
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

7-1-2006

Acquisition and Forensic Analysis of Volatile Data
Stores
Timothy Vidas
University of Nebraska

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Vidas, Timothy, "Acquisition and Forensic Analysis of Volatile Data Stores" (2006). Student Work. 2167.
https://digitalcommons.unomaha.edu/studentwork/2167

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2167?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages

Acquisition and Forensic Analysis of Volatile Data Stores

A Thesis

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In partial fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Timothy Vidas

July 2006

UMI Number: EP73709

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had td be removed,

a note will indicate the deletion.

UMI
D sspnar on Pybhsbsrig

UMI EP73709

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106- 1346

THESIS ACCEPTANCE

Acceptance for the faculty of the Graduate College,
University o f Nebraska, in partial fulfillment of the

Requirements for the degree Master of Science in Computer Science,
University of Nebraska at Omaha.

Committee:

laine Burnham

Kerry Ward

Stanley Wilemari

Chairperson:

Kenneth Die

3

Acquisition and Forensic Analysis of Volatile Data Stores

Timothy Vidas, MS

University of Nebraska, 2006

Advisor: Kenneth Dick

The advent of more witted threats against typical computer systems demonstrates a need

for forensic analysis of memory-resident data in addition to the conventional static

analysis common today.

Some tools are starting to become available to duplicate various types of volatile data

stores. Once the data store has been duplicated, current forensic procedures have no

vector for extrapolating further information from the duplicate. This thesis is focused on

providing the groundwork for performing forensic investigations on the data that is

typically stored in a volatile data store, such as system RAM, while creating as small an

impact as possible to the state o f a system.

It is intended that this thesis will give insight to obtaining more post incident response

information along with a smaller impact to potential evidence when compared to typical

incident response procedures.

4

Table of Contents
THESIS ACCEPTANCE...2
Abstract.. 3
Table of Contents . 4
List of Tables... 5
List of Figures... 5
Assumptions:...6
Disclaimer:.. 7
Definitions................................. 8
Abbreviations... 12
The Forensic Process.. 14
Background... 16

Virtual Addressing and Paging............................ 17
Ringed Architecture... 19
Processes and Threads...20

Objectives... 21
Memory Acquisition..31
Memory Analysis 44

Original Analysis Goals:.......................... 45
The Windows EPROCESS structure and significance..................... 46
Finding processes in memory image.. 50

Conclusions...52
Direction... 53
Appendix A: Methodology notes.. 55
Appendix B: EPROCESS dumps of a live typical system - XP SP2................................. 56
Appendix C: EPROCESS structure of Microsoft Windows 2000, Service Pack 465
Appendix D: ETHREAD structure dump from WinXP SP2..71
Appendix E: Decoding a Process Owner.. 76
Appendix F: Offset Deltas by service pack...80
Appendix G: Proof of Concept Source Code Listing..81
Appendix H: Sample runs.. 99
Appendix I: Linux Acquisition ... 105
Appendix J: GNU General Public License.. 112
Cited W orks.. 120

5

List of Tables

Table 1: Common Incident Response Steps..30

Table 2: : Windows pagefile sizing by Architecture...33

Table 3: Maximum RAM support by O S ...33

Table 4: EPROCESS Structure... 47

Table 5 : SID Encoding ...79

Table 6 : Windows Data Structure Offsets..80

List of Figures

Figure 1: Digital Forensics Communities................................ 14

Figure 2: Virtual Address Translation.. 17

6

Assumptions:
Only host based forensics are discussed in this thesis. Though interesting tangents may

be heavily related to the work shown here (such as the volatile stores of a network

switch) the omission of network based forensics is intended.

All of the samples and some of the text assumes standard Intel x86 32-bit architecture

and while many things may be similar, many alterations would likely have to be made for

64-bit platforms.

In most cases the term “non-volatile store” refers to a technology such a Hard Disk Drive

(HDD) which is assumed to retain data over extended periods of time with no power

applied to the device. Similarly, the term “volatile store” refers to a technology such a

Random Access Memory (RAM) which is assumed to not retain data over extended

periods of time with no power applied to the device. Various kinds of copies of these

types of stores my be referred to as duplicates, copies, or images.

7

Disclaimer:
Techniques described here tend to follow a more historical thought process regarding

forensic procedures: acquire first, then identify. This may cause some privacy concerns

when contrasted with some more modem approaches to e-discovery1 where the pertinent

information is located first and then only that information is acquired. This distinction is

also pertinent when considering the classification of information. Traditionally acquired

data will need to be classified at the highest classification level of any information found

on the system. Theoretically, when using selective methods of e-discovery, the

acquisition could be limited to only acquire data of a certain classification level and thus

not be subjected to the high watermark. Both the historical and selective techniques have

their benefits and drawbacks; completeness versus speed and storage advantages

respectively. This text does not debate these techniques.

When copying Random Access Memory (RAM) from a live system the contents will

change as the copy is being created. This not only makes validation of the copy difficult,

but also questions the very terms used to describe this copy. Duplicate, Image and even

copy may not be the best suited terms, but are used here in the absence of a better term.

1 Guidance software has sections o f their website (www.guiadancesoftware.com) devoted to e-discovery
using their EnCase product line. Additionally there are many conference presentations and whitepapers on
the subject, but no traditionally academic sources, (e.g. CSI Annual Computer Security Conference,
CEIC, DoD Cyber Crime Conference)

http://www.guiadancesoftware.com

8

Definitions

%SystemRoot% : A Windows™ environmental variable is denoted by percent symbols

on either side. SystemRoot refers to the directory in which the OS is located in, typically

c : \windows or c : \winnt.

Binary: The low-level form of an application; it is typically executable, not readily

readable by a human, and not portable between platforms. Source Code is compiled in

order to create an executable binary.

Boot volume: The volume that contains the operating system and its support files. In

Windows, the boot volume can be, but does not have to be, the same as the system

volume.

Closed source: Closed source software is software for which the source code is not open

to public view. Under most licenses users cannot modify such software or redistribute it.

Typically this software is distributed in pre-compiled (binary) form.

Computer Forensics: The application of computer science to questions which are of

interest to the legal system

Digital Forensics: The use of scientifically derived and proven methods toward the

preservation, collection, validation, identification, analysis, interpretation,

documentation, and presentation of digital evidence derived from digital sources for the

purpose of facilitation or furthering the reconstruction of events which may be found to

9

be criminal, or helping to anticipate unauthorized actions shown to be disruptive to

planned operations.

Driver : A device-specific program that enables a computer to work with a particular

piece of hardware, such as a printer, disk drive, or network adapter. Because the driver

handles device-specific features, the operating system is freed from the burden of having

to understand—and support—the needs of individual hardware devices.

Forensic Duplicate: Commonly described as a “bitsream” or “bit for bit” copy of a hard

disk. More accurately it is a sector by sector copy from source media. It is stored in a ’

‘raw’ unaltered form.

Forensics: The application of a science to questions which are of interest to the legal

system.

Image: As a noun, refers to some form of Forensic Duplicate. As a verb, refers to the

process of creating a Forensic Duplicate.

Incident Response: The practice of detecting a problem, determining its cause,

minimizing the damage it causes, resolving the problem, and documenting each step of

the response for future reference.

Kernel: The fundamental part of an operating system. It is a piece of software responsible

for providing secure access to the machine's hardware to various computer programs.

Since there are many programs, and access to the hardware is limited, the kernel is also

10

responsible for deciding when and how long a program should be able to make use of a

piece of hardware.

LiveCD: Operating System stored on a Bootable CL), it does not require a hard drive in

order to execute. A virtual disk is typically created in RAM in order to facilitate

programs that require a file system in order to operate.

Media Analysis: The use of procedures similar to those used in Computer or Digital

Forensics, but with no intent of involvement of a legal system.

Open Source: A movement in the programming community for making source code

(program instructions) free and freely available to anyone interested in using or working

with it. Such source code may be distributed only as uncompiled source, but in many

cases also includes compiled (binary) versions for ease of use by the end user.

Postmortem: Discussion of an event after it has occurred: literally, occurring after death.

Process: The state of a program when execution is actually occurring on a machine along

with the context required to execute.

Source Code: The human readable form of software. It is typically written in a high-

level language such as C++. Machines cannot readily execute code in this form; it must

first be converted to a low-level form, typically trough a process called compilation.

STOP code: The error code that identifies the error that stopped the system kernel from

running.

11

System Volume: The volume that contains the hardware-specific files that are required to

load Windows. The system volume can be, but does not have to be, the same as the boot

volume. Boot . i n i , Ntdetect. com, and Ntbootdd. sys are examples of files that

are located on the system volume.

Thread: A processor activity in a process. The same process can have multiple threads.

Those threads share the process address space and can therefore share data.

Qualified Forensic Duplicate: Similar to a Forensic Duplicate, but stored in an altered

form (e.g. compressed) or with the addition of some metadata. The process can be

reversed or otherwise shown to accurately reflect the same data as a Forensic Duplicate.

12

Abbreviations

ARP Address Resolution Protocol
BIOS Basic Input Output System
BSD Berkeley Software Distribution
CD Compact Disk
CDROM Compact Disk (Read Only Media)

CPU Central Processing Unit
DD Data Duplicator
ELF Executable and Linking Format
EXE Executable file (Windows)
GB Giga Byte

GNU GNU’s not Unix
GPL GNU Public License
HDD Hard Disk Drive
IBM International Business Machines™
KB Kilobyte

KVM Keyboard Video Mouse
LE Law Enforcement
MB Megabyte
MD5 Message Digest (version 5)
NUCIA Nebraska University Consortium on Information Assurance

NX No eXecute
OS Operating System
PAE Physical Address Extension
PCB Process Control Block
PDA Personal Digital Assistant

PDI Page Directory Index
PDB Page Directory Base
PEB Process Environment Block
POFF Page Offset
PTE Page Table Entry

PTI Page Table Index
RAM Random Access Memory
RFC Request For Comment
SID Security Identifier
SMSS Session Manager Subsystem

13

SP Service Pack
STEAL Security Technology Education and Analysis Laboratory
TB Terabyte
TLB Translation Lookaside Buffer
US United States

USB Universal Serial Bus
VM Virtual Machine
XD eXecute Disabled

14

The Forensic Process
The term forensics has many meanings. Alone, the word is defined by Merriam Webster

as “relating to or dealing with the application of scientific knowledge to legal problems”

(Forensic. Merriam-Webster). In the digital arena, however, many actions that bear

resemblance to procedures used in the forensic process (media analysis, data recovery,

event reconstruction and similar) are often billed as forensic services even though there is

never any intention of applying the science to a legal problem. When computer science is

applied to a legal process it is known as Computer Forensics (or depending on context,

Cyber Forensics or Digital Forensics).

Whereas computer forensics is defined as “the collection of techniques

and tools used to find evidence in a computer”, digital forensics has been

defined as “the use of scientifically derived and proven methods toward

the preservation, collection, validation, identification, analysis,

interpretation, documentation, and presentation of digital evidence derived

from digital sources for the purpose of facilitation or furthering the

reconstruction of events found to be criminal, or helping to anticipate

unauthorized actions shown to be disruptive to planned operations” (Reith,

Carr, Gunsch. 2002.)

The basis of these steps traditionally revolve around preserving a state of a computer

system for subsequent analysis and reporting. This analysis is commonly performed in

parallel by more than one party, such as two sides in a legal dispute, and care must be

taken to ensure that all parties involved are working with identical data. Nearly identical

15

or similar data is insufficient.

Law
Enforcement

.« Courts

Dicjitai
Forensic
Research Critical

Infrastructure
Protection

Information

Military Operations usiness and
Industry

It has been shown that even when working with large sets

of data, minute a discrepancy can have profound effect". As such, concepts such as

chain-of-custody borrowed from

other disciplines arc often

adapted to digital forensics.

Even so, the Digital Forensics

Research Workshop (DFRWS)

uses the Venn diagram shown in

Figure 1 (Marc Rodgers, 2004)

to demonstrate three distinct Figure 1: Digital Forensics Communities

communities of digital forensics. Only one community regularly deals with legal process

in the course of performing digital forensics. It has been suggested (Rodgers. 2004,

among others) that academia be added as a fourth community, further minimizing the

root meaning of forensics.

An example of a minute discrepancy having a profound effect is a single ASCII character (likely 8 bits)
found in a document on a 80 gigabyte hard drive, becoming the deciding factor o f a multimillion dollar
settlement (about I / 85,000.000.000th o f the total data). (Taub. 2006)

16

Background
In the not-too-distant past, a common incident response step taken early in the process

was to ‘pull the plug’ on a powered on machine (United States Secret Service, 2002).

Investigators knew that performing a ‘clean’ shutdown could further change the state of

the system. However ‘pulling the plug’ also has its own drawbacks to later analysis. One

such drawback is the lack of ability to identity and examine the state of the machine at

the time of seizure.

•2

Some tools allow the acquisition of the contents of ‘raw’ RAM from a running system.

Thus far, the analysis of a RAM image has been limited to small special-use devices such

as Palm PDAs or various cellular phones. For most forensic cases seen today, traditional

post-mortem techniques are sufficient for the United States court process, but for cases

involving an active adversary or completely memory resident threat (such as some

viruses and worms), analysis of volatile data stores will not only be recommended, but

will be required.

Many times the state of the non-volatile devices, such as hard disks, depend upon the

state of a volatile device, such as RAM. This is the case with many forms of Hard Disk

Drive encryption, where if a disk is powered down a secondary connection to the device

3 Helix Live CD - Incident Response Toolkit http://www.e-fense.com/helix/
Paraban’s Cell Seizure http://www.paraben-forensics.com/cell_models.html, etc.

http://www.e-fense.com/helix/
http://www.paraben-forensics.com/cell_models.html

17

may prove fruitless.4 In certain cases a multi-partite memory resident virus5 can even

partially encrypt portions of a drive without the consent (or knowledge) of the user. In

such a case, capturing and analyzing the contents of memory would be required for an

investigation.

Virtual Addressing and Paging

In order to allow each process to have a logically contiguous address space and preserve

the efficiency of not having to allocate contiguous memory addresses to each process,

most modem OS memory management systems employ virtual addressing. In this type

of addressing, processes are given virtual addresses for memory which are then translated

to the correct physical address by the memory management system. This should not be

confused with Windows Virtual Memory which enables a process to use more memory

than physically available by swapping portions of memory to a secondary store such as a

file on disk. In fact, in Windows, all OS instances are given a virtual address space of

4GB regardless of physical RAM installed. This 4GB virtual range is typically divided

into two 2 GB sections6 — one for the OS and one for private application space. In this

sense “RAM is a limited resource, whereas virtual memory is, for most practical

purposes, unlimited.” (KB 555223).

4 It is very common in typical procedures to power off a system, then attach a write-blocking device to the
HDD before connecting it to some other device independent o f the original suspect hardware for
acquisition purposes.
5 ONE-HALF virus http://vil.nai.com/vil/content/Print98226.htm
6 Baring some boot switches such as /3GB.

http://vil.nai.com/vil/content/Print98226.htm

18

When memory use exceeds the available RAM, portions of memory are typically paged

. . . 7(or copied) out to disk. In Windows this is done in 4 KB pages to files called the

Pageflle (pagefile.sys). When data in a particular page is needed for processing the page

is paged back into RAM and another page copied to the pageflle. For the purpose of this

thesis, concepts such as reserving, locking, sharing and committing pages, will not be
o

discussed, nor will the application of rights to pages via hardware memory protection .

Virtual Address

PagePage Table Physical MemoryPage Directory

Byte

Page Directory Index Page Table Index Byte Offset

PDI Entry PTI Entry Page

Figure 2: Virtual Address Translation

A memory manager generally constructs page tables to facilitate the translation of an

object at a virtual address referenced in a process to the physical hardware location of

that object. Each virtual address has an associated Page Table Entry (PTE) in the table

7 In X86 without the PAE switch enabled. For x64 and IA64 page size will range from 4 KB to 16 MB.
The cost vs benefit is typically related to Translation Look Aside Buffer (TLB) efficiency in hardware and
will not be discussed further here.
8 Since the page is the smallest granularity assignable via hardware memory protection, some concepts have
been getting attention again lately such as AMD’s NX bit or Intel’s XD bit (bit 63 o f the page table entry).

19

which contains the physical address. In the Intel x86 architecture, a Page Directory Index

(PDI) also exists in order to locate the correct Page Table in which a PTE exists. When a

process requires access to a byte at a given virtual address (also see Figure 2: Virtual

Address Translation):

• the PDI is referenced to locate the correct page table

• the corresponding PTE found in the page table for the page that contains

the byte in question, contains the physical location of the page in RAM

• finally an offset into the page is used to locate the actual physical byte

An example of decoding a virtual address can be found in Appendix E: Decoding a

Process Owner. It is important to note that each Windows process has a single page

directory with 1024 entries, and up to 512 page tables, each with 1024 entries. Paging is

typically enabled very early in the boot process, and applications benefit from virtual

memory / paging without any alteration because it is provided by the OS, essentially at a

lower layer than the process.

Ringed Architecture

Rings (aka protection rings, processor modes, process privilege mode), are provided by

many processors to allow “memory access protection from two levels (user and kernel).”

(Hennessy, Patterson. 2003). A system requires at least two protection levels to provide

privilege isolation between processes, which becomes a foundational requirement to

provide notionally higher concepts such as file confidentiality (Ware. 1970). Kernel (or

supervisor) mode allows access to all CPU functionality while the non-kernel modes

20

(typically only one: user mode) allow restricted access. If the architecture allows more

than two modes, and the modes are implemented in a singular hierarchy, the architecture

is ringed; if the architecture provides only two modes, it can be thought of as a 2-ring

architecture. Generally, processes that exist in rings ‘further away’ from the kernel mode

(typically increasing in number) the functionality available to the process in that ring is a

subset of the prior ring.9 Most popular processors support a certain number of rings (Intel

x86 supports 4), however most operating systems only implement two rings for kernel

and user modes (typically at ring 0 and 3 respectively) and provide further protection

granularity through OS features instead of rings. This distinction between the two rings

is important to note for a variety of reasons, among them are the following. Processes in

ring 3 may not be able to access data in ring 0 and this may hinder the acquisition

process. Similarly rogue processes in ring 0 may not be detectable by processes in ring 3.

Among other examples, this distinction between the two rings can make kernel level

rootkits difficult to detect and/or remove. (Hoglund, Butler. 2006)

Processes and Threads

A process is the state of a program when execution is actually occurring on a machine

along with the context required to execute: current values of the program counter,

registers and variables. (Tanenbaum, 1997) A Windows process consists of a private

virtual address space, the actual executable code, a list of open file handles, a certain

9 Correct implementation o f a ringed architecture requires both hardware and software (OS) support. The
concept o f ringed architecture has existed for quite some time. The Multics project supported ringed
architecture circa 1963 (Corbato, Vyssotsky. 1965).

21

security context, an ID, and at least one thread. (Russinovich, 2005). It is important to

note that even in the absence of a multithreaded program, or even the possibility of

allowing multiple threads, every process has at least one thread. Only a thread can

execute, which counters popular terminology related to “running processes.”

Many processes are deemed default, and some are deemed required by various sources.

Default processes are those that start with the booting of a typical installation of an OS.

Required processes are those that are required for the OS to function. Processes may

have familiar relationships such as parent and child, where the parent process starts the

child process and so on. Most operating systems are distributed with applications that

facilitate viewing the state of currently running processes such as the Windows Task

Manager or the Linux ps or to p commands. Using these tools, different information

about the processes may be studied. The internal structure of a process and its respective

thread(s)10 are paramount to the analysis portion of this text and a more detailed summary

of related data structures will be presented there.

Objectives
The goal of this work is to assess the current methods and mechanisms available to

duplicate volatile data stores and more so, to analyze the effects these tools have on the

state of the system in which these stores exist. Some (most, all?) tools will actually alter

10 It is important to point out that this thesis only refers to “full” threads and not “lightweight” threads or
fibers which are scheduled internal to a process and not by the OS scheduling routine. These are obviously
very specific to each application and are not discussed here.

the state o f the system in question which is not recommended from a forensic point of

view. Altering the state of the system is akin to modifying a physical crime scene, the

evidence may not be altered, but there is no way to know after the modification has

occurred. The goal of the media analyst is often to glean as much information as possible

directly from the evidence; the goal of a party involved with a legal system may fail more

in line with concepts such as burden of proof which allows for inference in many

situations.

In physical forensics, malfeasance or misconduct that changes the state of a crime scene

could quite likely render evidence unusable in the court system. Digitally, the court is

taking a similar approach, however the circumstances are not equivalent. For example: if

a murder has occurred in a kitchen, and the murder weapon was left at the scene, if the

kitchen is sealed and guarded the murder weapon will still exist at a later point in time. If

a computer crime is observed, evidence might well be lost over time due to the normal

operation of a computer system. Different, common actions on an individual system such

as scanning, paging, defragmenting, and re-allocation of clusters/blocks can all alter or

overwrite potential evidence on disk. These actions (and others that do not necessarily

affect the disk) may start new processes and utilize portions of memory which may alter

or overwrite potential evidence in RAM. The problem of lost potential evidence may

even be compounded by common circumstances like the active participation of the

system in question on a network. Generally, the more active a system the more likely it

is that potential evidence will be lost.

23

Regardless of the effectiveness of the methods and mechanisms used for acquisition,

procedures will be created to perform incident response and media analysis akin to those

in use today for traditional media. This thesis focuses on the analysis of the different

portions of RAM used by mainstream operating systems in order to adapt current

response methodologies to farther preserve the state of a suspect system. It is intended

that the effect of current incident response procedures on a suspect system be lessened

and the amount of information available after the initial response be equal to or greater

than the information obtained using current procedures.

Scripts developed to aid in the analysis of an acquired image of a volatile data store are

distributed open source as Appendix G: Proof of Concept Source Code Listing to this

thesis under the GNU General Public License (Appendix J: GNU General Public

License) for public use. However, the scripts are not the primary focus here.

The analysis of volatile stores and traditional postmortem forensics vary greatly.

Traditional forensics typically involves the postmortem media analysis of a file system.

Though it is common to speak of analyzing a particular workstation or personal

computer, the analysis is very often only performed on a file system. Even ‘advanced

techniques’ focus on clarifying or adding to the file system that is being examined.

Popular industry products can perform automated actions such as recovering folders,

finding partitions, undeleting items, etc. All of these actions work toward the goal of

24

having an “evidence container” (a “pseudo” file system) in which to perform analysis.

All further analysis is done within this container. Consider a word processor document

that contains an embedded digital picture. Contemporary tools may allow an analyst to

quickly view all digital pictures, including the embedded picture. This picture does not in

itself exist as a file, but as a portion of a file; however the picture by itself may be

considered as evidence. Even the misnomer “bit-for-bit” duplicates of hard disks11 are

parsed and data that was not contained within the suspect file system on the original disk

is added to the container in the analysis software (such as deleted files). Thus traditional

analysis depends very heavily on the understanding of the file system that was used on

the original system, and the file system is the primary focus of analysis.

Volatile data stores typically have no file system abstraction layer and the data within is

managed directly by the Operating System. For this reason, tools that focus on the

analysis of file systems are not able to cope with volatile stores well. When considering a

volatile data store such as Random Access Memory (RAM), other factors become main

focuses: the Operating System in use, the configuration of that Operating System and

possibly other information such as hardware implementation.

Particular instances of volatile stores will typically vary much more than instances of

non-volatile stores. This variance is partly due to the changing nature of volatile stores

11 Most duplicates that are represented as bit-for-bit or byte-for-byte duplicates are actually sector-by-sector
duplicates as the hard disk controllers on modem hard disk drives typically are only capable o f providing
data at a sector granularity

25

like RAM, which is perceived as a faster, more valuable resource than a non-volatile

store to the system and is thus always in contention. Contrary to popular belief, data may

still exist in a volatile data store from a time prior to the last reboot of the system (which

actually challenges the term ‘volatile’). While most hardware is capable of “zero-ing” or

otherwise clearing the contents of RAM at boot, many systems ship with the default

setting to “quick” mode where no memory testing or clearing is performed at all. It

should be pointed out that this capability is usually presented at a level much lower than

the operating system, typically as a BIOS feature.

Much information either required for or beneficial to the analysis of volatile stores will

likely only be attainable from the non-volatile stores. While many configuration settings

are standard, there is no technical OS control preventing something like a non-standard

12page size. In some cases, changing these settings may actually be recommended

(Marxmeir, 2001). Data structures and memory mapping often differ between different

releases of software. Therefore obtaining information from a non-volatile store from the

suspect system version (like the version of OS from the hard disk) can be quite beneficial

for the analysis of the volatile store (such as parsing processes from data structures in

RAM. Cisco’s IOS router software alters the mapping of memory in every software

release (Lynn, 2005).

u While this reference does not speak directly to the topic at hand, “.. .the file system block size could have
a big impact on the system performance...” as related to databases. A search the a field o f choice should
find many articles both by vendors and end users relating storage unit sizes o f all kinds to system
performance. Page size can also be quite a bit different in non x86 architectures.

26

Only recently has the capture of certain non-volatile stores become automated enough to

have the potential to be a common incident response action (Helix Version 1.4, 2004). A

few contemporary tools have built-in functionality for imaging RAM, however, once

captured, the customary analysis of this image is done manually using a hexadecimal

editor/viewer and possibly some slightly more helpful, yet still primarily crude

techniques such as performing a strings analysis. The problems are in the tools and

techniques provided to the typical forensic analyst, and their focus on non-volatile stores.

This does not even touch on the present-day debate on whether is advisable to alter the

state of a currently powered on system in exchange for obtaining more information.

Historically, a first responder was trained to “pull the plug” if a suspect machine was

discovered in a powered on state13 (United States Secret Service, 2002). This typically

does guarantee ‘more’ information to be available on the non-volatile stores because the

system has not had the chance to perform any shutdown tasks. For example, an operating

system may clear a paging file, or delete temporary files at shutdown. However, this

approach will have marginal success at showing the entire state of the system at the point

that the power was removed because the OS has not been given the opportunity to

perform shutdown tasks.

Many texts have proposed that incident response should observe an order of volatility,

such as processing stores in a particular order: registers, routing information, process

13 . .if a specialist is not available.. .disconnect all power sources; unplug from wall and the back o f the
computer.” This verbiage is from the US Secret Service, but the action is not atypical.

27

table, temporary files, physical disk (Brezinski, Killalea. 2002). Each type of store

respectively becomes less volatile and more persistent as the process goes on, and in fact

some first responder checklists may employ executing certain commands or scripts

before removing power from a system. These procedures may include running

commands to obtain information about the state of the system, such as process lists,

network connection status, open files, etc. The perceived primary problem with this

procedure is that potential evidence is being altered; many incident response guides do

not even take this'state alteration into account (Baker, 2005 among others). Simply

performing the response procedures introduces more processes in the process table of the

machine. Of course, these processes will be bound to the access level that they run

under. Not having administrator level access at incident response time, or the presence of

a rootkit or other subversion technique may render these actions fruitless anyway. The

order in which to process the stores becomes more complex when general assumptions do

not hold, such as the persistence of data in memory between reboots, or the persistence of

data in memory for extended periods of time (Chow. 2005).

A secondary problem with interacting with the machine at incident response time is a

trust issue in using commands from a suspect machine. Techniques commonly used in

malware like rootkits and spyware (binary byte patching, application replacement, system

call hooking, etc) can alter the output of commands and applications in ways that make

the detection of the alteration difficult. Commands may be issued from a more trusted

media, such as a CDROM, but in some cases even these perceived to be trusted, read-

28

only binaries can be subverted14. Due to scalability issues, this type of subversion

technique is likely to only take the most popular response tools into account.

Related to the act of adding a process to the process table, and the argument of cost

versus the benefit of doing so, is the concept of information longevity, f or example in

most file systems when a file is deleted15, typically the allocation units for the file are

marked as available for use and the contents of these units are not cleared. While the

block may appear as empty or inaccessible from a file system or operating system point

of view, the data has not been cleared and can be accessed by alternate means. This is a

primary method of data recovery for a variety of forensic tools. Similar in concept to the

example of the extended longevity of a file, all objects have lifetimes. Memory contents

may change more often given an active user or active processes, but this depends on the

amount of memory, the existence of some sort of paging file and a number of other

factors.

Even if certain procedures are followed in the incident response process before the power

is removed, some valuable information might not be obtained. Two primary examples are

14 Some particular types o f rootkits, such as hacker defender, actually attempt to sense popular rootkit
detection techniques in order to avoid detection.“To overcome some o f the countermeasures implemented
by Holy Father and other rootkit authors, the latest version creates a randomly named copy o f itself that
runs as a Windows service. This approach is effective, but Russinovich and Cogswell acknowledge, "It is
theoretically possible for a rootkit to hide from Rootkit Revealer. However, this would require a level o f
sophistication not seen in rootkits to date” (Dillard, 2005)
15 Deleted from the filesystem, not from the Operating System. Deleted in this context, typically means
that the OS is not capable o f recovering the information. When using a recycle bin model, a file is not
deleted until it has been removed from the recycle bin.

29

purely memory resident malware16 and encryption keys stored in memory. Some tools

like The Metasploit Project may use techniques like direct memory injection to load OS

modules without leaving any evidence on the disk.

The main purpose of analyzing volatile data stores is to reduce the impact the investigator

subjects upon potential evidence while increasing the amount and credibility of the

evidence that is acquired. Even so, it is important to point out that in some instances

even the acquisition process can be subverted. Situations such as the examination of a

system that has a rootkit present create further challenges for the investigator. Even in

such a situation, the availability of RAM contents at the time of power removal (and a

forensic duplicate of the physical drive) would likely be beneficial to an investigator,

even if the RAM was incomplete. A greater difficulty lies in the potential ability of an

untrustable system to wholly deny access to data stores.

Typical incident response consists of running a series of commands - each starting its

own process, the output of which is stored on a secondary device so as to not potentially

overwrite data on the disk. Each command will result in creating at least one new

process which may overwrite latent data in RAM much like creating a new file may

overwrite latent data on disk. A contemporary listing of typical incident response steps

can be found in Table 1: Common Incident Response Steps.

16 Worms, Virii, Trojans, rootkits, spyware and the like. Examples would be Nimda or SQL slammer.

30

Table 1: Common Incident Response Steps
(Nolan, O’Sullivan, Branson, Waits)

Windows Linux
System Profile systeminfo.exe, psinfo /proc (version, uptime,

meminfo, filesystems,
cpuinfo), uname

Date and Time netstat, date, time netstat, date
uptime psuptime, net statistics uptime, w
Runing Processes netstat, pulist, tlist, pslist,

listdlls
ps, w, top, fuser,
modules.conf, ldd, Is

Open Files, startup,
clipboard

dir, afind, macmatch,
autoruns, handle, pclip

Is, find, lsof, file, /etc/rc*
directories, chkconfig,
inittab, cron, at

Users net users, psloggedon,
ntlast, dumpusers

who, last, lastlog,
/etc/passwd, /etc/shadow

Network information ipconfig, fport, psservice,
promiscdetect, netstat,
nbstat, net, arp

ifconfig, netstat,
/var/log/messages, arp

There are still other areas that blur the line between the analysis of a static store and a

volatile store. Swap space, for example, resides on disk either in an allocated form (such

as a pagefile in Windows) or somewhat more raw form (such as a swap partition in

Linux). Upon removal of power from a system, swap space may still exist largely

1 1intact . However, the analysis of such space will be similar to the raw analysis

techniques presented here and less similar to traditional techniques related to forensic

procedures applied to a typical file system. Traditional techniques may allow the

detection or recovery of the pagefile from the file system, but the interpretation of the

contents will be much more analogous to RAM analysis than file analysis. Furthermore,

the availability of both swap information as well as an image of the RAM will allow

17 Largely is a subjective term and no assumptions are made as to the exact or expected percentage o f intact
swap information. Each system will have different results. In fact each system will even show different
results on subsequent experiments. The data that will remain past the removal o f power will depend greatly
on the state and configuration o f the system.

31

some comparison. Obviously the level of comparison that can be made will depend

entirely on the system in question due to the aforementioned state of swap information.

Memory Acquisition
Generally speaking, data stored in a volatile data store is, as the name implies, volatile in

nature. Introductory level students of computer science are taught early in their education

that the difference between a hard disk technology and RAM technology is that the data

in RAM is lost when power is removed from the system. This theory also falls in line

with current movements in the Law Enforcement sector, and is fundamental to the need

presented in this thesis for adaptation of current incident response processes. However, it

has recently been proven that at least some hardware retains data in RAM for certain

periods of time. For example, an IBM T30 Thinkpad laptop may retain RAM contents

for as long as 30 seconds without power (Chow, Pfaff, Garfinkel, Rosenblum. 2005).

Similarly, samples taken as part of this research also clearly show that RAM data

survives reboots.

Without a specialized hardware tool designed to rapidly copy data from the RAM

immediately after power down, or designed to clamp on to the memory stores of a

running machine and duplicate in stream18, the examiner must resort to using provided

methods to access volatile stores. These methods may be provided at different levels of

abstraction and likewise offer different granularities and insight into the data present.

18 Such as the PCI described in A Hardware Based Memory Acquisition Procedure for Digital
Investigations (Carrier, Grand).

32

For recovery and testing purposes, many versions of Windows can be configured to

perform a memory dump upon system crash, called a crash dump. This functionality is

typically dictated graphically by choosing the “Startup and Recovery” button under the

“Advanced lab” of “My Computer” properties page. The “Write debugging

information” field can be set to Complete, Kernel, or Small style memory dumps. These

settings can also be manipulated using the Windows registry:

H K E Y _ L O C A L _ M A C H I N E \S y s te m \C u r r e n tC o n t r o lS e t \C o n tr o l \C r a s h C o n tr o l

C r a s h D u m p E n a b le d REG_DWORD 0 x 0 = None
C r a s h D u m p E n a b le d REG_DWORD 0 x 1 = Complete memory dump
C r a sh D u m p E n a b le d REG_DWORD 0 x 2 = Kernel memory dump
C r a sh D u m p E n a b le d REG_DWORD 0 x 3 = Small memory dump (64KB)

Related keys of interest are:
A u t o R e b o o t REG_DWORD 0 x 1
D u m p F ile REG_EXPAND_SZ % S y stem R o o t% \M em o ry . dmp
M in id u m p D ir REG_EXPAND_SZ % S y stem R o o t% \M in id u m p

Complete memory dumps include the entire contents of physical memory and are by

default eventually saved to %S y s t e m R o o t % \M e m o r y . dmp (see page 35 for more

details). Complete memory dumps will require a swap file larger than the physical RAM

size of the machine plus 1 MB (to allow the addition of a file header and some kernel

variable values)19. In situations involving ‘large’ amound of RAM, special

considerations must be taken. There are several workarounds requiring registry, and boot

19 An entire megabyte is not required, but the smallest increment o f the Windows paging system is 1 MB.

33

modifications to allow complete memory dumps for Windows 2000 based systems with

more than 2 GB of RAM. Complete memory dumps are not possible with Windows

2000 based systems using Physical Address Extension or with more than 4 GB of RAM

(due to the page file size limitation of 4095 MB and the complete memory dump size for

4 GB of RAM to be 4096 + 1 MB). Many administrators might readily point out that it is

possible to have more than 4095 MB of paging space. While this is true, it is achieved

through multiple page files and 4095 MB is the maximum size for each individual file.

Table 2: : Windows pagefile sizing by Architecture
x86 x64 IA-64

Maximum size of a paging
file 4 GB 16 TB 32 TB

Maximum number of paging
files 16 16 16

Total paging file size 64 GB 256 TB 512 TB

Table 3: Maximum RAM support by OS20
OS Version Maximum

RAM (GB)
Windows NT 4
Windows 2000 Professional 4
Windows 2000 Standard Server 4
Windows 2000 Advanced Server 8
Windows 2000 Datacenter Server 32
Windows XP Professional 4
Windows Server 2003 Web Edition 2
Windows Server 2003 Standard Edition 4
Windows Server 2003 Enterprise Edition 32
Windows Server 2003 Datacenter Edition 64

A kernel memory dump only dumps memory pertaining to kernel level processes. Kernel

memory dumps require the primary volume’s pagefile to be at least approximately 1/3 of

20 All Windows limits pertain to x86 32 bit architecture not observing /3G, /AWE or /USERAV boot
switches. Some such as 64 bit, Server 2003 with Service Pack 1 can support up to 1024 GB of RAM.

34

the system’s physical RAM. This type of dump differs from a complete dump in that

only kernel level processes (the OS kernel, device drivers, and system level programs, but

NOT user programs or unallocated memory) and is thus much faster and space efficient,

but contains less information. The % S y stem R o o t% \M em o ry . dmp location is also used

for kernel memory dumps. Each time a STOP error occurs, the M e m o ry . dmp file is

replaced with a new version pertaining to the most recent crash. This replacement and

thus loss of prior information affects both complete and kernel memory dump types.

Small memory dumps (aka minidumps) are, as the name implies, much smaller - 64 KB

in 32-bit systems. Minidumps only require 2 MB of page file space, and instead of

including full contents of RAM or kernel allocated RAM, minidumps include at a

minimum the STOP message, a list of drivers, processor context, process and thread

context, and a kernel mode call stack. Minidumps are saved as individual files in the

%SystemRoot%\minidump directory and are named according the date on which the

error occurred (for example, M i n i 0 7 0 5 0 6 - 0 1 . dmp for the first minidump on July 05,

2006).

The facts that subsequent minidumps do not overwrite previous minidumps, and that

minidumps are relatively small make this type of dump desirable to administrators.

However, the lack of RAM data makes the minidump type of memory dump less

desireable for the analysis techniques described in this thesis (though the existence of

information in the minidumps may still hold valuable forensic information). If minidump

35

style dumps are the only type of dump available, some simple information may be

discerned. Access to core binaries (such as ntoskemel.exe) from the suspect system and

91possibly access to symbols for the examined version of Windows may allow additional

interpretation of the information in a minidump, but it will pale in comparison to the

information attainable from a larger memory dump.

Client platform Windows operating systems default to minidump style, and server

platform Windows operating systems default to complete style dumps. On XP and 2003

Server platforms minidumps are created in addition to the complete or kernel dump. If a

complete or kernel dump file is available, a minidump can be created from that complete

or kernel dump using . dump /m in WinDbg.

All memory dumps, regardless o f source (crash induced or somehow instantiated) require

space for storage. In the most raw form, a total image of RAM would require at least the

same space as the physical RAM (1 MB if in the Microsoft DMP format). Since this data

is eventually written to disk, the possibility exists that less volatile evidence stored on

disk will be over-written. If possible, the RAM could be saved to a non-suspect device

(e.g. a tape drive). If not possible, the perceived benefit of saving-system RAM must be

weighed against the possibility of overwriting potential evidence.

2'Symbols are basically a way to give more information to a debugging tool, like function and variable
names, that would not normally be available in a complied version o f software. Further information on
symbols appears later.

36

When a memory dump is forced by a crash, the Windows kernel actually loads a miniport

driver to write the dump contents directly to sectors that are occupied by the pagefile.

Because of this, contents of the pagefile will contain a DMP formatted file structure that

can be later extracted using forensically sound procedures if power is removed from the

system after the dump has completed but before the operating system has been reloaded.

The M e m o r y . dmp file in the % S ystem R oot% directory is not created until after the

9 9system reboots . After the operating system has started to reload, the Session Manager

Subsystem (SMSS) user process enables paging upon boot. If SMSS determines a DMP

memory dump is found in the pagefile, SMSS instructs the kernel to mark the parts of the

pagefile occupied by a DMP as unusable. Later in the boot process, WinLogon checks

for DMP memory dump data in the pagefile. If found WinLogon spawns Savedump to

extract the file and store it the % S ystem R oot% . In situations involving large quantities

of RAM this detection and copy can significantly slow down the boot process following a

crash dump. Because of this, when using the Windows crash dump method of obtaining

a memory dump, a RAM to pagefile comparison will not be possible. The automatic

creation of a minidump from the complete memory dump happens after the system has

finished rebooting. It is important to note that even though the m em o ry . d m p file is not

created until after the system reboots, the information is actually written to disk. If a

22 This is very easy to observe. Simply follow the MS instructions, as outlined in this thesis to setup a test
machine for a “Full Memory Dump” then use one o f the techniques presented to initiate a crash dump.
Instead o f allowing the machine to reboot to the OS, reboot using a LiveCD. Browsing the file system will
show that MEMORY.DMP does not yet exist, even though the physical memory was written to disk (as
evidenced by the blue screen after the crash). Upon rebooting into the OS the MEMORY. DMP file will be
created.

37

system crash occurs (or is forced), it is preferred to not let the system reboot which would

cause multiple changes to occur to the suspect non-volatile stores. Not only would this

reboot alter expected things like OS timestamps, but also overwrite a large amount of

unallocated space with the newly created m em o ry . d m p file.

The DMP format is a proprietary Microsoft file type, but the structure of the additional

information present in a DMP file is easily discerned through the use of tools provided by

Microsoft. The DMP header is commonly stated to have 1MB for header information

Figure 3: DMP File Header

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 50 41 47 45 44 55 4D 50 OF 00 00 00 93 08 00 00 PAGEDUMP

00000010 00 00 03 00 00 20 0D 82 F0 D9 46 80 B0 DC 46 80, <3UF€°UF€

00000020 4C 01 00 00 01 00 00 00 E2 00 00 00 00 00 00 00 La

00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 41 47 45 AGE

00000040 50 41 47 45 50 41 47 45 50 41 47 45 50 41 47 45 PAGE PAGEPAGE PAGE

00000050 50 41 47 45 50 41 47 45 50 41 47 45 00 41 47 45 PAGEPAGEPAGE.AGE

00000060 58 F3 46 80 04 00 00 00 8C FE 01 00 01 00 00 00 XoF€. . . . (Efc>.....

00000070 IF 00 00 00 21 00 00 00 7E 00 00 00 00 01 00 00 i ~

00000080 FF 0E 00 00 00 10 00 00 F0 EE 01 00 50 41 47 45 y6 1 . . PAGE

00000090 50 41 47 45 50 41 47 45 50 41 47 45 50 41 47 45 PAGE PAGE PAGE PAGE

000000A0 50 41 47 45 50 41 47 45 50 41 47 45 50 41 47 45 PAGE PAGE PAGE PAGE

0 0 0 0 0 0B0 50 41 47 45 50 41 47 45 50 41 47 45 50 41 47 45 PAGE PAGE PAGE PAGE

00000F70 50 41 47 45 50 41 47 45 50 41, 47 45 50 41 47 45 PAGE PAGE PAGE PAGE

00000F80 50 41 47 45 50 41 47 45 01 00 00 00 50 41 47 45 PAGEPAGE.... PAGE

00000F90 50 41 47 45 50 41 47 45 50 41 47 45 50 41 47 45 PAGE PAGE PAG E PAGE

38

(Russinovich, 2005)(KB 309773), but for the purpose of this thesis only the first 4KB is

useful. From this first 4 KB extra metadata can be discerned (e.g. Version and Build of

the Windows OS that created the dump, the number of CPUs, the system architecture,

and the type of dump created (kernel or complete)). Some of this information is in

addition to what can be detected from the memory image, while other parts of this

information can be used to validate the results. At the very least the presence of the

header allows the program itself to adjust the detection processes depending on input.

The indicated portions of Figure 3 show the file signature (0x5041474544554D50 —

“PAGEDUMP”), the “Major” OS version (OxFOOOOOO = 15), the “Minor” OS Build

number (0x93080000 = 2195 — Windows 2000), the architecture (0x0000014C = 338 —

i386), the number of processors (0x00000001 = 1) and the type of dmp file (0x00000001

= 1 — Complete [2 would be kernel]).

Tools distributed from Microsoft for debugging Windows-based software, such as the

I386kd tool23, the Userdump OEM tool, or similarly the crashdump utility built into the

kernel, create one of the proprietary “dmp” files designed to help discern the cause of

bugs and crashes. While these tools are not designed with forensics in mind, they can

still provide information from RAM. Most of the tools designed with debugging in mind

will write the volatile information to a non-volatile store, which is forensically poor since

the non-volatile store is usually also suspect, and this action could potentially overwrite

non-volatile evidence. A middle ground solution may be to introduce another storage

23 Found on the Windows 2000 Support CD-ROM

39

location to accept the dump (e.g. a network share or portable storage device provided by

the investigator). Different techniques must be weighed against existing policy, and may

well depend on the circumstances of the particular incident. Mapping drive letters to

network shares and introducing external devices (like USB hard drives) both have impact

on the system. The best case might be that the new hardware or shares will be

enumerated at various places on disk and thus the procedure must be documented by the

responder to avoid later misinterpretation by an analyst. The worst case might be

accidentally causing executables to be run (possibly via autorun) or even system failure.

Most kernel debugging tools, both Microsoft distributed and third party, require

installation and configuration. Some even require special connections and/or hardware.

Both installation of software and special connections to hardware may have unacceptable,

adverse impacts on the state of the system. For this reason kernel debugging solutions

are often not a viable choice for most investigations. Some tools or portions of packages

are in a portable executable form and can be executed independent of the debugging

installation. Such tools might become a valuable part of a toolkit24 designed for the

initial incident response (first responder). Other tools such as dumpchk.exe which

verifies the correct creation of the memory dump might appear to be useful, but

dumpchk.exe only works on minidump files and provides no insight in the inspection of

complete or kernel memory dumps.

24 Different packages and toolkits have varying license agreements. It may not be within the rights o f the
purchaser to use these tools in this manner. Research done for the purpose o f this thesis was for proof o f
concept and education purposes only. Users must verify similar usage against respective license
agreements.

40

Since Windows source code is not available to the typical developer, code level analysis

is not available when troubleshooting even the simplest kinds of errors. To aid the

debugging efforts of developers, Microsoft distributes what is known as “symbols” for

multiple versions of Windows. Symbols allow a debugger to correlate application

execution statements with function names, line numbers, etc. without the need for source

code. At compile time (actually linking) the compiler can create symbol information

along with the compiled executable. “Symbol files hold a variety o f data which are not

actually needed when running the binaries, but which could be very useful in the

debugging process. Typically, symbol files might contain: Global variables, Local

variables, Function names and the addresses of their entry points FPO data, and Source-

line numbers”(Microsoft Corp. 2006). The exclusion of this information in the compiled

binary is purposeful in order to create smaller, faster binaries. While possession of

symbols is not required to debug or reverse engineer a compiled product, it can greatly

reduce the complexity.

Obtaining live dumps of RAM can be problematic. In addition to altering the contents of

memory (no matter how slightly) by performing the dump, the memory will also be

changing as the system continues to run due to other running processes. This, paired with

the fact that it will take some time to actually obtain the dump, means that the resulting

dump will not actually reflect the state of RAM an exact point of time, but rather a time

sliding view of memory. Faster imaging will result in a smaller time window, and on all

but the most active systems RAM is unlikely to change substantially during the imaging

process, but the fact remains that it will change - it is just a question of how much.

41

Actions similar to the some of the above kernel debugging techniques can be used on a

live system. Windbg’s .dump can be used in conjunction with Systintemars Livekd in
r y e

order to create a dump of a running kernel (Russinovich, Solomon. 2005). Similar

results should be possible using more robust tools such as SoftlCL or IDAPro.

George Gamer’s dd modifications allow for the /Device/PhysicalMemory object to

be copied using the dd tool (used in many Open Source forensic packages, such as the

Helix LiveCD). Invoking the dd command is not much different in a Win32 environment

than in a Linux environment. The only part that might appear alien to one who has used

dd before is the input, which is an access method to the device “PhysicalMemory:”

■ dd i f = \ \ . \D e v ic e \P h y s ic a lM e m o r y o f= m em o ry . b in b s= 4 0 9 6

Using dd has many advantages, there is no need to install software, it has a small

executable size for lower impact and easy portability, a simple file structure, and is open

source. Because the file is stored in a “RAW” format, low level analysis is simple - file

offsets are the' same as memory offsets, however this can also be viewed as a negative

25 Live debugging is built into the windows debugger, but requires a secondary debug system to be attached
and the debug target must be booted with the /DEBUG switch. “Local” kernel debugging is possible with
XP / 2003 Server but does not allow the .dump and thus does not pertain to the debugging needs presented
here.
26 Notice the use o f the bs option for blocksize. This option should be set to 4096, the size o f a page.
The actual command used for the results presented in this text was:
dd if=\\.\Device\PhysicalMemory of=e:\memory\OSTYPE\OSTYPE.dd bs=4096
conv=noerror --md5sum --verifymd5 md5file=e:\memory\OSTYPE\OSTYPE.md5 --
log=e:\memory\OSTYPE\audit.log
where OSTYPE was user supplied at the time and varied by OS used. E: mapped to an external USB mass
storage device.

42

because this does not preserve the DMP file format in which Windows natively dumps,

and thus cannot be used with tools expecting DMP formatted files. This method also has

the advantage of operating similarly to a dd memory dump performed on a Linux system,

which gives the tool familiarly for the user across platforms. Unfortunately it appears

that this technique will not be particularly useful in the future. Microsoft has decided to

change the functionality of the \ D e v i c e \ P h y s i c a l M e m o r y object in Server 2003 SP1.

Usermode access to \ D e v i c e \ P h y s i c a l M e m o r y , which is required for user level

program access such as the dd tool, is not permitted. Kemelmode access is still granted,

but this gives little peace of mind to the forensic investigator as kemelmode access would

require either installation of an imaging program or pre-meditated configuration, and

neither case is likely in most situations.

For the sake of completeness and for testing purposes it should be pointed out that

memory dumps can also be forced. For the purpose of incident response, many of these

methods are not preferred because they typically either require pre-meditation or have an

impact to a non-volatile store that is unacceptable. These methods should still be of

interest to the incident responder, if for no other reason than that of tool validation.

Forcing memory dumps on known systems allows for the testing of tools that will be

used in the field, and repetitive, scheduled testing of software and hardware to validate

manufacturer claims should be an integrated part of operations. The aforementioned

kernel debugging tools can often be used to force a memory dump. Similarly, freely

distributed tools such as UserDump can dump the memory space of a single process, but

43

this does not directly apply to the objectives set forth here and is only mentioned for the

sake of completeness.

For Windows 2000 based operating systems (2000, XP Pro, Server 2003 and variants)

there is actually a built in way to force a system crash, and thus a memory dump (KB

244139). A REG_DWORD named C r a s h O n C t r l S c r o l l with a value of l must be added

(or edited) to:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\i8 042prt\Parameters

This registry update requires a system restart. The keyboard driver will now have added

27functionality. When the right Control key is held and Scroll Lock is pressed twice , the

crashdump utility will be executed and the infamous Windows Blue Screen will be

shown with a defined STOP code of 0 x 0 0 0 0 0 0E 2 , end-user generated crashdump. This

of course requires that the system was configured to perform one of the three previously

mentioned types of crash dumps upon a system crash.

A fairly low-impact method developed by Mark Russinovich involves loading a small

driver (-7 kb) called M y F a u l t . s y s and a user level application N o t M y F a u l t . e x e (

—50 kb). The user executable issues calls to the kernel loaded driver which crashes the

system on behalf of the user level executable in various ways. This pair of files can force

a number of crash conditions in Windows and thus can force the creation of a memory

27 Due to the implementation o f this method in the i8042prt.sys driver, this method likely does not work on
USB keyboard. Similarly, if a virtual machine is used and the appropriate client tools are installed on the
virtual machine it is quite likely that the 18042prt.sys driver is replaced with a virtual machine variant that
does not exhibit this functionality. Also, many KVMs intercept scrlck pressed twice to provide a user
menu which may prevent the keycodes from actually reaching the system.

44

dump if the machine is appropriately configured. The tool is interactive and will alter the

state of the suspect machine, but in the event that live imaging of RAM is not possible (as

seems to be the case with 2003 Server SP1) this may be a lesser impacting method of

obtaining system state information than interactively gathering information from the

running suspect machine.

Some memory dumps (crash dumps) can actually be interrupted by a BIOS level system

restart. For example, for some time some Compaq Server systems have had a high

availability feature that detects when a system stops responding and forces a system

reboot (AlphaServer Comparison Chart, December 1996). In such a situation where the

machine essentially causes a soft restart autonomously, the creation of a full memory

dump after a system crash will likely be interrupted. A likely course of action would be

to disable this feature in BIOS when the system restarts and use a very minimal LiveCD

to acquire memory in hope that some of the memory contents have persisted through the

reboot cycle. Unfortunately it is likely impossible to detect whether this feature is

enabled on a running machine prior to forcing the memory dump.

Memory Analysis

Having some information typically acquired using traditional non-volatile techniques, or

in some cases live response steps, may serve as an enabler for analysis on volatile data.

OS type and patch level are among the foremost important factors.

45

Currently, after an incident, captured memory (if available) is analyzed using techniques

that would be considered crude if used for traditional file system level forensics. A

simple hex view or strings analysis may be used by an investigator to simply glance at a

subset of data looking for something that might provide some direction. Experiments run

in conjunction with this project showed that, on average, a cleanly booted workstation

with 512 MB of RAM would produce 50-80 MB of largely unusable strings output.

Unusable does not suggest that a string such as “dollar” was found, but it was not

pertinent because this was not a counterfeiting suspect. Unusable means that, while

technically printable, most of the strings extracted have no inherent meaning, such as

“EWCcedh@”. The ratio of the amount of information obtained from the data is very

low. The situation is worse if only a hex view analysis is performed without the aid of the

strings tool.

Original Analysis Goals:

• Must work on dd-style dumps (preferred, though not hopeful for the future due to

2003 spl) and on Microsoft DMP Complete style dumps.

• Must be simple to use, since the target user base will typically be law

enforcement, not computer scientists.

• Must accurately produce results that would have normally been obtained by

running commands during incident response, (for tool development it must

accurately re-produce a pre-response observed set of procesess)

28 Strings is a program developed for UNIX and ported to Windows that allows the extraction o f “printable
sequences o f characters” from a file - no matter what type o f file. It is commonly used on binary files to
aide in deductions to be made about the binary. (Strings Man Page)

46

• Must work on multiple versions of Windows and Linux.

The Windows EPROCESS structure and significance

As previously stated, processes and threads are vital concepts required to be explored in

light of the objectives. Even though internal structures are by definition not known in

closed source products such as Windows, the EPROCESS structure can be enumerated

using a kernel debugger, (e.g. using the Windows debugger to enumerate fields by

issuing a ! p r o c c e s s f i e l d s , d t _ e p r o c e s s or d t n t ! _ e p r o c e s s command.)

Substructures can also be enumerated in this way. From the information gleamed from

the debugger (and available in Appendix B, C and D) a model for the EPROCESS and

subsequent structures can be created as seen in Table 4: EPROCESS Structure. Other

substructures such as the Kernel Process KPROCESS (Process Control Block - PCB) can

modeled similarly, and some EPROCESS elements, such as the Process Environment

Block (PEB), are pointers to data that exists elsewhere (See Appendix B: EPROCESS

dumps of a live typical system - XP SP2).

47

Table 4: EPROCESS Structure
(Russinovich, Solomon. 2005)

EPROCESS Element Purpose

Kernel process
(KPROCESS or PCB)
block

Coimiiuii dispalcliei ubjecl header, pointer to Llie process
page directory, list of kernel thread (KTHREAD) blocks
belonging to the process, default base priority, quantum,
affinity mask, and total kernel and user time for the
threads in the process.

Process identification Unique process ID, creating process ID, name of image
being run, window station process is running on.

Quota block

Limits on nonpaged pool, paged pool, and page file
usage plus current and peak process nonpaged and paged
pool usage. {Note: Several processes can share this
structure: all the system processes point to the single
systemwide default quota block; all the processes in the
interactive session share a single quota block Winlogon
sets up.)

Virtual address space
descriptors (VADs)

Series of data structures that describe the status of the
portions of the address space that exist in the process.

Working set information

Pointer to working set list (MMWSL structure); current,
peak, minimum, and maximum working set size; last
trim time; page fault count; memory priority; outswap
flags; page fault history.

Virtual memory information Current and peak virtual size, page file usage, hardware
page table entry for process page directory.

Exception local procedure
call (LPC) port

Interprocess communication channel to which the
process manager sends a message when one of the
process's threads causes an exception.

Debugging LPC port
Interprocess communication channel to which the
process manager sends a message when one of the
process's threads causes a debug event.

Access token
(ACCESS TOKEN)

Executive object describing the security profile of this
process.

Handle table Address of per-process handle table.

Device map Address of object directory to resolve device name
references in (supports multiple users).

Process environment block
(PEB)

Image information (base address, version numbers,
module list), process heap information, and thread-local
storage utilization. {Note: The pointers to the process
heaps start at the first byte after the PEB.)

Win32 subsystem process
block (W32PROCESS)

Process details needed by the kemel-mode component of
the Win32 subsystem.

48

Certain parts of the EPROCESS structure stand out as being easily identifiable. Similar

to how deleted files and file remnants are found in unused portions of a file system or

disk device, it is possible to start to find EPROCESS structures by locating individual

portions of the structure and then testing other sections (by offset, since these can be

discerned from the structure dump) of the EPROCESS candidate for validity.

One part of the EPROCESS structure that is easy to identify with is the timestamp

9Qinformation . While most readers will be familiar with the concept of a timestamp,

many may not be familiar with this particular implementation. FILETIME is a Windows

defined structure that has existed since Windows’ 3.1 but is also defined in the current

.NET framework 2.0. It is a 64 bit value that consists of two data members: the high

order 32 bits are dwHighDateTime and the low order 32 bits are dwLowDateTime. The

64 bits typically represent a number of 100 nanosecond intervals since January 1, 1601 .

Once the location of a FILETIME is known, some conversion must take place to make

this a usable timestamp for investigative purposes. A benefit of decoding a timestamp

allows for manual comparison to disk times to process times for rough estimating and

correlation.

29 While one might assume that this should also hold true for Threads that have similar timestamp offsets,
in practice this appears to not be the case.
30 The FileTime structure format o f 100 nanosecond intervals (aka a “tick”) might seem counter-intuitive,
but this allows a range o f more than 30,000 years to be represented in 64 bits at a finer than one second
resolution. 1000 nanosecond intervals would only yield about 200 years, 1 nanosecond intervals would
likely be too small a time interval for some processor clock speeds. Standard *nix only allows one second
resolution since 1/1/1970. The 1970 date for the ‘birth o f Unix” makes some sense, but I am not sure about
the significance o f 1601. Converting from the Microsoft FileTime 100 nanosecond structure to the *nix 1
second structure does lose some information, but converting the other direction does not add any
information and for the purposes o f this text, one second resolution is sufficient.

49

Below are two offsets from a Windows XP SP2 EPROCESS structure (from Appendix B:

EPROCESS dumps of a live typical system - XP SP2). It is easy to see the Low and

High order sections and in fact the 64 bit math required to decode this into a human

readable timestamp is fairly straightforward. Depending on the debugger options, the

offsets will be reported as:

+0x070 CreateTime : _LARGE_INTEGER
+0x078 ExitTime : _LARGE_INTEGER

or in a more detail with the same tool as:

+0x07 0 CreateTime : union LARGE_INTEGER, 4 elements, 0x8 bytes
+0x000 LowPart
+0x004 HighPart
+0x000 u

Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes

+0x000 LowPart : Uint4B
+ 0x004 HighPart : Int4B •

+0x0 0 0 QuadPart : Int8B
+0x078 ExitTime : union _LARGE_INTEGER, 4 elements, 0x8 bytes

Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes

+0x0 0 0 LowPart
+0x004 HighPart
+0x000 u

+0x000 LowPart : Uint4B
+0x004 HighPart : Int4B

+0x0 00 QuadPart : Int8B

The very first portion of the EPROCESS structure is the PCB and at the first offset a
header can be found.

+0x000 Pcb : struct _KPROCESS, 29 elements, 0x6c bytes
+0x000 Header : struct _DISPATCHER_HEADER, 6 elements, 0x10 bytes

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY, 2 elements, 0x8 bytes

+0x0 00 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink : Ptr32 to
+0x004 Blink : Ptr32 to

+0x010 ProfileListHead : struct _LIST_ENTRY, 2 elements, 0x8 bytes
+0x000 Flink : Ptr32 to
+0x004 Blink : Ptr32 to

The 16 header bytes specify the type of structure that follows. (The same header is used

not only by processes and threads but also events, semaphores, queues, etc.)

(Russinovich, Solomon, 2005).

50

Some processes may seem to share the same or very similar values for locations (such as

the Process Environment Block). These addresses are typically virtual addresses and the

distinction between processes can be shown by converting the virtual address to the

physical address. The procedure is described in the Virtual Addressing and Paging

section and an example can be found in Appendix E: Decoding a Process Owner.

Finding processes in memory image

When searching through a memory dump, the most complete way to search for process

structures will be to start assuming each byte is the first of a process structure until

further offsets show that that was indeed not a first byte of a process, then to shift one

byte and repeat the process. When considering the aforementioned sizes of RAM

available in today’s OSs, this may very well become computationally impractical. On the

other hand it is not safe to assume that all process structures will be allocated on a page

boundary, but it might be safe to assume certain other boundaries (such as an 8 byte
-I

boundary for Windows). If a particular OS implements certain boundaries, it may be

possible to search based on these offsets in order to greatly reduce the amount of testing

and thus processing.

31 “If the driver requests fewer than PAG ESIZE bytes, ExAllocatePoolWithTag allocates the number o f
bytes requested. If the driver requests PAGE SIZE or greater bytes, ExAllocatePoolWithTag allocates a
page-aligned buffer that is an integral multiple o f PAGE SIZE bytes. Memory allocations o f less than
PAGE_SIZE do not cross page boundaries and are not necessarily page-aligned; instead, they are aligned
on an 8-byte boundary” (Six Tips for Efficient Memory Usage)

51

For each candidate structure a Dispatch Header is assumed, then data members of the

Header can be checked, offsets to other sections of the EPROCESS or ETHREAD can be

checked, and values of certain fields can be checked because ranges of values for these

fields are known (such as date, process priority range, existence of a PDI, or kernel

memory address which must be mapped above 0x80000000).

Even though each EPROCESS structure contains pointers to other EPROCESS structures

(a doubly linked list), it is preferable to manually locate EPROCESS structures so that the

results can include latent processes and potentially processes attempting concealment

from tools that enumerate processes (such as Task Manager).

EPROCESS structures can be found in different versions of Windows by utilizing
k

different offsets for equivalent portions of the EPROCESS sturucture. For example, a

Windows XP SP2 EPROCESS structure contains the Process ID (PID) at offset 0x0 9c,

while Windows 2000 SP4 EPROCESS structure contains the PID at offset 0x0 84. (See

Appendix F: Offset Deltas by Service Pack for more offset examples)

Windows XP SP2 EPROCESS field (from Appendix B):

+0x09c UniqueProcessId : Ptr32 to

Windows 2000 SP4 EPROCESS field (from Appendix C):

+0x084 UniqueProcessId : Ptr32 Void

52

Several methods could be used to provide compatibility between the complete and dd

style memory dumps. Since the complete style memory dump contains a header in

addition to the the RAW memory data, the complete memory dump could be ‘converted’

to a dd style dump by removing the header. Similarly, during processing the header

could simply be ignored by skipping to the offset pertaining to the first memory location.

This skip will only introduce minimal overhead (such as having to subtract out the

amount of the skip when reporting sturture location in RAM). Finally, the complete

memory dump can actually be processed identically to that of a dd style dump because

the DMP header size is a multiple of the page size (or more to the point, the first location

of to the contents of the RAM dump falls on the 8 byte scan boundary.)

Conclusions

Acquiring a RAM image from a suspect system is potentially different for every

circumstance. The more information presented to the party performing the acquisition

the better. Some cursory inspection can potentially reveal some items like general

operating system type, and physical connections to the system.

On a pre-Server 2003 SP1 Windows system, the preferred way of acquiring a RAM

image is to use a imaging tool from a trusted source to copy RAM through the

PhysicalMemory object. The image may be stored to a local device connected to the

system (such as Firewire or USB mass storage), or through the network interface.

53

A secondary method would be to force a system crash and thus a crash dump of physical

memory to disk. This method will not allow a comparison to the pagefile, but will allow

the contents of physical memory to be acquired and analyzed later. A simple registry

modification paired with a small program that can force a crash could easily be placed on

read only media such as CDROM, floppy disk, or some types of USB memory sticks. In

this case mass storage would not be required as the memory image would be stored to the

suspect system disk. The actual acquisition of the image would happen when the

physical disk is imaged later in a typical forensic process.

The proof of concept PERL script shows that information about the state of a system can

be found postmortem. At the very least, Task Manger functionality can be simulated

from a RAM image, and in some cases more information is available than Task Manger

is capable of reporting. This does not give a responder the ability to alter the response

based on the state in which the system is found, but does allow the state of the system to

be preserved along with the preservation of the non-volatile stores.

Direction

The PERL script could be improved in order to make it more likely to be used by

mainstream responders. The current state of the tool is definitely proof of concept and

should not be considered production level. Desirable features may include automatic

detection of the OS from which the RAM was acquired, detection of popular dump

54

formats (DMP) versus raw RAM capture, or the extraction of selected processes memory

space. Automated OS detection can be done a variety of ways, trying all possible offsets

looking for number of processes detected, then comparing with known required or default

processes for different OSes.

The proof of concept only emulates Task Manager information. The creation of similar

tools to obtain other popular incident response information (like current network

information, open files, etc) should be explored.

Several interesting directions present themselves in relation to the work done here.

Virtual machines, particularly VMWare™, allow for essentially instant RAM acquisition

^9 •because a virtual machine has its “Virtual RAM” stored as a file on the host operating

system. If a virtual machine is suspended, the entire content of RAM for that virtual

machine exist as a logical file that can be copied. Other directions may exist with other

virtual machine related topics like virtual machine monitors, Parallels™, the Trusted

Computing Platform Alliance (TCPA) / Trusted Computing Group (TCG) / Palladium,

and hypervisor architecture.

32 The “Virtual RAM” is represented as physical RAM to the Virtual Machine. This is much different that
Virtual Memory discussed elsewhere in this text.

55

Appendix A: Methodology notes

Samples were taken from different OS installations on the same hardware utilizing the

Nebraska University Consortium on Information Assurance’s (NUCIA) Security

Technology Education and Analysis Laboratory (STEAL). These samples were taken

from a set of IBM Intellistation MPro model 6220 systems, with 512 MB of RAM.

For each RAM image the machine was left without power for more than 15 minutes then

powered on and the RAM was dumped using one of the techniques outlined in this paper.

Each Windows RAM image was created according to the following process:

1. Use Symantec Ghost to restore a known good installation of the OS.
2. Edit the registry to include the CrashOnCtrlScroll and Complete memory

dump keys
3. Shutdown the system
4. Leave without power for 15 minutes.
5. Power on and log in.
6. Attach external USB mass storage device (hold down left shift to prevent

Autoplay)
7. Insert Helix 1.7 CDROM (allow Autoplay)
8. Use the dd utility found on Helix to perform a RAM dump to the USB device
9. Unmount CDROM and USB device.
10. Force a crash using the Ctrl-ScrLck-ScrLck method
11. Reboot
12. Re-attach USB device and copy the Memory.dmp, ntoskemel and any

minidump.dmp files.

To study RAM persistence, the same machine was used but the machine was restarted

with the power removed for various durations between shutdown and startup.

Additionally, samples were taken from random machines including: IBM Thinkpad R52,

Dell Inspiron 8600, and Gateway 2000 E-4200, for non-baseline tests, and generally for

the availability of a more diverse set of data to inspect.

56

Appendix B: EPROCESS dumps of a live typical system - XP SP2

Appendixes B, C and D show kernel debugger output of data structures found in the nt
kernel. The EPROCESS and ETHREAD are two structures that are focused on in this
text for the identification of processes in memory. To aide the reader, portions of these
structures are shown in bold.
kd> dt _eprocess
ntdll!_EPROCESS

+0x000 Pcb
+0x06c ProcessLock
+0x070 CreateTime
+0x078 ExitTime
+0x0 80 RundownProtect
+0x084 UniqueProcessId
+0x088 ActiveProcessLinks
+0x090 QuotaUsage
+0x09c QuotaPeak
+0x0a8 CommitCharge
+0x0ac PeakVirtualSize
+0x0b0 VirtualSize
+0x0b4 SessionProcessLinks

_KPROCESS
_EX_PUSH_LOCK
LARGEINTEGER

_LARGE_INTEGER
_EX_RUNDOWN_REF
Ptr32 Void
: _LIST_ENTRY
[3] Uint4B
[3] Uint4B
Uint4B
Uint4B
Uint4B

LIST ENTRY
Ptr32 Void
Ptr32 Void
Ptr32 _HANDLE_TABLE
_EX_FAST_RE F
_FAST_MUTEX
Uint4B

+0x0bc DebugPort
+0x0c0 ExceptionPort
+0x0c4 ObjectTable
+0x0c8 Token
+0x0cc WorkingSetLock
+0x0ec WorkingSetPage
+0x0fO AddressCreationLock : _FAST_MUTEX
+0x110 HyperSpaceLock : Uint4B
+0x114 ForklnProgress : Ptr32 _ETHREAD
+0x118 HardwareTrigger : Uint4B
+0x1lc VadRoot : Ptr3 2 Void
+0x120 VadHint : Ptr32 Void
+0x124 CloneRoot : Ptr3 2 Void
+0x128 NumberOfPrivatePages : Uint4B
+0xl2c NumberOfLockedPages : Uint4B
+ 0x130 Wm32Process
+0x134 Job
+0x138 SectionObject
+0xl3c SectionBaseAddress
+0x14 0 QuotaBlock
+0x144 WorkingSetWatch :
+0x148 Win32WindowStation

Ptr32 Void
Ptr32 _EJOB
Ptr3 2 Void
: Ptr32 Void
Ptr32 _EPROCESS_QUOTA_BLOCK
Ptr32 _PAGEFAULT_HISTORY
: Ptr32 Void

+0xl4c InheritedFromUniqueProcessId : Ptr32 Void
+0x150 Ldtlnformation
+0x154 VadFreeHint
+0x158 VdmObjects
+0xl5c DeviceMap
+0x160 PhysicalVadList
+0x168 PageDirectoryPte
+0x168 Filler
+0x170 Session
+0x174 ImageFileName
+0x184 JobLinks
+0xl8c LockedPagesList
+0x190 ThreadListHead
+0x198 SecurityPort
+0xl9c PaeTop

Ptr3 2 Void
Ptr32 Void
Ptr32 Void
Ptr3 2 Void
_LIS T_ENTRY
_HARDWARE_PTE_X8 6
Uint8B
Ptr32 Void
[16] UChar
_LIST_ENTRY
Ptr3 2 Void
_LIST_ENTRY
Ptr32 Void
Ptr32 Void

57

+OxlaO
+0xla4
+0xla8
+Oxlac
+OxlbO
+0xlb4
+0xlb8
+OxlcO
+0xlc8
+OxldO
+0xld8
+OxleO
+0xle8
+Oxlec
+Oxlf0
+Oxlf4
+Oxlf8
+0x238
+0x23c
+0x240
+0x244
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x24 8
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x24 8
+0x248
+0x248
+0x248
+0x248
+0x248
+0x248
+0x24 8
+0x248
+0x24c
+0x250
+0x252
+0x253
+0x252
+0x254
+0x255
+0x258

ActiveThreads Uint4B
GrantedAccess : Uint4B
DefaultHardErrorProcessing : Uint4B
LastThreadExitStatus : Int4B
Peb : Ptr32 _PEB
PrefetchTrace : EX FAST REF
ReadOperationCount
WriteOperationCount
OtherOperationCount
ReadTransferCount :
WriteTransferCount :
OtherTransferCount
CommitChargeLimit
Commi tCharge Peak
AweInfo

_LARGE_INTEGER
_LARGE_INTEGER
_LARGE_INTEGER

_LARGE_INTEGER
: _LARGE_INTEGER
: _LARGE_INTEGER
Uint4B

Uint4B
Ptr32 Void

SeAuditProcessCreationlnfo : _SE_AUDIT_PROCESS_CREATION_INFO
Vm : _MMSUPPORT
LastFaultCount : Uint4B
ModifiedPageCount : Uint4B
NumberOfVads
JobStatus
Flags
CreateReported
NoDebuglnherit
ProcessExiting
ProcessDelete
Wow64SplitPages
VmDeleted
OutswapEnabled
Outswapped
ForkFailed
HasPhysicalVad
AddressSpacelnitialized : Pos 10, 2 Bits
SetTimerResolution : Pos 12, 1 Bit
BreakOnTermination : Pos 13, 1 Bit
SessionCreationUnderway : Pos 14, 1 Bit
WriteWatch : Pos 15, 1 Bit
ProcessInSession : Pos 16, 1 Bit
OverrideAddressSpace : Pos 17, 1 Bit
HasAddressSpace : Pos 18, 1 Bit
LaunchPrefetched : Pos 19, 1 Bit
InjectlnpageErrors : Pos 20, 1 Bit

Pos 21, 1 Bit
Pos 22, 1 Bit
Pos 23, 1 Bit
Pos 2.4, 1 Bit
Pos 25, 5 Bits
POS 30, 1 Bit
Pos 31, 1 Bit
Xnt4B
Uint2B

UChar
UChar

Uint4B
Uint4B
Uint4B
Pos 0, 1 Bit
Pos 1, 1 Bit
Pos 2 , 1 Bit
Pos 3 , 1 Bit
Pos 4 , 1 Bit
Pos 5 , 1 Bit
Pos 6, 1 Bit
Pos 7, 1 Bit
Pos 8 , 1 Bit
Pos 9, 1 Bit

VmTopDown
Unused3
Unused4
VdmAllowed
Unused
Unusedl
Unused2
ExitStatus
NextPageColor
SubSystemMinorVersion
SubSystemMaj orVersion
SubSystemVersion : Uint2B
PriorityClass : UChar
WorkingSetAcquiredUnsafe :
Cookie : Uint4B

UChar

kd> iprocessfields
EPROCESS structure offsets: (use 'dt nt!_EPROCESS')

kd> dt nt!_eprocess
nt!_EPROCESS

+0x000 Pcb
+0x06c ProcessLock
+0x070 CreateTime
+0x078 ExitTime

: _KPROCESS
: _EX_PUSH_LOCK
: _LARGE_INTEGER
: LARGE INTEGER

58

+0x080
+0x084
+0x088
+0x0 90
+0x09c
+0x0a8
+0x0ac
+0x0b0
+0x0b4
+0x0bc
+0x0c0
+0x0c4
+0x0c8
+0x0cc
+0x0ec
+0x0f0
+0x110
+0x114
+0x118
+0xllc
+0x120
+0x124
+0x128
+0xl2c
+0x130
+0x134
+0x138
+0xl3c
+0x140
+0x144
+0x148
+0xl4c
+0x150
+0x154
+0x158
+0xl5c
+0x160
+0x168
+0x168
+0x170
+0x174
+0x184
+0xl8c
+0x190
+0x198
+0xl9c
+0xla0
+0xla4
+0xla8
+0xlac
+0xlb0
+0xlb4
+0xlb8
+0xlc0
+0xlc8
+0xld0
+0xld8
+0xle0
+0xle8
+0xlec
+0xlf0
+0xlf4
+0xlf8
+0x238
+0x23c
+0x240
+0x244

RundownProtect :
UniqueProcessId :
ActiveProcessLinks
QuotaUsage
QuotaPeak
Commi tCharge
PeakVirtualSize
VirtualSize
SessionProcessLinks
DebugPort
ExceptionPort
Obj ectTable
Token
WorkingSetLock
WorkingSetPage
AddressCreationLock
HyperSpaceLock
ForklnProgress
HardwareTrigger
VadRoot
VadHint
CloneRoot
NumberOfPrivatePages
NumberOfLockedPages

_EX_RUNDOWN_REF
Ptr32 Void
: _LIS T_ENTRY
[3] Uint4B
[3] Uint4B
Uint4B
Uint4B
Uint4B

_LIST_ENTRY
Ptr32 Void
Ptr32 Void
Ptr32 _HANDLE__TABLE
_EX_FAST_RE F
_FAST_MUTEX
Uint4B

_FAST_MUTEX
Uint4B
Ptr32 _ETHREAD
Uint4B
Ptr32 Void
Ptr32 Void
Ptr32 Void

Uint4B
Uint4B

Ptr32 Void
Ptr32 _EJ0B
Ptr32 Void
: Ptr32 Void
Ptr32 _EPROCESS_QUOTA_BLOCK
Ptr32 _PAGEFAULT_HISTORY
: Ptr32 Void

Win32Process
Job
SectionObject
SectionBaseAddress
QuotaBlock :
WorkingSetWatch :
Win32WindowStation
InheritedFromUniqueProcessId : Ptr32 Void
LdtInformation
VadFreeHint
VdmObjects
DeviceMap
PhysicalVadList
PageDirectoryPte
Filler
Session
Image F i 1 eName
JobLinks
LockedPagesList
ThreadListHead
SecurityPort
PaeTop
ActiveThreads
GrantedAccess

Ptr32 Void
Ptr32 Void
Ptr32 Void
Ptr32 Void
_LIST_ENTRY
_HARDWARE_PTE
Uint8B
Ptr32 Void
[16] UChar
_LIST_ENTRY
Ptr32 Void
_LIST_ENTRY•
Ptr32 Void
Ptr32 Void.
Uint4B
Uint4B

DefaultHardErrorProcessing : Uint4B
LastThreadExitStatus : Int4B
Peb : Ptr32 _PEB
PrefetchTrace : EX FAST REF
ReadOperationCount
WriteOperationCount
OtherOperationCount
ReadTransferCount :
WriteTransferCount
OtherTransferCount
CommitChargeLimit :
Commi t Charge Peak
Awelnfo

_LARGE_INTEGER
_LARGE_INTEGER
_LARGE_INTEGER

_LARGE_INTEGER
: _LARGE_INTEGER
: _LARGE_INTEGER
Uint4B

Uint4B
Ptr32 Void

SeAuditProcessCreationlnfo SE AUDIT PROCESS CREATION INFO
Vm
LastFaultCount
ModifiedPageCount
NumberOfVads
JobStatus

_MM3UPP0RT
Uint4B
Uint4B

Uint4B
Uint4B

59

+0x248 Flags Uint4B
+0x248 CreateReported Pos 0, 1 Bit
+0x248 NoDebuglnherit Pos 1, 1 Bit
+0x248 ProcessExiting Pos 2 , 1 Bit
+0x248 ProcessDelete Pos 3 , 1 Bit
+0x248 Wow64SplitPages Pos 4, 1 Bit
+0x248 VmDeleted Pos 5, 1 Bit
+0x248 OutswapEnabled Pos 6, 1 Bit
+0x248 Outswapped Pos 7, 1 Bit
+0x248 ForkFailed Pos 8, 1 Bit
+0x248 HasPhysicalVad Pos 9, 1 Bit
+0x248 AddressSpacelnitialized : Pos 10, 2 Bit
I 0x218 SetTimerReoolution : Tod 12, 1 Bit
+0x248 BreakOnTermination : Pos 13, 1 Bit
+0x248 SessionCreationUnderway : Pos 14, 1 Bit
+0x248 WriteWatch Pos 15 , 1 Bit
+0x248 ProcessInSession Pos 16 , 1 Bit
+0x248 OverrideAddressSpace : Pos 17, 1 Bit
+0x248 HasAddressSpace Pos 18 , 1 Bit
+0x248 LaunchPrefetched Pos 19 , 1 Bit
+0x248 InjectlnpageErrors : Pos 20, 1 Bit
+0x248 VmTopDown Pos 21 , 1 Bit
+0x248 Unused3 Pos 22 , 1 Bit
+0x248 Unused4 Pos 2 3 , 1 Bit
+0x248 VdmAllowed Pos 24 , 1 Bit
+0x248 Unused POS 2 5 , 5 Bits
+0x248 Unusedl Pos 3 0 , 1 Bit
+0x248 Unused2 Pos 31 , 1 Bit
+0x24c ExitStatus Int4B
+0x250 NextPageColor Uint2B
+0x252 SubSystemMinorVersion : UChar
+0x253 SubSystemMajorVersion : UChar
+0x252 SubSystemVersion Uint2B
+0x254 PriorityClass UChar
+0x2 55 WorkingSetAcquiredUnsafe : UChar
+0x258 Cookie Uint4B

kd> (process
PROCESS 89202af8 Sessionld: 0 Cid: 0e9c Peb: 7ffdc000 ParentCid: 05e0

DirBase: 0ca8a000 ObjectTable: el5c3eb0 HandleCount: 126.
Image: k d .exe
VadRoot 89bb4e40 Vads 51 Clone 0 Private 1744. Modified 5. Locked 0.
DeviceMap el4f75b8
Token e5d4d7f0
ElapsedTime 00:00:02
UserTime 00:00:00
Ke rneITime 00:00:00
QuotaPoolUsage[PagedPool] 15680
QuotaPoolUsage[NonPagedPool] 2040
Working Set Sizes (now,min,max) (2348,
PeakWorkingSetSize 2348
VirtualSize 21 Mb
PeakVirtualSize 21 Mb
PageFaultCount 3551
MemoryPriority BACKGROUND
BasePriority 8
CommitCharge 20 76

663
310
060

50, 345) (9392KB, 200KB, 1380KB)

THREAD 88493668 Cid 0e9c.0ad4 Teb: 7ffdf000 Win32Thread: 00000000
ING on processor 0

THREAD 88ffdda8 Cid 0e9c.0a5c Teb: 7ffde000 Win32Thread: 00000000
: (WrLpcReply) UserMode Non-Alertable

88ffdf9c Semaphore Limit 0x1

kd>

RUNN

WAIT

60

kd> dt -a -b -v _EPROCESS
struct _EPROCESS, 107 elements, 0x260 bytes

+0x000 Pcb
+0x0 00 Header

+0x00 0 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink
+0x004 Blink

+0x010 ProfileListHead :
+0x000 Flink
+0x004 Blink

+0x018 DirectoryTableBase
+0x020 LdtDescriptor :

+0x000 LimitLow
+0x002 BaseLow
+0x004 HighWord

+0x000 Bytes
+0x000 BaseMid
+0x001 Flagsl
+0x002 Flags2
+0x003 BaseHi

+0x000 Bits
+0x000 BaseMid
+0x000 Type
+0x000 Dpi
+0x000 Pres
+0x000 LimitHi
+0x000 Sys
+0x000 Reserved_0
+0x000 Default_Big
+0x000 Granularity
+0x000 BaseHi

+0x028 Int21Descriptor
+0x000 Offset
+0x002 Selector
+0x004 Access
+0x006 ExtendedOffset

+0x030 IopmOffset
+0x032 Iopl
+0x033 Unused
+0x034 ActiveProcessors
+0x038 KernelTime
+0x03c UserTime
+0x040 ReadyListHead

+0x000 Flink
+0x004 Blink

+0x048 SwapListEntry

struct _KPROCESS, 2 9 elements, 0x6c bytes
: struct _DISPATCHER_HEADER, 6 elements, 0x10 bytes

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

: (2 elements) Uint4B
struct _KGDTENTRY, 3 elements, 0x8 bytes

Uint2B
Uint2B
union unnamed, 2 elements, 0x4 bytes
: struct unnamed, 4 elements, 0x4 bytes

UChar
UChar
UChar
UChar

struct unnamed,
Bitfield Pos 0,
Bitfield Pos 8,
Bitfield Pos 13,
Bitfield Pos 15,
Bitfield Pos 16,
Bitfield Pos 20,
Bitfield Pos 21,
Bitfield Pos 22,
Bitfield Pos 23,
Bitfield Pos 24,

10 elements, 0x4 bytes
8 Bits
5 Bits
, 2 Bits
, 1 Bit

4 Bits
1 Bit
1 Bit
1 Bit
1 Bit
8 Bits

struct _KIDTENTRY,
Uint2B
Uint2B
Uint2B
Uint2B

Uint2B
UChar
UChar
Uint4B
Uint4B
Uint4B
struct _LIST_ENTRY,
: Ptr32 to
: Ptr32 to

struct SINGLE LIST ENTRY,

4 elements, 0x8 bytes

2 elements, 0x8 bytes

1 elements, 0x4 bytes

+0x000 Next
+0x04c VdmTrapcHandler
+0x050 ThreadListHead

+0x000 Flink
+0x004 Blink

+0x058 ProcessLock
+0x05c Affinity
+0x060 StackCount
+0x062 BasePriority
+0x063 ThreadQuantum
+0x064 AutoAlignment
+0x065 State
+0x066 ThreadSeed

: Ptr32 to
: Ptr32 to
: Struct _LIST_ENTRY,

: Ptr32 to
: Ptr32 to

: Uint4B
: Uillt4B
: Uint2B
: Char
: Char
: UChar
: UChar
: UChar

2 elements, 0x8 bytes

61

+0x067 DisableBoost
+0x068 PowerState
+0x069 DisableQuantum
+0x06a IdealNode
+0x06b Flags

+0x000 ExecuteDisable
+0x000 ExecuteEnable

UChar
UChar
UChar
UChar
Struct _KEXECUTE_OPTIONS,
: Bitfield Pos 0, 1 Bit
: Bitfield Pos 1, 1 Bit

+0x000 DisableThunkEmulation : Bitfield Pos 2, 1
+0x000 Permanent : Bitfield Pos 3, 1 Bit
+0x000 ExecuteDispatchEnable : Bitfield Pos
+0x000 ImageDispatchEnable : Bitfield Pos 5

7 elements, 0x1 bytes

Bit

+0x000 Spare
+0x06b ExecuteOptions

+0x06c ProcessLock :
+0x000 Waiting
+0x000 Exclusive
+0x0 00 Shared
+0x000 Value
+0x000 Ptr

+0x070 CreateTime :
+0x000 LowPart
+0x004 HighPart
+0x000 u

+0x000 LowPart
+0x004 HighPart

+0x000 QuadPart
+0x078 ExitTime :

+0x000 LowPart
+0x004 HighPart
+0x000 u

+0x000 LowPart
+0x004 HighPart

+0x0 00 QuadPart
+0x08 0 RundownProtect :

+0x0 00 Count
+0x000 Ptr

+0x084 UniqueProcessId :
+0x088 ActiveProcessLinks

+0x000 Flink
+0x004 Blink

+0x090 QuotaUsage
+0x09c QuotaPeak
+0x0a8 CommitCharge
+0x0ac PeakVirtualSize
+0x0b0 VirtualSize
+0x0b4 SessionProcessLinks

+0x000 Flink
+0x004 Blink

+0x0bc DebugPort
+0x0c0 ExceptionPort
+0x0c4 ObjectTable
+0x0c8 Token

+0x000 Object
+0x000 RefCnt
+0x000 Value

+0x0cc WorkingSetLock
+0x000 Count
+0x004 Owner
+0x008 Contention
+0x00c Event

+0x000 Header

: Bitfield Pos 6,
: UChar

struct EX PUSH LOCK,

4, 1 Bit
1 Bit

Bits

5 elements, 0x4 bytes

4 elements, 0x8 bytes

Bitfield Pos 0, 1 Bit
Bitfield Pos 1, 1 Bit
Bitfield Pos 2, 30 Bits
Uint4B
Ptr32 to

union _LARGE_INTEGER,
: Uint4B
: Int4B
: struct unnamed, 2 elements, 0x8 bytes

: Uint4B
: Int4B

: Int8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes
: Uint4B
: Int4B
: struct unnamed, 2 elements, 0x8 bytes

: Uint4B
: Int4B

: Int8B
struct _EX_RUNDOWN_REF, 2 elements, 0x4 bytes
: Uint4B
: Ptr32 to

Ptr32 to
: struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

(3 elements) Uint4B
(3 elements) Uint4B
Uint4B '
Uint4B
Uint4B

struct _LIST_ENTRY,
Ptr32 to
Ptr32 to

Ptr32 to
Ptr32 to
Ptr32 to
Struct _EX_FAST_REF,

Ptr32 to
Bitfield Pos 0, 3
Uint4B

struct _FAST_MUTEX,
Int4B
Ptr32 to
Uint4B
struct _KEVENT, 1 elements, 0x10 bytes
: Struct DISPATCHER HEADER, 6 elements, 0x10 b

2 elements, 0x8 bytes

3 elements, 0x4 bytes

Bits

5 elements, 0x2 0 bytes

ytes
+0x00 0 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState

UChar
UChar
UChar
UChar
Int4B

62

+0x008 WaitListHead
+0x000 Flink
+0x004 Blink

+0x01c Oldlrql : Uint4B
+0x0ec WorkingSetPage : Uint4B
+0x0f0 AddressCreationLock

+0x00 0 Count
+0x004 Owner
+0x008 Contention
+0x00c Event

+0x000 Header

struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

_FAST_MUTEX, 5 elements, 0x2 0 bytesstruct
I n t 4 B
Ptr32 to
Uint4B
struct _KEVENT, 1 elements, 0x10 bytes
: struct DISPATCHER HEADER, 6 elements, 0x10 b

ytes
i0x00 0 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink :
+0x004 Blink :

+0x01c Oldlrql : Uint4B
+0x110 HyperSpaceLock : Uint4B
+0x114 ForklnProgress : Ptr32 to
+0x118 HardwareTrigger : Uint4B
+0xllc VadRoot : Ptr32 to
+0x120 VadHint : Ptr32 to
+0x124 CloneRoot : Ptr32 to
+0x128 NumberOfPrivatePages : Uint4B
+0xl2c NumberOfLockedPages : Uint4B
+0x130 Win32Process : Ptr32 to
+0x134 Job : Ptr32 to
+0x138 SectionObject : Ptr32 to
+0xl3c SectionBaseAddress : Ptr32 to
+0x14 0 QuotaBlock : Ptr32 to
+0x144 WorkingSetWatch : Ptr32 to
+0x148 Win32WindowStation : Ptr32 to
+0xl4c InheritedFromUniqueProcessId :
+0x150 Ldtlnformation
+0x154 VadFreeHint
+0x158 VdmObjects
+0xl5c DeviceMap
+0x160 PhysicalVadList

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

Ptr32 to
Ptr32 to
Ptr32 to
Ptr32 to
Ptr32 to
struct _LIST_ENTRY, 2 elements, 0x8 bytes

+0x000 FI ink Ptr32 to
+0x004 B1 ink Ptr32 to
168 PageDirectoryPte : struct HARDWARE_PTE _X86, 13
+0x000 Valid Bitfield Pos 0 , 1 Bit
+0x000 Write Bitfield Pos 1, 1 Bit
+0x000 Owner Bitfield Pos 2 , 1 Bit
+0x000 Wr i t eThrough Bitfield Pos 3, 1 Bit
+0x000 CacheDisable Bitfield Pos 4 , 1 Bit
+0x000 Accessed Bitfield Pos 5, 1 Bit
+0x000 Dirty Bitfield Pos 6, 1 Bit
+0x000 LargePage Bitfield Pos 7, 1 Bit
+0x000 Global Bitfield Pos 8 , 1 Bit
+0x000 CopyOnWrite Bitfield Pos 9, 1 Bit
+0x000 Prototype Bitfield Pos 10, 1 Bit
+0x000 reserved Bitfield Pos 11, 1 Bit
+0x000 PageFrameNumber Bitfield Pos 12 , 20 Bits

+0x168 Filler
+0x170 Session
+0x174 ImageFileName
+0x184 JobLinks

t0x00 0 Flink
+0x004 Blink

+0xl8c LockedPagesList
+0x190 ThreadListHead

+0x000 Flink

Uint8B
Ptr32 to
(16 elements) UChar
struct _LIST_ENTRY, 2
: Ptr32 to
: Ptr32 to

Ptr32 to
struct _LIST_ENTRY, 2
: Ptr32 to

elements, 0x8 bytes

elements, 0x8 bytes

+0x004 Blink : Ptr32 to
+0x198 SecurityPort : Ptr32 to
+0xl9c PaeTop : Ptr32 to
+0xla0 ActiveThreads : Uint4B
+0xla4 GrantedAccess : Uint4B
+0xla8 DefaultHardErrorProcessing : Uint4B
+0xlac LastThreadExitStatus : Int4B
+0xlb0 Peb : Ptr3 2 to
+0xlb4 PrefetchTrace : struct _EX_FAST_REF, 3 elements, 0x4 bytes

+0x000 Object
+0x000 RefCnt
+0x000 Value

+0xlb8 ReadOperationCeunt
+0x0 00 LowPart
+0x004 HighPart
+0x000 u

+0x000 LowPart
+0x004 HighPart

+0x0 00 QuadPart
+0xlc0 WriteOperationCount

+0x0 00 LowPart
+0x004 HighPart
+0x000 u

+0x000 LowPart
+0x004 HighPart

+0x0 00 QuadPart
+0xlc8 OtherOperationCount

+0x000 LowPart
+0x0 04 HighPart
+0x000 u

+0x0 00 LowPart
+0x004 HighPart

+0x0 00 QuadPart
+0xld0 ReadTransferCount :

+0x0 00 LowPart
+0x004 HighPart
+0x000 u

+0x0 00 LowPart
+0x004 HighPart

+0x0 00 QuadPart
+0xld8 WriteTransferCount

+0x0 00 LowPart
+0x004 HighPart
+0x000 u

+0x0 00 LowPart
+0x0 04 HighPart

+0x0 00 QuadPart
+0xle0 OtherTransferCount

+0x0 00 LowPart
+0x004 HighPart
+0x000 u

+0x0 00 LowPart
+0x004 HighPart

+0x0 00 QuadPart
+0xle8 CommitChargeLimit :
+0xlec CommitChargePeak
+0xlf0 Awelnfo
+0xlf4 SeAuditProcessCreationlnfo

elements, 0x4 bytes
+0x000 ImageFileName

+0xlf8 Vm
+0x000 LastTrimTime

+0x0 00 LowPart
+0x004 HighPart
+0x000 u

+0x00 0 LowPart
+0x004 HighPart

Ptr32 to
Bitfield Pos 0, 3 Bits
Uint4B

union _LARGE_INTEGER, 4 elements, 0x8 bytea
Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

Int8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes
Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

Int8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes
Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

: Int8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes

Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

Int8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes
Uint4B
Int4B '
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

Int8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes
Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

Int8B
Uint4B

Uint4B
Ptr32 to

struct SE AUDIT PROCESS CREATION INFO,

: Ptr32 to
struct _MMSUPPORT, 14 elements, 0x40 bytes
: union _LARGE_INTEGER, 4 elements, 0x8 bytes

Uint4D
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

64

+0x000 QuadPart
+0x008 Flags

: Int8B
struct _MMSUPPORT_FLAGS, 9 elements, 0x4 bytes

+0x000 SessionSpace : Bitfield Pos 0 , 1 Bit
+0x000 BeingTrimmed : Bitfield Pos 1 , 1 Bit
+0x000 SessionLeader : Bitfield Pos 2, 1 Bit
+0x000 TrimHard Bitfield Pos 3 , 1 Bit
+0x000 WorkingSetHard : Bitfield Pos 4 , 1 Bit
+0x000 AddressSpaceBeingDeleted : Bitfield Pos 5, 1 Bit
+0x000 Available : Bitfield Pos 6, 10 Bits
+0x000 AllowWorkingSetAdjustment : Bitfield Pos 16, 8 Bits
+0x000 MemoryPriority : Bitfield Pos 24 , 8 Bits

+0x00c PageFaultCount : Uint4B
+0x010 PeakWorkingSetSize : Uint4B
+0x014 WorkingSetSize : Uint4B
+0x018 MinimumWorkingSetSize : Uint4B
+0x01c MaximumWorkingSetSize : Uint4B
+0x020 VmWorkingSetList : Ptr32 to
+0x024 WorkingSetExpansionLinks : struct _LIST_ENTRY, 2 elements, 0x8 byte

+0x000 Flink : Ptr32
+0x004 Blink : Ptr32

+0x02c Claim : Uint4B
+0x030 NextEstimationSlot : Uint4B
+0x034 NextAgingSlot : Uint4B
+0x038 EstimatedAvailable : Uint4B

to
to

+0x03c GrowthSinceLastEstimate Uint4B
+0x238 LastFaultCount Uint4B
+0x23c Modif iedPageCount : Uint4B
+0x240 NumberOfVads Uint4B
+0x244 JobStatus Uint4B
+0x248 Flags Uint4B
+0x248 CreateReported Bitfield Pos 0 , 1 Bit
+0x248 NoDebuglnherit Bitfield Pos 1, 1 Bit
+0x248 ProcessExiting Bitfield Pos 2, 1 Bit
+0x248 ProcessDelete Bitfield Pos 3, 1 Bit
+0x248 Wow64SplitPages Bitfield Pos 4 , 1 Bit
+0x248 VmDeleted Bitfield Pos 5, 1 Bit
+0x248 OutswapEnabled Bitfield Pos 6 , 1 Bit
+0x248 Outswapped Bitfield Pos 7, 1 Bit
+0x248 ForkFailed Bitfield Pos 8 , 1 Bit
+0x248 HasPhysicalVad Bitfield Pos 9, 1 Bit
+0x248 AddressSpacelnitialized : Bitfield Pos 10, 2 Bit
+0x248 SetTimerResolution : Bitfield Pos 12, 1 Bit
+0x248 BreakOnTermination : Bitfield Pos 13, 1 Bit
+0x248 SessionCreationUnderway : Bitfield Pos 14, 1 Bit
+0x248 WriteWatch Bitfield Pos 15, 1 Bit
+0x248 ProcessInSession Bitfield Pos 16, 1 Bit
+0x24 8 OverrideAddressSpace : Bitfield Pos 17, 1 Bit
+0x248 HasAddressSpace Bitfield Pos 18 , 1 Bit
+0x248 LaunchPrefetched Bitfield Pos 19 , 1 Bit
+0x248 InjectlnpageErrors : Bitfield Pos 20, 1 Bit
+0x248 VmTopDown Bitfield Pos 21 , 1 Bit
+0x248 Unused3 Bitfield Pos 22 , 1 Bit
+0x248 Unused4 Bitfield Pos 23 , 1 Bit
+0x248 VdmAllowed Bitfield Pos 24 , 1 Bit
+0x248 Unused Bitfield Pos 25 , 5 Bits
+0x248 Unusedl Bitfield Pos 30 , 1 Bit
+0x248 Unused2 Bitfield Pos 31 , 1 Bit
+0x24c ExitStatus Int4B
+0x250 NextPageColor Uint2B
+0x252 SubSystemMinorVersion : UChar
+0x253 SubSystemMajorVersion : UChar
+ 0x2 52 SubSyst emVer s i on Uint2B
+0x2 54 PriorityClass UChar
+0x255 WorkingSetAcquiredUnsafe : UChar
+0x258 Cookie Uint4B

65

Appendix C: EPROCESS structure of Microsoft Windows 2000, Service
Pack 4.

kd> dt -a -b -v _EPROCESS
struct _EPROCESS, 94 elements, 0x290 bytes

+0x000 Pcb
+0x000 Header :

bytes
+0x000 Type
i0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink
+0x004 Blink

+0x010 ProfileListHead :
+0x000 Flink
+0x004 Blink

+0x018 DirectoryTableBase
+0x02 0 LdtDescriptor :

+0x000 LimitLow
+0x002 BaseLow
+0x0 04 HighWord

+0x000 Bytes

struct _KPROCESS, 2 6 elements, 0x6e bytes
: struct DISPATCHER HEADER, 6 elements, 0x10

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

: (2 elements) Uint4B
struct _KGDTENTRY, 3 elements, 0x8 bytes

Uint2B
Uint2B
union unnamed, 2 elements, 0x4 bytes
: struct unnamed, 4 elements, 0x4 bytes

+0x000 BaseMid UChar
+0x001 Flagsl UChar
+0x002 Flags2 UChar
+0x003 BaseHi UChar

0x000 Bits : struct unnamed, 10 element
+0x000 BaseMid Bitfield Pos 0, 8 Bits
+0x000 Type Bitfield Pos 8, 5 Bits
+0x000 Dpi Bitfield Pos 13 , 2 Bits
+0x000 Pres Bitfield Pos 15, 1 Bit
+0x000 LimitHi Bitfield Pos 16, 4 Bits
+0x000 Sys Bitfield Pos 20, 1 Bit
+0x000 Reserved_0 Bitfield Pos 21, 1 Bit
+0x000 Default Big Bitfield Pos 22 , 1 Bit
+0x000 Granularity Bitfield Pos 23, 1 Bit
+0x000 BaseHi Bitfield Pos 24, 8 Bits

Int21Descriptor : struct _KIDTENTRY, 4 elements, 0x8
+0x000 Offset
+0x002 Selector
+0x004 Access
+0x006 ExtendedOffset

Uint2B
Uint2B
Uint2B
Uint2B

+0x030 IopmOffset Uint2B
+0x032 Iopl UChar
+0x03 3 VdmFlag UChar
+0x034 ActiveProcessors Uint4B
+0x038 KernelTime Uint4B
+0x03c UserTime Uint4B
+0x040 ReadyListHead struct LIST_

+0x000 Flink : Ptr32 to
+0x004 Blink : Ptr32 to

+0x04 8 SwapListEntry struct _LIST_
+0x000 Flink : Ptr32 to
+0x0 04 Blink : Ptr32 to

+0x050 ThreadListHead struct LIST

2 elements, 0x8 bytes

2 elements, 0x8 bytes

2 elements, 0x8 bytes

66

+0x000 Flink
+0x004 Blink

+0x058 ProcessLock
+0x05c Affinity
+0x060 StackCount
+0x062 BasePriority
+0x063 ThreadQuantum
+0x064 AutoAlignment
+0x065 State
+0x066 ThreadSeed
+0x067 DisableBoost
+0x068 PowerState
+0x069 DisableQuantum
+0x06a Spare

+0x06c ExitStatus :
+0x070 LockEvent :

+0x000 Header
bytes

+0x00 0 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink
+0x004 Blink

+0x08 0 LockCount :
+0x088 CreateTime :

+0x000 LowPart
+0x004 HighPart
+0x000 u

+0x000 LowPart
+0x004 HighPart

+ 0x0,0 0 QuadPart
+0x090 ExitTime :

+0x00 0 LowPart
+0x004 HighPart
+0x000 u

+0x000 LowPart
+0x004 HighPart

+0x000 QuadPart
+0x098 LockOwner :
+0x09c UniqueProcessId :
+0x0a0 ActiveProcessLinks

+0x000 Flink
+0x004 Blink

+0x0a8 QuotaPeakPoolUsage
+0x0b0 QuotaPoolUsage
+0x0b8 PagefileUsage
+0x0bc CommitCharge
+0x0c0 PeakPagefileUsage
+0x0c4 PeakVirtualSize
+0x0c8 VirtualSize
+0x0d0 Vm

+0x000 LastTrimTime
i0x00 0 Lowrart
+0x004 HighPart
+0x000 u

+0x000 LowPart
+0x004 HighPart

: Ptr32 to
: Ptr32 to

Uint4B
Uint4B
Uint2B
Char
Char
UChar
UChar
UChar
UChar
UChar
UChar
(2 elements) UChar

Int4B
struct _KEVENT, 1 elements, 0x10 bytes
: struct _DISPATCHER_HEADER, 6 elements, 0x10

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

Uint4B
union _LARGE_INTEGER, 4 elements, 0x8 bytes
: Uint4B
: Int4B
: struct unnamed, 2 elements, 0x8 bytes

: Uint4B
: Int4B

: Int8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes
: Uint4B
: Int4B
: struct unnamed, 2 elements, 0x8 bytes

: Uint4B
: Int4B

: Int8B
Ptr32 to
Ptr32 to
: struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

: (2 elements) Uint4B
(2 elements) Uint4B
Uint4B
Uint4B
: Uint4B
Uint4B
Uint4B
struct _MMSUPPORT, 19 elements, 0x4 8 bytes
: union _LARGE_INTEGER, 4 elements, 0x8 bytes

Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

67

bytes

+0x000 QuadPart : Int8B
+0x008 LastTrimFaultCount : Uint4B
+0x00c PageFaultCount : Uint4B
+0x010 PeakWorkingSetSize : Uint4B
+0x014 WorkingSetSize : Uint4B
+0x018 MinimumWorkingSetSize : Uint4B
+0x01c MaximumWorkingSetSize : Uint4B
+0x02 0 VmWorkingSetList : Ptr32 to
+0x024 WorkingSetExpansionLinks : struct

+0x000 Flink : Ptr32 to
+0x004 Blink : Ptr32 to

+0x02c AllowWorkingSetAdjustment : UChar
+0x02d AddressSpaceBeingDeleted : UChar
+0x02e ForegroundSwitchCount : UChar
+0x02f MemoryPriority : UChar
+0x03 0 u : union unnamed,

LIST ENTRY, 2 elements, 0x8

2 elements, 0x4 bytes
+0x000 LongFlags
+0x000 Flags

Uint4B
struct MMSUPPORT FLAGS, 8 elements, 0x4

bytes
+0x000 SessionSpace Bitfield Pos 0, 1 Bit
+0x000 BeingTrimmed Bitfield Pos 1, 1 Bit
+0x000 ProcessInSession Bitfield Pos 2 , 1 Bit
+0x000 SessionLeader Bitfield Pos 3, 1 Bit
+0x000 TrimHard Bitfield Pos 4, 1 Bit
+0x000 WorkingSetHard Bitfield Pos 5, 1 Bit
+0x000 WriteWatch Bitfield Pos 6, 1 Bit
+0x000 Filler Bitfield Pos 7, 25 Bits

+0x034 Claim : Uint4B
+0x038 NextEstimationSlot : Uint4B
+0x03c NextAgingSlot : Uint4B
+0x040 EstimatedAvailable : Uint4B
+0x044 GrowthSinceLastEstimate : Uint4B

+0x118 SessionProcessLinks
+0x000 Flink
+0x004 Blink

+0x12 0 DebugPort
+0x124 ExceptionPort
+0x12 8 ObjectTable
+0xl2c Token
+0x13 0 WorkingSetLock

+0x0 0 0 Count
+0x004 Owner
+0x008 Contention
+0x0 0c Event

+0x000 Header

struct _LIST_ENTRY, 2 elements, 0x8 bytes
Ptr32 to
Ptr32 to

Ptr32 to
Ptr32 to
Ptr32 to
Ptr32 to
struct _FAST_MUTEX, 5 elements, 0x20 bytes

Int4B
Ptr32 to
Uint4B
struct _KEVENT, 1 elements, 0x10 bytes
: struct DISPATCHER HEADER, 6 elements, 0x10

bytes
+0x0 00 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink
+0x004 Blink

+0x01c Oldlrql : Uint4D
+0x150 WorkingSetPage : Uint4B
+0x154 ProcessOutswapEnabled : UChar
+0x155 ProcessOutswapped : UChar
+0x156 AddressSpacelnitialized : UChar

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY,
: Ptr32 to
: Ptr32 to

2 elements, 0x8 bytes

68

+0x157 AddressSpaceDeleted
+0x158 AddressCreationLock

+0x0 0 0 Count
+0x004 Owner
+0x008 Contention
+0x00c Event

+0x000 Header

UChar
struct _FAST_MUTEX, 5 elements, 0x2 0 bytes
Int4B
Ptr3 2 to
Uint4B
struct _KEVENT, 1 elements, 0x10 bytes
: struct DISPATCHER HEADER, 6 elements, 0x10

bytes
+0x0 0 0 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink
+0x004 Blink

+0x01c Oldlrql : Uint4B
+0x178 HyperSpaceLock : Uint4B
+0xl7c ForklnProgress : Ptr32 to
+0x180 VmOperation : Uint2B
+0x182 ForkWasSuccessful : UChar
+0x183 MmAgressiveWsTrimMask : UChar
+0x184 VmOperationEvent : Ptr32 to
+0x188 PaeTop . : Ptr32 to
+0xl8c LastFaultCount : Uint4B
+0x190 ModifiedPageCount : Uint4B
+0x194 VadRoot : Ptr32 to
+0x198 VadHint : Ptr32 to
+0xl9c CloneRoot : Ptr32 to
+0xla0 NumberOfPrivatePages : Uint4B
+0xla4 NumberOfLockedPages : Uint4B
+0xla8 NextPageColor : Uint2B
+0xlaa ExitProcessCalled : UChar
+0xlab CreateProcessReported : UChar
+0xlac SectionHandle : Ptr32 to
+0xlb0 Peb : Ptr32 to
+0xlb4 SectionBaseAddress : Ptr32 to
+0xlb8 QuotaBlock : Ptr32 to
+0xlbc LastThreadExitStatus : Int4B
+0xlc0 WorkingSetWatch : Ptr32 to
+0xlc4 Win32WindowStation : Ptr32 to
+0xlc8 InheritedFromUniqueProcessId :
+0xlcc GrantedAccess : Uint4B
+0xld0 DefaultHardErrorProcessing

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY,
: Ptr32 to
: Ptr32 to

2 elements, 0x8'bytes

Ptr32 to

Uint4B
+0xld4 Ldtlnformation
+0xld8 VadFreeHint
+0xldc VdmObjects
+0xle0 DeviceMap
+0xle4 Sessionld
+0xle8 PhysicalVadList

+0x000 Flink
+0x004 Blink

+0xlf0 PageDirectoryPte
+0x000 Valid
+0x000 Write
+0x00 0 Owner
+0x000 WriteThrough
+0x000 CacheDisable
+0x000 Accessed
+0x0 0 0 Dirty

Ptr32
Ptr32
Ptr32
Ptr32

to
to
to
to

Uint4B
struct _LIST_ENTRY,
: Ptr32 to
: Ptr32 to

struct _HARDWARE_PTE_X86
Bitfield Pos 0, 1 Bit
Bitfield Pos 1, 1
Bitfield Poe 2, 1
Bitfield Pos 3, 1
Bitfield Pos 4, 1
Bitfield Pos 5, 1
Bitfield Pos 6, 1

2 elements, 0x8 bytes

13 elements, 0x4 bytes

Bit
Bit
Bit
Bit
Bit
Bit

69

+0x0 0 0 LargePage
+0x000 Global
+0x0 0 0 CopyOnWrite
+0x000 Prototype
+0x000 reserved
+0x0 0 0 PageFrameNumber

+0xlf0 Filler :

Bitfield Pos 7, 1 Bit
Bitfield Pos 8, 1 Bit
Bitfield POs 9, 1 Bit
Bitfield Pos 10, 1 Bit
Bitfield Pos 11, 1 Bit
Bitfield Pos 12, 20 Bits

Uint8B
+0xlf8 PaePageDirectoryPage : Uint4B
+0xlfc ImageFileName : (16 elements)
+0x2 0c VmTrimFaultValue : Uint4B
+0x210 SetTimerResolution : UChar
+0x211 PriorityClass : UChar
+0x212 SubSystemMinorVersion : UChar
+0x213 SubSystemMajorVersion : UChar
+0x212 SubSystemversion : Uint2B
+0x214 Win32Process
+0x218 Job
+0x21c JobStatus
+0x220 JobLinks

+0x000 Flink
+0x004 Blink

+0x228 LockedPagesList
+0x22c SecurityPort
+0x230 Wow64Process
+0x2 3 8 ReadOperationCount

+0x0 00 LowPart
+0x0 04 HighPart
+0x000 u

+0x0 0 0 LowPart
+0x0 04 HighPart

+0x0 0 0 QuadPart
+0x240 WriteOperationCount

+0x000 LowPart
+0x004 HighPart
+0x000 u

+0x0 0 0 LowPart
+0x0 04 HighPart

+0x0 0 0 QuadPart
+0x24 8 OtherOperationCount

+0x0 0 0 LowPart
+0x004 HighPart
+0x000 u

+0x0 0 0 LowPart
+0x004 HighPart

+0x0 0 0 QuadPart
+0x2 50 ReadTransferCount :

+0x0 0 0 LowPart
+0x004 HighPart
+0x0 0 0 u

+0x0 0 0 LowPart
+0x0 04 HighPart

+0x00 0 QuadPart
+0x2 58 WriteTransferCount

+0x000 LowPart
+0x004 HighPart
+0x000 u

+0x000 LowPart
+0x004 HighPart

+0x0 00 QuadPart
+0x260 OtherTransferCount

UChar

2 elements, 0x8 bytes

4 elements, 0x8 bytes

Ptr32 to
Ptr32 to
Uint4B
struct _LIST_ENTRY,
: Ptr32 to
: Ptr32 to

Ptr32 to
Ptr32 to
Ptr32 to
: union _LARGE_INTEGER,

Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

Int 8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes
Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

Int 8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes
Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

: Int8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes

Uint4B
Int 4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

Int 8B
union _LARGE_INTEGER, 4 elements, 0x8 bytes
Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

Int 8B
union LARGE INTEGER, 4 elements, 0x8 bytes

70

+0x000 LowPart
+0x004 HighPart
+0x000 u

+0x00 0 LowPart
+0x004 HighPart

+0x000 QuadPart
+0x26 8 CommitChargeLimit
+0x26c CommitChargePeak
+0x27 0 ThreadListHead

+0x000 Flink
+0x004 Blink

+0x278 VadPhysicalPagesBitMap : Ptr32 to
+0x27c VadPhysicalPages : Uint4B
+0x280 AweLock : Uint4B
+0x284 plmageFileName : Ptr32 to
+0x288 Session : Ptr32 to
+0x28c Flags : Uint4B

Uint4B
Int4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Int4B

: Int8B
Uint4B

Uint4B
struct LISTENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

71

Appendix D: ETHREAD structure dump from WinXP SP2

kd> dt -a -b -v _ETHREAD
struct _ETHREAD, 54 elements, 0x2 5 8 bytes

+0x00 0 Teh
+0x000 Header

struct _KTHREAD, 78 elements,
: struct DISPATCHER HEADER,

OxlcQ bytes
6 elements, 0x10

byte
s

+0x000 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
,+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink
+0x004 Blink

+0x010 MutantListHead
+0x000 Flink
+0x004 Blink

+0x018 InitialStack
+0x01c StackLimit
+0x020 Teb
+0x024 TlsArray
+0x028 KernelStack
+0x02c DebugActive
+0x02d State
+0x02e Alerted
+0x030 Iopl
+0x031 NpxState
+0x032 Saturation
+0x033 Priority
+0x034 ApcState

+0x000 ApcListHead
elements,
0x8 bytes

+0x000 Flink
+0x004 Blink

+0x010 Process
+0x014 KernelApcInProgress : UChar
+0x015 KernelApcPending : UChar
+0x016 UserApcPending : UChar

2 elements, 0x8 bytes

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY,
: Ptr32 to
: Ptr32 to

struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

Ptr32 to
Ptr32 to
Ptr32 to
Ptr32 to
Ptr32 to
UChar
UChar
(2 elements) UChar
UChar
UChar
Char
Char
struct _KAPC_STATE, 5 elements, 0x18 bytes
: (2 elements) struct LIST ENTRY, 2

: Ptr32
: Ptr32

Ptr32 to

to
to

+0x04c ContextSwitches
+0x050 IdleSwapBlock
+0x051 SpareO
+0x054 WaitStatus
+0x058 Waitlrql
+0x059 WaitMode
+0x05a WaitNext
+0x05b WaitReason
+0x05c WaitBlockList
+0x060 WaitListEntry

+0x000 Flink
+0x004 Blink

+0x0GO SwapListEntry

Uint4B
UChar
(3 elements) UChar
Int4B
UChar
Char
UChar
UChar
Ptr32 to
struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

struct SINGLE LIST ENTRY, 1 elements, 0x4
bytes

+0x000 Next Ptr32 to

72

+0x068 WaitTime
+0x06c BasePriority
+0x0 6d DecrementCount
+0x06e PriorityDecrement
+0x06f Quantum
+0x070 WaitBlock

Uint4B
Char
UChar
: Char
Char
(4 elements) struct KWAIT BLOCK, 6 elements,

xl8 bytes
+0x000 WaitListEntry

+0x000 Flink
+0x004 Blink

+0x008 Thread
+0x00c Object
+0x010 NextWaitBlock
+0x014 WaitKey
+0x016 WaitType

+0x0d0 LegoData
+0x0d4 KernelApcDisable
+0x0d8 UserAffinity
+0x0dc SystemAffinityActive
+0x0dd PowerState
+0x0de Npxlrql
+0x0df InitialNode
+0x0e0 ServiceTable
+0x0e4 Queue
+0x0e8 ApcQueueLock
+ 0x0f0 Timer

+0x000 Header
b
ytes

struct _LIST_ENTRY, 2 elements,
: Ptr32 to
: Ptr32 to

Ptr32 to
Ptr32 to
Ptr32 to
Uint2B
Uint2B

Ptr32 to
Uint4B
Uint4B

UChar

0x8 bytes

UChar
UChar
UChar
Ptr32 to
Ptr32 to
Uint4B
struct _KTIMER, 5 elements, 0x28 bytes
: struct DISPATCHER HEADER, 6 elements, 0x10

+0x0 0 0 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink
+0x004 Blink

+0x010 DueTime
+0x000 LowPart
+0x0 04 HighPart
+0x000 u

+0x00 0 LowPart
+0x0 04 HighPart

+0x000 QuadPart
+0x018 TimerListEntry

+0x0 0 0 Flink
+0x0 04 Blink

+0x02 0 Dpc
+0x024 Period

+0x118 QueueListEntry :
+0x000 Flink
+0x004 Blink

+0x120 SoftAffinity
+0x124 Affinity
i0x128 Preempted
+0x129 ProcessReadyQueue :
+0xl2a KernelStackResident
+0xl2b NextProcessor : UChar
+0xl2c CallbackStack : Ptr32 to

2 elements, 0x8 bytes

4 elements, 0x8 bytes

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY,
: Ptr32 to
: Ptr32 to

union _ULARGE_INTEGER,
Uint4B
Uint4B
struct unnamed, 2 elements, 0x8 bytes
: Uint4B
: Uint4B

: Uint8B
: struct _LIST_ENTRY, 2 elements, 0x8 bytes

: Ptr32 to
: Ptr32 to

: Ptr32 to
: Int4B

struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

Uint4B
Uint4B
UChar
UChar

UChar

73

+0x13 0 Win32Thread Ptr32 to
+0x13 4 TrapFrame Ptr32 to
+0x13 8 ApcStatePointer (2 elements) Ptr32 to
+0x140 PreviousMode Char
+0x141 EnableStackSwap UChar
+0x142 LargeStack UChar
+0x143 Resourcelndex UChar
+0x144 KernelTime Uint4B
+0x148 UserTime Uint4B
+0xl4c SavedApcState struct _KAPC_STATE, 5 elements, 0x18 bytes

b
ytes

+0x000 ApcListHead
elements,
0x8 bytes

+0x000 Flink
+0x004 Blink

+0x010 Process
+0x014 KernelApcInProgress : UChar
+0x015 KernelApcPending : UChar
+0x016 UserApcPending : UChar

+0x164 Alertable : UChar
+0x165 ApcStatelndex
+0x166 ApcQueueable
+0x16 7 AutoAlignment
+0x168 StackBase
+0xl6c SuspendApc

+0x000 Type
+0x002 Size
+0x004 SpareO
+0x008 Thread
+0x00c ApcListEntry

+0x000 Flink
+0x004 Blink

+0x014 KernelRoutine
+0x018 RundownRoutine
+0x01c NormalRoutine
+0x02 0 NormalContext
+0x024 SystemArgumentl
+0x02 8 SystemArgument2
+0x02c ApcStatelndex
+0x02d ApcMode
+0x02e Inserted

+0xl9c SuspendSemaphore :
+0x00 0 Header

(2 elements) struct LIST ENTRY, 2

: Ptr32 to
: Ptr32 to

Ptr32 to

UChar
UChar
UChar
Ptr32 to
struct _KAPC, 14 elements, 0x3 0 bytes

Int2B
Int2B
Uint4B
Ptr32 to
struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to

to: Ptr32
Ptr32 to
Ptr32
Ptr32
Ptr32
Ptr32
Ptr3 2
Char
Char
UChar

struct _KSEMAPHORE, 2 elements, 0x14 bytes
: struct DISPATCHER HEADER, 6 elements, 0x10

to
to
to
to
to

+0x000 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink
+0x004 Blink

+0x010 Limit
+0xlb0 ThreadListEntry

i0x000 Flink
+0x004 Blink

+0xlb8 FreezeCount
+0xlb9 SuspendCount
+0xlba IdealProcessor

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

: Int4B
struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

Char
Char
UChar

74

+Oxlbb DisableBoost
+OxlcO CreateTime

+0x000 LowPart
+0x004 HighPart
+0x000 u

+0x000 LowPart
+0x0Q4 HighPart

+0x000 QuadPart
+0xlc0 NestedFaultCount
+0xlc0 ApcNeeded
+0xlc8 ExitTime

+0x000 LowPart
+0x004 HighPart
+0x000 u

+0x000 LowPart
+0x004 HighPart

+0x000 QuadPart
+0xlc8 LpcReplyChain

+0x000 Flink
+0x004 Blink

+0xlc8 KeyedWaitChain
+0x000 Flink
+0x004 Blink

+0xld0 ExitStatus
+0xld0 OfsChain
+0xld4 PostBlockList

+0x000 Flink
+0x004 Blink

+0xldc TerminationPort
+Oxide ReaperLink
+Oxide KeyedWaitValue
+0xle0 ActiveTimerListLock
+0xle4 ActiveTimerListHead

+0x000 Flink
+0x004 Blink

+0xlec Cid
+0x000 UniqueProcess
+0x004 UniqueThread

+0xlf4 LpcReplySemaphore
+0x000 Header

: UChar
union _LARGE_INTEGER, 4 elements, 0x8 bytes
: Uint4B
: Int4B
: struct unnamed, 2 elements, 0x8 bytes

: Uint4B
; Int4B

: Int8B
Bitfield Pos 0, 2 Bits
Bitfield Pos 2, 1 Bit
union _LARGE_INTEGER, 4 elements, 0x8 bytes
: Uint4B
: Int4B
: struct unnamed, 2 elements, 0x8 bytes

: Uint4B
: Int4B

: Int8B
Struct _LIST_ENTRY,
: Ptr32 to
: Ptr32 to

struct _LIST_ENTRY,
: Ptr32 to
: Ptr32 to

Int4B
Ptr32 to
struct _LIST_ENTRY,
: Ptr32 to
: Ptr3 2 to

Ptr32 to

2 elements, 0x8 bytes

2 elements, 0x8 bytes

2 elements, 0x8 bytes

LISTJENTRY, 2 elements, 0x8 bytes

Ptr32 to
Ptr32 to

Uint4B
struct
Ptr32 to
Ptr32 to

struct _CLIENT_ID, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to
struct _KSEMAPHORE, 2 elements
: struct DISPATCHER HEADER, 6

0x14 bytes
elements, 0x10

byte
s

+0x000 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState
+0x008 WaitListHead

+0x000 Flink
+0x004 Blink

+0x010 Limit
+0xlf4 KeyedWaitSemaphore

+0x000 Header
byte

UChar
UChar
UChar
UChar
Int4B
struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

Int4B
struct _KSEMAPHORE, 2 elements, 0x14 bytes
struct DISPATCHER HEADER, 6 elements, 0x10

i0x00 0 Type
+0x001 Absolute
+0x002 Size
+0x003 Inserted
+0x004 SignalState

UChar
UChar
UChar
UChar
Int4B

75

+0x008 WaitListHead
+0x000 Flink
+0x004 Blink

+0x010 Limit
+0x208 LpcReplyMessage :
+0x2 08 LpcWaitingOnPort :
+0x20c Impersonationlnfo
+0x210 IrpList :

+0x000 Flink
+0x004 Blink

+0x218 TopLevellrp
+0x21c DeviceToVerify
+0x220 ThreadsProcess
+0x224 StartAddress
+0x22 8 win32StartAddress

: struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
: Ptr32 to

: Int4B
Ptr32 to
Ptr32 to
: Ptr32 to
struct _LIST_ENTRY,
: Ptr32 to
: Ptr32 to

Uint4B
Ptr32 to
Ptr32 to
Ptr32 to
: Ptr32 to

2 elements, 0x8 bytes

+0x228 LpcReceivedMessageld : Uint4B
+0x22c ThreadListEntry

+0x000 Flink
+0x004 Blink

+0x234 RundownProtect
+0x000 Count
+0x000 Ptr

+0x23 8 ThreadLock
+0x000 Waiting
+0x000 Exclusive
+0x000 Shared
+0x000 Value
+0x000 Ptr

+0x23c LpcReplyMessageld
+0x240 ReadClusterSize
+0x244 GrantedAccess
+0x24 8 CrossThreadFlags
+0x248 Terminated
+0x248 DeadThread

struct _LIST_ENTRY, 2 elements, 0x8 bytes
: Ptr32 to
Ptr32 to

struct _EX_RUNDOWN_REF, 2 elements, 0x4 bytes
: Uint4B
: Ptr32 to

struct _EX_PUSH_LOCK, 5 elements, 0x4 bytes

+0x24 8 HideFromDebugger

Bitfield Pos 0, 1 Bit
Bitfield Pos 1, 1 Bit
Bitfield Pos 2, 30 Bits
Uint4B
Ptr32 to

: Uint4B
Uint4B
Uint4B
Uint4B
Bitfield Pos 0, 1 Bit
Bitfield Pos 1, 1 Bit
Bitfield Pos 2, 1 Bit

1 Bit+0x248 Activelmpersonationlnfo : Bitfield Pos 3,
+0x248 SystemThread •: Bitfield Pos 4, 1 Bit
+0x248 HardErrorsAreDisabled : Bitfield Pos 5, 1 Bit
+0x24 8 BreakOnTermination : Bitfield Pos 6, 1 Bit
+0x248 SkipCreationMsg : Bitfield Pos 7, 1 Bit
+0x248 SkipTerminationMsg : Bitfield Pos 8, 1 Bit
+0x24c SameThreadPassiveFlags : Uint4B
+0x24c ActiveExWorker : Bitfield Pos 0, 1 Bit
+0x24c ExWorkerCanWaitUser : Bitfield Pos 1, 1 Bit
+0x24c MemoryMaker : Bitfield Pos 2, 1 Bit
+0x250 SameThreadApcFlags : Uint4B
+0x250 LpcReceivedMsgldValid : Bitfield Pos 0, 1 Bit
+0x250 LpcExitThreadCalled : Bitfield Pos 1, 1 Bit
+0x250 AddressSpaceOwner : Bitfield Pos 2, 1 Bit
+0x254 ForwardClusterOnly : UChar
+0x255 DisablePageFaultClustering : UChar

kd;

76

Appendix E: Decoding a Process Owner

One offset of an EPROCESS is the Access Token, which defines the security context for

the process. It is defined as (XP SP2):

dt TOKEN
+0x000 TokenSource : _TOKEN_SOURCE
+0x010 Tokenld : LUID
+0x018 Authentication^ : LUID
+0x020 ParentTokenld : LUID
+0x028 ExpirationTime : LARGE INTEGER
+0x030 TokenLock : Ptr32 ERE SOURCE
+0x038 AuditPolicy : _SEP_AUDIT_POLICY
+0x040 Modifiedld : LUID
+0x048 Sessionld : Uint4B
+0x04c UserAndGroupCount: Uint4B
+0x050 RestrictedSidCount: Uint4B
+0x054 PrivilegeCount : Uint4B
+0x058 VariableLength : Uint4B
+0x05c DynamicCharged : Uint4B
+0x060 DynamicAvailable : Uint4B
+0x064 DefaultOwnerlndex : Uint4B
+0x068 UserAndGroups : Ptr32 SID AND ATTRIBUTES
+0x06c RestrictedSids : Ptr32 SID AN D A TTR IBU TES
+0x070 PrimaryGroup : Ptr32 Void
+0x074 Privileges : Ptr32 LUID AND ATTRIBUTES
+0x078 DynamicPart : Ptr32 Uint4B
+0x07c DefaultDacl : Ptr32 ACL
+0x080 TokenType : TOKENTYPE
+0x084 ImpersonationLevel : SECURITY IMPERSONATION LEVEL
+0x088 TokenFlags : Uint4B
+0x08c TokenlnUse : UChar
+0x090 ProxyData : Ptr32 SECURIT Y_T OKENPROX Y_D AT A
+0x094 AuditData : Ptr32 _SECURITY_TOKEN_AUDIT_DATA
+0x098 OriginatingLogonSession : LUID
+0x0a0 VariablePart : Uint4B

The UserAndGroups offset (0x068) is a pointer to an SID AND ATTRIBUTES
structure (again XP SP2):

dt _SID_AND_ATTRIBUTES
+0x000 Sid : Ptr32 Void
+0x004 Attributes : Uint4B

77

So by tracing the chain of structures at the correct offsets, the SID (Security Identifier) of

the owner of the Process can be determined. It should be pointed out that the association

with the username can not readily be determined from memory only. The SID will have

to be compared with System registry or domain specific information (correlated with

information from the non-volatile stores).

The pointer to the Access Token is a virtual address and must be converted to a physical

address, this typically involves breaking the virtual address into it’s parts: 10 bits, Page

Directory Index, 10 bits Page Table Index, 12 bits Page Offset. (PDI, PTI and POFF

respectively)

The Page Directory Base(PDB) (another EPROCESS value) and the Page Directory

Index (PDI) multiplied by the page size (4) will yield the ID of the a Page Table Entry

(PTE1). The first 20 bits of PTE 1 are concatenated with the Page Table Index multiplied

by 4 to yield an ID to another Page Table Entry (PTE2). The first 20 bits of this Page

Table Entry can be concatenated with the Page Offsett to yield the physical address.

78

Example:

AccessToken = e3892033 (both obtained from EPROCESS)
PDB = 06221000

(derived from the parts of AccessToken)
PDI = AccessToken / 0x400000 = 38e
PTI = AccessToken % 0x400000 / 0x1000 = 92
POFF = AccessToken % 0x1000 = 33

PTE 1 ID = PDB + PDI *4 =6221e38

(value of PTE1ID looked up in memory image)

PTE1 = 00831963

PTE2 ID = PTE1 - (PTE1 % 0x1000) + PTI * 4 = 831248

(value of PTE2 ID looked up in memory image)

PTE2 = 12319963

Physical Addr = PTE2 - (PTE2 % 0x1000) + POFF = 12319033

Unfortunately, even though that the physical address of the Access Token is now known,

obtaining the SID is still not a simple offset. Some variable length data fields are located

in the Access Token “above” the SID. Results from this project show that the SID begins

somewhere between 0x198 and 0xlD5 from this point, but this is from example, it is not

derived or calculated. Once the SID is located it must be decoded. The format, like

FileTime, is not straightforward.

A SID is typically seen to users and administrators as :

S-01-5-21-791032918-1291200457-768897840-500

However the same SID in it’s binary form appears as:

0105000000000005150000005634262FC927F64C3073D42DF4010000

79

Table 5 : SID Encoding shows the meaning of the different parts of the SID and the types

of encoding used.

Table 5 : SID Encoding
SID Encoded Part Description Encoding
S-01 0x01 SID Revision 1 byte

0x05 Number of dashes - 2 1 byte
5 0x000000000005 NT Authority 6 bytes, Big Endian
21 0x00000015 NT Non Unique 4 bytes, Little Endian
791032918 0x2 f2 63456 Domain Issuer Part 1 4 bytes, Little Endian
1291200457 0x4cf627c9 Domain Issuer Part 2 4 bytes, Little Endian
768897840 0x2dd473 3 0 Domain Issuer Part 3 4 bytes, Little Endian
500 OxOOOOOlf4 User / Computer ID 4 bytes, Little Endian

There are some well known SIDs and parts of SIDs:

S-l-1-0... Everyone
S-l-2-0... Locally Logged on
S-l-3-0... Creator Owner ID
S-1-3-1... Creator Group ID
_500 ‘ Administrator Account
...501 Guest Account
...1000 User Account

(1000 and higher... 1005 would indicated the 6th user)

80

Appendix F: Offset Deltas by service pack.

This appendix is provided to enable a more reader friendly format of different offsets of

windows kernel structures. The offsets shown here (numeric values are hexadecimal) are

also available in the proof of concept source code listing in another appendix.

Table 6 : Windows Data Structure Offsets
2000 XP XP SP 2 2003

EP PageDirBase 18 18 18 18
EP processors 34 34 34 34
EP T Forward 50 50 50 50
EP T Back 54 54 54 54
EP priority 62 62 62 62
EP T Quantum 63 63 6f 63
EP T Qant dis 69 69 69 69
EP exitStatus 6c 24c ldO 24c
EP createTime 88 70 70 70
EP exitTime 90 78 78 78
EP PID(client Unique) 9c 84 84 84
EP WorkSetSize e4 20c 20c 214
EP WorkSetMin e8 210 210 lf8
EP WorkS etMax ec 214 214 lfc
EP AccessToken 12c 0c8 0c8 0c8
EP PPID lc8 14c 14c 128
EP name lfc 174 174 154
EP size 290 258 260 278
TH size 248 258 258 260
TH createTime lbO IcO IcO lc8
TH exitTime lb8 lc8 lc8 ldO
TH exitStatus IcO ldO ldO ld8
TH PID (client unique) leO lec lec lf4
TH TID (client unique) le4 lfO lfO lf8
TH isTerminated 224 248 248 250
TH startAddr 230 224 224 22c

81

Appendix G: Proof of Concept Source Code Listing

The following PERL source will parse the contents of a memory image. On a 1.5 Mhz

Pentium 3m with 1 GB of RAM it currently takes about 30 minutes to parse a 1GB image

and 60 minutes to parse a 4 GB image. On a 2.66 Mhz Pentium 4 Xeon with 512MB

Ram, is takes about 20 minutes to parse a 1GB image and 60 minutes to parse a 4GB

image.

#!/usr/bin/perl
use strict;
use Getopt::Std;
use POSIX qw(strftime);
use Digest::MD5 qw(md5);
ttvariables that pertain more to this script than to the concept..
my $dump_header = 4096; # assuming size of dump file header - skipping
this is requied to decode virutal addressess
my $isdump =1; # boolean if it is a dmp file - assume not
my $header_size =0; # most files will have no header
my. $doprocess =1; # boolean to process processes
my $dothread =0; # boolean to process threads
my $simple =0; # simple mode (task manager view)
my $showoffsets =1; # show offsets - more of a CS view than a CJ
view
my $isunique =1; # use md5 to check for identical process structures
in memory, not really sure why you wouldn't want this
my $debug = 0; #basically an output adjuster - mainly for
development
my $pThreshold =0; #adjust a variance for how many tests can fail
for process checking
my $tThreshold =0; #..and for threads
my $version = "procloc 0.6";
my $OS = "2K"; #Should be able to autodect this - or at least
command line option
my $output = 12; #basically bitmask for output, 1 = name, 2 = pid, 3 =
name+pid, 4 = priority, 5 = name+priority, etc

#"super globals" these variables are apparently the same for all
versions encountered today.
but of course they may have to be broken down by OS at a later date,
my $kernelBound = 0x80000000; # all windows k e rn e l virtual addresses
are above 80000000 (except /3G systems)
my $pagesize = 4096; # size of a typical intel page

82

my $memSegBound = 8; # from MS driver memory article, almost a speed
factor increase

#Six tips for efficient memory usage
#http://www.microsoft.com/whdc/driver/perform/mem-

alloc.mspx
#my $SIZE0F_PROC = 0x2 90; #actually i think these are different by
OS . . .

#my $SIZEOF_THRD = 0x248;
my $currentpos = 0;
my $count = 0;
#my $test;
my %uniqueprocs;
my %uniquethreads;
#The DISPATCH HEADER is the key to locating the different structures in
memory. This header is
#used by processes (the original goal of this project) as well as other
structures. The
#signature of these types change by OS version. These multiple hashes
are switched between...
#...it could be implemented as a hash of a hash, but that usually ends
up losing people...
I changed it to one hash per OS...for DH, Proc, and Thread
info...maybe a multi hash is the way...
#DH header type, from Windows Internals, 2 005
#0 notification
#1 syncronizaiton
#2 mutant
#3 process
#4 queue
#5 semaphore
#6 thread
#8 notification timer
#9 sync timer
#This probably could be done with a single data structure, but hey...
my %win2K = (
DH_notification => "\x00.",
DH_notificationsize => "\x00.",
DH_sync => "\x01.",
DH_syncsize => "\x04.",
DH_mutant => "\x02.",
DH_mutantsize = > "\x00.",

DH_process => "\x03.",
DH_processsize => "\xlb.",

DH_queue => "\x04.",
DH_queuesize => "\x00.",

DH_semaphore => "\x05.",
DH_semaphoresize => "\x05.",
DH_thread => "\x06.",
DH_threadsize.=> "\x6c.",
DH_notificationtimer => "\x08.",

http://www.microsoft.com/whdc/driver/perform/mem-

83

DH_notificationtimersize => "\xOa.",
DH_synctimer => "\x.",
DH_synctimersize => "\x.",

EP_processors => 0x034,
EP_priority => 0x062,
EP_TH_Quantum => 0x63,
EP_TH_Quantum_Disable => 0x6 9,
EP_size = > 0x290,
EP paqeDirectoryBase => 0x018,
EP^tListFlink => 0x050,
EP_tListBlink => 0x054,
EP_exitStatus => 0x06c,
EP_createTime => 0x088,
EP_exitTime => 0x090,
EP_PID => 0x09c,
EP_AccessToken => 0x12c,
EP_AccessTokenSID =>0x188,
EP_PPID => 0xlc8,
EP_name => Oxlfc,
TH_size => 0x24 8,
TH_createTime => OxlbO,
TH_exitTime => 0xlb8,
TH_exitStatus => OxlcO,
TH_PID => OxleO,
TH_TID => 0xle4,
TH_isTerminated = > 0x224,
TH_tProcess => 0x22c,
TH_startAddr => 0x230,
EP_Win32P => 0x214,
EP_WorkingSetSize => 0x0e4,
EP_WorkingSetMin => 0x0e8,
EP_WorkingSetMax => OxOec,
EP_CommitChargeLimit => 0x2 68,
EP_CommitChargePeak => 0x26c,

) ;my %winXP = (
DH_notification => "\x00.",
DH_notificationsize => "\x00.",
DH_sync => "\x01.",
DH_syncsize => "\x04.",
DH_mutant => "\x02.",
DH_mutantsize => "\x00.",

DH_process => "\x03.".,
DH_processsize => "\xlb.",

DH_queue => "\x04.",
DH_queuesize => "\x00.",

DH_semaphore => "\x05.",
DH_s emaphore size => "\x05.",
DH_thread => "\x0 6.",
DH_threadsize => "\x70.",
DH_notificationtimer => "\x08.",
DH_notificationtimersize => "\x0a.",

DH_synctimer => "\x.",
DH_synctimersize => "\x.",

84

EP_size => 0x258,
EP_pageDirectoryBase => 0x018,
EP_tListFlink => 0x050,
EP_tListBlink => 0x054,
EP_exitStatus => 0x24c,
EP_createTime => 0x07 0,
EP_exitTime => 0x078,
EP_PID => 0x084,
EP_PPID => 0x14c,
EP_name = > 0x174,
TH_size => 0x258,
TH_createTime => OxlcO,
TH_exitTime => 0xlc8,
TH_exitStatus => OxldO,
TH_PID => Oxlec,
TH_TID => OxlfO,
TH_isTerminated => 0x24 8,
TH_tProcess => 0x220,
TH_startAddr => 0x224,

) ;
my %winXP2 = (

DH_notification => "\x00.",
DH_notif icationsize => 11 \x00 . 11,
DH_sync => "\x01.",
DH_syncsize = > "\x04.",
DH_mutant => "\x02.M,
DH_mutantsize => "\x00.",
DH process => "\x03.",
DH_processsize => "\xlb.",
DH_queue => "\x04.",
DH_queuesize = > "\x00.",
DH_semaphore => "\x05.",
DH_semaphoresize => "\x05.",
DH_thread => "\x06.M,
DH_threadsize => "\x7 0.",
DH_notificationtimer => "\x08.M,
DH_notificationtimersize => "\x0a.",
DH_synctimer => "\x.",
DH_synctimersize => "\x.",
EP_processors => 0x034,
EP_priority => 0x062,
EP_TH_Quantum => 0x6f,
EP_TH_Quantum_Disable => 0x6 9,
EP_size = > 0x260,
EP_pageDirectoryBase => 0x018,
EP_tListFlink = > 0x050,
EP_tListBlink => 0x054,
EP_AccessToken = > 0x0c8,
EP_createTime => 0x070,
EP_exitTime => 0x078,
EP_PID => 0x084,
EP_PPID => 0x14c,
EP_name => 0x174,
EP_exitStatus => 0x24c,

4fc

85

TH_size => 0x258,
TH_createTime => OxlcO,
TH_exitTime => 0xlc8,
TH_exitStatus => OxldO,
TH_PID => Oxlec,
TH_TID => OxlfO,
TH_isTerminated => 0x248,
TH_tProcess => 0x220,
TH_startAddr => 0x224,
EP_Win32P => 0x130,
EP_CommitChargeLimit = > 0x08a,
EP_CommitChargePeak => OxOac,
EP_WorkingSetSize => 0x20C,
EP_WorkingSetMin => 0x210,
EP_WorkingSetMax => 0x214,

) ;
my %win2 0 03 = (

DH_notification => "\xOO.",
DH_notificationsize => "\x0 0.",
DH_sync => "\x01.",
DH_syncsize => "\x04.",
DH_mutant => "\x02.",
DH_mutantsize => "\x0 0.",
DH_process => "\x03.",
DH_processsize => "\xlb.",
DH_queue => "\x04.",
DH_queuesize => "\x00.",
DH_semaphore => "\x05.",
DH_s emaphore size => "\x05.",
DH_thread => "\x06.",
DH_threadsize => "\x72.",
DH_notificationtimer => "\x08.",
DH_notificationtimersize => "\x0a.",
DH_synctimer => "\x.",
DH_synctimersize => "\x.",
EP_size => 0x278,
EP_pageDirectoryBase => 0x018,
EP_tListFlink => 0x050,
EP_tListBlink => 0x054,
EP_exitStatus = > 0x24c,
EP_createTime => 0x070,
EP_exitTime => 0x078,
EP_PID => 0x084,
EP_PPID => 0x128,
EP_name => 0x154,
TH_size => 0x260,
TH_createTime = > 0xlc8,
TH_exitTime => OxldO,
TH_exirStatu3 => 0xld8,
TH_PID => Oxlf4,
TH_isTerminated => 0x2 50,
TH_tProcess => 0x228,
TH_startAddr => 0x22c,

86

command line options (see usage() for more info)
my %opts;
my $opt_string = 'svahtTpPuVd:O:0:';
getopts("$opt_string", \%opts) or usage();
#i realize that a iot of this is somewhat redundant, but i haven't
decided on the default script operation yet

$dothread = 1;
$dothread = 0;
$doprocess = 1;
$doprocess = 0;
$debug = $opts{d
print "$version \n"; usage(); exit(0); }
print "$version \n"; usage(); exit(0); }
print "$version \n"; }
$OS = $opts{o}; print "User specified OS set to $OS\n";

if($ opt s{t}) {
if($opts{T}
if ($opts{p}
if($opts{P}
if($opts{d}
$debug\n";
if ($opts{u}
if ($opts{hj
if($opts{v}
if ($opts{oj
}if($ opt s{s}) {

$simple = 1;
$dothread = 0;
$doprocess = 1;
$showoffsets = 0;
$output = 7;

}if($opt s{v }) {
print "verbose!";
$dothread = 1;
$doprocess = 1;
$debug = 10;
$showoffsets = 1;
$output = 32 767;

}if($opts{a}){
print "do all\n";
$dothread = 1;
$doprocess = 1;
$debug = 10;
$showoffsets = 1;
$OUtput = 3 2 767;

}if($opts{O}){
$output = $opts{0};
print "user output set $output = ";
$output = unpack("B*", pack("N", $output));
print " $output\n";

}

print "User specified debug set to

my %OSoff; #placeholder hash for the correct offsets for a particular
OS
if($OS eg "2K"){

%OSoff = %win2K;
}elsif($0S eq "XP"){

%OSoff = %winXP;
}elsif($0S eq "XP2"){

%OSoff = %winXP2;
}elsif($0S eq "2003"){

%OSoff = %win2 003;
}else{

print "unknown OS specified.\n";
usage();
exit(1);

}

#if it is a dmp file, skip the header...not even needed really, unles
the header is not
#a multiple of the segBound
if($isdump){

$header_size = $dump_header ,*
}

my $DH_SYNCRONIZ ATION_EVENT = "$OSoff{DH_sync}$OSoff{DH_syncsize}";
my $DH_PROCESS = "$OSoff{DH_process}$OSoff{DH_processsize}";
my $DH_SEMAPHORE = "$OSoff{DH_semaphore}$OSoff{DH_semaphoresize}";
my $DH_THREAD = "$OSoff{DH_thread}$OSoff{DH_threadsize}";
my $DH_NOTIFICATION_TIMER =
"$OSoff{DH_notificationtimer}$OSoff{DH_notificationtimersize}";
my $SIZEOF_PROC = $OSoff{EP_size};
my $SIZEOF_THRD = $OSoff{TH_size};

get memory dump to parse
my $INFILE = shift;
if(!($INFILE)){ usage();}
ready GO
open(INFILE, "<", $INFILE) or die "$0: unable to open $INFILE.";
binmode(INFILE);
if($isdump){

sysseek(INFILE, $dump_header, 0); #skip header, if present
}

header();
#work through memory memSegBound at a time
my $sentinel;
my $test;
my $break = 0;
while (($sentinel = sysread(INFILE, $test, $memSegBound)) && $break =
0) {

88

$currentpos = sysseek(INFILE, 0, 1) ;
my $lpos = $currentpos - $pagesize;
#currently only processes and threads are tested, any DH type

could be implemented here though
if (substr($test, 0, 4) =~ /$DH_PROCESS/) {

if ($doprocess){
&ProcessTest ;

}} elsif (substr($test, 0, 4) =~ /$DH__THREAD/) {
if ($dothread){

&ThreadTest ;
}

}

if($sentinel 1= $memSegBound){
if($debug > 1){

print "terminating condition found, sysread()
returned $sentinel, not $memSegBound";

}$break=l; #annoying workaround due to "use strict" and
wanting the debug message...should be a better way

}
}

close(INFILE);
my $time = time() - $AT;
my $sec = $time % 6 0;
my $min = ($time - $sec) / 60;
print "\n Found $count structures in $min m $sec s\n" ,-
#the FILETIME format store 100ns increments since Jan 1, 1601 in 64
bits
#unix stores 1 second intervales since Jan 1, 1970
#to keep the program uniform one must be converted to the other
Filetime conversions
FFFFFF0 0 00000000 = under 1.5 seconds
00000001 0 0 0 0 0 0 0 0 = under 1.5 seconds
00000010 ooooo'ooo = about 26 seconds
00000000 01000000 = about 7 : 09
00000000 10000000 = about 1 : 51:31
00000000 00010000 = about 1 day 6:32:31
00000000 00100000 = about 21 days 8:40:18
00000000 00000100 = about 11 months 22 days 18 : 44 : 57
00000000 00001000 = about 14 years 3 months 10 months 11:59:22
00000000 00000001 = about 22 8 years 5 months 5 days 23:50:03
00000000 00000010 = about 6353 years 6 months 18 days 21:21:00
Using this understanding, of the endian-ness and order of the bytes
the FILETIME representation of the Unix Epoch (Jan 1, 1970) is 000040d5
debl9d01.

89

Some of this understanding came from these websites
.# http://aspn.activestate.com/ASPN/Mai1/Message/perl-win32-
admin/1981214
#
http://www.koders.com/c/fidAB384423 820A5D2FBF7494 80D6615D03E554271C.asp
x
Convert Win3 2 FILETIME to unix timestamp
sub Win2Unix4() {
my $Lval = shift;
my $Hval = shift;
my $Time = 0;
my $Shift = 11644473600; # win / unix epoch shift value obtained using
a FILETIME shift of the unix Epoch
if(($Lval == 0) and ($Hval ==0)){

return $Time;
}else{

$Time = int(($Hval * 2**32 / 10000000) + ($Lval / 10000000));
$Time -= $Shift;

} if ($Time < 0){
$Time = 0;

}return $Time;
}

#String Format timestamp to human readable form (descending
significance)
sub sPrintTimeO {

my $Time = shift;
my $Resuit;
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) =

gmtime($Time);
if ($Time ==0) {

$Result = 1';
} else {

$Result = strftime("%Y.%m.%d %H:%M:%S", $sec, $min, $hour,
$mday, $mon, $year, -1, -1, -1);

}return $Result;
}

#print out the first line - the column headers
sub header() {

if($output) { printf(" %-3s",
"Cnt"); }

if($output % 10 == 1) { printf(" %-16s",
"Name"); }

http://aspn.activestate.com/ASPN/Mai1/Message/perl-win32-
http://www.koders.com/c/fidAB384423

90

if($output / 10 % 10 == 1) {"Typ") ; } if($output / 100 % 10 == 1) {(TID) "); }
if($output / 1000 % 10 == 1) {"Pri");} if($output / 10000 % 10 == 1) {"WorkSet"); }if($output / 100000 % 10 == 1)

19s" , "Created");}
if($output / 1000000 % 10 == 1)

19s" , "Terminated");}
if($output / 10000000 % 10 == 1) {"Proc ");} if($output / 100000000 % 10 == 1) {"Quan">;} if($output / 1000000000 % 10 == 1) {"QuaD") ; } if($output / 10000000000 % 10 == 1) {"Offset");}
if($output / 100000000000 % 10 == 1)

10s" , "PDB" >;}if ($output / 1000000000000 % 10 == 1)

{ printf("
{ printf("

10s"; "AToken");}
return;

}

{ printf("
{ printf("

#Test a potential processes
sub ProcessTest {

if($debug > 2){ print("Found process candidate at
$currentpos.\n");}

my $potentialp;
sysread(INFILE, $potentialp, $SIZEOF_PROC-$memSegBound,

$memSegBound);
unpack (size , what) L = unsigned long, 1 = signed long, c

ascii string, c = char, C = uchar
my $PageDirectoryBase = unpack(1L 1, substr($potentialp,

$0Soff{EP_pageDirectoryBase}, 4));
my $ThreadListHeadFlink = unpack(1L 1, substr($potentialp,

$OSoff{EP_tListFlink}, 4));
my $ThreadListHeadBlink = unpack(1L 1, substr($potentialp,

$OSoff{EP_tListBlink}, 4));
my $ExitStatus = unpack(1L 1, substr($potentialp,

$OSoff{EP_exitStatus}, 4));
my $CreateTime2 = unpack('h*1, substr($potentialp,

$OSoff{EP_createTime}, 8));
my $CreateTimeLo = unpack(1L 1, substr($potentialp,

$OSoff{EP_createTime}, 4));
my $CreateTimeHi = unpack(111, substr($potentialp,

$OSoff{EP_createTime}+4, 4));

"PID

* =

91

= unpack('L' substr($potentialp,
= unpack('1' substr($potentialp,
= unpack('L' substr($potentialp,
= unpack(1 c 1 substr($potentialp,
= unpack(1 c' substr($potentialp,
= unpack('C' substr($potentialp,
16)) ;

= unpack(' L substr($potentialp,

' L '

' L'
1 L 1
1 L 1

substr($potentialp,
substr($potentialp,
substr($potentialp,
substr($potentialp,

my $ExitTimeLo
$OSoff{EP_exitTime}, 4));

my $ExitTimeHi
$OSoff{EP_exitTime}+4, 4));

my $PID
$OSoff{EPJPID}, 4));

my $Priority
$OSoff{EP_priority}, 16));

my $Quanturn
$OSoff{EP_TH_Quantum}, 16))

my $QuantumD
$OSoff{EP_TH_Quantum_Disabl<

my $AcrProcs
$OSoff{EP_processors}, 4));

my $Win32P = unpack('L ', substr($potentialp,
$OSoff{EP_Win32P}, 4));

my $CommitIjim = unpack
$OSoff{EP_CommitChargeLimit}, 4));

my $CommitPeak = unpack
$OSoff{EP_CommitChargePeak}, 4));

my $WorkingSetSize = unpack
$OSoff{EP_WorkingSetSize}, 4));

my $WorkingSetMin = unpack
$OSoff{EP_WorkingSetMin}, 4));

my $WorkingSetMax = unpack('L ', substr($potentialp,
$OSoff{EP_WorkingSetMax}, 4));

my $AccessToken = unpack(1L ', substr($potentialp,
$OSoff{EP_AccessToken}, 4));

#these are all essentially bit masks
my $ATPDI = $AccessToken / 0x4 0 0 00 0;
my $ATPTI = $AccessToken % 0x400000 / 0x1000;
my $AT0FF = $AccessToken % 0x1000;
my $PTE1_ID = $PageDirectoryBase + ($ATPDI * 0x4);

if($debug > 1){
printf("PTE ID 0x%0.8x\n", $PTE1_ID);

}

my $temp;
#ok, this may get hairy...we're going to re-use the filehandle

and jump around decoding the virtual memory...
#this isn't quite working yet...
sysseek(INFILE, $PTE1_ID, 0);
sysread(INFILE, $temp, 4);
my $PTE1 = unpack('V', $temp);

if($debug > 1){ printf("PTE Val 0x%0.8x %s\n", $PTE1);}
$PTE1 = $PTE1 - $PTE1 % 0x1000;
my $PTE2_ID = $PTE1 + ($ATPTI * 0x4)-1; #???

if($debug > 1){ printf("PTE2 ID 0x%0.8x %0.8x %0.8x \n",
$PTE2_ID, $PTE1, $ATPTI * 4);}

sysseek(INFILE, $PTE2_ID, 0);

92

sysread(INFILE, $temp, 4);
my $PTE2 = unpack('V', $temp);

if($debug > 1){ printf("PTE2 Val 0x%0.8x %s\n", $PTE2);}
$PTE2 = $PTE2 - $PTE2 % 0x1000;

my $PageBaseAddress = $PTE2 + $ATOFF;
if($debug > 1){ printf("Page Base Addr %x \n",

$PageBaseAddress);}
my $useroffset = $PageBaseAddress + 0x198;

if($debug > 1){ printf ("uo %0.8x\n", $useroffset);}
sysseek(INFILE, $useroffset, 0) ;
sysread(INFILE, $temp, 28);
my $uSID = SIDbin2ascii($temp);
#done with the virutal memory part
#put the current spot in the file back so we can continue on with

the search
sysseek(INFILE, $currentpos+$SIZEOF_PROC-$memSegBound, 0);
my $PPID = unpack('L ', substr($potentialp,

$OSoff{EP_PPID}, 4));
my $ImageFileName = unpack(1 a*1, substr($potentialp,

$OSoff{EP_name}, 16)) ;
my $CreateTime = &Win2Unix4($CreateTimeLo, $CreateTimeHi);
my $ExitTime= &Win2Unix4($ExitTimeLo, $ExitTimeHi);
my $ptestcount=0;

#except for IDLE, a process must have a priority
if ($Priority ==0 && $PID !=0){

$ptestcount++;
if($debug > 2){ print("Test failed: Process (other than

IDLE) has a priority of 0 (or lower). \n");}
}

#windows is supposed to have only 32 process levels...
#0 - Idle (system level), 1-15 'variable level', and 16-31 'real­

time '
if ($Priority < 0 || $Priority >-31){

$ptestcount++;
if($debug > 2){ print("Test failed: Process is out of

Priority Level Range (0-31).\n");}
}

#page directory must exist
if ($PageDirectoryBase ==0) {

$ptestcount + +,-

93

if($debug > 2){ print("Test failed: PageDirectoryBase is
NULL.\n");}

}

PDB has to start at a pageboundary.
if ($PageDirectoryBase % $pagesize != 0) {

$ptestcount++;
if($debug > 2){ print("Test failed: PageDirectoryBase not

aligned on page boundary.\n");}
}

all threads must be in the kernel virtual memory space
if ($ThreadListHeadFlink < $kernelBound) {

$ptestcount++;
if($debug > 2){ print("Test failed: ThreadList Flink does

not point into kernel space.\n");}
}if ($ThreadListHeadBlink < $kernelBound) {

$ptestcount++;
if($debug > 2){ print("Test failed: ThreadList Blink does

not point into kernel space.\n");}
}

#Quantum is typically 2 clock intervals for xp / 2000 client and
12 for server platforms

#but for a variety of reasons it's actually stored at a multiple
of 3 (so 6 and 36 respectively).

if ($Priority ==0 && $PID !=0){
$ptestcount++;
if($debug > 2){ print("Test failed: Process (other than

IDLE) has a priority of 0 (or lower).\n");} ^
}

#workinstsetmin 5 0 / 0 (system)
#workingsetmax 345 / 450 (idle)
#VADs
#access-token
#thread count - not implimented currently becuase this would

require caching all output until the end of the scan
and this machine cannot handle this...

#check for minimum required procesess (sysinternals has written
about the minimal set)

#Check for default set of processes for heuristic
#check for maximum (i know there is a max in linux, there may be

in windows...)
#Check for sync events

if ($ptestcount > 0 + $pThreshold) {
if($debug > 2){ print("Test Failed: Not a process, failed

at $ptestcount");}
sysseek(INFILE, $currentpos+$memSegBound, 0) ;
return;

}

if ($isunique) {
#various reasons the same process might exist in mupltipl

locations
#tracking occurances of the same process might be

interesting, but not done at this point
my $hash = md5($potentialp);
$uniqueprocs{$hash}++;
if ($uniqueprocs{$hash} >1) {

print("Duplicate process detected
?X?X?! 1 !!!!!! 1 !!!!!!!!!! J 1 1 !!! !ll\n
An");

if($debug > 2){ print("Duplicate process detected
■\n");}

return;
}

}if($debug > 2){ print(" SUCCESS: Good proc found!An");}
if($simple == 1){
print "D\n";
}else{

printf("\n%4d", ++$count);
if ($output o.O rHIIIIOrH { printf(" %16s"

$ImageFileName); }
ii \ . \

if($output / 10 % 10 == 1) { printf(" % 3 s " ,
> ' / if($output / 100 % 10 =- 1) { printf(" %4d

$ P I D) ; }
if($output / 1000 % 10 == 1) { printf(" %4d" ,

$Priority);}if($output / 10000 % 10 == 1) { printf(» %15d"
$WorkingSetSize*($pagesiize/1024)) ; }

if($output / 100000 % 10 == 1) { printf("
&sPrintTime($CreateTime));}if($output / 1000000 % 10 == 1) { printf("
ScsPrintTime ($ExitTime))

if($output / 10000000 % 10 == 1) { printf(" % 4 s" ,
$AcrProcs);}if($output / 100000000 % 10 == 1) { printf(" %4d" ,
$Quantum);}

if($output / 1000000000 % 10 == 1) { printf(" %4d",
$QuantumD);}

if($output / 10000000000 % 10 == 1) { printf(" 0x%0.8x",
$currentpos);}

if($output / 100000000000 % 10 == 1) { printf("
0x%0.8x", $PageDirectoryBase);}

95

if($output / 1000000000000 % 10 == 1) { printf("
0x%0.8x", $AccessToken);}

test a potiential thread
sub ThreadTest() {

if($debug > 2){ print("Found thread candidate at $currentpos
\n")/}

my $potentialt;
sysread(INFILE, $potentialt, $SIZEOF_THRD-$memSegBound,

$memSegBound);
my $CreateTimeLo = unpack('L ', substr($potentialt,

$OSoff{TH_createTime}, 4)) ;
my $CreateTimeHi = unpack('1', substr($potentialt,

$OSoff{TH_createTime}+4, 4));
= unpack('L '
= unpack('11
= unpack(1L 1
= unpack(1L 1
= unpack(1L '

substr($potentialt,
substr($potentialt,
substr($potentialt,
substr($potentialt,
substr($potentialt,

my $ExitTimeLo
$OSoff{TH_exitTime}, 4));

my $ExitTimeHi
$0Soff{TH_exitTime}+4, 4));

my $ExitStatus
$0Soff{TH_exitStatus}, 4));

my $PID
$0Soff{TH_PID}, 4));

my $TID
$0Soff{TH_PID}+4, 4))/

my $HasTerminated = unpack('L ', substr($potentialt,
$0Soff{TH_isTerminated), 4));

my $ThreadsProcess = unpack(1L ', substr($potentialt,
$0Soff{TH_tProcess}, 4));

my $StartAddress = unpack('L ', substr($potentialt,
$0Soff{TH_startAddr}, 4));

my $Win32StartAddress = unpack(1L 1, substr($potentialt,
$0Soff{TH_startAddr}+4, 4))

my $ExitTime
my $CreateTime

$CreateTimeHi);
= &Win2Unix4($ExitTimeLo, $ExitTimeHi);
= &Win2Unix4($CreateTimeLo,

my $ttestcount = 0;
if (($ThreadsProcess < $kernelBound) && ($PID != 0)) {

$ttestcount++;
if($debug > 2){ print("Test failed: ThreadsProcess not in

kernel space.\n");}
}if (($StartAddress == 0) && ($PID != 0)) {

$ttestcount++;
if($debug > 2){ print("Test failed: StartAddress is

NULL.\n");}
}

#thread priority base / current (if altered from base)

extra checks on structures
if (substr ($potentialt, 0x0e8, 4) !~ /$DH_NOTIFICATION_TIMER/)

$ttestcount++;
if($debug > 2){ print("Test failed: No NOTIFICATION_TIMER

at 0x0e8.\n")/}
}if (substr($potentialt, 0x190, 4) !~ /$DH_SEMAPHORE/) {

$ttestcount++;
if($debug > 2){ print("Test failed: No SEMAPHORE at

0x190.\n");}
}if ((substr($potentialt, 0xle8, 4) !~ /$DH_SEMAPHORE/) && ($PID

1= 0)) {
$ttestcount++;
if($debug > 2){ print("Test failed: No SEMAPHORE at

0xle8.\n");}
}

#determine if this one was a thread
if ($ttestcount > 0 + $tThreshold) {

if($debug > 2){ print(" FAILURE: bad thread,
skipping.\n");}

#..if not, move to next test location and start the whole
process over

sysseek (INFILE, $currentpos+$memSegBound, 0) ,-
return;

}

#similar to process situation
if ($isunique) {

my $hash = md5($potentialt);
$uniquethreads{$hash}++;
if ($uniquethreads{$hash} >1) {

if($debug > 2){ print("Duplicate thread found.\n");
return;

}
}

if($debug > 2) { print(" SUCCESS: Found good thread!!.\n");}
printf("\n%4d", ++$count);
if($output % 10 == 1) { printf(" %16s", " "
if($output / 10 % 10 == 1) { printf(" %3s", " T}

") ; }
if($output / 100 % 10 == 1) { printf(" %4d(%4d)",

$PID,$TID); }
if($output / 1000 % 10 == 1) { printf(" %4d", " ")
if($output / 10000 % 10 == 1) { printf(" %15d", "

") ; }
if($output / 100000 % 10 == 1) { printf(" %19s

&sPrintTime($CreateTime));}

97

if($output / 1000000 % 10 == 1) { printf(" %19s If /
&sPrintTime($ExitTime)) ;}if($output / 10000000 % 10 == 1) { printf(" %4s" , ii ii ̂ ;}if($output / 100000000 % 10 == 1) { printf(" %4d", ii ii j;}if($output / 1000000000 % 10 == 1) { printf(" %4d" , ii ii ̂ ;}if($output / 10000000000 % 10 == 1) { printf(" 0x%0.8x" ,
$currentpos);}

if($output / 100000000000 % 10 == 1) { printf("
0x%0.8x", " ");}

if($output / 1000000000000 % 10 == 1) { printf (11
0x%0.8x", " ");}
}

#input is binary windows SID value
#output is human readable SID
#formula is defined at
http://blogs.msdn.com/oldnewthing/archive/2004/03/15/89753.aspx
#bytes format
#1 revision (S-l)
#1 number of dashes minus 2
#6 security big endian
#4 non unique little endian
#4 domain id little endian
#4 domain id little endian
#4 user/machine id little endian
#convert a binary SID to ASCII
sub SIDbin2ascii(){

my $SID = shift;
my $sl = unpack('H* ' , substr($SID, 0, 1))
my $s2 = unpack('H* ' , substr($SID, 1, 1))
my $s3 = unpack('H* ' , substr($SID, 2, 6))
my $s4 = unpack('V' , substr($SID, 8, 4))
my $s5 = unpack(' V , substr($SID, 12, 4))
my $s6 = unpack('V', substr($SID, 16, 4))
my $s7 = unpack('V', substr($SID, 20, 4))
my $s8 = unpack('V', substr($SID, 24, 4))

return sprintf ("S-%s -%x-%s-%s-%s- %s-% s\n" ,
$s6, $s7, $ s 8) ;
}

sub usage(){
print<<END;

Procloc - Process Locator ($version)
2006 Tim Vidas
Locates processes and similar structures in an image of windows

memory obtianed either by crash dump or by dd-style acquisition.

http://blogs.msdn.com/oldnewthing/archive/2004/03/15/89753.aspx

98

usage: ./procloc.pl [-hvdOj [— t|T] [-p|P] [-f file]
-h / u : this (help) message
-t / T : show threads / do not
-p / P : show processes / do not

- v
-s
-a

-d
-f file
-o : os selection (2K, XP, XP2, 2003)

print debugging messages to stderr
file containing usersnames, one per line
verbose output

simple output
"all output"

- 0 : set output options:
1 name
2 type (p=process, t=thread)
4 pid (tid)
8 priority
16 Working Set
32 created
64 terminated
128 procs
2 56 quantum
512 quantumdelta
1024 offset
2048 PDB
4096 AccessToken

i.e. 1029 would be Name, PID, and offset
7 would be name, type, and PID

example: $0 -v -d -f file
This program is free software; you can redistribute it and/or

modify
it under the terms of the GNU General Public License as published

by
the Free Software Foundation; version 2
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-

13 01 USA
END

exit(0);
}

99

Appendix H: Sample runs

Several different options are demonstrated to show the capabilities of the script and for
paper print formatting reasons. Sample runs were created on an IBM Thinkpad R52 (1.5
Mhz Pentium 3m w/ 1 GB RAM). The type of OS the image was aquired from can be
seen in the command line, all images are 512 MB in size.

C :\>procloc.pi -h
procloc 0.6

Procloc - Process Locator (procloc 0.6)
2006 Tim Vidas
Locates processes and similar structures in an image of windows

memory obtian
ed either by crash dump or by dd-style acquisition,

usage: ./procloc.pi [-hvdO] [-t|T] [-p|P] [-f file]
-h / u this (help) message
-t / T show threads / do not
-P / P show processes / do not
-o os selection (2K, XP, XP2, 2003)
-d print debugging messages to stderr
-f file file containing usersnames, one per line
-v verbose output
-s simple output
-a "all output"
-0 set output options:

1 name
2 type
4 pid (tid)
8 priority
16 Working Set
32 created
64 terminated
128 procs
256 quantum
512 quantumdelta
1024 offset
2048 PDB
4096 AccessToken

i.e. 1029 would be Name, PID, and offset
7 would be name, type, and PID

example: C:\procloc.pl -v -d -f file

100

This program is free software; you, can redistribute it and/or
modify

it under the terms of the GNU General Public License as published
by

the Free Software Foundation; version 2
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-

13 01 USA

C :\>procloc.pi -O 31 f:\memory\2ksspO\MEMORY.DMP
user output set 31 = 00000000000000000000000000011111
Cnt Name Typ PID (TID) Pri WorkSet

1 Idle P 0 0 16
2 mdm.exe P 1428 8 12
3 mdm.exe P 780 8 1920
4 helix.exe P 1444 8 • 36
5 SOUNDMAN.EXE P 1368 8 1288
6 cmd2k.exe P 1340 8 12
7 explorer.exe P 664 8 5600
8 nspm.exe P . 980 8 8076
9 inetinfo.exe P 960 8 7412

10 userinit.exe P 228 8 12
11 NSUM.exe P 1060 8 3 312
12 dfssvc.exe P 932 8 1212
13 snmp.exe P 000000 8> 3072
14 regsvc.exe P 832 8 812
15 nvsvc32.exe P 720 8 1008
16 NSCM.exe P 692 8 2744
17 NSPMON.exe P 668 8 1424
18 mstask.exe P 852 8 1812
19 llssrv.exe P 600 9 1748
2 0 svchost.exe P 580 8 3 316
21 msdtc.exe P 476 8 3068
22 SPOOLSV.EXE P 448 8 2896
2 3 svchost.exe P 424 8 2216
24 rundll32.exe P 1292 8 12
25 lsass.exe P 244 13 4336
2 6 services.exe P 232 9 10928
2 7 winlogon.exe P 204 13 1828
28 csrss.exe P 184 13 1904
2 9 smss.exe P 160 11 344
3 0 System P 8 8 212

Found 3 0 structures in 6 m 56 s -
C :\>procloc.pi -O 97 f:\memory\2ksspO\MEMORY.DMP
user output set 97 = 00000000000000000000000001100001

101

Cnt Name
1 Idle
2 mdm.exe
3 mdm.exe
4 helix.exe
5 SOUNDMAN.EXE
6 cmd2k.exe
7 explorer.exe
8 nspm.exe
9 inetinfo.exe

10 userinit.exe
11 NSUM.exe
12 dfssvc.exe
13 snmp.exe
14 regsvc.exe
15 nvsvc32.exe
16 NSCM.exe
17 NSPMON.exe
18 mstask.exe
19 llssrv.exe
2 0 svchost.exe
21 msdtc.exe
22 SPOOLSV.EXE
2 3 svchost.exe
24 rundll32.exe
25 lsass.exe
26 services.exe
2 7 winlogon.exe
28 csrss.exe
2 9 smss.exe
3 0 System

Found 3 0 structures

Created
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006
2006

05 . 24
05 .24
05 . 24
05 .24
05 .24
05 .24
05 .24
05 .24
05 . 24
05 .24
05 .24
05 . 24
05 .24
05 . 24
05 .24
05 .24
05 .24
05 .24
05 .24
05 .24
05 .24
05 .24
05 .24
05 .24
05 .24
05 . 24
05 . 24
05.24

Terminated
23:26:42 2006.05.24 23:44:29
23:44:45
23:29:44 2006.05.24 23:44:33
23 :26:40
23:30:24 2006.05.24 23:44:26
23 :26 :38
23 :21:32
23 : 21:31
23:26:38 2006.05.24 23:27:01
23 :21:33
23:21:31
23 :21:31
2 3:21:31
23 :21:28
23 : 21:28
23 : 21:27
23 : 21:31
23:21:27
23:21:27
23:21:25
23 :21:25
23 : 21:25
23:44:38 2006.05.24 23:44:40
23:21:2 2
23:21:22
23 : 21 : 21
23 :21:20
2 3:21:17

in 6 m 32 s
C :\>procloc.pi -O 8065 f:\memory\2ksspO\MEMORY.DMP
user output set 8 065 = 0 000000 0 00 0 00 00 0 00011111100 0 00 01
Cnt Name Proc Quan QuaD Offset PDB AToken

1 Idle 1 127 0 0x00409b68 0x00030000 0xel001770
2 mdm.exe 0 36 0 0x01b07d68 0x0c2b6000 0x00000000
3 mdm.exe 0 36 0 0x01b08028 0xl0b4d000 Oxelf5c9b0
4 helix.exe 0 36 0 0x0Ibl95a8 0xl059b000 OxelfOf8b0
5 SOUNDMAN.EXE 0 36 0 0x01b22c28 OxObfC9000 Oxelf0e250
6 cmd2k.exe 0 36 0 0x01b30628 0x0c814000 0x00000000
7 explorer.exe 0 36 0 0x01ba7ae8 OxOblf4000 Oxelcfe5d0
8 nspm.exe 0 36 0 0x01be4a88 0x08b2d000 0xele80870
9 inetinfo.exe 0 36 0 0x01beb7e8 0x08b36000 0xele7ad30
10 userinit.exe 0 36 0 OxOlbfa02 8 0x0b41f000 0xele6b2b0
11 NSUM.exe 0 36 0 0x01c80948 0x08f50000 0xelcd803 0
12 dfssvc.exe 0 36 0 0x01c83c88 0x086e0000 0xele30330
13 snmp.exe 0 36 0 0x01c8ad68 0x086cc000 0xele2b6d0
14 regsvc.exe 0 36 0 0x01ce36c8 0x0840b000 0xeld63cf0
15 nvsvc32.exe 0 36 0 0x01cec028 0x07172000 0xelc5ecf0
16 NSCM.exe 0 36 0 OxOlcf6428 0x06e6d000 0xelcc6bf0
17 NSPMON.exe 0 36 0 OxOlcf94c8 0x071dd000 0xelcbfd50
18 mstask.exe 0 36 0 OxOlcfela8 0x08360000 0xeld71db0

102

19 llssrv.exe 0 36 0 0x01dlb028 0x068ba000 0xelc7b250
20 svchost.exe 0 36 0 OxOldlf888 0x06c2e000 0xelc75el0
21 msdtc.exe 0 36 0 0x01d35928 0x06626000 0xelc6c750
22 SPOOLSV.EXE 0 36 0 0x01d3a848 0x064al000 0xelc675f0
23 svchost.exe 0 36 0 0x01d46508 0x06547000 0xelc62270
24 rundll32.exe 0 36 0 0x01d5f708 0xla87b000 0x00000000
25 Isass.exe 0 36 0 0x01d6cca8 0x05b2a0 0 0 0xelcl6030
26 services.exe 0 36 0 0x01d6e948 0x05a5a000 0xelcl3 910
27 winlogon.exe 0 36 0 0x01d7eca8 0x05883000 0xelb45590
28 csrss.exe 0 36 0 0x01el402 8 0x04bfeOOO Oxelaef3b0
29 smss.exe 0 36 0 0x01e31408 0x03b3a000 0xel401el0
30 System 0 36 0 0x020449e8 0x00030000 OxelO 0177 0

Found 3 0 structures in 6 m 42 s
C:\ >procloc.pl -o XP2 -s f:\memory\xpsp2\xpsp2.dd
User specified OS set to XP2
Cnt Name Typ PID

1 Idle P 0
2 rundll32.exe P 1124
3 helix.exe P 836
4 SOUNDMAN.EXE P 1224
5 msmsgs.exe P 1340
6 alg.exe P 608
7 nvsvc32.exe P 204
8 regedit.exe P 1964
9 spoolsv.exe P 1892
10 svchost.exe P 1420
11 svchost.exe P 1552
12 svchost.exe P 1676
13 svchost.exe P 1172
14 svchost.exe P 1108
15 lsass.exe P 920
16 services.exe P 908
17 wscntfy.exe P 736

• 18 csrss.exe P 832
19 explorer.exe P 1068
20 wuauclt.exe P 1584
21 winlogon.exe P 864
22 smss.exe P 776
23 System P 4

Found 2 3 structures in 6 m 58 s
C :\>procloc.pi -t -0 1031 f:\memory\2kssp3\MEMORY.DMP
user output set 1031 = 00000000000000000000010000000111
Cnt Name Typ PID (TID) Offset

1 Idle P 0 0x0040d5e8
2 T 0 (0) 0x0040d878
3 T 936(524) 0x01712ca8
4 T 1764(336) 0x017e7da8
5 T 284 (1384) 0x0182d488
6 T 924(1572) 0x0182e988
7 T 596(1520) 0x0182fda8
8 T 1684(1768) 0x01832028
9 T 596(1748) 0x01833788

103

10 T 1684 1692) 0x018359c8
11 T 1684 1688) 0x01835da8
12 T 5 96 1704) 0x0183 9da8
13 T 596 1652) 0x0183a4e8
14 T 244 1640) 0x0183bda8
15 T 1516 1616) 0x0183e4e8
16 T 244 1628) 0x0183f0e8
17 T 244 1348) 0x01853148
18 T 1516 1636) 0x018538c8
19 T 232 1632) 0x01857848
20 T 1516 1624) 0x0185b028
21 T 1612 1608) 0x01864508
22 SOUNDMAN,EXE P 1612 0x01864 7c8
23 T 1516 1604) 0x01864a88
24 T 1516 1600) 0x01864d08
25 T 1516 1596) 0x01866428
2 6 wuauc11.exe P 284 0x0186a928
27 T 1516 1096) 0x0186b728
28 T 1516 1568) 0x0186d748
29 T 1516 1592) 0x0186e9c8
3 0 rundll32.exe P 1364 0x0186flc8
31 T 1516 1564) 0x018702e8
32 T 184 644) 0x0187e028
33 T 1672 1760) 0x01898028
34 T 1672 1756) 0x01898b28
35 T 1684 1732) 0x018a7028
36 T 1684 1696) 0x018a8da8
37 T 1516 1556) 0x018aa028
38 T 596 1664) 0x018ab028
39 T 284 1392) 0x018b0988
40 T 1684 1680) 0x018b4028
41 T 1516 480) 0x018b5028
42 T 496 1588) 0x018b8028
43 T 992 1668) 0x018b83a8
44 T 948 280) 0x018b8628
45 T 436 880) 0x018b88a8
46 T 704 372) 0x018b8da8
4 7 dd.exe P 1464 0x018ba028
48 T 1764 1776) 0x018cfda8
4 9 helix.exe P 1764 0x018d0028
50 T 8 1228) 0x018dlaa8

<trimmed for brevity>
351 SERVICES.EXE P 232 OxOlacfac8
352 T 180 (220) 0x01ad0808
353 T 184 (208) 0x0lad2028
354 T 184 (212) 0x01ad2a48
355 T 184 (2U4) UxUladc2 88
356 T 180 (148) OxOladf8e8
357 WINLOGON.EXE P 180 OxOladfb68
358 T 184 (200) 0x01ae0308
359 T 184 (196) 0x01ae0608
360 T 184 (192) 0x01ae0a28

104

-361 T 184 (188) 0x01ae22e8
362 CSRSS.EXE P 184 0x01b960c8
363 T 160 (176) 0x01b96548
364 T 160 (172) 0x01b96888
365 T 160 (112) 0x01b96b28
366 SMSS.EXE P 160 0x01bb3328
367 T 8 (152) 0x01bb36e8
368 T 8 (132) 0x0lbb4028
369 T 8 (144) 0x01bb4b2 8
370 T 8 (140) 0x01bb4da8
371 T 8 (136) 0x01bb7 0 88
372 T 160 (156) 0x01bba028
373 T 160 (168) 0x01bba9c8
374 T 160 (164) 0x01bbac68
375 T 8 (128) 0x01c0ble8
376 T 8 (124) 0x01cl8 0e8
377 T 8 (120) 0x01cl836 8
378 T 8 (108) OxOlfel408
379 T 8 (104) OxOlfe7588
380 T 8 (100) 0x02035028
381 T 8 (92) 0x02 03b02 8
382 T 8 (76) 0x0203f028
383 T 8 (88) 0x0203f328
384 T 8 (84) 0x0203fb28
385 T 8 (80) 0x0203fda8
386 T 8 (72) 0x02 0402e8
387 T 8 (60) 0x02041028
388 T 8 (68) 0x02041b28
389 T 8 (64) 0x02041da8
390 T 8 (36) 0x02042028
391 T 8 (56) 0x02 042 3a8
392 T 8 (52) 0x02042628
393 T 8 (48) 0x020428a8
3 94 T 8 (44) 0x02042b28
3 95 T 8 (40) 0x02042da8
396 T 8 (12) 0x02043028
397 T 8 (32) 0x020433a8
398 T 8 (28) 0x02043628
399 T 8 (24) 0x020438a8
400 T 8 (20) 0x02043b28
401 T 8 (16) 0x02043da8
402 T 8 (4) 0x02044768
403 System P 8 0x020449e8
404 T 8 (96) 0x020596e8
Found 4 04 structures in 6 m 26 s

C:\>

105

Appendix I: Linux Acquisition

Kcore exists in the /proc filesystem, it is essentially a virtual view of physical RAM.

Kcore might be the preferred way to image memory in Linux because shows memory in a

structured way: ELF format. Supposedly kcore is only 4kb larger than Physical RAM,

experiments done as part of this project show that there may actually be larger difference

in file size. Different distributions implement kcore differently and Kernel Development

lists have even long considered removing kcore altogether (/proc/kcore May Be Going

Away, 2003), so it’s long term reliability may be questionable.

You can enumerate the file type of kcore with the file command, and creating an image

of RAM is as simple as using the dd command:

$>file /proc/kcore
/proc/kcore: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV),
SVR4-style, SVR4-style, from 'vmlinux'
$>dccidd < /proc/kcore | <something to receive the memory - netcat?>

Redhat (and possibly other distributions) does not support reading kcore. To re-enable

this feature, you have to uncomment the lines that limits its usage - basically restoring

the functionality that exists in the non-Redhat-modified Linux kernel.

Savekore is available in unix and variants like Solaris, but not typically in Linux. To

approximate some of the functionality presented earlier for Windows, there are several

additions or modifications that can be performed to Linux systems. There is an Open

106

Source (sourceforge) project called Linux Kernel Crash Dump (LKCD), that requires

kernel patching (pre-incident). Mission Critical Linux has a patch called MCore. Redhat

Advanced Server 2.1+ (Enterprise Level - pay product) offers some tools like Netdump

and Crash. Rational and implementation notes are available online (Johnson, 2002).

/dev/mem and /dev/kmem may very well be implemented in a more standard way, but are

also more “dangerous” to use as they are essentially devices. Similar to kcore, Redhat

(and possibly others) restricts access, basically only allowing access to the first 1 MB.

Analysis

The methodology is similar to the proof on concept for Windows RAM dumps, with

Linux the EPROCESS similar structure is task_struct, task structs are doubly linked,

pages are the same: 4096 bytes, and there is a kernel / user bound (though the bound is

1GB / 3 GB, so similar to the /3GB Windows boot switch so the boundary would be

OxcOOOOOOO instead of 0x80000000).

Gdb is an Open Source debugger provided with many distributions of Linux. Symbols

are available in Linux and, just as in windows, can aide in debugging binaries by helping

associate function names, variable names and similar. Unlike Windows, in Linux

symbols are a plain text file typically called System.map found in /boot/.

33 If stability is not an issue (ie you are about to ‘pull the plug’ anyway) an attempt at copying /dev/mem
should be attempted. All tests, albeit not extensive, performed as research for this project showed no
stability issues with using /dev/mem as input for dd.

107

The init task symbol can be found with:
$> cat /boot/System.map | grep in ittask
c0479b2c r ksymtab init task
c047ef28 r kstrtab init task
c048cba0 D init task

The line of interest it is the one with the “D”

Similar to how the offsets for parts of an EFROCESS structure were located for windows

using the structure output from a windows debugger (Appendixes B-D), the Linux kernel

source can be inspected to located similar part of the process structure in Linux.

The template for a task structure can be found in sched.h(about 1100 lines of code):

$>cat /usr/src/linux-KERNELVERSION/include/sched.h

A sample task struct listing from a 2.6.10 kernel can be found at the end of this

Appendix. It is easy to see the similarity to the EPROCESS structure (related to the goals

of this paper anyway).

Converting a Virtual Address to a Physical Address actually requires more steps than in

Windows. Each task has a memory map struct, keeping track of virtual memory area ,

structs. In Virtual Memory, there is a virtual file which has a pointer to a dentry which

has a pointer to an inode which has a mapping into address space. This address space

actually tracks page descriptors.

108

Research done during the creation of this text revealed that Mariusz Burdach actually has

already created documentation similar to what has been proposed for Linux. Rather than

replicate his work here, a citation is given to his work and it is up to the reader to study

his work at their leisure. (Burdach, 2004).

109

Linux Task Structure (from sched.h kernel 2.6.10)

struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
struct thread_info *thread_info;
atomic_t usage;
unsigned long flags; /* per process flags, defined below */
unsigned long ptrace;

int lock_depth; ' /* Lock depth */

int prio, static_prio;
struct list_head run_list;
prio_array_t *array,-

unsigned long sleep_avg;
long interactive_credit;
unsigned long long timestamp, last_ran;
int activated;

unsigned long policy;
cpumask_t cpus_allowed;
unsigned int time_slice, first_time_slice;

#ifdef CONFIG_SCHEDSTATS
struct sched_info sched_info;

#endif

struct list_head tasks;
/ *
* ptrace_list/ptrace_children forms the list of my children
* that were stolen by a ptracer.
* /

struct list_head ptrace_children;
struct list_head ptrace_list;

struct mm_struct *mm, *active_mm;

/* task state */
struct linux_binfmt *binfmt;
long exit_state;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
/ * ? ? ? * /
unsigned long personality;
unsigned did_exec:1;
pid_t pid;
pid_t tgid;
/ *
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->parent->pid)
* /

struct task_struct *real_parent; /* real parent process (when being debugged) */
struct task_struct *parent; /* parent process */
/ *
* children/sibling forms the list of my children plus the
* tasks I'm ptracing.
* /

struct list_head children; /* list of my children *,/
struct list_head sibling; /* linkage in my parent's children list */
struct task_struct *group_leader; /* threadgroup leader */

/* PID/PID hash table linkage. */

110

struct pid pids[PIDTYPE_MAX];

wait_queue_head_t wait_chldexit; /* for wait4 () */
struct completion *vfork_done; /* for vfork() */
int user *set_child_tid; /* CLONE_CHILD_SETTID */
int user *clear_child_tid; /* CL0NE_CHILD_CLEARTID */

unsigned long rt_priority;
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it__prof_incr, it_virt_incr;
struct timer_list real_timer;
unsigned long utime, stime;
unsigned long nvcsw, nivcsw; /* context switch counts */
struct timespec start_time;

/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-
specific */

unsigned long min_flt, maj_flt;
/* process credentials */

uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
struct group_info *group_info;
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
unsigned keep_capabilities: 1,-
struct user_struct *user;

#ifdef CONFIG_KEYS
struct key *session_keyring; /* keyring inherited over fork */
struct key *process_keyring; /* keyring private to this process {CLONE_THREAD) */
struct key *thread_keyring; /* keyring private to this thread */

#endif
unsigned short used_math;
char comm[16];

/* file system info */
int link_count, total_link_count;

/* ipc stuff */
struct sysv_sem sysvsem;

/* CPU-specific state of this task */
struct thread_struct thread;

/* filesystem information */
struct fs_struct *fs;

/* open file information */
struct files_struct *files;

/* namespace */
struct namespace *namespace;

/* signal handlers */
struct signal_struct *signal;
struct sighand_struct *sighand;

sigset_t blocked, real_blocked;
struct sigpending pending;

unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data
sigset_t *notifier__mask;

void *security;
struct audit_context *audit_context;

/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;

/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
spinlock_t alloc_lock;

/* Protection of proc_dentry: nesting proc_lock, dcache_lock,
write_lock_irq(&tasklist_lock); */

spinlock_t proc_lock;

I l l

/* context-switch lock */
spinlock_t switch_lock;

/* journalling filesystem info */
void *journal_info;

/* VM state */
struct reclaim_state *reclaim_state;

struct dentry *proc_dentry
struct backing_dev_info *backing_dev_info;

struct io_context *io_context;

unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */

/ *
* current io wait handle: wait queue entry to use for io waits
* If this thread is processing aio, this points at the waitqueue
* inside the currently handled kiocb. It may be NULL (i.e. default
* to a stack based synchronous wait) if its doing sync 10.
* /

wait_queue_t *io_wait;
#ifdef CONFIG_NUMA

struct mempolicy *mempolicy;
short il_next; /* could be shared with used_math */

#endif
} ;

112

Appendix J: GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose'authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software,

and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain

that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original,
so

113

that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of.any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any

114

part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print dr display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software

interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you

115

received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any-
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code,' even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by

116

all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted by the
Free
Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

117

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY.WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

118

Cited Links:

.NET Framework FILETIME specification
http: //ms dn2 .micro soft, com/ en-
s/library/s vstem.runtime.interopservices.comtypes. filetime, aspx

/proc/kcore May Be Going Away. August, 2003.
http://www.kemel-traffic.org/kemel-traffic/kt200309Q8 229,html#5

AlphaServer Comparison Chart, December 1996
http ://hl 8002. www 1 .hp.com/alphaserver/archive/comp/dec96.html

Forensic Analysis of a Linux System. Mariusz Burdach. April 4, 2004.
http ://www. securitvfocus .com/infocus/1773

Forensic. Merriam-Webster Online, http://m-w.com/dictionary/forensics

Johnson, Micheal. RedHat, Inc’s Network Console and Crash Dump Facility. 2002.
http: //www.redhat .com/ support/ wpapers/redhat/netdump/

KB 156280: How to use DumpChk to check a memory dump file
http://support.microsoft.com/kb/156280/

KB 244139: Windows feature allows a Memory.mp file to be generated with the
keyboard http://support.microsoft.com/kb/244139/en-us

KB 254649: Overview of memory dump file options for Windows Server 2003, XP and
2000 http://support.microsoft.com/kb/254649/

KB 274598: Complete memory dumps are not available on computers that have 2 or
more gigabytes of RAM
http://support.microsoft.com/kb/274598/

KB 307973: How to configure failure and recovery options in windows
http://support.microsoft.com/kb/307973/

KB 555223: RAM, Virtual Memory, Pagefile and all that stuff
http://support.microsoft.eom/default.aspx7scidHdxen-us:555223

Kurt Dillard. Rootkit Battle: Rootkit Revealer vs Hacker Defender. Aug 3, 2005.
http://searchwindowssecuritv.techtarget.com/columnItemAX294698,sid45 gcill 12754.00
.html

Michael Marxmeir, Database Performance Tuning. 2001.
http://www.hp-eloquence.com/support/misc/dbtuning.html

http://www.kemel-traffic.org/kemel-traffic/kt200309Q8
http://m-w.com/dictionary/forensics
http://www.redhat
http://support.microsoft.com/kb/156280/
http://support.microsoft.com/kb/244139/en-us
http://support.microsoft.com/kb/254649/
http://support.microsoft.com/kb/274598/
http://support.microsoft.com/kb/307973/
http://support.microsoft.eom/default.aspx7scidHdxen-us:555223
http://searchwindowssecuritv.techtarget.com/columnItemAX294698,sid45
http://www.hp-eloquence.com/support/misc/dbtuning.html

119

Rootkit Levels of Infection and Mitigation
http://searchopensource.techtarget.com/tip/L289483,sid39 gcill49598.00.html

Six tips for efficient memory usage
http://www.microsoft.com/whdc/driver/perform/mem-alloc.mspx

Strings man page. (Fedora Core 4, 2006).

Deleting May be easy, but your hard drive still tells all. Eric Taub. Apr 5, 2006. New
York Times.
http://www.nvtimes.com/2006/04/05/technology/techspecial4/05forensic.html?ex= 11524
17600&en=089d847c6b92aa27&ei=5070

Why you cant tread a FILETIME as an int64.
blogs.msdn.com/oldnewthing/archive/2004/08/25/22Q195.aspx

Windows Server 20003 Service Pack 1 Changes
http://technet2.microsoft.com/WindowsServer/f/?en/Library/c8f4d2ac-29b8-4546-8db5-
5fa22f0083791033 .mspx

Windows Server 2003 Service Pack 1 Changes: \Device\PysicalMemory Object
http://technet2.microsoft.com/WindowsServer/en/Librarv/e0f862a3-cfl6-4a48-bea5-
f2004d 12ce3 51033 .mspx?mfr=true

http://searchopensource.techtarget.com/tip/L289483,sid39
http://www.microsoft.com/whdc/driver/perform/mem-alloc.mspx
http://www.nvtimes.com/2006/04/05/technology/techspecial4/05forensic.html?ex=
http://technet2.microsoft.com/WindowsServer/f/?en/Library/c8f4d2ac-29b8-4546-8db5-
http://technet2.microsoft.com/WindowsServer/en/Librarv/e0f862a3-cfl6-4a48-bea5-

120

Cited Works

Andrew Tanenbaum. Operating Systems: Design and Implementation Second Edition.
1997.

Bill Nelson, Amelia Phillips, Frank Enflnger, Chris Steuart. Guide to Computer
Forensics and Investigations. Thomson Course Technology. 2004.

Brian Carrier, Joe Grand. A Hardware-Based Memory Acquisition Procedure for Digital
Investigations. Digital Investigation Journal. February 2004.

Bruce Middleton. Cyber Crime Investigator's Field Guide, Second Edition. Auerbach.
April 2005.

Caloyannides, Michael A. Computer Forensics and Privacy. Artech House, Inc. 2001.

Corbato, F. J., and V. A. Vyssotsky, Introduction and overview of the Multics system,
AFIPS ConfProc 27, 185-196, 1965.

D. Brezinski, T. Killalea. RFC 3227: Guidelines for Evidence Collection and Archiving.
.February 2002.

Dan Farmer, Wietse Venema. Forensic Discovery. Addison Wesley Professional 2005.

Debra Little, John Shinder, Ed Tittel. Scene of the Cybercrime: Computer Forensics
Handbook. Syngress. September 2002 .

Digital Forensics Research Workshop. “A Road Map for Digital Forensics Research”
2001. www.dfrws.org

George Mohay, Alison Anderson, Byron Collie, Olivier de Vel, and Rodney D.
McKemmish. Computer and Intrusion Forensics. Artech House. 2003.

Greg Hoglund, James Butler. Rootkits. Addison Wesley. 2006.

Grugq. Remote Execution of Binary without creating a file on disk. Phrack #62.

Information and Communications Security: 6th International Conference, ICICS 2004,
Malaga, Spain, October 27-29, 2004. Proceedings.

Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, Mendel Rosenblum.
Understanding Data Lifetime via Whole System Simulation. 2004.

http://www.dfrws.org

121

Jim Chow, Ben Pfaff, Tal Garfmkel, Mendel Rosenblum. Shredding Your Garbage:
Reducing Data Lifetime Through Secure Deallocation. 14th Usenix Security Symposium.
2005.

John L. Hennessy, David A Patterson. Computer Architecture A Quantitative Approach.
Third Edition. Morgan Kaufmann, 2003.

John R. Vacca. Computer Forensics: Computer Crime Scene Investigation. Charles
River Media. 2002.

Joseph Grand. Memory Imaging and Forensic Analysis of Palm OS Devices. At Stake.
2002.

Lynn, Michael. Blackhat Breifings (unedited): USA 2005. Las Vegas, NV. July 27-28,
2005. Proceedings.

Mandia, Kevin, Prosise, Chris. Incident Response & Computer Forensics. McGraw
Hill. 2003.

Marc Rodgers. West Coast Security Forum 2004. , Purdue. 2004.

Mark E Russinovich, David A. Solomon. Microsoft Windows Internals. Fourth Edition.
Microsoft Press. 2005.

Michael A. Caloyannides. Privacy Protection and Computer Forensics, Second Edition.
Artech House. 2004.

Microsoft Corp. Debugging Tools for Windows help file. Microsoft Corp. January 6,
2006.

Mike Schroeder and Jerry Saltzer "A hardware architecture for implementing protection
rings" at the Third ACM Symposium on Operating System Principles in Palo Alto, CA, in
October 1971.

Pluf and Ripe. Advanced Anti Forensics — SELF. Phrack #63.

Reith, Carr, Gunsch. An Examination of Digital Forensic Models. International Journal
of Digital Evidence. Vol 1, Issue 3. Fall 2002.

Richard Nolan, Colin O’Sullivan, Jake Branson, Cal Waits. Carnegie Mellon University.
March 2005.

Simon Baker, Patrick Green, Thomas Meyer, Garaidh Cochrane. Checking Microsoft
Windows for Signs of Compromise. Ver 1.3.4. Oct 28, 2005.

122

United States Secret Service. Best Practices for Seizing Electronic Evidence. Second
Edition. 2002.

Wayne Jansen, Rick Ayers. Guidelines on PDA Forensics. Recommendations of the
National Institute of Standards and Technology. US Department of Commerce Special
Publication 800-72. November 2004.

Willis Ware. Security Controls for Computer Systems. Department of Defense.
February 11, 1970.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	7-1-2006

	Acquisition and Forensic Analysis of Volatile Data Stores
	Timothy Vidas
	Recommended Citation

	tmp.1510761614.pdf.rUAzv

