 
techniques will be sufficient moving forward. Staining: DAPI (blue), SPC (green), 
CD45 (red), and F4/80 (red). Images were produced using light microscopy on 40X 
objective magnification. 
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BMDCs Can Engraft In the Lung As Type II Pneumocytes 

 As a re-exploration of previously published data with newer more rigorous 

methods, we attempted to determine if BMDC could engraft as T2 pneumocytes in 

the lungs of transplanted mice. Following lethal irradiation of 1000cGy and 

transplantation of 106 WT WBM cells, the recipient mice were evaluated for lung 

epithelial engraftment three months later. SPC was used as a marker for donor-

derived cells since the donor mice were wild type for SPC while the recipients were 

SPC knockouts. Also included in the study were WT and SPCKO untransplanted 

controls along with a transplantation control of SPCKO into SPCKO (refer to Figure 1 

for more details). 

 In almost 25% of the WT into SPCKO transplants, BMD T2 pneumocytes 

could be detected using immunofluorescence (refer to Table 2). These cells were 

SPC+CD45-F4/80- in either paraffin or cytospin sections. It should be noted that 

these single cell digestion cytospins were red blood cell lysed as well as 

immunodepleted using CD45 and CD11b (macrophage/monocyte specific marker). 

This greatly enhanced our ability to find epithelial cells of the lung parenchyma. The 

typical appearance of these cells is shown in Figure 7. Unfortunately, the number of 

BMD T2 pneumocytes in any given animal was exceedingly small. The number of 

cells ranged from 1-3 per 5 micron section which contained approximately 70,000 

nucleated cells. As a point of reference, for WT mice about 20% of nucleated 

alveolar epithelial cells and 7.91% of total DAPI nuclei were SPC positive, which is 

consistent with previously published results (80). 
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Mouse Type N Number of Mice with 
SPC+CD45-F4/80- Cells 

Percentage of Mice with  
SPC+CD45-F4/80- Cells 

Mean Percentage of 
Cells that were SPC+ 

WT→SPCKO 21 5 24% 0.002% 

SPCKO→SPCKO 5 0 0% 0.000% 

WT Control 5 5 100% 7.91% 

SPCKO Control 5 0 0% 0.000% 

 

Table 2:  BMD Type II Pneumocytes Can Be Seen In WBM Transplants 

Using immunofluorescence on either paraffin sections or immunodepleted cytospin 
slides, 24% of mice transplanted with WBM were able to demonstrate at least a very 
low level of epithelial engraftment as T2 pneumocytes. The level of engraftment was 
quantified to be approximately 0.002% of T2 cells based on SPC immunostaining 
compared to 0.000% in both the transplantation SPCKO→SPCKO negative control 
and 0.000% in the untransplanted SPCKO negative control.  
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Figure 7: Sample Paraffin and Cytospin Sections Demonstrating Engraftment 

Paraffin sections (left panels) and cytospins (center panels) demonstrating rare 
SPC+CD45-F4/80- cells suggestive of a donor-derived T2 cell (arrows). WT image 
represents the untransplanted positive control. SPCKO is the untransplanted 
negative control. SPCKO→SPCKO is the transplantation control of radioprotection 
SPCKO WBM cells only. High magnification images of the WBM transplants (right 
panels) are also shown to demonstrate the vesicular nature of SPC staining. 
Staining: DAPI (blue), SPC (green). Antibodies against CD45 (red) and F4/80 (red) 
for hematopoietic cells and macrophages, respectively, were included to indicate 
blood cells. Yellow cells are autofluorescent erythrocytes and macrophages. Images 
were produced using light microscopy on 40X objective magnification.  
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FLH and LSK Transplants Engraft in The Lung 

 Based on current available evidence, it is not clear if purified bone marrow cells 

offer an engraftment advantage in the lung compared to whole bone marrow. We 

therefore sought to answer this question using two well described populations which 

are known to be enriched for HSCs. Unfortunately, ELH cells could not be isolated due to 

a non-functional elutriator. However, a percoll fractionation technique has been shown 

to yield a theoretically similar subpopulation as the elutriation separation (81). These 

cells were therefore referred to as fractionated, lineage-depleted, and homed (FLH). 

Like ELH cells, FLH cells were shown to home to the bone marrow and provide long-

term hematopoietic reconstitution. However, it remains an open question if FLH cells 

are truly identical to ELH cells. The second purified population studied was the well 

defined LSK group which is separated by FACS using cell surface markers. Utilizing a 

similar method as before, mice were lethally irradiated with 1000cGy and then 

transplanted and evaluated for lung epithelial engraftment three months later. The 

only difference in the methods was that 103 FLH or LSK cells derived from WT mice 

were transplanted along with 105 radioprotection cells (which are short term 

reconstituting WBM cells identical to the recipient SPCKO). These radioprotection 

cells are necessary for animal survival following irradiation and have a lifespan 

maximum of 3 months. Therefore at the time of analysis these cells should have 

minimal influence on engraftment. 

 Sex-mismatched transplants were done (i.e., female BMDC into male 

recipients) so that hematopoietic engraftment could be assessed at sacrifice using Y-

FISH on peripheral blood smears or bone marrow cytospins. Positive (male) and 
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negative (female) controls showed >99% and <1% Y-chromosome positive cells 

respectively. When this blood chimerism was examined 1 month post-transplant, 3 

of 5 animals transplanted with FLH cells and 3 of 5 animals transplanted with LSK 

cells showed greater than 5% chimerism (refer to Table 3). As controls, 4 of 4 

animals that received WT WBM and 4 of 5 animals that received SPCKO WBM had 

significant levels of hematopoietic engraftment. These quantifications were based 

on counting a minimum of 100 nucleated cells per slide. The greater levels of 

engraftment in the control groups correlated with the larger number of donor cells 

administered during transplantation. As suggested in the literature, despite the 

small numbers of animals in this study, it appeared that both FLH and LSK 

populations were equally capable of reconstituting the hematopoietic system. 

Although there was not a clear correlation between blood chimerism and 

identification of marrow-derived pneumocytes, the two animals that demonstrated 

the highest level of hematopoietic chimerism were also the only two animals to have 

donor derived cells on both paraffin and cytospin sections.  

 When examining the paraffin and cytospin sections of the lung using 

immunofluorescence for SPC, BMD T2 alveolar cells could be detected in both FLH 

and LSK transplantation groups (Table 3). In fact, 4 of 5 mice in the FLH group and 5 

of 5 in the LSK group had at least 1 positive cell in either of the sections. In 

comparison, 2 of 4 mice in the positive control WT WBM group and 0 of 4 in the 

negative control SPCKO WBM→SPCKO contained at least 1 positive cell. Therefore 

FLH and LSK cells types show a slight enrichment for engraftment when compared 

to controls. It should be noted that the positive control WT WBM cytospins were 
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unavailable and therefore epithelial engraftment rates are likely higher than 50% if 

all the sections could be analyzed. Taking this into account, the data suggest that the 

LSK and FLH populations engraft at least as well as WBM. 

 Despite these promising results, it should be noted that no greater than 2 

BMD T2 cells were observed on any one slide. Thus, these conversion events 

occurred in most animals but they were very rare. Surprisingly, there was no 

pattern between positive cytospin and positive paraffin results. Animals which were 

positive in one cell preparation type were not positive in the other except in the 2 

instances explained above with the FLH mice showing the highest levels of 

hematopoietic engraftment. It is particularly unusual that there was no overlap in 

the LSK group. Beyond this, the number of positive cells seen in any one animal was 

never greater than 3. Sample images of positive BMD T2 pneumocytes from the FLH 

and LSK transplants are presented in Figure 8. 



RESULTS  COHEN 50 

 

Paraffin Cytospins

FLH

LSK

 

Figure 8: Representative Paraffin and Cytospin Sections from FLH and LSK 
Transplants Show Engraftment in the Lung 

These rare BMD engrafted cells appeared similar to the untransplanted positive 
control WT type II pneumocytes. Staining: DAPI (blue), SPC (green), CD45 (red), and 
F4/80 (red). Images were produced using light microscopy on 40X objective 
magnification. 
 

Quantitative PCR for SPC Shows Insignificant Increases Following 

Transplantation of BMDCs 

 To further assess engraftment of BMDC and subsequent transformation of 

phenotype, quantitative PCR (qPCR) for SPC was used as a very sensitive marker for 

functional T2 cells. Following sacrifice, total RNA from the mouse lung was isolated 

and then reverse transcribed into cDNA. This total lung cDNA was then assessed for 
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the quantity of SPC transcripts and normalized to total genetic content using 18s 

rRNA as the standard. Since only donor-derived cells have a functional SPC gene, 

any signal for SPC must have originated from these cells. qPCR is very susceptible to 

inconsistent results based on even minute changes in the quantity and quality of 

template so three control groups were used and all amplifications were performed 

in triplicate. WT served as the positive control and maximal amount of SPC while 

SPCKO was the negative control and the minimal amount of SPC. A group of SPCKO 

WBM cells into SPCKO mice was included to act as a negative control for irradiation 

and transplantation itself.  

 WBM and LSK transplants did not show a significant difference in the level of 

SPC RNA when compared to SPCKO. Interestingly and unexpectedly, SPCKO→SPCKO 

control and FLH populations demonstrated a greater amount of SPC RNA on the 

order of 100 to 200-fold, respectively. However, it is unclear how the 

SPCKO→SPCKO group had higher levels of SPC since the transplanted cells were 

SPCKO. Since the difference in SPC RNA was not significant (p=0.38) between the 

negative control SPCKO→SPCKO group and the FLH group, it was determined that 

no considerable amount of engrafted BMD T2 cells could be detected.  

 Upon further review of the project design, the FLH and SPCKO→SPCKO 

transplantations were performed on the same day in parallel. Therefore, this 

unexpected data could be the consequence of cross-contamination of WT FLH 

populations into SPCKO WBM animals resulting in a spuriously high qPCR signal in 
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the SPCKO→SPCKO group. Alternatively, there could also have been cross-

contamination during RNA preparation but this explanation is less likely. 
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Figure 9: qPCR for SPC Demonstrating No Significant Difference in mRNA 
Levels Between Negative Controls and Transplanted Populations.  

Even though the FLH population showed the greatest reconstitution of SPC signal it 
was not significantly higher than the SPCKO WBM→SPCKO negative transplantation 
control (p=0.38). Therefore, engraftment of BMD T2 cells could not be detected 
using these methods. Lower –Delta C(t) levels represent more mRNA transcripts. 
WT is the untransplanted positive control showing normal levels of SPC transcripts 
and SPCKO is the untransplanted negative control showing no SPC. Total RNA 
content normalized to 18s rRNA standard. Each dot represents 1 animal with the 
qPCR performed in triplicate.  
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Table 3: Summary of All Mice Transplanted for HSC Plasticity Studies 

This table presents an overview of the data from each mouse transplanted in this 
experimental study. "Type" refers to the population of donor cells transplanted for 
this group. SPCKO is the transplantation negative control of SPCKO WBM while 
WBM is the transplantation positive control of WT WBM. "Number" is the animal 
identifier. Hematopoietic chimerism is shown as a percentage except where the 
specifics of this data were unavailable. The source of cells for Y-FISH analyses is 
shown in parentheses. Cytospin and paraffin sections of each mouse's lung were 
quantified as "positive" if donor-derived T2 cells could be identified and "negative" 
if no cells could be found. Some data were unavailable and therefore described as 
unknown. The final column shows the raw qPCR data for SPC. *This mouse was 
sacrificed at an earlier time point and its qPCR data was not consistent with the 
other animals in its group but it is still presented here for completeness. 
 

Type Number % Chimerism by Y-FISH Cytospin Paraffin qPCR -Delta C(t) 

FLH 877 1.55 (Blood) Negative Positive 22.77 

FLH 878 3.13 (Blood) Negative Negative 25.84 

FLH* 884 46.88 (Blood) Positive Positive 31.47 

FLH 892 16.67 (Blood) Negative Positive 23.17 

FLH 893 48.67 (Blood) Positive Positive 24.04 

      

LSK 1028 10.17 (BM) Positive Negative 31.93 

LSK 1029 16.13 (BM) Negative Positive 32.54 

LSK 1035 6.76 (BM) Positive Negative 32.99 

LSK 1044 2.78 (BM) Negative Positive 32.83 

LSK 1054 3.73 (BM) Positive Negative 33.49 

      

SPCKO 876 4.63 (BM) Negative Negative 24.03 

SPCKO 879 8.93 (BM) Negative Negative 23.30 

SPCKO 880 26.92 (BM) Negative Negative 25.63 

SPCKO 890 5.13 (BM) Negative Negative 26.47 

SPCKO 891 Positive (BM) Negative Negative 25.17 

      

WBM M35 Positive (BM) Unknown Positive 27.51 

WBM M38 Positive (BM) Unknown Negative 28.11 

WBM M40 Positive (BM) Unknown Positive 29.20 

WBM 1014 5.92 (BM) Negative Negative 33.16 
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FACS Sorting Allows Isolation of Rare Donor-Derived Type II Cells 

 Based on the rarity and difficulty of identifying engrafted T2 cells in paraffin 

sections and cytospins, we sought a different method to search for these events. 

Therefore, we investigated whether FACS analysis of the whole digested lung would 

be able to separate the cells of interest and allow further investigations on this rare 

population of transformed cells. Using a constitutively active GFP reporter mouse as 

a donor, 106 WBM cells were transplanted into a lethally irradiated wild type 

recipient. At six months post-transplant, the mice were sacrificed and their lungs 

digested in the usual fashion with erythrocyte lysis but no other methods of 

immunodepletion. In order to isolate donor-derived lung epithelial cells, we had to 

gate for GFP+ cells as well as eliminate contaminating populations. In particular, 

cells that have high levels of expression of CD45, CD11b, and CD31 (a surface 

marker specific for endothelial cells) were excluded.  

 The results of this FACS analysis showing 106 events can be seen in Figure 

10. A WT mouse represents the negative control for GFP expression and the positive 

control for total lung epithelial cells. A constitutively GFP-expressing mouse serves 

as the positive control for GFP staining. The GFP transplanted mice showed a nearly 

100-fold increase of GFP+CD45-CD11b-CD31- cells (0.29%) over background as 

represented by the WT mouse (3.5 X 10-3 %). This transplanted population 

represented 27% of the theoretical maximum of 1.06% seen in the GFP mouse. 

Additionally, a comparable number of total epithelial lung cells were seen in all 

three mice (24.5%-32.7%). These data demonstrated that we can successfully 
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separate and enrich our target population for BMD lung epithelial cells using FACS 

analysis. 

 

 

 

 

 

 

 

 

Figure 10: FACS Data Demonstrating 100-Fold Enrichment of GFP+CD45-

CD11b-CD31- Fraction Containing BMD Lung Epithelial Cells Over Background 
Levels  

FACS data from one million lung cells showing GFP (Y-axis) and CD45/CD11b/CD31 
(X-axis) fluorescence. These data were the clearest of four GFP into WT sorts which 
utilized 10 animals. The target population (GFP+CD45-CD11b-CD31-) is in the oval 
with quantification. There is an approximately 100-fold enrichment when sorting 
for lung epithelial cells compared to background as represented by the WT mouse. 
About 27% of maximal target population can be isolated using this method. These 
data show that BMD lung epithelial cells can be successfully isolated in significant 
numbers using FACS as seen by the clear finger-like projection in the center panel. 
"WT" (left panel) represents the untransplanted negative control for GFP staining. 
"Transplanted" (center panel) represents the experimental set of GFP-expressing 
WBM transplanted into a wild type recipient. "GFP" (right panel) is the 
untransplanted positive control for GFP staining. 
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Imaging of FACS-Sorted Populations Confirms Lung Engraftment 

 Following the isolation of lung epithelial cells using FACS, we next sought to 

query these cells' phenotype using immunofluorescence microscopy. An additional 

FACS sort was performed using five WT mice that were lethally irradiated and then 

given 106 ubiquitin-C GFP WBM cells. As expected, these five mouse lungs yielded 

approximately 10 million total cells. The resulting GFP+CD45-CD11b-CD31- fraction 

from these transplants was 50,000 cells (0.5%) compared to 289,000 GFP+CD45-

CD11b-CD31- cells out of 4 million total cells (7.2%) for the unirradiated GFP+ 

positive control. The 50,000 cells were plated onto poly-L-lysine coated glass 

bottom dishes and then fixed, stained, and analyzed. Ideally, this sorted population 

would contain T2 lung cells which are easily visualized. Using confocal microscopy, 

indeed BMD T2 pneumocytes could be visualized as GFP+SPC+ (refer to Figure 11). 

However, these double positive cells were exceedingly rare and only 5 convincing 

cells (0.01%) were visualized. In contrast, the positive control GFP+ mouse yielded 

approximately 25% of cells that were GFP+SPC+ while the SPCKO negative control 

mouse yielded 0% double positive cells. This FACS method represents a 5-fold 

enrichment (0.01% vs. 0.002%) for our donor-derived T2 cells of interest compared 

with examining paraffin sections. The successful use of FACS purification to 

separate, enrich, and visualize BMD lung epithelial cells enabled a significantly more 

thorough and easier method to analyze the entire lung for rare engraftment events.  
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Figure 11: Confocal Microscopy Showing BMD Type II Pneumocytes that Were 
Purified by FACS 

Immunofluorescence of the FACS sorted CD45-CD11b-CD31- population for GFP and 
SPC. GFP (green) denotes donor derived cells while SPC (red) is the marker for T2 
lung cells. Nuclei are stained with DAPI (blue). Double-positive cells (GFP+SPC+) 
could be seen in the GFP transplants, which are suggestive of donor-derived T2 cell 
engraftment. "SPCKO" is the negative control for SPC and GFP staining. "WT" is the 
positive control for SPC staining and another negative control for GFP staining. 
"GFP+ control" is the positive control for both GFP and SPC staining. "GFP 
Transplants" is the experimental set of GFP-expressing WBM transplanted into a 
wild type recipient. Images created by Susannah Kassmer using 63X objective 
magnification. 
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Engraftment in the Lung May Be Greater Among the Hematopoietic 

Fraction of BMDCs and May Be Enhanced by a Second Dose of 

Radiation 

 As explained in the Introduction and presented in Table 1, there remains an 

important and ongoing debate concerning which BMD cell population demonstrates 

the most plasticity. Multiple groups claim that HSCs with their regenerative 

potential are the cell of interest for these conversions, while others purport that 

non-hematopoietic MSCs frequently migrate to epithelial tissue and adopt a novel 

phenotype. In an effort to better describe these cell populations and directly 

compare their engraftment potential, we made use of vav ancestry mice, which 

allow the faithful and permanent expression of a YFP transgene if a cell ever 

expressed the hematopoietic-specific vav promoter. SPCKO recipient mice were 

lethally irradiated and then systemically administered cells from one of three bone 

marrow populations isolated from vav-Cre YFP mice: 106 unsorted WBM as a 

positive control, 2 X 106 FACS-sorted YFP+ cells representing the hematopoietic 

fraction, or 5 X 105 FACS-sorted YFP- cells representing the non-hematopoietic 

fraction along with 106 SPCKO unsorted WBM (refer to Methods and Figure 2 for 

details). The third group required supplemental SPCKO WBM because the YFP- 

population does not otherwise contain hematopoietic cells and without them the 

irradiated recipient animals would have succumbed to radiation toxicity. The 

differing number of cells transplanted is the result of the number of cells yielded 

during FACS sorting. Overall, these differences were not large and should not 

significantly impact our outcomes. These mice were then sacrificed and evaluated 
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for lung epithelial engraftment one month later using similar methods to the 

previous transplants. As before, SPC mRNA and protein were used as reporters for 

donor-derived cells. 

 Sex-mismatched transplants were again employed to evaluate hematopoietic 

engraftment using Y-FISH on bone marrow cytospins. When this blood chimerism 

was examined by counting 300 cells per slide, all transplanted animals showed 

greater than 97% engraftment. This extremely robust engraftment means that 

essentially the entire hematopoietic system was reconstituted by the donor cells. 

However, the YFP- population cannot truly be evaluated by hematopoietic 

engraftment since it does not contain blood-forming cells. To solve this problem, we 

assessed the short-term hematopoietic engraftment of the co-transplanted SPCKO 

radioprotection cells as a proxy for YFP- cell survival during transplantation. 

Although this is not an ideal method, it was the only available strategy. 

 Unfortunately, cytospins of these transplants were unreliable with large 

amounts of background fluorescence and fragmented cells. Therefore, only paraffin 

sections of the lung were used for immunofluorescence to detect SPC signal and 

therefore donor-derived T2 cells. Since most of these mice were transplanted with 

YFP+ blood cells, we evaluated autofluorescence on these slides before adding 

primary antibody to ensure that it did not confound the subsequent staining and 

yield false positive results. Indeed, following antigen retrieval, the native YFP signal 

produced a very low background which could not be confused with positive staining 

results in either the blue, green, or red channel. 
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 Surprisingly, the paraffin sections of these transplants yielded no convincing 

donor-derived T2 pneumocytes in any of the transplantation groups (refer to Table 

4). This most likely was the consequence of the small numbers of animals in each 

group which survived to analysis. Therefore, another investigator in the lab has 

subsequently replicated these results with the same outcome (data not shown). This 

was unanticipated since we expected to see the same level of engraftment as during 

the earlier WT WBM transplantation studies in which 1 out of 4 mice showing signs 

of donor cell engraftment on paraffin section. However, the vav-Cre YFP WBM group 

did not have a single SPC+CD45-F4/80- cell by immunofluorescence on paraffin 

sections. In light of this data, lung cytospins would certainly have been useful to 

corroborate the negative results.  

 Faced with these disappointing results, we attempted to enhance any level of 

conversion by targeting the right lung of the remaining transplantation animals to a 

second dose of radiation. This salvage strategy was based on the possibility that we 

had not reached the threshold of injury that is necessary for BMDC engraftment 

(40). The left lung was shielded from further damage and served as an internal 

negative control. One month following this second dose of lethal irradiation, the 

mice were sacrificed and analyzed. 

 When immunofluorescence on paraffin lung sections of these animals was 

studied, 1 of 4 animals in the vav-Cre YFP WBM group and 1 of 3 animals in the vav-

Cre YFP+ group demonstrated an SPC+CD45-F4/80- cell in the right lung indicative 

of T2 epithelial engraftment (refer to Table 4). No greater than two engrafted cells 
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were detected in either animal. None of the internal control left lungs or 

transplantation control SPCKO→SPCKO lungs showed any donor-derived T2 

alveolar cells. Interestingly, both of the YFP WBM and the sorted YFP+ populations 

contain the hematopoietic elements of the bone marrow and showed signs of 

engraftment while the non-hematopoietic sorted YFP- population did not. It is also 

suggestive that the second radiation dose enhanced engraftment but both these 

conclusions must be tempered by the low animals numbers and lack of statistical 

significance in this study.  

 

qPCR for SPC Shows a Significant Increase Following 

Transplantation of the FACS-Sorted YFP+ Population Only In the 

Mice that Received a Second Dose of Radiation 

 In an effort to further evaluate and correlate epithelial engraftment levels, 

qPCR for SPC was used as before. Following RNA isolation and reverse transcription, 

whole lung cDNA was evaluated by qPCR for the quantity of SPC transcripts in the 

various transplantation groups. Total genetic content was normalized using the 

ubiquitous β2-microglobulin gene as the standard. WT served as the positive control 

and maximal amount of SPC. A group of SPCKO mice which received SPCKO WBM 

was included as a negative control for irradiation and transplantation itself.  

 All the mice in the groups that received unsorted vav-Cre YFP WBM or sorted 

YFP- cells showed minimal levels of SPC signal similar to the negative control 
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SPCKO→SPCKO transplants (Figure 12). Although the number of control animals is 

small, the transcript levels of SPC and β2 were consistent with values from 

subsequent experiments. Both primary and secondary irradiated animals showed 

similar results and are presented together (Table 4). However, 2 of the 5 mice in the 

sorted vav-Cre YFP+ group showed significantly higher levels of SPC transcripts 

(p=0.009) in the right lung. Both of these animals had received a secondary dose of 

targeted right lung irradiation. The mean –Delta C(t) for these two mice were 13.62 

and 13.25 compared with 17.20 for the transplantation negative control. This result 

represents an approximately 13-fold higher level of SPC signal suggesting that the 

hematopoietic vav-Cre YFP+ population has some engraftment potential as 

functional T2 pneumocytes in the lung. This greater expression was only present in 

the right lung of these animals so it is possible that the second dose of radiation 

enhanced an epithelial engraftment phenotype. Unfortunately, this level of SPC 

expression still pales in comparison to the WT positive control which is 2 X 107 

times greater.  
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Figure 12: qPCR for SPC Demonstrating Two Animals in the YFP+ Group with 
Significant Increases in Transcript Levels Suggestive of Engraftment 

The vav-Cre YFP WBM and FACS-sorted YFP- transplantation groups showed levels 
of SPC mRNA consistent with the transplantation negative control SPCKO→SPCKO. 
But, in the FACS-sorted vav-Cre YFP+ population, 2 mice which both received 
additional radiation showed significantly greater levels of SPC transcript (p=0.009) 
indicating possible BMD functional T2 cells. Lower –Delta C(t) levels represent more 
mRNA transcripts. WT is the untransplanted positive control showing normal levels 
of SPC transcripts. Total RNA content normalized to β2-microglobulin standard. 
Each dot represents 1 lung with the qPCR performed in triplicate. 
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Type Number X-Ray Blood Chimerism by Y-FISH Paraffin qPCR -Delta C(t) 

WBM 978  Positive Negative 21.66 

WBM 980 Y Positive Negative 19.27 

WBM 985  Positive Negative 19.79 

WBM 986  Positive Negative 18.80 

WBM 
987 R Y 

Positive 
Positive 19.96 

987 L  Negative 21.98 

WBM 995 Y Positive Negative 17.08 

WBM 990 Y Positive Negative 21.12 

      

YFP+ 982 Y Positive Negative 21.70 

YFP+ 
983 R Y 

Positive 
Negative 13.62 

983 L  Negative 20.63 

YFP+ 991  Positive Negative 21.38 

YFP+ 
992 R Y 

Positive 
Positive 13.25 

992 L  Negative 23.64 

YFP+ 993  Positive Negative 20.38 

      

YFP- 984  Positive Negative 20.60 

YFP- 989 Y Positive Negative 20.26 

      

SPCKO SPCKO1  Positive Negative 17.70 

SPCKO SPCKO2  Positive Negative 16.71 

 

Table 4: Summary of All Mice Transplanted For the Vav Ancestry and 
Secondary Irradiation Studies 

This table presents an overview of the data from each mouse transplanted in this 
experimental study. "Type" refers to the population of donor cells transplanted for 
this group. "Number" is the animal identifier with "R" and "L" meaning right and left 
lung respectively. "X-ray" represents a second dose of targeted irradiation to the 
right lung of the mouse. Any animal which showed positive signs of engraftment on 
either the paraffin sections or qPCR quantification was then compared to the 
contralateral lung (which represents an internal control). SPCKO is the 
transplantation negative control of SPCKO WBM while WBM is the transplantation 
positive control of vav-Cre YFP unsorted WBM. Hematopoietic chimerism, as seen 
on BM cytospins, was greater than 97% in all animals shown. Paraffin sections of 
each mouse's lung were quantified as "positive" if donor-derived T2 cells could be 
identified and "negative" if no cells could be found. The final column shows the raw 
qPCR data for SPC.
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DISCUSSION 
 

Detection Strategies  

 In an effort to better understand the plasticity and engraftment potential of 

BMDCs in the lung, we undertook multiple studies to evaluate the presence of 

donor-derived T2 pneumocytes. The initial weeks of this project were focused on  

demonstrating our immunofluorescence detection strategy for SPC was viable. 

Indeed, using a protocol lacking an antigen retrieval step coupled with a guinea pig- 

raised polyclonal antibody, type II pneumocytes could be consistently recognized by 

their characteristic vesicular SPC staining during microscopy on both paraffin 

section and cytospins. These methods were then applied to SPCKO mice which had 

been lethally irradiated and systemically transplanted with WT WBM. 

Approximately 24% of these animals demonstrated SPC+CD45-F4/80-  T2 cells on 

microscopy. However, the absolute number of these donor-derived cells was very 

small with only 0.025% of resident T2 cells being engrafted from the donor. This 

number was calculated by dividing the mean percentage of SPC+ cells in the 

transplants by the mean percentage of SPC+ cells in the WT control. Although this 

minute level of engraftment was reproducibly detectable with our techniques, we 

realized that additional analyses would be helpful in finding these conversion 

events.  
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 There were other technical challenges to this phase of the project and thus 

our interpretation of results. Frequently, we observed different levels of tissue 

fixation and agarose inflation despite identical methods. Tissue fixation was 

probably affected by the surface area to volume ratio of each lung as well as time 

spent in 70% ethanol prior to paraffin embedding. With tissues that were overfixed, 

the edges of the lung showing high levels of background immunofluorescence. This 

made the detection of SPC positive cells virtually impossible in certain regions. 

Although this problem was not extensive, it did obscure a perfectly consistent 

examination of every slide. During lung preparation, agarose inflation was 

determined to be an essential step to recapitulate the functionally-relevant inflated 

architecture of the lung. Unfortunately, this required a tight seal between the 

angiocatheter and the trachea which was not always possible. The resulting 

underinflated lungs had high cell densities that distorted morphology and made 

analysis more difficult due to indistinct cell borders and overlay. By necessity, these 

questionably positive cells were deemed negative since conclusive microscopic 

evidence could not be demonstrated. Although these issues made analysis more 

complicated and skewed toward the negative, they were relatively minor and did 

not impact our conclusions in any meaningful way. 

 

FLH and LSK Populations 

 The FLH and LSK transplantation groups showed levels of lung engraftment 

greater than the control WBM populations when examining immunofluorescence. 
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This result tentatively suggests that these hematopoietic subpopulations are 

enriched for cells capable of making the transition to T2 alveolar cells of the lung. 

However, it is difficult to definitively make these conclusions because of the small 

numbers of animals and rarity of positive donor-derived cells in these studies. 

Additional transplantations would be necessary to prove that this outcome is truly 

significant.  

 Unfortunately, qPCR data for SPC did not reinforce this trend that FLH and 

LSK populations showed greater levels of engraftment. But this statistical 

insignificance was dependent on the negative transplantation control of SPCKO 

WBM→SPCKO mice. It seems likely that this group was accidentally contaminated 

during transplantation with WT FLH cells, which were also being isolated and 

transplanted on the same day. The untransplanted SPCKO mice should have shown 

the same minimal levels of SPC signal as the negative transplantation control. But 

our data show a significantly greater level of SPC (greater than 100-fold) in this 

transplantation group.  

 An alternative hypothesis for this false upregulation of SPC is that irradiation 

and transplantation itself (regardless of cell type administered) induces pseudogene 

expression. Despite the exquisite specificity of the SPC qPCR primer design, it is still 

possible that an unintended similar target sequence is being amplified erroneously. 

This hypothesis can be tested using standard gel electrophoresis to confirm that the 

qPCR product is of the expected 664 base pair size. However, this was not 

undertaken because of time constraints and the unlikelihood of pseudogene 
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expression. Since the other transplantation groups (WT WBM and LSK), which were 

performed on different days, did not show the same effect and clustered around the 

untransplanted negative control, it is difficult to support this pseudogene theory.  

 Interestingly, if the SPCKO WBM→SPCKO transplantations were repeated 

and showed the expected minimum of SPC signal, then the FLH population and a few 

of the WBM transplants (to a lesser degree) would show significantly higher levels 

of SPC. This result would correlate with the previous staining data and lend further 

evidence to the hypothesis that HSC subpopulations are enriched for pluripotent 

cells capable of epithelial engraftment.    

 

FACS Sorting for Engrafted Type II Pneumocytes 

 Our investigation showed that FACS sorting the enzymatically digested lung 

was a viable strategy for selectively isolating lung epithelial cells. In fact, the 

calculated total number of alveolar cells (24.5%) as well as the number of T2 

pneumocytes (6.1%) in the lung compared very favorably with previous estimates 

using microscopy and immunostaining (20% and 7.9%, respectively). Therefore, 

this technique allowed us to greatly enrich for alveolar cells such that all possible 

donor-derived cells of interest could be examined on a single dish. This greatly 

reduced the likelihood that true engraftment events were missed because of 

random sampling. Of course, cytospins from these sorts are not the only method 

that should be applied to these investigations because unfortunately cell 

morphology and histology are lost during preparation. However, this method does 
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have the added benefit of reducing overlay artifacts and background 

immunofluorescence. As we look forward and design future experiments, FACS 

sorting will certainly be one of the modalities employed to find these extremely rare 

conversion events. 

Vav-Cre Ancestry Populations and Secondary Irradiation 

 It was surprising that the initial evaluations of engraftment from all three vav 

ancestry mouse populations were negative by both immunofluorescence and qPCR. 

However, the fact that a second dose of targeted irradiation was able to induce 

engraftment subsequently in a few animals suggested that the required threshold of 

damage was not initially achieved. It is not clear why this second dose was needed 

in these groups because they initially received sufficient radiation to reconstitute 

the hematopoietic system with donor cells. However, the use of a contralateral lung 

control that was shielded from this secondary dose provides strong evidence that 

the additional radiation was essential for inducing engraftment. In addition to 

inducing engraftment, these secondarily irradiated animals had subjectively higher 

levels of tissue damage with an elevated number of macrophages and increased 

fibrosis. Previous research has shown that the number of SPC-expressing T2 cells 

typically decreases along with surfactant levels with repeated irradiation (82), 

which makes it all the more striking that significantly greater levels of engraftment 

were seen.  

 Although the numbers of animals used in this study were small, our data hint 

that the YFP+ hematopoietic components of the bone marrow are able to engraft at 
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least as well as the control WBM while the YFP- non-hematopoietic cells were not. 

When taken with the previous conclusions from the LSK and FLH experiments, it 

looks as if the HSC subpopulation contains the plasticity necessary to engraft as type 

II pneumocytes in the lung. But before these hypotheses are proven definitively, 

additional transplantations must be performed especially using the YFP- vav 

ancestry population. To further enhance these studies and complement the paraffin 

section and qPCR results, FACS sorting of digested lungs should be employed to 

provide a reliable and powerful method to find rare donor-derived cells by 

immunofluorescence. 

 

The Difficulties in Demonstrating Plasticity  

 Throughout all our transplantation examinations, our detection strategies 

skew heavily towards the null hypothesis that donor-derived T2 cells do not exist. 

Transplantation itself places remarkable challenges on the donor cells. They were 

asked to exist outside of an organism for hours in varying reagents while they were 

being isolated, purified, and prepared for injection. These transplanted bone 

marrow cells were then required to home from the vasculature to their natural 

niche while also competing with the radioprotection SPCKO cells.  

 Beyond this, engraftment as an epithelial cell required the establishment of 

an obvious phenotype with wholesale genetic program modifications such that 

hematopoietic genes were silenced and epithelial markers were upregulated. 

Specifically, we only detected cells that express the very particular SPC target gene. 
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In fact, a possible explanation for the low level of SPC signal was its immunologic 

recognition by the recipient SPC knockout mice as a foreign mRNA and protein. 

Western blot analysis remains the standard for protein expression studies and 

would have been utilized here; but previous work demonstrated that SPC protein 

levels were too low for consistent detection. 

 Additionally, we utilized a high degree of skepticism when examining every 

potentially SPC-positive cell. Even the positive control WT mouse had many T2 cells, 

which would not be considered positive because they weren't definitely clear 

examples of an SPC-positive staining pattern. This placed a great onus on the 

engrafted cells to not only express SPC but also express it in the classically 

recognized morphology. Given all these challenges both biologically and technically, 

it is amazing that any positive cells could be found. 

 Additional T2 cell-specific antibodies, such as the nuclearly localized thyroid 

transcription factor 1 (83) or cytokeratin-7, might be included for future 

immunofluorescence studies to reduce the ambiguity of certain positive cells. But 

this carries with it further challenges such as using another non-overlapping color 

channel for detection. Also it complicates analysis because it reduces the likelihood 

of finding a cell which definitely and characteristically expresses both phenotype 

markers. 
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The Mechanisms of Plasticity 

 The possible mechanisms responsible for BDMC plasticity remains a hotly 

debated topic with little consensus in the literature. The first option, which has been 

already alluded to in the previous section, is transdifferentiation in which one 

committed cell type has the ability to changes its phenotype and gene expression 

profile to that of an entirely different cell type. This theory is derived from in vivo 

studies conducted with plants in which photosynthetic mesophyll cells isolated from 

zinnia leaves transdifferentiate into xylem cells (84) and with animals in which 

amphibians such as newts are able to undergo limb regeneration (85). Using in vitro 

methods, there are also multiple reports of terminally differentiated somatic cell 

phenotype switching from pancreatic epithelium to hepatocytes (86) and fibroblast 

to T-cell (87). Most recently, the discovery of and ensuing work with induced 

pluripotent stem (iPS) cells has deconstructed the idea of non-reversible cell 

commitment by showing that many mature cell types are able to be transformed 

into embryonic-like stem cells capable of producing all three germ layers in addition 

to chimeric animals (88-92). 

 A priori it is reasonable to hypothesize that systemically delivered BMDC 

would become entrapped in highly arborized capillary networks such as found in 

the lung. These donor cells then receive local cellular signals from their newly 

established niche driving adaptation to the resident tissue. If this mechanism were 

taking place, it is reasonable to assume that donor derived cells would be found in 

other capillary networks which is in fact the case as explained in the Introduction. 

Additionally, a dose response curve would be evident such that greater levels of 
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epithelial engraftment would be seen with greater numbers of cells transplanted. 

This experiment has yet to be performed but it offers an opportunity to examine this 

hypothesis. Our work does not show a clear correlation between donor 

hematopoietic reconstitution and levels of epithelial engraftment but these outcome 

measures may be unrelated to transdifferentiation capacity. 

 Alternatively, there could be a previously undescribed highly pluripotent 

BMDC population that has not committed to becoming blood and therefore has the 

ability to self-renew as well as differentiate into hematopoietic stem cells and 

epithelial cell lineages. Among the suspected populations are multipotent adult 

progenitor cells (MAPCs)(93) and very small embryonic-like cells (VSELs)(94, 95). 

 The third possible mechanism for plasticity could be the fusion of a BMDC 

with a non-hematopoietic cell to form a heterokaryon, which has the gene 

expression profile of the fusion partner. The two most documented examples are: 

when a fibroblast fuses with a myoblast to form a heterokaryon, the fibroblast 

nuclei expresses muscle-specific mRNA (96), and during somatic cell nuclear 

transfer into unfertilized oocytes, the somatic nuclei undergoes nearly complete 

reprogramming (97). More recent data have shown that macrophages have the 

ability to fuse with injured hepatocytes in vivo and that the resulting macrophage 

nucleus expresses liver-specific transcripts (98, 99). Lastly, previous work in the lab 

has shown that 20-50% of BMD epithelial cells in the lung are due to fusion (100). 

Therefore, fusion has been shown to be a mechanism by which this conversion takes 

places but this does not preclude that other possible mechanisms aren't involved. 
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 The fourth possibility is based on the newly discovered capacity of cells to 

take up microvesicles containing mRNA from other cells (101). This transferred 

mRNA can then be detected along with its translated protein in the recipient cell 

(102). In fact, uptake and expression of lung epithelial cell-derived mRNA by co-

cultured BMDCs has been demonstrated (103). 

 

Future Directions 

 Of course, this thesis represents a work in progress and additional 

experiments await completion in order to more fully develop an understanding of 

the plasticity of bone marrow derived cells. Questions regarding the kinetics of this 

transformation process are still unanswered. "How long does this transition take?" 

and "How does the number of engrafted cells change over time?" are relevant 

questions which need to be investigated. As discussed in the Introduction, the 

transplantation of BMDCs appears to have the greatest clinical benefit in an acute 

setting. It seems unlikely that the very low numbers of BMD engrafted cells could 

provide a lasting functional benefit. However, how these cells interact with the 

native tissue in a long time course has yet to be studied. In order to examine these 

questions, we would like to conduct a longitudinal study to examine engraftment at 

multiple time points. Using the same methods to complement our three month post-

transplantation time point, engraftment data should be collected one week, one 

month, six months, and one year after transplantation. The FACS sorting of potential 

cells could be of the most benefit here since it was reliable and sensitive enough to 



DISCUSSION  COHEN 75 

 

provide a quantitative measure of these events. I predict that the greatest number of 

engrafted cells would be detected in the first week post-irradiation when there is 

large scale apoptosis and high levels of circulating cytokines and growth factors. I 

suspect that after this initial event the number of engrafted cells drops precipitously 

such that at one year no donor-derived epithelial cells can be detected.  

 The LSK, FLH, and vav-Cre YFP+ hematopoietic populations engrafted at least 

as well as WBM in the lungs of transplanted animals. However, these well studied 

subpopulations represent a small fraction of the purported stem cell populations 

present in the bone marrow. Future experiments would focus on rigorously 

studying other bone marrow subpopulations, perhaps not of the hematopoietic 

lineage, in order to assess their epithelial plasticity in the lung. In particular, 

plasticity experiments involving mesenchymal stem cells (MSC), very small 

embryonic-like cells (VSEL), side population cells, and amniotic fluid stem cells are 

among the many being discussed in the literature. These populations may hold 

exceptional transformation properties as multiple groups have already 

demonstrated their multipotent capability (104-108). Essentially, the future 

directions of this project will focus on pursuing a starting population of cells which 

have the most potential for therapeutic relevance using tissue engineering 

principles. Specifically, we will search for the cells type that has the most robust 

ability to home sites of injury and contribute to in vivo tissue repair. 
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