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GENOMIC PREDICTOR OF RESIDUAL RISK OF RECURRENCE AFTER
CHEMOTHERAPY IN HIGH RISK ESTROGEN RECEPTOR POSITIVE BREAST
CANCERS.

Sabrina Khan, Christos Hatzis and Lajos Pusztai. Section of Medical Oncology,
Department of Internal Medicine, Yale University, School of Medicine, New Haven, CT.

ABSTRACT

Gene signature based prognostic tests can help improve adjuvant treatment decisions in
early stage estrogen receptor positive (ER) breast cancers. Available tests in the clinic include
Oncotype DX recurrence score (RS), PAM50 molecular class, and the Genomic Grade Index
(GGI), which can identify high risk tumors that are likely to recur and have less favorable
survival when treated with surgery and endocrine therapy alone. These high risk patients are
recommended to also receive chemotherapy to improve their chance of survival. A subset of these
“high risk” tumors is highly sensitive to adjuvant chemotherapy due to their high proliferation
rates, and will be cured. We hypothesized that a new gene signature test ACES, which predicts
treatment sensitivity to both endocrine therapy and chemotherapy and identifies tumors with
excellent distant relapse free survival (RFS), could further stratify the currently “high risk” ER
positive cancers into two groups: ACES predicted low and high residual risk after chemotherapy.

This is a retrospective cohort study, and samples size and power are limited by the
number of available specimens. Three independent ER positive breast cancer cohorts — ACES
Discovery Cohort (n=176), ACES Validation Cohort 1 (n=123), and a new Validation Cohort 2
(n=127) — were used to assess the ability of ACES to identify patients who were initially
considered to be high risk for recurrence (by high RS, Luminal B subtype by PAM50, or high
GGlI) but became low risk after receiving adjuvant chemotherapy. The ACES algorithm was
applied to the baseline high risk groups and cases were re-stratified into ACES predicted
treatment sensitive and treatment insensitive groups. RFS and absolute risk reduction (ARR) of
relapse were the main outcome measures compared between the ACES stratified groups.

In all three cohorts, cases that were high risk at baseline but predicted to be treatment
sensitive by ACES showed a trend toward improved RFS. Cases with high risk by Oncotype DX
high RS showed significant difference in RFS by ACES risk strata (p=0.048 and p=0.033) in
validation cohort 1 and combined validation cohorts. Among these high RS tumors, n=11-13 (28-
35%) were predicted to be treatment sensitive, which had RFS of 92-100% (95% CI: 54-100%) at
4-years. The ARR at 4-years was 0-41% (95% CI: -21-60%) and increased by 10-years to 19%
(95% ClI: 3-30%) favoring the treatment sensitive groups. Cases with high GGI in the discovery
cohort also showed significant differences in RFS by ACES risk strata (p=0.004); the 45 (50%)
high GGI cases who were predicted to be treatment sensitive had a RFS of 81% (95% CI: 60-
92%) with ARR of 23% (95% CI: -2-51%). For these high RS and high GGI tumors, ACES
remained an independent predictor of RFS in multivariate Cox regression analysis including age,
T-stage, and lymph node involvement at diagnosis (p=0.072 and 0.017 respectively). Among
Luminal B cancers, ACES was significantly associated with RFS only in the multivariate model
of both validation cohorts (p=0 and 0.013).

This analysis provides evidence to suggest that ACES may further risk stratify high RS
and high GGI tumors into low and high residual risk groups after adjuvant chemotherapy and
endocrine therapy. The clinical relevance is that if ACES is adequately validated: (i) patients with
low residual risk by ACES can be safely treated with current adjuvant chemotherapies and
reassured, (ii) patients with high residual risk despite best current adjuvant chemotherapies could
be encouraged to enter clinical trials that aim to improve the efficacy of current adjuvant
therapies. Before ACES can be adopted for routine use it would require validation in an
adequately powered prospective trial, and the results presented in this thesis suggest that future
validation of the ACES algorithm as residual risk prediction tool should be pursued.



INTRODUCTION

Breast cancer represents at least three clinically important and molecularly
distinct disease subtypes. Estrogen Receptor (ER) positive breast cancers express
estrogen receptors and their growth is stimulated by estrogen. ER (and progesterone
receptor [PR]) negative cancers are not dependent on estrogen stimulation and have
distinct molecular features and epidemiologic risk factors. The third subtype is the
Human Epidermal Growth Factor Receptor-2 (HER?2) positive breast cancer, which
overexpress HER2 due to gene amplification. HER2 positive breast cancers may be
subdivided into HER2 positive/ER positive and HER2 positive/ER negative subtypes.
Breast cancers that do not express ER or PR, and are HER2 negative, and are called triple
negative or basal-like (a molecular subtype). The HER2 negative/ER positive cancers are
comprised of two major molecular subtypes, Luminal A and Luminal B, based on
differences in proliferation rate and gene expression profiles.

The different breast cancer subtypes differ in their clinical course (i.e. they have
different patterns of relapse and overall survival) and require different therapeutic
strategies [1-4]. Over 90% of newly diagnosed breast cancers present as clinical stage I,
Il or 111" disease (i.e. localized to the breast or lymph nodes) and are potentially curable
with multi-modality therapy [5]. Stage IV is metastatic breast cancer and is generally
considered to be an incurable disease.

The focus of this thesis is on stage I-11, ER positive/HER2 negative breast
cancers. The standard of care for these cancers includes surgery followed by adjuvant
(i.e. postoperative) anti-estrogen (also called endocrine) therapy, with or without adjuvant

chemotherapy to eradicate micro-metastatic disease. Almost all patients with ER positive

! Stage is defined according to American Joint Committee on Cancer Staging 2010



cancers receive adjuvant endocrine therapy [3] because it improves survival and causes
only modest toxicity. However, which ER positive patients should receive adjuvant
chemotherapy in addition to endocrine therapy used to be a decision making challenge.
If all ER positive breast cancer patients were treated with adjuvant chemotherapy,
about 85% would be over-treated either because they were already cured by surgery and
endocrine therapy, or because they had a chemotherapy resistant cancer [6]. To improve
patient selection for adjuvant chemotherapy, several efforts have been made to identify
patients with such a good prognosis that they would not require further adjuvant
chemotherapy. Clinico-pathological factors such as age, comorbidities, tumor size and
lymph node involvement are used to help make treatment decisions, based on estimating
the risk of recurrence, but they remain imprecise. These anatomical-pathological factors

also do not account for the cancer’s sensitivity to endocrine therapy or chemotherapy.

Background

Prognostic and Predictive Genetic Signatures

This thesis examines the ability of a multi-gene test to re-stratify initially high risk
ER positive breast cancers who receive adjuvant endocrine and chemotherapies into low
or high residual risk categories. Prognostic factors are associated with the risk of
recurrence of the primary tumor. Predictive factors are associated with the efficacy of a
drug or therapeutic regimen [7]. Pure prognostic factors include tumor size and nodal
involvement. In contrast, factors such as grade and proliferation rate of the tumor are both
prognostic and predictive. ER expression or amplification of the HER-2 gene are

primarily predictive markers for anti-estrogen and HER-2 targeted therapies,



respectively. The ACES gene signature that is the focus of this thesis includes endocrine
therapy and chemotherapy predictive as well as prognostic components.

In the past 10 years, several multi-gene prognostic tests were introduced into the
clinic. These tests categorize newly diagnosed, stage I-1l1 ER positive breast cancers into
“low risk” and *“high risk” groups at the time of diagnosis. Low risk refers to excellent
long-term survival with surgery and endocrine therapy alone. High risk indicates high
rates of recurrence of over 15% at 10 years, and less favorable survival, if treated with
only surgery and adjuvant endocrine therapy.

Multi-gene prognostic tests are treatment decision making aids, which are
independent of, and complementary to the use of clinico-pathological factors and patient
preference. Practice guidelines from groups such as the National Comprehensive Cancer
Network (NCCN), the American Society for Clinical Oncology (ASCO), and the St.
Gallen International Expert Consensus all agree on the general principle that molecular
testing can aid in risk stratification [3, 8, 9]. Multi-gene prognostic and predictive tests
are multivariate prediction models that use the semi-quantitative expression values of
multiple genes to calculate a risk score. They are particularly useful to clinicians when
clinico-pathological factors do not clearly point towards whether the patient will benefit
from the addition of chemotherapy or not [10]. Several studies have shown that adjuvant
treatment recommendations for early stage ER+ breast cancers change about 30% of the
time after molecular tests results become available, compared to decisions made entirely
based on anatomical-pathological variables [11-13].

Primary prognostic predictors that estimate prognosis in the absence of any

systemic therapy include MammaPrint (by Agendia) [11, 13, 14]. Residual-risk



predictors that estimate prognosis after receiving adjuvant endocrine therapy include
Oncotype DX (by Genomic Health) [6], PAM50 molecular subtype classifier (called
Prosigna by NanoString) [15], and the Genomic Grade Index (GGI) (called MapQuant
DX by Ipsogen/Qiagen). Each of these latter group of tests were developed and their
performance characteristics defined in clinical studies that included patients who received
adjuvant endocrine therapy, but not chemotherapy [6]. There are several other less well
standardized prognostic and predictive molecular tests as well as protein marker tests [3].
The tests are collectively referred to as first generation prognostic signatures [16, 17].
They have been independently validated [18], and largely derive their risk stratification
power from measuring the proliferation rate of cancers and ER-regulated gene expression
[19]. Three of these tests will be utilized in this thesis: Oncotype DX, GGI and PAM50.
It is important to note that we use genomic proxy-versions of these tests (i.e. the same
genes and same formulas are used as in the commercial assays but gene expression
measurements are done with a different platform, Affymetrix gene chips) and not the

actual commercially marketed versions.

Genomic Grade Index

GGl was discovered by finding genes which were differentially expressed within
histologic grade 3 tumors when compared with histologic grade 1 tumors. GGI consists
of 97 genes detected by microarray analysis, which classify a tumor into high grade or
low grade, and can also be used to reassign lower or higher grade to intermediate grade 2
cancers. The majority of genes in the GGI are associated with tumor proliferation and cell

cycle regulation. In the pivotal validation study, patients with high GGI had 55%



recurrence free survival (RFS) at 10 years with surgery alone, compared to 88% of low
GGl cases. GGI has been particularly useful in re-classifying pathologic grade 2 tumors,
since they represent intermediate risk tumors, making clinical treatment decisions
difficult without further data. High GGI classification, even among grade 2 tumors, has
been associated with a significantly higher risk of recurrence in patients treated with
adjuvant endocrine therapy [20]. GGI has also been shown to add prognostic information
to standard clinico-pathological variables (e.g. age, tumor size, nodal status) [21]. A
prospective study demonstrated that GGI is feasible to implement in clinical practice and
often changed clinical treatment decisions [22, 23]. GGI was approved by European

Community (CE) marking, with the assay conducted in non-centralized laboratories [3].

PAMS0

The PAM50 assay measures the expression of 50 cancer genes and 5 control
genes using the Nanostring mRNA quantification technology, to assign molecular
subtypes including Luminal A, Luminal B, HER2, or basal-like status [24]. PAM50
combined with a proliferation score and tumor size produces a risk of recurrence (ROR)
score that predicts risk in 10 years. PAM50 has been validated with large datasets,
including by combining data of the Austrian Breast and Colorectal Cancer Study Group 8
(ABCSG-8 clinical trial) and the Arimidex, Tamoxifen Alone or in Combination
(transATAC) study, with sample size of above 2,400 patients. Another large study
utilized data from the National Cancer institute of Canada, Clinical Trial Group (NCIC

CTG MA.12 trial). These studies showed that PAMS50 provides independent prognostic



information compared to clinical factors and routine immunohistochemistry markers, in
ER positive cancers treated with endocrine therapy [3, 25-27].

The Luminal B subtype as classified by the PAM50 assay, has significantly lower
relapse free survival compared to Luminal A and basal-like tumors, when treated with
adjuvant Tamoxifen [15]. At 8 years post-surgery, Luminal A tumors had 88% overall
survival compared with 76% for Luminal B [28]. Survival from the time of distant
relapse for Luminal B tumors is less than 2 years [4]. The assay holds European Union

clearance, and approval by the FDA as of 2013 [3].

Oncotype DX

The most well studied of the first generation prognostic signatures is Oncotype
DX, and thus it is the test most commonly used in the clinical setting [1, 8, 29]. Oncotype
DX is a 21-gene signature measured by RT-PCR to calculate a recurrence score (RS).
Five of the 21 genes are reference genes, used to normalize the expression levels of the
16 genes related to breast cancer. These 16 genes include 5 genes that are related to
proliferation, 4 that capture ER transcriptional activity, 2 represent genes on the HER2
amplicon, 2 are involved with invasion, and 3 genes have less well defined biological
roles. Oncotype DX RS classifies tumors into three risk categories; RS <18 is low risk of
recurrence, RS > 30 is high risk, and those in between are intermediate risk [2, 3].

The prognostic performance of Oncotype DX was assessed in several large
retrospective studies, where sample sizes within a single study included up to 1372
patients. Several of these studies analyzed tumor samples from completed clinical trials

including the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14 and



B-20 studies [6, 30], the Eastern Cooperative Oncology Group (ECOG) 2197 study [10],
the Kaiser Permanente study [31], and the Arimidex, Tamoxifen Alone or in
Combination (ATAC) study [32].

High RS was shown to be strongly associated with breast cancer recurrence and
death [31]. When treated with endocrine therapy alone, the 10-year distant relapse free
survival (DRFS) for high RS, lymph node negative tumors ranged from 69-75%. In
contrast, DRFS for low RS tumors ranged from 93-96%, and the difference was highly
statistically significant in all studies [6, 33, 34]. Unlike the previous two tests GGI and
PAMS50 which are sold as test Kits to be performed by molecular pathology laboratories,

Oncotype DX is a proprietary test performed in a single commercial laboratory [3].

High risk ER positive breast cancer and adjuvant chemotherapy

High risk ER positive breast cancers include the Oncotype DX high RS cases, the
Luminal B molecular subtype determined by the PAM50 test, and high GGI. It has
become clear that cancers identified as high risk by molecular tests are also the same
cancers that are often very sensitive to chemotherapy, likely due to their high
proliferation rate. High proliferation rate has been associated with greater response to
chemotherapy, which is most clearly demonstrated by neoadjuvant studies, where the
adjuvant chemotherapy is administered before surgery and tumor response can be directly
measured [35]. When treated with neoadjuvant chemotherapy, Oncotype DX high RS
cases achieve considerably greater rates of clinical complete response (CR)? and

pathologic complete response rates compared to low or intermediate RS cases [35, 36].

Z Clinical or pathologic complete response (CR or pCR) is defined as no cancer remaining in the
primary tumor bed or within regional lymph nodes after chemotherapy.



When adjuvant chemotherapy was added to the treatment of high RS patients, there was a
28% absolute reduction in distant recurrence® compared to treatment with adjuvant
endocrine therapy alone, in the NSABP B-20 trial [30]. Similar results were found in the
SWOG 8814 clinical trial — selective benefit from chemotherapy® among the high RS
patients, but not among the low RS patients [37].

In order to generate the highest level of evidence on the utility of Oncotype DX
for chemotherapy treatment decisions, two prospective randomized clinical trials are
ongoing: Trial Assigning Individualized Options for Treatment (TAILORX) [38] and Rx
for Positive Node, Endocrine Responsive Breast Cancer (RxPONDER) [39]. In the
TAILORX, low RS patients are not given chemotherapy, while high RS receive
chemotherapy. Intermediate RS patients are randomly assigned to the chemotherapy arm
or the one without chemotherapy. Over 11,000 patients have been recruited in TAILORKX.
The RxPONDER trial is similarly trying to determine the Oncotype DX RS threshold
where chemotherapy is beneficial. This trial will also be comparing the RS to the ROR of
PAMS0 [2, 3, 34, 38, 39]. The trial results will not be available for several years.

For high GGI breast cancers, this high risk status has also been associated with
increased sensitivity to a neoadjuvant chemotherapeutics (including paclitaxel,
fluorouracil, adriamycin, and cyclophosphamide). High GGI cases have demonstrated
greater rates of pathologic complete response (pCR or RCB-0) and lower residual cancer
burden (RCB-I) after neoadjuvant chemotherapy. However, when only ER positive

patients with high GGI were analyzed in the same study, survival remained poor even

% Patients in the NSABP B-20 trial who were randomized to the Tamoxifen and chemotherapy
arm received either cyclophosphamide, methotrexate and 5-fluorouracil (CMF) or methotrexate
and 5-fluorouracil (MF).

* Patients in SWOG 8814 in the Tamoxifen and chemotherapy arm received cyclophosphamide,
doxorubicin, and fluorouracil (CAF).



after chemotherapy. This may be due to low endocrine therapy sensitivity of high GGI
tumors, despite having greater sensitivity to chemotherapy [16, 40].

Luminal B breast cancers, identified by PAM50, have also been shown to have
greater responsiveness to neoadjuvant chemotherapy, compared to Luminal A tumors
[15]. Luminal B tumors are associated with high proliferation, and tend to have high
Ki-67 (a nuclear marker for cell proliferation) expression, which can be detected by
immunohistochemistry. Tumors with high Ki-67 treated with chemotherapy in addition to
endocrine therapy have shown improved disease-free survival, when compared to tumors
treated with endocrine therapy alone. In contrast, low Ki-67 tumors have not
demonstrated a change in disease free-survival when chemotherapy was added [41].

Because of the consistency of these results, high risk ER positive patients today
routinely receive chemotherapy in addition to anti-estrogen therapy to reduce their risk of
recurrence. However, what their residual risk is after completion of both endocrine and

chemotherapies remain uncertain. It is likely that many patients revert to low risk.

ACES Algorithm

The ACES multi-gene survivor predictor was developed by Hatzis, Pusztai and
colleagues to identify both ER positive and ER negative patients who have high excellent
DREFS after endocrine therapy and chemotherapy. ACES captures information about
sensitivity to endocrine therapy, sensitivity and resistance to chemotherapy and general
prognostic information in the absence of any systemic therapy. The algorithm has been
validated on an independent patient cohort. The ACES predictor is a combination of four

separate multi-gene scores (Figure 1) [42]. The first score predicts sensitivity to
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endocrine therapy, which is based on the Sensitivity to Endocrine Therapy (SET) Index.
The SET Index, also discovered by Pusztai, Hatzis and colleagues, is a previously
published 165-gene set associated with ER, which can predict survival after endocrine
therapy or after combined endocrine therapy and chemotherapy [43]. If a tumor is
determined to have an intermediate or high SET index, the ACES algorithm will classify
it as treatment sensitive. If the SET index is low, then a second gene signature score
which predicts resistance to chemotherapy is utilized by ACES. If the chemotherapy
resistance score predicts extensive residual cancer (RCB-I11), which usually indicates
high risk of distant relapse or death within three years of diagnosis, the tumor is classified
as treatment insensitive. Seventy-three genes are used to predict RCB-I11 response in ER
positive cancers, and thirty-three other genes predict early relapse or death, despite
neoadjuvant chemotherapy. If there is no predicted resistance to chemotherapy by the
above criteria, the ACES algorithm analyzes if the tumor is sensitive to chemotherapy.
Sensitivity is assessed by predicting pathologic complete response (pCR) or minimal
residual cancer burden (RCB-I) after neoadjuvant chemotherapy, which is determined by
thirty-nine genes. If the tumor is predicted to be sensitive to chemotherapy at this point,
then it is considered overall treatment sensitive; otherwise, it is classified as treatment
insensitive. The algorithm is summarized in Figure 1, and the genes utilized for ER

positive cases are shown in Appendix Figure A3 [42].

Purpose of this study

The purpose of this thesis is to test the utility of a combined prognostic and

endocrine therapy and chemotherapy sensitivity multi-gene signature called ACES, to
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FIGURE 1. ACES algorithm (From Hatzis et al [42])

_Yes 1) Predicted sensitive to endocrine therapy? \
(intermediate or high SET index) ’

No
_ v
Predicted resistant to chemotherapy?

(predicted extensive residual cancer
burden [RCB-II] or predicted distant
relapse or death within 3 years of
diagnosis)

Yes

No
L

/  Predicted sensitive to chemotherapy? _
Yes /3y (predicted pathologic complete \ No
" response or minimal residual cancer '
burden [RCB-I))

LI L] . v L

Predicted treatment sensitive Predicted treatment insensitive

identify among the currently “high risk” ER positive/HERZ2 negative cancers, those
patients who become low risk after receiving adjuvant chemotherapy. The secondary risk
stratification value of ACES for ER positive cancers considered “high risk™ by other
genomic signatures (such as Oncotype DX, PAM50, and GGI), treated with both
adjuvant endocrine therapy and chemotherapy, has not been previously reported.

The ACES algorithm is not optimally suited to guide the use of adjuvant
chemotherapy because all patients in the discovery and validation cohort (used to
discover and validate the ACES algorithm) received both endocrine therapy and
chemotherapy. Hence, ACES cannot easily distinguish if endocrine therapy, or the

combination of both endocrine therapy and chemotherapy, contributes to good survival.
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In contrast, Oncotype DX, PAMS50, and GGI were developed from patients who only
received endocrine therapy, and therefore cannot inform about low or high residual risk if
chemotherapy is also used. The goal of this thesis is to determine if ACES can provide
complementary information once it has been decided that chemotherapy is indicated
based on Oncotype DX or PAM50 or the GGI score. This thesis employs ACES to
address the clinical question: “for which high risk ER positive patient is adjuvant
chemotherapy sufficient, and which patient remains high risk despite receiving adjuvant
chemotherapy”?

Furthermore, the goal of the original report that described ACES was to develop a
survival predictor for ER positive and ER negative breast cancers respectively, but no
attempts were made to further categorize ER positive patients into low and high risk
groups using existing classification methods. The discovery and validation cohorts for the
ACES predictor included ER positive patients who are of low, intermediate and high RS
classification by Oncotype DX, as well as Luminal A and Luminal B molecular subtypes
by PAMS50, and both low and high GGI. Good performance on the combined low and
high risk groups does not necessarily imply that ACES performs equally well in both

patient subsets.

Hypothesis

A subset of stage I-1l1 ER positive breast cancers that are currently categorized as
“high risk” based on poor outcome with adjuvant endocrine therapy alone, are no longer
high risk after receiving adjuvant chemotherapy. We hypothesize that a gene signature

ACES, which accounts for treatment sensitivity to both endocrine therapy and
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chemotherapy, will be able to re-stratify the currently “high risk” ER positive cancers
into two groups: ACES predicted low residual risk after adjuvant chemotherapy, and

ACES predicted high residual risk despite adjuvant chemotherapy.

The aim of this thesis is to determine if the ACES genomic predictor can re-
stratify ER positive breast cancers called “high risk” by the commonly used prognostic
assays Oncotype DX, PAM50 and GGl, into low and high residual risk categories after

treatment with adjuvant chemotherapy.

METHODS
Study Design

This is a retrospective cohort study. The ACES predictor was applied to assess
residual risk in high risk ER-positive breast cancer cases treated with systemic endocrine
and chemotherapy. ER positive cases were first assessed from the cohort used to develop
the ACES predictor (cohort 1). The next evaluation of risk stratification was done in the
independent validation cohort for ACES (cohort 2). Finally, to assess the generalizability
of the results, a blinded independent validation on a third cohort (cohort 3) was
performed. For cohort 3, gene expression data without any information on patient
outcomes was received, risk categories (by the Oncotype DX RS, PAM50 and GGI) was
assigned, predictions by ACES for the high risk subsets were calculated, and finally the
predictions were sent back to our collaborator (Dr. Thomas Karn, Goethe-University,

Frankfurt, Germany) who plotted survival curves by ACES treatment sensitivity



14

category. After this blinded independent validation, the patient outcome data was
received from cohort 3 in order to perform a pooled analysis combining cohorts 2 and 3

for improved power.

Power Analysis

Assuming a 5-year DRFS of 90% for the ACES predicted “treatment sensitive”
strata and 60% for the ACES “treatment insensitive” strata, the estimated hazard ratio

(HR) is:

HR =10g(0.9)/log(0.6) = 0.206.

The assumption was also made that 30% of the ER positive high risk cases (by high RS,
Luminal B subtype, and high GGI), would be re-assigned to ACES “treatment sensitive”
(i.e. low residual risk) category after treatment with chemotherapy. Then, the number of
events (N) required for the log-rank test to detect significance of this HR at a 0.05 one-
sided significance with 80% power, is:

N = (1.64 + 0.84)%(0.3 * 0.7 * log(0.206)%) = 12.
The overall event rate in the ER positive cases is about 15%, and would be expected to be
even higher in the high risk group. Assuming a 20% event rate at 5 years, a cohort of
N=60 would have 80% power to detect a HR of 0.206. This power estimation suggested
that if the above assumptions held true, the retrospective study with a sample size limited

by availability, would have sufficient power to detect existing significant effects.

Datasets

Three independent cohorts of ER positive/HER2 negative tumors were used.
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A. Cohort 1: Discovery Cohort: This cohort was used to discover the ACES algorithm.

310 tumor biopsies of newly diagnosed Stage 1 to I11, invasive breast cancers, obtained
prior to any systemic treatment, were collected as part of a prospective international
multicenter biomarker discovery study from 2000 to 2006. The samples were obtained by
fine-needle aspiration or core biopsy. Tumor messenger RNA (mMRNA) hybridization to
oligonucleotides was performed with Affymetrix Human Gene U133A GeneChip
microarrays. All patients received entirely neoadjuvant taxane-anthracycline
chemotherapies, and others classes of chemotherapy were added. Patients received
endocrine therapy if ER positive. The cohort included 176 ER positive cases, which were
analyzed in this thesis.

B. Cohort 2: Validation Cohort 1: This cohort was used to validate the ACES

algorithm, and also published in 2011 [42]. This is an independent cohort to the above
discovery cohort. It contains 198 HER2 negative invasive breast cancer patients, for
whom biopsy samples were obtained by fine-needle aspiration or core biopsy, from 2002
to 2009. Gene expression profiling was performed at the same laboratory as for cohort 1
using Affymetrix Human Gene U133A GeneChips. One hundred and twenty three
patients had ER positive cancers, which are included in the current analysis. All of these
patients were treated with sequential taxane and anthracycline chemotherapy, most
receiving it as neoadjuvant therapy. All patients also received endocrine therapy [42].

C. Cohort 3: Validation Cohort 2: The third cohort is independent of the previous two

cohorts. The aim for including Cohort 3 was to 1) provide an additional cohort for
independently validating that ACES can stratify high risk ER-positive/HER2-negative

breast cancers in a blinded manner from a different institution, and 2) if the previous aim
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could be demonstrated, to combine the two validation cohorts (cohort 2 and cohort 3) to
increase the power for detecting a significant stratification by ACES.

This cohort was obtained after searching the published literature and public
databases, which included the Gene Expression Omnibus (GEO), and by contacting
researchers. Dr. Thomas Karn, based in Goethe-University Frankfurt in Germany, agreed
to collaborate. In validation cohort 2, 22% of patients received AC (cyclophosphamide
and doxorubicin), 46% EC (epirubicin and cyclophosphamide), 10% CMF
(cyclophosphamide, methotrexate and 5-fluorouracil), and 22% TAC (docetaxel,
doxorubicin and cyclophosphamide)®, and all ER positive patients received endocrine
therapy. Some of the cases in this cohort are from GeparTrio, a completed multi-center
randomized trial by the German Breast Group [44].

Gene expression profiling was performed with Affymetrix U133A and 2.0 gene
chips in Dr. Karn’s laboratory. Raw intensity files (.CEL files) of 252 cases were
provided without any clinical information. Outcome data was not provided initially in
order to create a blinded validation study. ER positive/HER2 negative cases were
included in our analysis only if microarray based ER and HER2 determination matched
the clinical ER and HER2 status provided by Dr. Karn. Thus, 127 cases from the German

cohort were analyzed for this thesis.

Data Processing and Generation of Predictions

Microarray data processing: All the raw data (.CEL) files from microarrays were

processed using Bioconductor (www.bioconductor.org) and R (www.r-project.org,

® Types of anthracyclines include doxorubicin and epirubicin, and types of taxanes include docetaxel.


http://www.bioconductor.org/
http://www.r-project.org/
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version 2.10.1) and normalized using custom R programs (packages) developed and
provided by Dr. Hatzis.

Standardization of microarray dataset for cohort 3 (i.e. validation cohort 2): Since tumor

sample preparation and microarray protocols differed between cohort 3 and cohorts 1 and
2, normalization was done of the genomic indices calculated for cohort 3. Normalization
served to transform data within cohort 3, in order to make measurements between the
different microarray datasets comparable [45]. The four gene signatures or
subcomponents of the ACES algorithm (Figure 1) are each associated with a quantitative
score and a numerical threshold which defines its predicted class. The four sub-scores
were each separately normalized. Five normalization strategies were used, outlined below
(Appendix Tables A4 and A5).

e Normalization Strategy 1: Distributions (or proportions of cases) of

subcomponents of ACES were matched between validation cohort 2, and the

combined discovery and validation cohort 1.

e Normalization Strategy 2: Since the original ACES study demonstrated that T-

stage was significantly associated with DRFS within a multivariate model which
included ACES and ER status [42], normalization was done to account for
potentially prognostic variables. In normalization strategy 2, ACES
subcomponent distributions were matched within T-stage stratified cases (T1/T2
versus T3/T4 tumors) of validation cohort 2.

e Normalization Strategy 3: Similarly, ACES subcomponent distributions were

matched within lymph node stratified cases (lymph node positive versus negative)

of validation cohort 2.
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e Normalization Strategy 4. ACES subcomponent distributions were matched

within grade stratified cases (grade 1 or 2, versus grade 3).

e Normalization Strategy 5: Multivariate linear regression models were built to

adjust for differences between the microarray datasets by adjusting for imbalances
in disease spectra between validation cohort 2, and the combined development
cohort and validation cohort 1. The ACES subcomponents were the response
variables, and the predictor variables were age, T-stage, nodal status, grade and
cohort (1 and 2 versus 3). Any significant effect from cohort 3 was estimated
from the model and subtracted from the corresponding subcomponent score.

e Normalization of baseline risk classifiers: GGI values were normalized in

cohort 3 by redefining the numerical threshold that determines high versus low
GGI. Oncotype DX RS was not normalized as its microarray based thresholds
have not been validated. PAM50 was not normalized as this assay does not
involve numerical thresholds but determines molecular subtype by closest
similarity to prototypical expression patterns, or subtype centroids.

Definition of Risk Groups: “High risk” cases were defined as: high RS classification by

Oncotype DX, Luminal B molecular class by PAM50, or high grade by GGI. Standard,
previously published methods were used when applying the prognostic predictors to the
three cohorts [42]. Since the Oncotype DX is a proprietary assay of Genomic Health and
is performed by using a polymerase chain reaction (PCR) assay, a published genomic
surrogate version of the test was used. The surrogate version uses gene expression values
of the same 21 genes as in the proprietary assay, but is generated by Affymetrix gene

expression arrays [46].
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Generation of ACES predictions: The ACES algorithm was applied to each of the “high

risk”” groups (high RS, Luminal B and high GGI) within the three cohorts. For validation
cohort 2, the ACES algorithm was applied after each of the five normalization strategies
was carried out. The “high risk” cases were stratified by ACES into predicted “treatment

sensitive” and “treatment insensitive” strata.

Statistical Analysis

Assessment of Predictor Performance: Kaplan-Meier relapse-free survival (RFS) curves

were plotted of each “high risk” group by response strata predicted by ACES. RFS was
defined as the time from initial biopsy at diagnosis until relapse was diagnosed. Distant
relapse was the outcome of the discovery and validation cohort 1, while any relapse
(local or distant) was the outcome of validation cohort 2 (because distant relapse free
survival was not made available). Observations were right censored at the time of loss to
follow-up. The ACES predicted “treatment sensitive” and “treatment insensitive” strata
were compared by the log-rank test. Multivariate Cox regression models were used to
adjust the risk associated with ACES for other clinical prognostic variables: age, T-stage,
and nodal status at time of diagnosis.

The ACES predicted strata were also compared by calculating the Absolute Risk
Reduction (ARR) at 4 years (and 10 years in validation cohort 2); the associated 95%
confidence interval (Cl) was calculated under bootstrap [42]. The performance of ACES
in predicting RFS was assessed by calculating the algorithm’s sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), diagnostic positive and

negative likelihood ratios (LR+ and LR-) and Odds Ratio (which equals LR+/LR-) with
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associated 95% CI [42].

The data analysis was done using a combination of R, SAS 9.3 and Excel
2010.The statistical analysis was conducted by me under the primary supervision of Dr.
Hatzis, and also by Dr. Pusztai. As the outcome data of validation cohort 2 was initially

blinded, Dr. Karn performed the initial survival analysis of this dataset.

RESULTS

Pre-treatment characteristics

Patient demographics and tumor characteristics for the three cohorts (discovery
cohort, n=176; validation cohort 1, n=123; and validation cohort 2, n=127) are shown on
Table 1. The discovery cohort and validation cohort 1 were similar in age, grade, T-stage,
nodal status, AJCC stage and Progesterone Receptor (PR) status. Comparison of
validation cohort 2 with the combined discovery and validation cohort 1 showed a
significant difference in T-stage or tumor size (p=0.000), nodal status (p=0.001) and
pathologic grade (p=0.041) distribution. There were more T1 stage tumors, less lymph
node positive cases, and more pathologic grade 1 or 2 tumors within validation cohort 2,
but no difference was seen in age. Normalization strategies 2, 3, 4 and 5 of validation
cohort 2 adjusted for the impact of these clinical prognostic variables on RFS (Appendix

Table A4-Ab).

High risk classification by Oncotype DX, PAM50 and GGl

The GGl assigned the highest number of patients to high risk category in all three

cohorts; n=90 (51%) in the discovery cohort, n=64 (52%) in validation cohort 1, and
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Characteristic Discovery Validation Validation
Cohort Cohort 1 Cohort 2 Odds Ratiot p-valuet
N (% of 176) | N (% of 123) N (% of 127)
Age
<50 90 (51) 64 (52) 63 (50) 1.08 0.751
>50 86 (49) 59 (48) 64 (50)
Mean (SD) 51 (10) 50 (10) 51 (10)
T-stage
1 26 (15) 8(7) 43 (34) 0.25 0.000
2 94 (53) 54 (44) 69 (54)
3 28 (15) 41 (33) 9(7)
4 21 (12) 19 (15) 6 (5)
Unknown 7 (4) 1(1) 0
Nodal Status
Negative 61 (35) 46 (37) 69 (54) 0.47 0.001
Positive 113 (64) 77 (63) 57 (45)
Unknown 2(Y 0 11
AJCC stage
| 1(1) 1(1) - - -
1 103 (59) 51 (41)
1| 71 (40) 45 (37)
Unknown 1(1) 26 (21)
Grade
1 19 (11) 10 (8) 12 (9) 0.61 0.041
2 100 (57) 53 (43) 83 (65)
3 46 (26) 54 (44) 32 (25)
Unknown 11 (6) 6 (5) 0
PR status
Negative 43 (24) 30 (24) - - -
Positive 130 (74) 93 (76)
Indeterminate 3(2) 0

t Odds ratio and p-value reflects the results of Fisher’s exact test when Validation Cohort 2 is compared
with the combined Discovery Cohort and Validation Cohort 1; age, T-stage, lymph node involvement and
pathologic grade at time of diagnosis were compared between the cohorts. Abbreviations: PR, progesterone
receptor; SD, standard deviation; AJCC, American Joint Committee on Cancer

n=54 (43%) in validation cohort 2 (Table 2). The number of high RS and Luminal B

cases were smaller within each cohort, ranging from n=37 (29%) to n=39 (32%) for high

RS, and from n=18 (14%) to n=40 (23%) for Luminal B. This study was determined to

have 80% power in detecting statistical significance when it exists, for a sample size of at

least 60. Therefore, for high GGI cases, there was sufficient statistical power to detect
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Group Discovery Validation Validation Odds
Cohort Cohort 1 Cohort 2 Ratiot p-valuet
N (% of 176) | N (% of 123) | N (% of 127)
Oncotype DX
High RS 39 (22) 39 (32) 37 (29) 0.89 0.648
Intermediate RS 21 (12) 9(7) 31 (24)
Low RS 116 (66) 75 (61) 59 (46)
PAMS50
Luminal B 40 (23) 33 (27) 18 (14) 1.72 0.055
Luminal A 99 (56) 55 (45) 94 (74)
Basal 11 (6) 15 (12) 2(2)
HER2 11 (6) 9(7) 5 (4)
Normal 15 (9) 11 (9) 8 (6)
GGl
High 90 (51) 64 (52) 54 (43)% 1.21 0.349
Low 86 (49) 59 (48) 73 (57)%

t Odds ratio and p-value reflects the results of Fisher’s exact test when Validation Cohort 2 is compared

with the combined Discovery Cohort and Validation Cohort 1. $ Normalized. Abbreviations: RS,
Recurrence Score; GGI, Genomic Grade Index

the HR=0.206, but the study was underpowered for Luminal B and high RS groups due to

the lower prevalence of high risk predictions by these methods. Furthermore, in

validation cohort 2, all high risk categories contained less than 60 cases. Therefore, the
two validation cohorts were combined to increase sample size and thus the ability to
detect statistical significance when present.

There were more Luminal B cases in the discovery and validation cohort 1, than
in validation cohort 2 (p=0.055), but the distribution of high RS and high GGI cases did
not differ (Table 2). The overlap between the three high risk groups is shown on Table 3.
The majority of Luminal B tumors, 85-100%, are also classified as high GGI, within all
three cohorts. The next highest level of overlap is seen among high RS tumors which are
also high GGl, ranging from approximately 50-70% within the cohorts. The overlap
between the other high risk groups is lower, ranging from 5% to 36%. It has been

reported previously that Oncotype DX classifies most Luminal B tumors into high RS
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High Risk Group Discovery Cohort Validation Cohort 1 Validation Cohort 2
High RS N (% of High RS cases)

Luminal B 10 (26) 2 (5) 4 (11)

High GGI 28 (72) 23 (59) 18 (49)
Luminal B N (% of Luminal B cases)

High RS 10 (25) 2 (6) 4 (22)

High GGI 37 (93) 28 (85) 18 (100)
High GGl N (% of High GGl cases)

High RS 28 (31) 23 (36) 18 (33) £

Luminal B 37 (41) 28 (44) 18 (33) £

1 Normalized. Abbreviations: RS, Recurrence Score; GGI, Genomic Grade Index

categories [24]. In this dataset, about 25% of Luminal B cases are also high RS in the

discovery cohort, but only about 5-11% are so in validation cohorts.

ACES prediction of residual risk

The ACES algorithm (Figure 1) classified 22-50% of “high risk” cases (high RS,

Luminal B, and high GGI) as treatment sensitive. This proportion did not differ

significantly from the proportion of all ER positive tumors (regardless of baseline risk) in

the cohorts predicted to be ACES treatment sensitive. The Kaplan-Meier relapse free

survival plots of the high risk cases re-stratified by ACES, are shown in Figure 2. The

Kaplan-Meier survival plots of validation cohort 2, after normalization, are shown in

Appendix Figure Al. The median follow-up time was 3 years for both the discovery

cohort and validation cohort 1, and the range was from 0-7 years. For validation cohort 2,

median time of follow-up was 5 years, with range from 0.4-10 years.

In all “high risk” categories within all cohorts (discovery cohort, validation cohort
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1, and normalized validation cohort 2), the ACES predicted treatment sensitive strata
showed a trend toward improved RFS when compared to the ACES predicted treatment
insensitive groups. Within validation cohort 2, consistent trends were only seen after
normalization utilizing stratification by T-stage (normalization strategy 2; Appendix
Figure Al and Table A6); therefore, this normalized dataset was pooled with validation
cohort 1. Within Luminal B cases of the discovery cohort, the trend of ACES predicted
sensitive strata having improved RFS was only present before four years. No such time
dependence was seen in other groups.
. High RS

A significant difference in RFS was seen between the ACES predicted treatment
sensitive and insensitive strata among high RS cases of validation cohort 1 and the
combined validation cohorts (p=0.048 and p=0.033). High RS cases in the discovery
cohort had a corresponding log-rank test p-value of 0.108. There were 0-1 (0-8%)
relapses within the ACES predicted treatment sensitive groups, and 5-7 (21-28%)
relapses in the predicted treatment insensitive groups of all cohorts (Table 4). The 4-year
RFS in the validation cohorts was 92-100% (95% CI: 54-100%) in the ACES predicted
sensitive strata of the validation cohorts. In validation cohort 1, the 4-year RFS in the
predicted treatment insensitive strata was 64 (95% CI: 36-82%) in the predicted
insensitive strata, with an ARR in relapse at 4 years of 41% (95% CI: 14-60%) favoring
the predicted treatment sensitive strata. The ARR at 4-year for validation cohort 2 was
0% (95% CI: -21-17%), but by 10 years, the ARR rose to 19% (95% CI: 3-30%).
J Luminal B

Statistically significant differences in RFS were not seen between the ACES
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Figure 2. Kaplan Meier Estimates of Relapse Free Survival
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Figure 2 (continued). Kaplan Meier Estimates of Relapse Free Survival
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predicted treatment sensitive and insensitive strata among Luminal B cases. The ARR at
4 years ranged from 0-17% (95% CI: 1-38%) in the validation cohorts, and was -5%
(95% CI: -25-10%) in the discovery cohort. In the discovery cohort, although lower risk
of relapse was seen before 4 years in the ACES predicted treatment sensitive group, this
trend did not continue after this time. In both validation cohorts, there were 0-1 (0-17%)
relapses in the treatment sensitive strata, and 3-4 (16-25%) relapses in the treatment
insensitive strata. The RFS at 4-years for the treatment sensitive groups was 100% (95%
ClI: 100-100%) in both validation cohorts, and ranged from 80-83% (95% CI: 39-95%) in
the predicted treatment insensitive groups. The ARR at 10-years was 20%° in validation
cohort 2, rising from 0% (9 to 36%) at 4-years.
. High GGl

A significant difference in RFS was seen between the ACES predicted strata
within high GGI cases of the discovery cohort (p=0.004). Such a significant difference
was not found in validation cohort 1 (p=0.113), but the 14 high GGI cases predicted to be
treatment sensitive in this cohort did not experience any relapses while 10 (20%) had a
relapse in the predicted treatment insensitive strata. The ARR at 4-years was 25% (95%
Cl: 18-38%) in validation cohort 1. The ARR at 4-years was 0% (95% ClI: -24-23%) in

validation cohort 2, but the ARR at 10-years increased to 16%’.

Clinical Factors associated with Relapse Free Survival

Clinical factors associated with relapse free survival were explored with

multivariate Cox Proportional Hazards regression models (Appendix Table Al). The

®95% Confidence Interval could not be obtained under bootstrap.
7'95% Confidence Interval could not be obtained under bootstrap



TABLE 4. Survival Analysis

High Risk Group Cohort 1 Cohort 2 Cohort 3t
High RS
ACES Rx Insensitive
No. 25 28 24
No. Relapses (Event Rate, %) 7 (28) 7 (25) 5(21)
No. Censored 18 21 19
4-yr RFS (95% CI) 64 (35 to 83) 64 (36 to 82) 92 (71 to 98)
10-yr RFS (95% CI) - - 73 (45 to 88)
ACES Rx Sensitive
No. 14 11 13
No. Relapses (Event Rate, %) 1(7) 0 1(8)
No. Censored 13 11 12

4-yr RFS (95% CI)
10-yr RFS (95% CI)

93 (59 to 99)

29 (3 to 46)

100 (100 to 100)

41 (14-60)

92 (54 to 99)
92 (54 to 99)

ARR at 4-yr 0(-21to 17)
ARR at 10-yr - - 19 (3to 30)
p-value of Log-Rank test 0.108 0.048 0.033%
Luminal B
ACES RXx Insensitive
No. 25 25 12
No. Relapses (Event Rate, %) 5 (20) 4 (16) 3 (25%)
No. Censored 20 21 9
4-yr RFS (95% CI) 76 (51 to 89) 83 (61-93) 80 (39 to 95)
10-yr RFS (95% CI) - - 60 (16 to 86)
ACES Rx Sensitive
No. 15 8 6
No. Relapses (Event Rate, %) 3 (20) 0 1(17%)
No. Censored 12 8 5

4-yr RFS (95% Cl)
10-yr RFS (95% CI)

71 (34 10 90)

-5 (-25 to 10)

100 (100 to 100)

100 (100 to 100)
80 (20 to 97)

ARR at 4-yr 17 (0.8 to 38) 0 (9 to 36)
ARR at 10-yr - - 20 (*)
p-value of Log-Rank test 0.612 0.274 0.363%
High GGI
ACES Rx Insensitive
No. 45 50 32
No. Relapses (Event Rate, %) 13 (29) 10 (20) 10 (31)
No. Censored 32 40 22

4-yr RFS (95% CI)
10-yr RFS (95% CI)
ACES Rx Sensitive

58 (34 to 76)

75 (58 to 86)

80 (60 to 91)
56 (30 to 75)

No. 45 14 22
No. Relapses (Event Rate, %) 5(11) 0 5 (23)
No. Censored 40 14 17

4-yr RFS (95% Cl)
10-yr RFS (95% CI)

81 (60 to 92)

23 (-2 to 51)

100 (100 to 100)

25 (18 to 38)

80 (55 to 92)
72 (44 to 88)

ARR at 4-yr 0 (-24 t0 23)
ARR at 10-yr - - 16 (*)
p-value of Log-Rank test 0.004 0.113 0.264%

28

tp-value reflects that of the combined validation cohort 1 and 2. TNormalized using stratification of cohort
by T-stage (See Strategy 2 in Methods). *Values could not be obtained under bootstrap. Abbreviations: RS,
Recurrence Score; GGI, Genomic Grade Index; No., number; RFS, relapse-free survival; Rx, treatment; ClI,
confidence interval; ARR, absolute risk reduction (where positive number indicates lower risk in the ACES
predicted treatment sensitive strata); yr, year
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models included ACES, age, clinical T-stage and clinical nodal status at time of at
diagnosis. Age was greater than or equal to 50 (versus less than 50), T-stage was T3/T4
(versus T1/T2), node positive (versus negative) at time of diagnosis, and ACES predicted
strata was treatment sensitive (versus treatment insensitive).

Within high GGI cases, the ACES algorithm was significantly associated with
RFS in the discovery cohort and validation cohort 1 (p=0.017 and p=0 respectively).
Being predicted treatment sensitive by ACES within high GGI cases indicated a relapse
rate of about one-third that of the treatment insensitive group (HR = 0.3) in the discovery
cohort. The HR was 10” in validation cohort 1, which reflects that almost all events
(relapses) are associated with the ACES predicted treatment insensitive strata. Positive
nodal involvement was significantly associated with RFS in validation cohort 2 (HR=4,
p=0.042) among high GGI tumors.

Within high RS cases, the ACES algorithm was associated significantly with RFS
in validation cohort 1 (HR=10"°, p=0). In the combined validation cohorts, HR was 0.1
with p of 0.072. No significant effect of ACES was seen in validation cohort 2 alone, but
in this cohort, T-stage was extremely strongly associated with RFS (HR=10"°, p=0).
Lymph node involvement was also associated with RFS in validation cohort 2 and the
combined validation cohorts (HR=5-9, p=0.047 and 0.042).

In Luminal B tumors of validation cohort 1 and 2, ACES was significant with
HR=10" - 0.15 (p=0 and p=0.013). In Luminal B cases of the discovery cohort, none of
the model’s variables were significant predictors of RFS. In the initial analysis of the
ACES algorithm in 2011, a multivariate Cox regression model showed that ACES, T-

stage and ER status were associated with DRFS [42], but not lymph node involvement. In
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this analysis, nodal status was a significant predictor of RFS among both high RS and
high GGI tumors only within validation cohort 2. T-stage was a significant predictor of

RFS only within validation cohort 2.

Performance of ACES algorithm

Performance of the ACES algorithm in accurately predicting relapse free survival
at 4-years is shown in Table 5. A positive test is being predicted treatment insensitive by
ACES. The sensitivity and NPV of ACES was higher compared to the sensitivity and
positive predictive value (PPV). Sensitivity ranges from 60-100% (95% CI: 9-100%) for
all three high risk groups. In tests with high sensitivity, a negative test (ACES predicted
treatment sensitive) is associated with no event (relapse). The important performance
parameter here is the NPV, which is the probability of no relapse among those predicted
to be treatment sensitive by ACES, and ranges 71-100% (95% CI: 48-100%). Specificity
is lower ranging from 25-56% (95% CI: 13-67%). The positive predictive value (PPV) of
ACES (probability of relapse among those predicted as treatment insensitive), is low at 8-
44% (95% Cl: 0-64%).

The LR- indicates how many times more likely it is for those without relapse to
have an ACES treatment sensitive prediction, than it is for those with relapse. The LR-
was significant (less than 1) in high RS cases in the discovery cohort and validation
cohort 1, among Luminal B cases of the validation cohorts, and within high GGI cases of
validation cohort 1; LR- was 0 (95% CI: 0.01-0.01). The LR+ indicates how much more
likely it is for a patient with relapse to have an ACES predicted treatment insensitive

tumor, compared to a patient without relapse. The LR+ ranged from
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TABLE 5. Performance of the ACES algorithm in predicting Relapse Free Survival

Risk Category

Discovery Cohort
Value or % (95% CI)

Validation Cohort 1
Value or % (95% CI)

Validation Cohort 2t
Value or % (95% CI)

High RS
Sensitivity
Specificity
PPV
NPV
LR+
LR-

OR

88 (47 to 100)
42 (2510 61)
36 (6 to 56)
93 (80 to 100)
1.6 (0.65 to 2.84)
0.2 (0.01 to 0.37)
7.3 (1.8 to 229)

100 (59 to 100)
34 (19 to 53)
36 (8 to 56)

100 (100 to 100)

1.8 (0.4510 5.10)

0(0.01t0 0.01)

Infinite (45 to 510)

67 (9 to 99)
35 (20 to 54)
8 (0to 19)

92 (77 to 100)
1.0(0t03.06)
1.0 (0.01 to 3.74)
1(0 to 244)

Luminal B
Sensitivity
Specificity
PPV
NPV
LR+
LR-

OR

63 (24 to 91)
38 (21 to 56)
24 (3 10 41)
71 (48 to 100)
0.8 (0.55 to 1.32)
1.0 (0.41 0 2.5)
0.8 (0.31 to 3.34)

100 (40 to 100)
28 (13 to 47)
17 (0.3 t0 31)

100 (100 to 100)

1.3(0.71to0 2.39)

0(0.01t0 0.01)

Infinite (71 to 239)

100 (16 to 100)

38 (15 to 65)

20 (0 to 42)
100 (100 to 100)
1.7 (0.50 to 2.82)

0(0.01t0 0.01)
Infinite (50 to 282)

High GGl
Sensitivity
Specificity
PPV
NPV
LR+
LR-

OR

72 (47 t0 90)
56 (43 to 67)
42 (16 1o 60)
81 (68 to 98)
1.7 (0.63 10 4.2)
0.5 (0.1 to 1.27)
3.2(0.83 t0 23)

100 (69 to 100)
26 (15 to 40)
25 (10 to 38)

100 (100 to100)

1.3(0.46t0 1.77)

0(0.01t0 0.01)

Infinite (46 to 177)

60 (26 to 88)
41 (26 t0 57)
44 (15 to 64)
72 (53 0 97)
0.98 (0.28 t0 2.19)
0.98 (0.01 to 2.59 )
1.0 (0.22 to 22)

tNormalized using stratification of cohort by T-stage (See Strategy 2 in Methods). Abbreviations: PPV,
positive predictive value; NPV, negative predictive value; LR+, Positive Likelihood Ratio; LR-, Negative
Likelihood Ratio; OR, Odds Ratio.

0.8-2.0 (95% CI: 0-8). The associated OR (LR+/LR-) of the groups with significant LR-

was thus undefined, but indicates that there is increase in the odds of having a relapse

when predicted treatment insensitive by ACES.

The performance measures (sensitivity, specificity, PPV, NPV, LR+, LR-) of all

ER positive cases were calculated and compared to that of the high risk cases. The only

significant differences found were among Luminal B tumors of validation cohort 2. The
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NPV is greater, and the LR- is lower with a higher OR, among Luminal B cases of
validation cohort 2 compared to all ER positive cases of the cohort; in the composite ER
positive cases, NPV was 88% (95% CI: 79-98%), LR- was 0.8 (95% CI: 0.4-1.5), and OR

was 1.4 (95% CI: 0.4-2.8).

Distribution of subcomponents of ACES

The distribution of the four subcomponents of the ACES algorithm (SET Index,
predicted RCB-0/I, RCB-III and early relapse/death gene signatures shown in Figure 1)
within the high risk groups was compared to all ER positive cases in its corresponding
cohort (Appendix Table A2). One purpose of this comparison was to see if the high risk
tumors have fewer proportion of cases that are sensitive to endocrine therapy (according
to SET Index), lower rates of pathologic response (according to the RCB-0/1 or RCB-III
gene signatures) and/or greater rates of death or early relapse within 3 years of diagnosis.
No such differences were seen in Validation Cohort 2 (after normalization).

Among Luminal B tumors, the only significant difference in the distribution of
ACES subcomponents seen was in the SET Index, when compared with all ER positive
cases. SET Index classification of high/intermediate status (i.e. high/intermediate
sensitivity to endocrine therapy) alone is sufficient to classify cases as overall ACES
predicted treatment sensitive (Figure 1). There were only 0-1 (0-3%) Luminal B cases
classified as SET high/intermediate in the discovery and validation cohort 1. In contrast,
more tumors [14-45 (11-26%)] were classified as SET high/intermediate within the
composite ER positive cohorts which contain low risk tumors as well (p=0.001 and

p=0.042 in the discovery and validation cohort 1 respectively).
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Among high GGI cases, there were also fewer tumors with SET high/intermediate
classification when compared to the proportion of all ER positive cases with SET
high/intermediate status in validation cohort 1 (p=0.003). Fewer high GGI cases had
extensive residual cancer burden compared to all ER positive cases in the discovery
cohort; this pattern was not seen in validation cohort 1. No other ACES subcomponent
showed a different distribution among high GGI cases as compared with all ER positive
cases.

Within the high RS tumors, a greater proportion of cases were predicted to have
early relapse/death, than within all ER positive cases (p=0.022) in the development
cohort; such a difference was not seen in validation cohort 1. In high RS cases, no other
ACES subcomponent showed a different distribution from the composite ER positive
groups.

The high risk cases were also stratified by each of the four subcomponents of the
ACES algorithm (Appendix Figure A2). High RS tumors predicted to have high or
intermediate SET class showed trends toward improved RFS compared with tumors with
low SET class, in the development and combined validation cohorts. None of the 11
SET-high/intermediate tumors experienced relapse, while 8 -13 (19-23%) of SET-low
tumors did. High RS tumors predicted to be at high risk for early relapse/death (within 3
years of diagnosis) by this ACES subcomponent, demonstrated a trend toward lower
RFS. Stratification by RCB-0/1 and RCB-I11 predictors did not show consistent trends in
all cohorts. None of the subcomponents demonstrated statistically significant
stratification by the log-rank test.

Among Luminal B tumors, there was a significant stratification of cases by the
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early relapse/death predictor (p < 0.0001) in the discovery cohort. However, in the
combined validation cohorts, while tumors with high risk for early relapse/death had
higher probability of RFS before 6 years compared with low risk tumors, the trend was
not present after this time. Only 1-2 (3-4%) Luminal B tumors were predicted to be SET-
High/Intermediate class; hence the risk stratification power of SET Index could not be
assessed. The RCB-0/I and RCB-I11 predictors within Luminal B cases did not show
consistent trends in all cohorts.

In high GGI tumors, there was a statistically significant stratification of cases by
the SET index in the development and combined validation cohorts (p=0.0316 and
p=0.0318 respectively). High risk tumors by the early relapse/death predictor also
showed significant stratification in the development cohort (p < 0.0001), but not in the
validation cohorts. Again, the stratification by RCB-0/I or RCB-I11I predictors were not
prominent. Therefore, the dominant subcomponents that drive the stratification power of
the overall ACES algorithm in predicting RFS are likely SET Index and the early

relapse/death predictors.

Performance of gene signature for predicting pathologic response

Two of the subcomponents of the ACES algorithm predict post-chemotherapy
pathologic complete response and minimal residual cancer burden (RCB-0/1), or
extensive residual cancer burden (RCB-I1I1) (Figure 1). The performance of these two
gene signatures in predicting actual pathologic response in the high risk groups of the
discovery and validation cohort 12 are shown in Appendix Table A3. There was limited

data available for validation cohort 1. The sensitivity, specificity, PPV and NPV were

& Actual pathologic response data was not available for Validation Cohort 2 for comparison.
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variable, ranging from 13-96% (95% CI: 2-100%). The LR- was significant for High RS,
Luminal B cases and high GGI cases and the RCB-0/I predictor, and within high RS and
Luminal B cases and the RCB-III predictor [0-0.4 (95% CI: 0-0.99)]. These performance

measures were similar to that of the corresponding entire ER positive cohort.

DISCUSSION

This thesis demonstrated the potential of the ACES algorithm to classify “high
risk” (high RS, Luminal B and high GGI) invasive breast cancers into low and high
residual risk strata after treatment with chemotherapy and endocrine therapy. A
statistically significant difference in relapse free survival was found between the ACES
predicted treatment sensitive and insensitive strata, within high RS cases of validation
cohort 1 and in the combined validation cohorts (log rank test p=0.048 and p=0.033), and
within high GGI cases of the discovery cohort (p=0.004). These results were confirmed
by Cox regression analysis after adjusting for the effects of other clinical covariates age,
T-stage and nodal status at time of diagnosis (for high RS, HR=10" to 0.15, p=0 and
0.072 in validation cohort 1 and the combined validation cohorts; and for high GGl,
HR=10" to 0.29, p=0 and 0.017 in validation cohort 1 and the discovery cohort). Among
Luminal B tumors, multivariate Cox regression also showed a significant association of
ACES with RFS in both validation cohorts (HR=10"° to 0.15, p=0 and 0.013).

High GGI cases of the discovery cohort had the largest sample size and most
recurrence events compared to all other risk groups. This may be a reason why a strong
statistically significant risk re-stratification could be detected in this cohort. In other high

risk group/cohort combinations, trends showed toward lower residual risk in the ACES
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predicted treatment sensitive strata, but statistical significance was not consistently
reached. These groups may not have had the adequate number of cases needed to detect
statistical significance. In the power calculations for this thesis proposal, it was estimated
that the study would have 80% power to detect statistical significance with a sample size
of 60, and event size of at least 12. In the high GGI cases of the discovery cohort, sample
size was 90 and 18 relapses occurred, meeting the required numbers estimated in the
power analysis. The next largest sample size of 64 was within high GGI cases in the
validation cohort 1, but only 10 events occurred in this group.

A second validation cohort was therefore utilized to further assess the
performance of ACES. One general limitation of this approach is that when
heterogeneous microarray platforms are used in the analysis of tumors, the same
numerical measurements may become harder to compare across platforms. The ACES
algorithm was developed and validated using tumors assessed with Affymetrix Human
Gene U133A GeneChip microarrays. Not all cases in validation cohort 2 utilized the
U133A platforms. Small differences in sample collection and preparation protocols can
also lead to large deviations in microarray results [47]. Therefore, the use of different
microarray platforms likely introduced a bias in the performance of ACES within
validation cohort 2.

A potential solution employed by this thesis was normalization to make
measurements between the different microarrays comparable. Blinded assessment of
different normalization strategies showed that standardization of the distributions of
individual subcomponents within strata defined by T-stage appeared promising. High RS,

Luminal B, and high GGI cases within this normalized validation cohort 2 data
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demonstrated consistent trends in lower residual risk in the ACES predicted treatment
sensitive strata. Stratification by T-stage or tumor size may have been successful due to
the association of T-stage with relapse; this association was demonstrated in the initial
study which described the ACES algorithm [42]. By controlling for the effect of T-stage,
the association of ACES with relapse may have become easier to detect.

The difference in relapse between ACES predicted treatment sensitive and
insensitive strata within the normalized validation cohort 2 was not statistically
significant however; the sample size (18-54) and event size (1-10) were below the
numbers needed in this study to detect statistical significance. Therefore, the normalized
data of validation cohort 2 was pooled with validation cohort 1 to increase the size of the
study to detect statistical significance if present. Among high RS cases of the pooled
dataset, a significantly different relapse rate was found between the ACES predicted
treatment sensitive and insensitive strata (p=0.033). Among Luminal B cases, the sample
size of 51 and event size of 8 remained too small for detection of statistical significance
even after pooling the validation cohorts; the trend of these Luminal B cases toward
higher residual risk of relapse in ACES predicted treatment insensitive cases was seen.

For high GGI cases of the pooled validation cohorts, which had the highest
sample size and event rates, significance was not reached. This may be related to two
other biases in assessing the performance of ACES in validation cohort 2. One bias may
be secondary to the chemotherapeutic regimen used. The ACES algorithm has previously
been shown to predict well only in taxane-anthracycline containing regimens, and not to
be effective in cisplatin treated patients [42]. All patients in the discovery and validation

cohort 1 were uniformly treated with a combined anthracycline and taxane regimen, in
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addition to other chemotherapeutic agents. In the ER positive/HER?2 negative cases of
validation cohort 2, only 22% received combined taxane and anthracycline; 68% had an
anthracycline but not taxane, and 10% did not receive either of these two classes of
chemotherapy.

A second potential bias in assessing the performance of ACES in validation
cohort 2 is that the outcome in this cohort was any form of relapse, which includes a
local, regional or distant relapse. In the discovery and validation cohort 1, the outcome
assessed was distant relapse. The ACES algorithm was developed to predict distant
relapse, not local or regional ones [42] The molecular and pathologic drivers for local and
regional relapses are typically different and may relate predominately to local disease
control factors, such as surgical margins and radiation therapy.

Despite these biases, ACES demonstrated a relatively high NPV in predicting
RFS [71-100% (95% CI: 48-100%)]. The clinical relevance of this thesis is that upon
adequate validation of ACES: (i) patients with low residual risk by ACES can be safely
treated with current adjuvant chemotherapies and reassured about their prognosis, (ii)
patients who remain at substantial risk for relapse or death despite receiving the current
standard of care adjuvant therapies, we be advised to seek out clinical trials that aim to
improve the efficacy of current therapies. Further molecular characterization of these
truly high risk cancers could also lead to the discovery of new drug targets for the very
patient population who needs novel therapies in order to improve their survival [3, 24,
48]. Costs may be potentially saved if research trials are recruiting and enrolling only the

specific subset of patients for whom improvement in therapy is needed. Costs may also
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be reduced if patients are not being over-treated with therapeutic regimens of limited
value to them [49].

This thesis placed the ACES gene signature into the context of commonly
used clinical predictors of prognostic risk — the Oncotype DX as well as PAM50 and GGl
assays for comparison — and utilized three independent cohorts to attempt to generate
evidence. This study provides the initial evidence to suggest that the ACES algorithm
may further risk stratify high RS and high GGI tumors into those with low and high
residual risk after adjuvant chemotherapy and endocrine. For Luminal B cases, trends
consistently showed the ability to ACES to identify those patients who remain at high
risk, and ACES was significantly associated with RFS after controlling for other
prognostic clinical variables. Before ACES can be adopted for routine use it would
require independent validation in an adequately powered prospective trial and require
adoption of the technology into a certified® clinical molecular pathology laboratory with
standardized operating procedure for the test. The results presented in this thesis suggest

that future validation of the ACES algorithm as residual risk prediction tool should be

pursued.
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APPENDIX

TABLE Al. Multivariate Cox Proportional Hazards Analysis of Association with Relapse Free Survival

High Risk Discovery Cohort Validation Cohort 1 Validation Cohort 2t Validation Cohort 1 and 2t
Group
HR p- HR p- HR p- HR p-
(95% CI) value (95% CI) value (95% CI) value (95% CI) value
High RS
Age 1.45 (0.4-6.9) 0.604 0.45 (0.1-2.0) 0.298 3.38 (0.6-1.8) 0.160 1.53 (0.6-4.3) 0.415
T-stage | 2.46(0.5-11) | 0.249 2.13(0.4-1.2) 0.381 | 3E-9 (6E-10-1E-8) | 2E-16 1.46 (0.4-5.0) 0.554
Node 1.17 (0.2-6.8) 0.863 3.66 (0.5-50) 0.326 9.07 (1.1-7.6) 0.042 5.35 (1.0-28) 0.047
ACES 0.16 (0.0-2.3) 0.174 | 2E-9(6E-10-8E-9) | 2E-16 0.31 (0.0-2.6) 0.280 0.15(0.0-1.2) 0.072
Luminal B
Age 1.11(0.3-4.2) | 0.879 0.22 (0.0-2.7) 0.239 3.18 (0.3-32) 0.330 0.95 (0.2-4.1) 0.950
T-stage | 0.65(0.1-6.6) | 0.715 2.75 (0.07-9.5) 0.521 0.65 (0.1-6.5) 0.720 0.98 (0.2-5.2) 0.980
Node 1.31(0.1-18) 0.836 0.48 (0.0-1.0) 0.641 3.96 (0.5-29) 0.180 1.6 (0.3-9.9) 0.620
ACES 0.81 (0.16-4.1) 0.802 | 3E-9(2E-10-5E-8) | 2E-16 0.15 (0.0-0.7) 0.013 0.4 (0.1-2.4) 0.310
High GGl
Age 1.25 (0.5-3.4) 0.662 0.52 (0.14-1.9) 0.318 1.27 (0.5-0.6) 0.691 0.77 (0.3-1.7) 0.530
T-stage 1.55 (0.5-4.4) 0.414 4.52 (0.6-3.4) 0.143 1.33 (0.3-5.5) 0.694 0.70 (0.3-1.6) 0.396
Node 2.28 (0.6-9.3) 0.252 1.41 (0.2-8.1) 0.702 3.70 (1.0-13) 0.042 2.7 (0.94-7.8) 0.066
ACES 0.29 (0.1-0.8) | 0.017 | 4E-9 (1E-9-2E-8) | 2E-16 0.58 (0.2-2.0) 0.386 0.78 (0.3-2.1) 0.619
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Age, T-stage, Node and ACES were binary variables where 1 was defined as age greater than or equal to 50 (versus less than 50), T-stage of T3/T4 (versus
T1/T2), node positive (versus negative) at time of diagnosis, and ACES predicted treatment sensitive (versus insensitive).

tNormalized using stratification of cohort by T-stage (See Strategy 2 in Methods).

Abbreviations: HR, Hazard Ratio; RS, recurrence score; GGI, genomic grade index



TABLE A2. Distribution of sub-components of ACES algorithm

Group Discovery Cohort Validation Cohort 1 | Validation Cohort 2t
High RS N (% of High RS cases)
SET-High/Intermediate 4 (11) 2(5) 5 (14)
Predicted early relapse/death 13 (33)* 19 (49) 15 (41)
Predicted RCB-III 13 (33) 19 (49) 11 (30)
Predicted RCB-0/I 14 (36) 20 (51) 20 (54)
ACES Rx Sensitive 14 (36) 11 (28) 13 (35)
Luminal B N (% of Luminal B cases)
SET-High/Intermediate 1(3)* 0* 2(11)
Predicted early relapse/death 5(13) 13 (39) 8 (44)
Predicted RCB-III 12 (30) 13 (39) 7(39)
Predicted RCB-0/I 16 (40) 17 (52) 10 (56)
ACES Rx Sensitive 15 (38) 8 (24) 6 (33)
High GGl N (% of High GGl cases)
SET-High/Intermediate 16 (18) 0* 10 (19)
Predicted early relapse/death 17 (19) 28 (44) 20 (37)
Predicted RCB-III 27 (30)* 28 (44) 18 (33)
Predicted RCB-0/I 39 (43) 36 (56) 28 (52)
ACES Rx Sensitive 45 (50) 14 (22) 22 (41)
All ER positive/HER2 negative N (% of all ER positive/HER2 negative cases)
SET-High/Intermediate 45 (26) 14 (11) 36 (28)
Predicted early relapse/death 28 (16) 40 (33) 31 (24)
Predicted RCB-III 79 (45) 58 (47) 54 (43)
Predicted RCB-0/1 64 (36) 57 (46) 55 (43)
ACES Rx Sensitive 80 (45) 37 (30) 54 (43)

44

*Fisher’s exact test shows that there is a statistically significant difference between this value and the corresponding one in the entire ER positive/HER2 negative

cohort.

tNormalized using stratification of cohort by T-stage (See Strategy 2 in Methods).

Abbreviations: RS, Recurrence Score; GGI, Genomic Grade Index; SET, Sensitivity to Endocrine Therapy; RCB, Residual Cancer Burden; ER, Estrogen

Receptor; HER2, Human Epidermal Growth Factor Receptor



TABLE A3: Performance of RCB-0/I and RCB-I11 gene signatures in predicting actual pathologic response

Risk RCB-0/1 Prediction RCB-0/I Prediction RCB-I111 Prediction RCB-I111 Prediction
Category Discovery Cohort Validation Cohort 1 Discovery Cohort Validation Cohort 1
% (95% CI) % (95% CI) % (95% ClI) % (95% CI)
High RS
Sensitivity 71 (42-92) 40 (19-64) 80 (28-99) 67 (9-99)
Specificity 84 (64-95) 18 (2-52) 74 (56-87) 54 (34-72)
PPV 71 (42-92) 47 (23-72) 31 (9-61) 13 (2-40)
NPV 84 (64-95) 14 (2-43) 96 (80-100) 94 (70-100)
LR+ 4.5 (0.1-undefined) 0.5 (0-0.99) 3.0 (0.02-undefined) 1.4 (0.005-undefined)
LR- 0.3 (0-0.99) 3.5 (0.004-undefined) 0.3 (0-0.99) 0.6 (0-1)
OR 13.1 (undefined) 0.1 (0-0.8) 11.1 (undefined) 2.3 (0.3-undefined)
Luminal B
Sensitivity 71 (42-92) 46 (19-75) 100 (69-100) 100 (16-100)
Specificity 76 (55-91) 60 (15-95) 97 (82-100) 69 (41-89)
PPV 63 (35-85) 75 (35-97) 91 (59-100) 29 (4-71)
NPV 83 (61-95) 30 (7-65) 100 (88-100) 100 (72-100)
LR+ 3.0 (0.01-undefined) 1.2 (0-undefined) 29 (52-undefined) 3.2 (0.08-undefined)
LR- 0.4 (0-0.99) 0.9 (0-1) 0 (0.00-0.98) 0 (0.00-0.995)
OR 7.9 (undefined) 1.3 (0.05-undefined) Infinite (undefined) Infinite (undefined)
High GGI
Sensitivity 74 (55-88) 65 (44-83) 94 (71-100) 100 (48-100)
Specificity 73 (60-84) 54 (25-81) 89 (79-95) 68 (49-83)
PPV 61 (43-76) 73 (52-90) 67 (45-84) 31 (11-59)
NPV 84 (70-93) 44 (20-70) 98 (91-100) 100 (85-100)
LR+ 2.8 (0.01-undefined) 1.4 (0.005-undefined) 8.2 (0.12-undefined) 3.1 (0.08-undefined)
LR- 0.4 (0-0.99) 0. (0-1) 0.07 (undefined-0.99) 0 (0.00-0.996)
OR 7.9 (undefined) 2.2 (0.2-undefined) 124 (undefined) Infinite (undefined)

Abbreviations: RS, Recurrence Score; GGI, Genomic Grade Index; RCB-0/I, Pathologic Complete Response or Minimal Residual Cancer Burden; RCB-I1I,
Extensive Residual Cancer Burden
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TABLE A4. Normalization of Validation Cohort 2, by stratification with prognostic factors and adjusting ACES subscore thresholds

Characteristic Discovery Cohort and Validation Cohort 2 Odds Ratio p-value
Validation Cohort 1

Tland T2 N (% of 182) N (% of 112)
SET-Low 140 (77) 33 (29) — 34 (30) 2.6 > 25 0.000— 0.000
SET-Intermediate/High 42 (23) 79 (71) — 78 (69) 0.3—-0.3 0.000— 0.000
High Risk early death/relapse 32 (18) 30 (27) — 27 (24) 0.7— 0.7 0.154 — 0.307
Low Risk early death/relapse 150 (82) 82 (73) — 85 (76) 11— 11 0.526 — 0.652
RCB-III 83 (46) 57 (51) — 45 (40) 09— 1.1 0.601 — 0.586
Not RCB-IlI 99 (54) 55 (49) — 67 (60) 1.1-0.9 0.681 — 0.691
RCB-0/I 65 (36) 69 (62) — 50 (45) 0.0—0.8 0.580 — 0.368
Not RCB-0/1 117 (64) 43 (38) — 62 (55) 1.7 - 1.2 0.017 — 0.492

T3 and T4 N (% of 115) N (% of 15)
SET-Low 99 (86) 9 (60) — 13 (87) 1.4 — 0.99 0518 -1
SET-Intermediate/High 16 (14) 6 (40) —> 2 (13) 04 —1.0 0.086 — 1
High Risk early death/relapse 36 (31) 5(33)—4(27) 09— 12 1—-1
Low Risk early death/relapse 79 (69) 10 (67) — 11 (73) 1.0—- 09 1-1
RCB-IlI 52 (45) 9 (60) — 9 (60) 0.8—0.8 0.640 — 0.640
Not RCB-IlI 63 (55) 6 (40) — 6 (40) 14— 14 0.632 — 0.633
RCB-0/I 55 (48) 10 (67) — 5 (33) 07—14 0.498 — 0.616
Not RCB-0/I 60 (52) 5(33) — 10 (67) 1.6 — 0.8 0.464 — 0.655

“—” represents values after normalization of data by stratification with T-stage, lymph node involvement and grade, respectively within validation cohort 2. The

Fisher’s exact test was used to compare proportions of cases within the cohorts before and after normalization, and the resulting odds ratio and p-value are
reported. Age (less than 50 versus greater than or equal to 50), T-stage (T1/T2 versus T3/T4), lymph node status (positive versus negative) and grade (1 or 2

versus 3) are at time of diagnosis.

Abbreviations: SET, Sensitivity to Endocrine Therapy; RCB, Residual Cancer Burden
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TABLE A4 (continued). Normalization of Validation Cohort 2, by stratification with prognostic factors and adjusting ACES subscore

thresholds

113

—

29

Characteristic Discovery Cohort and Validation Cohort 2 Odds Ratio p-value
Validation Cohort 1

Node Negative N (% of 106) N (% of 69)
SET-Low 81 (76) 19 (28) — 49 (71) 28—>1.1 0.000 — 0.812
SET-Intermediate/High 25 (24) 50 (72) — 20 (29) 03—0.38 0.000— 0.613
High Risk early death/relapse 19 (18) 16 (23) — 11 (16) 08—1.1 0.572 — 0.842
Low Risk early death/relapse 87 (82) 53 (77) — 58 (84) 1.1-10 0.816 —» 1
RCB-I1I 40 (38) 35(51) — 30 (43) 0.7—09 0.328 — 0.667
Not RCB-III 66 (62) 34 (49) — 39 (57) 13511 0.437 — 0.800
RCB-0/I 45 (42) 45 (65) — 32 (46) 0.7—0.9 0.116 — 0.781
Not RCB-0/1 61 (58) 24 (35) — 37 (54) 1.7—0.7 0.098 — 0.797

Node Positive N (% of 190) N (% of 57)
SET-Low 157 (83) 20 (35) — 43 (75) 2411 0.002 — 0.733
SET-Intermediate/High 33(17) 37 (65) — 14 (25) 03—0.7 0.000 — 0.354
High Risk early death/relapse 49 (26) 19 (33) — 16 (28) 08— 0.9 0.425 — 0.869
Low Risk early death/relapse 141 (74) 38 (67) — 41 (72) 1.1—-1.0 0.724 — 0.908
RCB-I1I 94 (49) 31 (54) — 24 (42) 09—1.2 0.701 — 0.592
Not RCB-IlI 96 (51) 26 (46) — 33 (58) 1.1—-0.9 0.791 — 0.612
RCB-0/I 75 (39) 33(58) — 19 (33) 07—12 0.146 — 0.663
Not RCB-0/111 115 (61) 24 (42) — 38 (67) 1.4 —0.9 0.195 — 0.718

Fisher’s exact test was used to compare proportions of cases within the cohorts before and after normalization, and the resulting odds ratio and p-value are
reported. Age (less than 50 versus greater than or equal to 50), T-stage (T1/T2 versus T3/T4), lymph node status (positive versus negative) and grade (1 or 2
versus 3) are at time of diagnosis. Abbreviations: SET, Sensitivity to Endocrine Therapy; RCB, Residual Cancer Burden.

represents values after normalization of data by stratification with T-stage, lymph node involvement and grade, respectively within validation cohort 2. The
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TABLE A4 (continued). Normalization of Validation Cohort 2, by stratification with prognostic factors and adjusting ACES subscore

thresholds
Characteristic Discovery Cohort and Validation Cohort 2 Odds Ratio p-value
Validation Cohort 1

Grade 1and 2 N (% of 182) N (% of 95)
SET-Low 136 (75) 25 (26) — 77 (81) 2.8—09 0.000 — 0.703
SET-Intermediate/High 46 (25) 70 (74) — 18 (19) 03—13 0.000 — 0.380
High Risk early death/relapse 30 (16) 20 (21) —> 11 (12) 08— 1.4 0.520 — 0.380
Low Risk early death/relapse 152 (84) 75 (79) — 84 (88) 1.1 - 0.9 0.777 — 0.781
RCB-IlI 90 (49) 58 (61) — 64 (67) 0.8—-0.7 0.341 — 0.145
Not RCB-III 92 (51) 37 (39) — 31 (33) 1315 0.306 — 0.080
RCB-0/I 62 (34) 57 (60) — 36 (38) 0.6 —0.9 0.013 — 0.712
Not RCB-0/I 120 (66) 38 (40) — 59 (62) 17— 1.1 0.030 — 0.839

Grade 3 N (% of 100) N (% of 32)
SET-Low 93 (93) 14 (44) — 26 (81) 21—-11 0.033 — 0.765
SET-Intermediate/High 7(7) 18 (56) — 6 (19) 01—-04 0.000 — 0.103
High Risk early death/relapse 34 (34) 15 (47) — 13 (41) 0.7—0.8 0.446 — 0.697
Low Risk early death/relapse 66 (66) 17 (53) — 19 (59) 12—1.1 0.617 — 0.870
RCB-IlI 40 (40) 8 (25) — 10 (31) 1.6 - 1.3 0.317 — 0.694
Not RCB-III 60 (60) 24 (75) — 22 (69) 0.8 —0.9 0.526 — 0.747
RCB-0/I 54 (54) 22 (69) — 16 (50) 08— 1.1 0.512 — 0.864
Not RCB-0/1 46 (46) 10 (31) — 16 (50) 15— 0.9 0.444 — 0.859

“—” represents values after normalization of data by stratification with T-stage, lymph node involvement and grade, respectively within validation cohort 2. The

Fisher’s exact test was used to compare proportions of cases within the cohorts before and after normalization, and the resulting odds ratio and p-value are
reported. Age (less than 50 versus greater than or equal to 50), T-stage (T1/T2 versus T3/T4), lymph node status (positive versus negative) and grade (1 or 2
versus 3) are at time of diagnosis. Abbreviations: SET, Sensitivity to Endocrine Therapy; RCB, Residual Cancer Burden.



TABLE A5. Normalization of Validation Cohort 2, by multivariate linear regression model of prognostic factors

2.0(nodal status) + 2.6(grade) + 1.5(cohort)

Multivariate Model p-value

Age T-stage Nodal Status Grade Cohort
SET-Index = 1.3 -0.3(age) — 0.4(T-stage) — 0.020 0.013 0.510 0.000 0.000
0.1(nodal status) — 0.6(grade) + 0.7(cohort)
Early Death/Relapse Score =-0.6 + 0.03(age) + 0.621 0.322 0.554 0.000 0.000
0.1(T-stage) + 0.04(nodal) + 0.4(grade) +
024(cohort)
RCB-III Score = 0.6 — 0.3(age) + 0.5(T-stage) + 0.550 0.399 0.008 0.000 0.426
1.3(nodal status) — 2.6(grade) — 0.2(cohort)
RCB-0/I Score = -2.4 — 0.7(age) + 0.1(T-stage) — 0.255 0.883 0.003 0.000 0.000

49

In this multivariate linear regression model, the dependent variable is quantitative and the dependent variables are binary: Age (less than 50 versus greater than or

equal to 50), T-stage (T1/T2 versus T3/T4), lymph node status (positive versus negative) and grade (1 or 2 versus 3), all at time of diagnosis, and cohort

(Discovery Cohort or Validation Cohort 1, versus Validation Cohort 2).
Abbreviations: SET, Sensitivity to Endocrine Therapy; RCB, Residual Cancer Burden.



TABLE AG6. Survival Analysis of Validation Cohort 2

Normalization Method Log-Rank Test ACES ACES
p-value Treatment Sensitive Treatment Insensitive
No. Event Rate (%) No. Event Rate (%)

Normalization Strategy 1 (Overall Matched Proportions)

High RS 0.472 10 10 27 19

Luminal B 0.358 2 50 16 19

High GGIT 0.233 15 40 39 23
Normalization Strategy 2 (Stratification by T-stage)

High RS 0.307 15 7 22 23

Luminal B 0.704 8 13 10 30

High GGIT 0.654 25 20 29 34
Normalization Strategy 3 (Stratification by Nodal Status)

High RS 0.894 13 15 24 17

Luminal B 0.704 6 17 12 25

High GGIT 0.902 23 26 31 29
Normalization Strategy 4 (Stratification by Grade)

High RS 0.755 10 20 27 15

Luminal B 0.631 3 33 15 20

High GGIt 0.245 15 40 39 23
Normalization Strategy 5 (Multivariate Model)

High RS 0.931 12 17 25 16

Luminal B 0.295 3 0 15 27

High GGIT 0.989 17 29 37 27

TNormalized GGI.
Abbreviations: RS, Recurrence Score; GGI, Genomic Grade Index



FIGURE Al. Kaplan-Meier Estimates of Relapse Free Survival Stratified by ACES, in high risk cases of Validation Cohort 2
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FIGURE ALl (continued). Kaplan-Meier Estimates of Relapse Free Survival Stratified by ACES in Validation Cohort 2
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FIGURE ALl (continued). Kaplan-Meier Estimates of Relapse Free Survival Stratified by ACES in Validation Cohort 2
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Figure A2. Kaplan Meier estimates of Relapse Free Survival in High RS cases stratified by ACES subcomponents
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Figure A2 (continued). Kaplan Meier estimates of Relapse Free Survival in Luminal B cases stratified by ACES subcomponents

55

Stratified by Stratified by Early Relapse/Death Stratified by Stratified by
SET Class Predictor RCB-I11 Predictor RCB-0/1 Predictor
Luminal B/ Cohort 1 Luminal B/ Cohort 1 Luminal B/ Cohort 1 Luminal B/ Cohort 1
5 08 % 5 08 %
T T l—‘;‘h L — T 08 tl '1_1 ; , T 0.8
S 04 04 E E
a + Censured_ a + Censaored a 04 + Censored ,:ﬂ 04 + Censored
0.0 Logrank p=0.8728 0o Logrank p <.0001 0 Logrank p=0.3611 og - Legrank p=0.5725
111 0 115 ¢ 2 0 1]z 22 21 14 a & 2 1]2e 22 12 & 1
2/m =\ X @ 1 5 3 33 ¥ 2 @ 1 5 a3 20z 0w & 4 3 1 1 201 1w 13 w8 4 2
0 2 4 ] ] 2 4 & o 2 4 6 o 2 4 &
Time Time Time Time
SET_Class Early_Death_Relapse_Fredictar RCEII_Predictor RCBOI_Predictar
1: Intermediate/High 1: High Risk 1: Not RCE-1II 1: Not RCE-O/1
2: Low 2: Low Risk 2: RCE-III 2: RCE-O/
Luminal B/ Cohorts 2 and 3 Luminal B/ Cohorts 2 and 3 Luminal B/ Cohorts 2 and 3 Luminal B/ Cohorts 2 and 3




56

Survival

0.4 + Censored

Logrank p=0.1584

0| T e

™ —_
=
=
o 0.4 + Censored
0o Logrank p=0.3167
1|2 18 13 ] ] 3
] 28 13 ] i i

pg | e

0.4

Surwvival

+ Censored
Logrank p=0.9810

0.0

1fat = | 4 4
22 w 1w 2 @

Survival

0.0

s TR

0.4 + Cengored
Logrank p=0.0259

12« 20 1 & 3

Stratified by Early Relapse/Death

2|2 24 15 2 1 1
10 i} 2 4 B 8 10 2 4 B 8 o2 4 & 8 10
Time Time Time Time
SET_Class Early_Death_Relapse_Predictor RCEBII_Predictar RCBOI_Predictor
1: Intermediate/High 1: High Risk 1: Mot RCE-II 1: Not RCB-0/1
2: Low 2 Low Risk 2: RCB-NII 2: RCE-0/
Figure A2 (continued). Kaplan Meier estimates of Relapse Free Survival in High GGI cases stratified by ACES subcomponents
Stratified by

High GGI/ Cohort 1

SET Class

Predictor
High GGI/ Cohort 1

Stratified by
RCB-I11 Predictor

Stratified by

High GGI/ Cohort 1

High GGI/ Cohort 1

RCB-0/1 Predictor

— — 0B
T 5 08 z % § 08 %._.
Z 04 2 E pa £
@ + Censored 2 04 + Censored a + Censored E 04 + Censared
0.0 - begrank p=0.0316 00 Logrank p <.0001 o -| Legrank p=0.0859 pg - Legrank p=0.9570
O IR AP oasanr:
] ] 4
2|73 @ 53 i5 2 | ] 1 2|3 ¥ o 2137 &8 1
o 2 4 B 0 5 . 6 0 2 | 4 B 0 2 4 5
Time Time Time Time
SET_Class RZEII_FPredictor .
- i I - RCBOI_Predict
1: Intermediate/High Early_Death_Relapse_Predictor 1: Not RCE-III - N'Et 'F:D':E'Ir o
_ 1: High Risk S “No -
S 2: Low Risk : 2: RCE-Of
High GGI/ Cohorts 1 and 2 High GGI/ Cohorts 1 and 2 High GGI/ Cohorts 1 and 2 High GGI/ Cohorts 1 and 2




57

10
5 08 3 08 M z 3 °°
S o6 E: 2 2
= . = = E
E 0.4 5 04 + Censored @ 04 + Censored 5 04 + Cenzored
@ 5 + Cengored 0 Loarank p=0 5526 Logrank p=0.6005 ” i =
|:|-|:| Logrank p=0.0318 0.0 ogrank p=0. oo g p=4. 0o Logrank p=0.2923
i 1l 3 = 7 4 4 (7 = a3 2 4 7 1(¢8 & 20 a3 5
'1211;EI ;35 511 1-35 . 2lm = om oA 5 3 28 m 17 A a 2l = M 8 4 2
0 2 4 § 8 10 o 2 4 B 8 10 o2 4 6 8 10

Time
SET_Class

1: Intermediate/High
2: Low

Time
Early_Death_Relapse_Predictor
1: High Risk
2: Low Risk

Time
RZEBII_Predictar
1: Mot RZB-111
2: RCB-1

o 2 4 6 8 10
Time
RCBOI_Predictor
1: Not RZB-0/

2: RCB-0d1

Abbreviations: SET, Sensitivity to Endocrine Therapy; RCB-0/1 or RCB-I111, Minimal or Extensive Residual Cancer Burden; RS, Recurrence Score; GG,
Genomic Grade Index

FIGURE A3. Early relapse predictor genes for Estrogen Receptor positive tumors in ACES algorithm




Probe Set Symbol Description GenelD Chromosome | Cytoband

212174 _at AK2 adenylate kinase 2 204 1| 1p34

215407 s at | ASTNZ astrotactin 2 23245 89 | 993341

205626 _s_at | CALB1 calbindin 1, 28kDa 743 8 | 8g21.3-

q22.1

212816 _s at [ CBS cystathionine-beta-synthase ars 21 | 21922.3

216923 at COLKS cyclin-dependent kinase-like § 6792 X | Xp2213

205471 s at DACHA1 dachshund homolog 1 (Drosophila) 1602 13 | 13g22

221681 s _at DSPFP dentin sialophosphoprotein 1834 4 | 4g21.3

201539 5 at FHL1 four and a half LIM domains 1 2273 X | Xg26

215744 _at FUS fusion (imvobved in t{12;16) in malignant 2521 16 | 16p11.2
liposarcoma)

209604 s at GATAZ GATA binding protein 3 2625 10 | 10p1&

209602 s at GATAZ GATA binding protein 3 2625 10 | 10p15

209603 _at GATAZ GATA binding protein 3 2625 10 | 10p1&

203821_at HBEGF heparin-binding EGF-like growth factor 1839 5 | 5g23

219976 _at HOOKA1 hook homolog 1 (Drosophila) 51361 1| 1p321

212531 _at LCMN2 lipocalin 2 3034 g | 9g34

220006_at LDB2 LIM domain binding 2 8074 4 | p15.32

217506 _at LOC339290 | hypothetical LOC339290 339290 18 | 18p11.31

204058 _at ME1 malic erzyme 1, NADP(+)}-dependent, 4199 6 | 6gi2
cytosolic

200899 _s_at | MGEAS meningioma expressed antigen 5 10724 10 | 10g24.1-
(hyaluronidase) qQ24.3

203419_at MLL4 myeloid/lymphoid or mixed-lineage 9757 19 | 19g13.1
leukemia 4

211874_s_at | MYST4 MYST histone acetyltransferase (monocytic 23522 10 | 10g22.2
leukemia) 4

40569 _at MZF1 myeloid zinc finger 1 76483 19 | 19g13.4

203621_at MDUFBS MADH dehydrogenase (ubiguinone) 1 beta 4711 3| 3g26.33
subcomplex, §, 16kDa

202886_s_at PPPZR1EB protein phosphatase 2 (formerly 2A), 5519 11 | 11g23.2
regulatory subunit A, beta isoform

201834 _at PREAB1 protein kinase, AMP-activated, beta 1 non- 5564 12 | 129241
catalytic subunit

212743 _at RCHY1 ring finger and CHY zinc finger domain 25898 4 | 4g21.1
containing 1

219869 _s_at SLC39A8 solute carrier family 39 (zinc transporter), 64116 4 | 4g22-q24
member 8

210692 s at [ SLC43A3 solute carrier family 43, member 3 20015 11 | 11git

213103 _at STARD13 StaR-related lipid transfer (START ) domain ane2T 13 | 13912913
containing 13

20232 s at | TRIM2 tripartite motif-containing 2 23321 4 | 4931.3

212534 _at ZNF24 zing finger protein 24 7572 18 [ 18g12

219635 _at ZNFE06 zine finger protein 606 B00GS 19 | 19g13.4

214202 _at -- 5 | fg22.3
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FIGURE A3 (continued).
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Excellent pathologic response predictor genes for Estrogen Receptor positive tumors in ACES algorithm

Probe Set Symbal Description GenelD Chromosome | Cytoband
204332 s at | AGA aspartylglucosaminidase 175 4 | 4932-933
36865 _at ANGEL1 angel homalog 1 (Drosophila) 23357 14 [ 14924 .3
218437 s at | ANKRD11 ankyrin repeat domain 11 28123 16 | 1624 .3
205865 _at ARID3A AT rich interactive domain 3A (BRIGHT-like) 1820 19 | 19p13.3
215407 s at | ASTNZ astrotactin 2 23245 9 | 89331
204403 at BID BH3 interacting domain death agonist 637 22 | 2q1141
205557 _at BRI bactericidal/permeability-increasing protein 671 20 | 20g11.23-
ql2
42361_g_at CCHCR1 coiled-coil alpha-helical rod protein 1 54535 6 | 6p21.3
205937 _at CGREF1 cell growth regulator with EF-hand domain 1 10669 2 | 2p23.3
208817 _at COMT catechol-O-methyltransferase 1312 22 | 22q11.21
202250 _s_at | DCAF8 DDE1 and CUL4 associated factor 8 50717 1 | 1g22-9q23
202570_s_at | DLGAP4 discs, large (Drosophila) homolog- 22839 20 | 20g911.23
associated protein 4
218103 _at FTSJ3 FtsJ homolog 3 (E. coli) 117248 17 | 17g23.3
216651_s_at | GAD2 glutamate decarboxylase 2 (pancreatic islets 2572 10 | 10p11.23
and brain, 65kDa)
205505_at GCNT1 glucosaminyl (N-acetyl) transferase 1, core 2 2650 9 | 9913
(beta-1.6-N-acetylglucosaminyltransferase)
213020_at GOSR1 golgi SNAP receptor complex member 1 9527 17 | 1711
212887 s at | HMGXB4 HMG box domain containing 4 10042 22 | 22q134
212898_at KIAAD40E KIAADLDE 9675 20 | 20g11.23
220652_at KIF 24 kinesin family member 24 347240 9 | 9p13.3
21B486_at KLF11 Kruppel-like factor 11 B462 2 | 2p25
202057 _at KPNA1 karyapherin alpha 1 {importin_alpha 5) 3836 3 | 3g21
209204 _at LMO4 LIM domain only 4 B8543 1| 1p22.3
201818 _at LPCATA Iysophosphatidylcholine acyltransferase 1 TOBB8 5 | 5p15.33
208328 _s_at | MEF2A myocyte enhancer factor 2A 4205 15 | 15926
215491 _at MYCL1 v-myc myelocytomatosis viral oncogene 4610 1| 1p34.2
homolog 1, lung carcinoma derived (avian)
202844 at NAGA M-acetylgalactosaminidase, alpha- 4668 22 | 22g11
218886 _at FPAKAIP1 PAKA interacting protein 1 55003 6 | 6p24.2
207081_s_at | Pl4KA phosphatidylinositol 4-kinase, catalytic, 5297 22 | 2Z2q1.21
alpha
210771 _at FRARA peroxisome proliferator-activated receptor 5465 22 | 22q12-
alpha qi3i
203096_s_at | RAPGEF2 Rap guanine nucleotide exchange factor 9693 4 | 4321
(GEF)2
218583 at REBM28 RMA binding motif protein 28 55131 7 | Tq3zA
211678 s at | RNF114 ring finger protein 114 55905 20 | 2091313
202762 _at ROCK2 Rho-associated, coiled-coil containing 9475 2 | 2p24
pratein kinase 2
206239 s at | SPINK1 sernne peptidase inhibitor, Kazal type 1 G690 5 | 5g32
221276 s at | SYNC syncailin, intermediate filament protein 81443 1 | 1p34.3-p33
213155_at WSCD1 WSC domain containing 1 23302 17 [ 17p13.2
3717 _at PRRS proline rich & (renal) 55615 22 | 22q13
220855_at ACO812711 no-protein transcript 17 [ 17232
222275 _at 5 | Gp12




FIGURE A3 (continued). Extensive residual disease predictor genes for Estrogen Receptor positive tumors in ACES algorithm

Probe Set Symbol Description GenelD | Chromosome Cytoband
200045 _at ABCF1 ATP-binding cassette, sub-family F (GCN20), 23 6 6p21.33
member 1
218868 _at ACTR3B ARP3 actin-related protein 3 homolog B 57180 7 7gi6.1
(yeast)
213532 _at ADAM17 ADAM metallopeptidase domain 17 6868 2 2p25
217090 _at ADAMIA ADAM metallopeptidase domain 3A 1587 8 8p11.23
(cyritestin 1)
205013 _s_at ADORAZA | adenosine A2a receptor 135 22 22q11.23
208042 _at AGGF1 angiogenic factor with G patch and FHA 55109 5 5q13.3
domains 1
215789 s at AJAP1 adherens junctions associated protein 1 55066 1 1p36.32
221825 _at ANGEL2 angel homolog 2 (Drosophila) 90806 1 19323
202631_s_at APPBP2 amyloid beta precursor protein (cytoplasmic 10513 17 17921-023
tail) binding protein 2
200011_s_at ARF3 ADP-ribosylation factor 3 377 12 12913
202492 _at ATGIA ATGY autophagy related 9 homolog A (S. 79065 2 2q35
cerevisiag)
212930_at ATP2B1 ATPase, Ca++ transporting, plasma 490 12 12g21.3
membrane 1
218789 _s_at C11orf?1 chromosome 11 open reading frame 71 54494 1 11g14.2-
qi4.3
219022 _at C12orfd3 chromosome 12 open reading frame 43 64897 12 12q
214322 _at CAMK2G calcium/calmodulin-dependent protein kinase 818 10 1022
Il gamma
218384 _at CARHSP1 | calcium regulated heat stable protein 1, 23589 16 16p13.2
24kDa
212586 _at CAST calpastatin 831 5 5q15
218592 _s_at CECRS cat eye syndrome chromosome region, 27440 22
candidate 5
218439 s _at COMMD10 | COMM domain containing 10 51397 5 5g23.1
211808 _s at CREBEP CREB binding protein 1387 16 16p13.3
209164 s at CYB561 cytochrome b-561 1534 17 17q11-gter
203979 _at CYP2TA1 cytochrome P450, family 27, subfamily A, 1593 2 2q33-gter
polypeptide 1
216874 _at DKFZp686 | hypothetical gene supported by BC043549; 401014 2 2q22.3
01327 BX648102
204797 _s_at EMLA echinoderm microtubule associated protein 2009 14 14g32
like 1
218692 _at GOLSYN Golgi-localized protein 55638 8g23.2
202453 _s_at GTF2H1 general transcription factor IIH, polypeptide 2965 1 11p15.1-
1, 62kDa pld
221046 s at GTPBPE GTP-binding protein 8 (putative) 20083 3 3g13.2
208886_at H1FO H1 histone family, member 0 3005 22 220131
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FIGURE A3 (continued). Extensive residual disease predictor genes for Estrogen Receptor positive tumors in ACES algorithm

205426 _s_at HIP1 huntingtin interacting protein 1 3092 7 7g11.23
202983 _at HLTF helicase-like transcription factor 6596 3 3q25.1-
q26.1

217145 at IGKC immunoglobulin kappa constant 3514 2 2p12

204863 _s_at ILEST interleukin 6 signal transducer (gp130, asr2 5 5q11
oncostatin M receptor)

211817 _s_at KCMNJS potassium inwardly-rectifying channel, arez2 1" 11g24
subfamily J. member 5

201776_s_at KlAAD4D4 | KIAADASS 9813 1 | ipter-p221

208212_s_at KLF5 Kruppel-like factor 5 (intestinal) 688 13 13221

212271 _at MAPK1 mitogen-activated protein kinase 1 5594 22 22q11.2

206904 _at MATN1 matrilin 1, cartilage matrix protein 4146 1 1p35

206961 s _at MED20 mediator complex subunit 20 Q477 B Bp21.1

213403 _at MFSD9 major facilitator superfamily domain 84304 2 2q12.1
containing 9

209733 _at MID2 midline 2 11043 X Xg22.3

218205_s_at MENK2Z MAP kinase interacting serine/threonine 2872 19 19p13.3
kinase 2

209973 _at MNFKBIL1 nuclear factor of kappa light polypeptide 4795 6 6p21.3
gene enhancer in B-cells inhibitorike 1

217963 _s_at NGFRAP1 | nerve growth factor receptor (TNFRSF16) 27018 X X222
associated protein 1

207400 _at MNPYSR neuropeptide Y receptor ¥5 4889 4 4q31-g32

202097 _at NUP153 nucleoporin 153kDa 9972 6 6p22.3

220631 _at QOSGEPL1 O-sialoglycoprotein endopeptidase-like 1 64172 2 2q32.2

205077 _s_at PIGF phosphatidylinositol glycan anchor 5281 2 2p21-p16
biosynthesis. class F

220811 _at PRG3 proteoglycan 3 10394 11 1112

208733 _at RAB2A RAB2A, member RAS oncogene family 5862 8 8q12.1

206066_s_at RADS1C RADS1 homaolog C (S. cerevisiag) 5889 17 17q22-q023

206290 s at RGST regulator of G-protein signaling 7 6000 1 1g23.1

214519 s _at RLNZ relaxin 2 6019 ] 9p24.1

206805_at SEMA3A sema domain, immunoglobulin domain (lg), 10371 T Tp12Aa
short basic domain, secreted, (semaphorin)

208941 s _at SEFPHS1 selenophosphate synthetase 1 22929 10 10p14

213755_s_at SKI v-ski sarcoma viral oncogene homolog 6497 1 1g22-g24
(avian)

202667 _s_at SLC39AT solute carrier family 39 (zinc transporter), 7922 i Gp21.3
member 7
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FIGURE A3 (continued). Extensive residual disease predictor genes for Estrogen Receptor positive tumors, in ACES algorithm

216611_s_at SLCBA2 solute carrier family & (neurotransmitter 6530 16 16g912.2
transporter, noradrenalin), member 2
211805_s_at SLCBA solute carrier family 8 (sodium/calcium 6548 2 2p23-p22
exchanger), member 1
205596 s at SMURF2 SMAD specific E3 ubiquitin protein ligase 2 64750 17 17922-023
203054 s at TCTA T-cell leukemia translocation altered gene 6988 3 3p21
218099 at TEXZ2 testis expressed 2 55852 17 17923.3
217121 _at TNKS tankyrase, TRF1-interacting ankyrin-related 8658 8 8p23.1
ADP-ribose polymerase
220415 at THNI3K TNNI3 interacting kinase 51086 1 1p311
208593 s at TOR1E torsin family 1, member B (torsin B) 27348 g Sq34
215796 _at TRD@ T cell receptor delta locus 6064 14 149112
210541 s _at TRIMZT tripartite motif-containing 27 SO87 3] Bp22
213563 s at TUBGCP2 | tubulin, gamma complex associated protein 2 10844 10 10g26.3
221839 s at LBAPZ ubiquitin associated protein 2 55833 g 9p13.3
213822 s at LIBE3B ubiquitin protein ligase E3B 89910 12 12024 11
221746 _at LUBL4A ubiquitin-like 4A 8266 X Xg2a
219740 _at WASHZ vasohibin 2 79805 1 10323
205877 s at ZC3H7B zinc finger CCCH-type containing 7B 23264 22 22q13.2
218413 s at ZMFE39 zinc finger protein 639 51193 3 Aq26.33

Figures A2 from Hatzis et al, 2011
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