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GENOMIC PREDICTOR OF RESIDUAL RISK OF RECURRENCE AFTER 
CHEMOTHERAPY IN HIGH RISK ESTROGEN RECEPTOR POSITIVE BREAST 
CANCERS. 
Sabrina Khan, Christos Hatzis and Lajos Pusztai. Section of Medical Oncology, 
Department of Internal Medicine, Yale University, School of Medicine, New Haven, CT. 
 
ABSTRACT  

Gene signature based prognostic tests can help improve adjuvant treatment decisions in 
early stage estrogen receptor positive (ER) breast cancers. Available tests in the clinic include 
Oncotype DX recurrence score (RS), PAM50 molecular class, and the Genomic Grade Index 
(GGI), which can identify high risk tumors that are likely to recur and have less favorable 
survival when treated with surgery and endocrine therapy alone. These high risk patients are 
recommended to also receive chemotherapy to improve their chance of survival. A subset of these 
“high risk” tumors is highly sensitive to adjuvant chemotherapy due to their high proliferation 
rates, and will be cured. We hypothesized that a new gene signature test ACES, which predicts 
treatment sensitivity to both endocrine therapy and chemotherapy and identifies tumors with 
excellent distant relapse free survival (RFS), could further stratify the currently “high risk” ER 
positive cancers into two groups: ACES predicted low and high residual risk after chemotherapy. 

This is a retrospective cohort study, and samples size and power are limited by the 
number of available specimens. Three independent ER positive breast cancer cohorts – ACES 
Discovery Cohort (n=176), ACES Validation Cohort 1 (n=123), and a new Validation Cohort 2 
(n=127) – were used to assess the ability of ACES to identify patients who were initially 
considered to be high risk for recurrence (by high RS, Luminal B subtype by PAM50, or high 
GGI) but became low risk after receiving adjuvant chemotherapy. The ACES algorithm was 
applied to the baseline high risk groups and cases were re-stratified into ACES predicted 
treatment sensitive and treatment insensitive groups. RFS and absolute risk reduction (ARR) of 
relapse were the main outcome measures compared between the ACES stratified groups.  

In all three cohorts, cases that were high risk at baseline but predicted to be treatment 
sensitive by ACES showed a trend toward improved RFS. Cases with high risk by Oncotype DX 
high RS showed significant difference in RFS by ACES risk strata (p=0.048 and p=0.033) in 
validation cohort 1 and combined validation cohorts. Among these high RS tumors, n=11-13 (28-
35%) were predicted to be treatment sensitive, which had RFS of 92-100% (95% CI: 54-100%) at 
4-years. The ARR at 4-years was 0-41% (95% CI: -21-60%) and increased by 10-years to 19% 
(95% CI: 3-30%) favoring the treatment sensitive groups. Cases with high GGI in the discovery 
cohort also showed significant differences in RFS by ACES risk strata (p=0.004); the 45 (50%) 
high GGI cases who were predicted to be treatment sensitive had a RFS of 81% (95% CI: 60-
92%) with ARR of 23% (95% CI: -2-51%). For these high RS and high GGI tumors, ACES 
remained an independent predictor of RFS in multivariate Cox regression analysis including age, 
T-stage, and lymph node involvement at diagnosis (p=0.072 and 0.017 respectively). Among 
Luminal B cancers, ACES was significantly associated with RFS only in the multivariate model 
of both validation cohorts (p=0 and 0.013). 

This analysis provides evidence to suggest that ACES may further risk stratify high RS 
and high GGI tumors into low and high residual risk groups after adjuvant chemotherapy and 
endocrine therapy. The clinical relevance is that if ACES is adequately validated: (i) patients with 
low residual risk by ACES can be safely treated with current adjuvant chemotherapies and 
reassured, (ii) patients with high residual risk despite best current adjuvant chemotherapies could 
be encouraged to enter clinical trials that aim to improve the efficacy of current adjuvant 
therapies. Before ACES can be adopted for routine use it would require validation in an 
adequately powered prospective trial, and the results presented in this thesis suggest that future 
validation of the ACES algorithm as residual risk prediction tool should be pursued. 
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INTRODUCTION  

 Breast cancer represents at least three clinically important and molecularly 

distinct disease subtypes. Estrogen Receptor (ER) positive breast cancers express 

estrogen receptors and their growth is stimulated by estrogen. ER (and progesterone 

receptor [PR]) negative cancers are not dependent on estrogen stimulation and have 

distinct molecular features and epidemiologic risk factors. The third subtype is the 

Human Epidermal Growth Factor Receptor-2 (HER2) positive breast cancer, which 

overexpress HER2 due to gene amplification. HER2 positive breast cancers may be 

subdivided into HER2 positive/ER positive and HER2 positive/ER negative subtypes. 

Breast cancers that do not express ER or PR, and are HER2 negative, and are called triple 

negative or basal-like (a molecular subtype). The HER2 negative/ER positive cancers are 

comprised of two major molecular subtypes, Luminal A and Luminal B, based on 

differences in proliferation rate and gene expression profiles.  

The different breast cancer subtypes differ in their clinical course (i.e. they have 

different patterns of relapse and overall survival) and require different therapeutic 

strategies [1-4]. Over 90% of newly diagnosed breast cancers present as clinical stage I, 

II or III1 disease (i.e. localized to the breast or lymph nodes) and are potentially curable 

with multi-modality therapy [5]. Stage IV is metastatic breast cancer and is generally 

considered to be an incurable disease. 

The focus of this thesis is on stage I-II, ER positive/HER2 negative breast 

cancers. The standard of care for these cancers includes surgery followed by adjuvant 

(i.e. postoperative) anti-estrogen (also called endocrine) therapy, with or without adjuvant 

chemotherapy to eradicate micro-metastatic disease. Almost all patients with ER positive 

1 Stage is defined according to American Joint Committee on Cancer Staging 2010 
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cancers receive adjuvant endocrine therapy [3] because it  improves survival and causes 

only modest toxicity. However, which ER positive patients should receive adjuvant 

chemotherapy in addition to endocrine therapy used to be a decision making challenge. 

If all ER positive breast cancer patients were treated with adjuvant chemotherapy, 

about 85% would be over-treated either because they were already cured by surgery and 

endocrine therapy, or because they had a chemotherapy resistant cancer [6]. To improve 

patient selection for adjuvant chemotherapy, several efforts have been made to identify 

patients with such a good prognosis that they would not require further adjuvant 

chemotherapy. Clinico-pathological factors such as age, comorbidities, tumor size and 

lymph node involvement are used to help make treatment decisions, based on estimating 

the risk of recurrence, but they remain imprecise. These anatomical-pathological factors 

also do not account for the cancer’s sensitivity to endocrine therapy or chemotherapy.  

 

Background 

Prognostic and Predictive Genetic Signatures 

This thesis examines the ability of a multi-gene test to re-stratify initially high risk 

ER positive breast cancers who receive adjuvant endocrine and chemotherapies into low 

or high residual risk categories. Prognostic factors are associated with the risk of 

recurrence of the primary tumor. Predictive factors are associated with the efficacy of a 

drug or therapeutic regimen [7]. Pure prognostic factors include tumor size and nodal 

involvement. In contrast, factors such as grade and proliferation rate of the tumor are both 

prognostic and predictive. ER expression or amplification of the HER-2 gene are 

primarily predictive markers for anti-estrogen and HER-2 targeted therapies, 
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respectively. The ACES gene signature that is the focus of this thesis includes endocrine 

therapy and chemotherapy predictive as well as prognostic components. 

In the past 10 years, several multi-gene prognostic tests were introduced into the 

clinic. These tests categorize newly diagnosed, stage I-II ER positive breast cancers into 

“low risk” and “high risk” groups at the time of diagnosis. Low risk refers to excellent 

long-term survival with surgery and endocrine therapy alone. High risk indicates high 

rates of recurrence of over 15% at 10 years, and less favorable survival, if treated with 

only surgery and adjuvant endocrine therapy.  

Multi-gene prognostic tests are treatment decision making aids, which are 

independent of, and complementary to the use of clinico-pathological factors and patient 

preference. Practice guidelines from groups such as the National Comprehensive Cancer 

Network (NCCN), the American Society for Clinical Oncology (ASCO), and the St. 

Gallen International Expert Consensus all agree on the general principle that molecular 

testing can aid in risk stratification [3, 8, 9]. Multi-gene prognostic and predictive tests 

are multivariate prediction models that use the semi-quantitative expression values of 

multiple genes to calculate a risk score. They are particularly useful to clinicians when 

clinico-pathological factors do not clearly point towards whether the patient will benefit 

from the addition of chemotherapy or not [10]. Several studies have shown that adjuvant 

treatment recommendations for early stage ER+ breast cancers change about 30% of the 

time after molecular tests results become available, compared to decisions made entirely 

based on anatomical-pathological variables [11-13].  

Primary prognostic predictors that estimate prognosis in the absence of any 

systemic therapy include MammaPrint (by Agendia) [11, 13, 14]. Residual-risk 
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predictors that estimate prognosis after receiving adjuvant endocrine therapy include 

Oncotype DX (by Genomic Health) [6], PAM50 molecular subtype classifier (called 

Prosigna by NanoString) [15], and the Genomic Grade Index (GGI) (called MapQuant 

DX by Ipsogen/Qiagen). Each of these latter group of tests were developed and their 

performance characteristics defined in clinical studies that included patients who received 

adjuvant endocrine therapy, but not chemotherapy [6]. There are several other less well 

standardized prognostic and predictive molecular tests as well as protein marker tests [3]. 

The tests are collectively referred to as first generation prognostic signatures [16, 17]. 

They have been independently validated [18], and largely derive their risk stratification 

power from measuring the proliferation rate of cancers and ER-regulated gene expression 

[19]. Three of these tests will be utilized in this thesis: Oncotype DX, GGI and PAM50. 

It is important to note that we use genomic proxy-versions of these tests (i.e. the same 

genes and same formulas are used as in the commercial assays but gene expression 

measurements are done with a different platform, Affymetrix gene chips) and not the 

actual commercially marketed versions.  

 

Genomic Grade Index  

GGI was discovered by finding genes which were differentially expressed within 

histologic grade 3 tumors when compared with histologic grade 1 tumors. GGI consists 

of 97 genes detected by microarray analysis, which classify a tumor into high grade or 

low grade, and can also be used to reassign lower or higher grade to intermediate grade 2 

cancers. The majority of genes in the GGI are associated with tumor proliferation and cell 

cycle regulation. In the pivotal validation study, patients with high GGI had 55% 
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recurrence free survival (RFS) at 10 years with surgery alone, compared to 88% of low 

GGI cases. GGI has been particularly useful in re-classifying pathologic grade 2 tumors, 

since they represent intermediate risk tumors, making clinical treatment decisions 

difficult without further data. High GGI classification, even among grade 2 tumors, has 

been associated with a significantly higher risk of recurrence in patients treated with 

adjuvant endocrine therapy [20]. GGI has also been shown to add prognostic information 

to standard clinico-pathological variables (e.g. age, tumor size, nodal status) [21]. A 

prospective study demonstrated that GGI is feasible to implement in clinical practice and 

often changed clinical treatment decisions [22, 23]. GGI was approved by European 

Community (CE) marking, with the assay conducted in non-centralized laboratories [3].  

 

PAM50 

The PAM50 assay measures the expression of  50 cancer genes and 5 control 

genes using the Nanostring mRNA quantification technology, to assign molecular 

subtypes including  Luminal A, Luminal B, HER2, or basal-like status [24]. PAM50 

combined with a proliferation score and tumor size produces a risk of recurrence (ROR) 

score that predicts risk in 10 years. PAM50 has been validated with large datasets, 

including by combining data of the Austrian Breast and Colorectal Cancer Study Group 8 

(ABCSG-8 clinical trial) and the Arimidex, Tamoxifen Alone or in Combination 

(transATAC) study, with sample size of above 2,400 patients. Another large study 

utilized data from the National Cancer institute of Canada, Clinical Trial Group (NCIC 

CTG MA.12 trial). These studies showed that PAM50 provides independent prognostic 
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information compared to clinical factors and routine immunohistochemistry markers, in 

ER positive cancers treated with endocrine therapy [3, 25-27].  

The Luminal B subtype as classified by the PAM50 assay, has significantly lower 

relapse free survival compared to Luminal A and basal-like tumors, when treated with 

adjuvant Tamoxifen [15]. At 8 years post-surgery, Luminal A tumors had 88% overall 

survival compared with 76% for Luminal B [28]. Survival from the time of distant 

relapse for Luminal B tumors is less than 2 years [4]. The assay holds European Union 

clearance, and approval by the FDA as of 2013 [3]. 

 

Oncotype DX 

The most well studied of the first generation prognostic signatures is Oncotype 

DX, and thus it is the test most commonly used in the clinical setting [1, 8, 29]. Oncotype 

DX is a 21-gene signature measured by RT-PCR to calculate a recurrence score (RS). 

Five of the 21 genes are reference genes, used to normalize the expression levels of the 

16 genes related to breast cancer. These 16 genes include 5 genes that are related to 

proliferation, 4 that capture ER transcriptional activity, 2 represent genes on the HER2 

amplicon, 2 are involved with invasion, and 3 genes have less well defined biological 

roles. Oncotype DX RS classifies tumors into three risk categories; RS <18 is low risk of 

recurrence, RS > 30 is high risk, and those in between are intermediate risk [2, 3].  

The prognostic performance of Oncotype DX was assessed in several large 

retrospective studies, where sample sizes within a single study included up to 1372 

patients. Several of these studies analyzed tumor samples from completed clinical trials 

including the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14 and 
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B-20 studies [6, 30], the Eastern Cooperative Oncology Group (ECOG) 2197 study [10], 

the Kaiser Permanente study [31], and the Arimidex, Tamoxifen Alone or in 

Combination (ATAC) study [32].  

High RS was shown to be strongly associated with breast cancer recurrence and 

death [31]. When treated with endocrine therapy alone, the 10-year distant relapse free 

survival (DRFS) for high RS, lymph node negative tumors ranged from 69-75%. In 

contrast, DRFS for low RS tumors ranged from 93-96%, and the difference was highly 

statistically significant in all studies [6, 33, 34]. Unlike the previous two tests GGI and 

PAM50 which are sold as test kits to be performed by molecular pathology laboratories, 

Oncotype DX is a proprietary test performed in a single commercial laboratory [3]. 

 

High risk ER positive breast cancer and adjuvant chemotherapy  

 High risk ER positive breast cancers include the Oncotype DX high RS cases, the 

Luminal B molecular subtype determined by the PAM50 test, and high GGI. It has 

become clear that cancers identified as high risk by molecular tests are also the same 

cancers that are often very sensitive to chemotherapy, likely due to their high 

proliferation rate. High proliferation rate has been associated with greater response to 

chemotherapy, which is most clearly demonstrated by neoadjuvant studies, where the 

adjuvant chemotherapy is administered before surgery and tumor response can be directly 

measured [35]. When treated with neoadjuvant chemotherapy, Oncotype DX high RS 

cases achieve considerably greater rates of clinical complete response (CR)2 and 

pathologic complete response rates compared to low or intermediate RS cases [35, 36]. 

2 Clinical or pathologic complete response (CR or pCR) is defined as no cancer remaining in the 
primary tumor bed or within regional lymph nodes after chemotherapy. 
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When adjuvant chemotherapy was added to the treatment of high RS patients, there was a 

28% absolute reduction in distant recurrence3 compared to treatment with adjuvant 

endocrine therapy alone, in the NSABP B-20 trial [30]. Similar results were found in the 

SWOG 8814 clinical trial – selective benefit from chemotherapy4  among the high RS 

patients, but not among the low RS patients [37].  

In order to generate the highest level of evidence on the utility of Oncotype DX 

for chemotherapy treatment decisions, two prospective randomized clinical trials are 

ongoing: Trial Assigning Individualized Options for Treatment (TAILORx) [38] and Rx 

for Positive Node, Endocrine Responsive Breast Cancer (RxPONDER) [39]. In the 

TAILORx, low RS patients are not given chemotherapy, while high RS receive 

chemotherapy. Intermediate RS patients are randomly assigned to the chemotherapy arm 

or the one without chemotherapy. Over 11,000 patients have been recruited in TAILORx. 

The RxPONDER trial is similarly trying to determine the Oncotype DX RS threshold 

where chemotherapy is beneficial. This trial will also be comparing the RS to the ROR of 

PAM50 [2, 3, 34, 38, 39]. The trial results will not be available for several years. 

For high GGI breast cancers, this high risk status has also been associated with 

increased sensitivity to a neoadjuvant chemotherapeutics (including paclitaxel, 

fluorouracil, adriamycin, and cyclophosphamide). High GGI cases have demonstrated 

greater rates of pathologic complete response (pCR or RCB-0) and lower residual cancer 

burden (RCB-I) after neoadjuvant chemotherapy. However, when only ER positive 

patients with high GGI were analyzed in the same study, survival remained poor even 

3 Patients in the NSABP B-20 trial who were randomized to the Tamoxifen and chemotherapy 
arm received either cyclophosphamide, methotrexate and 5-fluorouracil (CMF) or methotrexate 
and 5-fluorouracil (MF).  
4 Patients in SWOG 8814 in the Tamoxifen and chemotherapy arm received cyclophosphamide, 
doxorubicin, and fluorouracil (CAF). 
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after chemotherapy. This may be due to low endocrine therapy sensitivity of high GGI 

tumors, despite having greater sensitivity to chemotherapy [16, 40].  

Luminal B breast cancers, identified by PAM50, have also been shown to have 

greater responsiveness to neoadjuvant chemotherapy, compared to Luminal A tumors 

[15]. Luminal B tumors are associated with high proliferation, and tend to have high     

Ki-67 (a nuclear marker for cell proliferation) expression, which can be detected by 

immunohistochemistry. Tumors with high Ki-67 treated with chemotherapy in addition to 

endocrine therapy have shown improved disease-free survival, when compared to tumors 

treated with endocrine therapy alone. In contrast, low Ki-67 tumors have not 

demonstrated a change in disease free-survival when chemotherapy was added [41]. 

Because of the consistency of these results, high risk ER positive patients today 

routinely receive chemotherapy in addition to anti-estrogen therapy to reduce their risk of 

recurrence. However, what their residual risk is after completion of both endocrine and 

chemotherapies remain uncertain. It is likely that many patients revert to low risk. 

 

ACES Algorithm  

The ACES multi-gene survivor predictor was developed by Hatzis, Pusztai and 

colleagues to identify both ER positive and ER negative patients who have high excellent 

DRFS after endocrine therapy and chemotherapy. ACES captures information about 

sensitivity to endocrine therapy, sensitivity and resistance to chemotherapy and general 

prognostic information in the absence of any systemic therapy. The algorithm has been 

validated on an independent patient cohort.  The ACES predictor is a combination of four 

separate multi-gene scores (Figure 1) [42]. The first score predicts sensitivity to 

 
 



10 
 

endocrine therapy, which is based on the Sensitivity to Endocrine Therapy (SET) Index. 

The SET Index, also discovered by Pusztai, Hatzis and colleagues, is a previously 

published 165-gene set associated with ER, which can predict survival after endocrine 

therapy or after combined endocrine therapy and chemotherapy [43]. If a tumor is 

determined to have an intermediate or high SET index, the ACES algorithm will classify 

it as treatment sensitive. If the SET index is low, then a second gene signature score 

which predicts resistance to chemotherapy is utilized by ACES. If the chemotherapy 

resistance score predicts extensive residual cancer (RCB-III), which usually indicates 

high risk of distant relapse or death within three years of diagnosis, the tumor is classified 

as treatment insensitive. Seventy-three genes are used to predict RCB-III response in ER 

positive cancers, and thirty-three other genes predict early relapse or death, despite 

neoadjuvant chemotherapy. If there is no predicted resistance to chemotherapy by the 

above criteria, the ACES algorithm analyzes if the tumor is sensitive to chemotherapy. 

Sensitivity is assessed by predicting pathologic complete response (pCR) or minimal 

residual cancer burden (RCB-I) after neoadjuvant chemotherapy, which is determined by 

thirty-nine genes. If the tumor is predicted to be sensitive to chemotherapy at this point, 

then it is considered overall treatment sensitive; otherwise, it is classified as treatment 

insensitive. The algorithm is summarized in Figure 1, and the genes utilized for ER 

positive cases are shown in Appendix Figure A3 [42].  

 

Purpose of this study 

 The purpose of this thesis is to test the utility of a combined prognostic and 

endocrine therapy and chemotherapy sensitivity multi-gene signature called ACES, to 
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FIGURE 1. ACES algorithm (From Hatzis et al [42]) 

 

 

 

identify among the currently “high risk” ER positive/HER2 negative cancers, those 

patients who become low risk after receiving adjuvant chemotherapy. The secondary risk 

stratification value of ACES for ER positive cancers considered “high risk” by other 

genomic signatures (such as Oncotype DX, PAM50, and GGI), treated with both 

adjuvant endocrine therapy and chemotherapy, has not been previously reported.  

The ACES algorithm is not optimally suited to guide the use of adjuvant 

chemotherapy because all patients in the discovery and validation cohort (used to 

discover and validate the ACES algorithm) received both endocrine therapy and 

chemotherapy. Hence, ACES cannot easily distinguish if endocrine therapy, or the 

combination of both endocrine therapy and chemotherapy, contributes to good survival. 
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In contrast, Oncotype DX, PAM50, and GGI were developed from patients who only 

received endocrine therapy, and therefore cannot inform about low or high residual risk if 

chemotherapy is also used. The goal of this thesis is to determine if ACES can provide 

complementary information once it has been decided that chemotherapy is indicated 

based on Oncotype DX or PAM50 or the GGI score. This thesis employs ACES to 

address the clinical question: “for which high risk ER positive patient is adjuvant 

chemotherapy sufficient, and which patient remains high risk despite receiving adjuvant 

chemotherapy”? 

Furthermore, the goal of the original report that described ACES was to develop a 

survival predictor for ER positive and ER negative breast cancers respectively, but no 

attempts were made to further categorize ER positive patients into low and high risk 

groups using existing classification methods. The discovery and validation cohorts for the 

ACES predictor included ER positive patients who are of low, intermediate and high RS 

classification by Oncotype DX, as well as Luminal A and Luminal B molecular subtypes 

by PAM50, and both low and high GGI. Good performance on the combined low and 

high risk groups does not necessarily imply that ACES performs equally well in both 

patient subsets.  

 

Hypothesis 

 A subset of stage I-II ER positive breast cancers that are currently categorized as 

“high risk” based on poor outcome with adjuvant endocrine therapy alone, are no longer 

high risk after receiving adjuvant chemotherapy. We hypothesize that a gene signature 

ACES, which accounts for treatment sensitivity to both endocrine therapy and 
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chemotherapy, will be able to re-stratify the currently “high risk” ER positive cancers 

into two groups: ACES predicted low residual risk after adjuvant chemotherapy, and 

ACES predicted high residual risk despite adjuvant chemotherapy. 

 

Aim 

The aim of this thesis is to determine if the ACES genomic predictor can re-

stratify ER positive breast cancers called “high risk” by the commonly used prognostic 

assays Oncotype DX, PAM50 and GGI, into low and high residual risk categories after 

treatment with adjuvant chemotherapy.  

 

METHODS 

Study Design 

This is a retrospective cohort study. The ACES predictor was applied to assess 

residual risk in high risk ER-positive breast cancer cases treated with systemic endocrine 

and chemotherapy.  ER positive cases were first assessed from the cohort used to develop 

the ACES predictor (cohort 1).  The next evaluation of risk stratification was done in the 

independent validation cohort for ACES (cohort 2).  Finally, to assess the generalizability 

of the results, a blinded independent validation on a third cohort (cohort 3) was 

performed.  For cohort 3, gene expression data without any information on patient 

outcomes was received, risk categories (by the Oncotype DX RS, PAM50 and GGI) was 

assigned, predictions by ACES for the high risk subsets were calculated, and finally the 

predictions were sent back to our collaborator (Dr. Thomas Karn, Goethe-University, 

Frankfurt, Germany) who plotted survival curves by ACES treatment sensitivity 
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category.  After this blinded independent validation, the patient outcome data was 

received from cohort 3 in order to perform a pooled analysis combining cohorts 2 and 3 

for improved power.      

 

Power Analysis 

Assuming a 5-year DRFS of 90% for the ACES predicted “treatment sensitive” 

strata and 60% for the ACES “treatment insensitive” strata, the estimated hazard ratio 

(HR) is:  

HR = log(0.9)/log(0.6) = 0.206. 

The assumption was also made that 30% of the ER positive high risk cases (by high RS,  

Luminal B subtype, and high GGI), would be re-assigned to ACES “treatment sensitive” 

(i.e. low residual risk) category after treatment with chemotherapy.  Then, the number of 

events (N) required for the log-rank test to detect significance of this HR at a 0.05 one-

sided significance with 80% power, is: 

N = (1.64 + 0.84)2/(0.3 * 0.7 * log(0.206)2) = 12. 

The overall event rate in the ER positive cases is about 15%, and would be expected to be 

even higher in the high risk group.  Assuming a 20% event rate at 5 years, a cohort of 

N=60 would have 80% power to detect a HR of 0.206. This power estimation suggested 

that if the above assumptions held true, the retrospective study with a sample size limited 

by availability, would have sufficient power to detect existing significant effects. 

 

Datasets 

Three independent cohorts of ER positive/HER2 negative tumors were used. 
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A.  Cohort 1: Discovery Cohort:  This cohort was used to discover the ACES algorithm. 

310 tumor biopsies of newly diagnosed Stage I to III, invasive breast cancers, obtained 

prior to any systemic treatment, were collected as part of a prospective international 

multicenter biomarker discovery study from 2000 to 2006. The samples were obtained by 

fine-needle aspiration or core biopsy. Tumor messenger RNA (mRNA) hybridization to 

oligonucleotides was performed with Affymetrix Human Gene U133A GeneChip 

microarrays. All patients received entirely neoadjuvant taxane-anthracycline 

chemotherapies, and others classes of chemotherapy were added. Patients received 

endocrine therapy if ER positive. The cohort included 176 ER positive cases, which were 

analyzed in this thesis. 

B.   Cohort 2: Validation Cohort 1:  This cohort was used to validate the ACES 

algorithm, and also published in 2011 [42]. This is an independent cohort to the above 

discovery cohort. It contains 198 HER2 negative invasive breast cancer patients, for 

whom biopsy samples were obtained by fine-needle aspiration or core biopsy, from 2002 

to 2009. Gene expression profiling was performed at the same laboratory as for cohort 1 

using Affymetrix Human Gene U133A GeneChips. One hundred and twenty three 

patients had ER positive cancers, which are included in the current analysis. All of these 

patients were treated with sequential taxane and anthracycline chemotherapy, most 

receiving it as neoadjuvant therapy. All patients also received endocrine therapy [42]. 

C.  Cohort 3: Validation Cohort 2:  The third cohort is independent of the previous two 

cohorts. The aim for including Cohort 3 was to 1) provide an additional cohort for 

independently validating that ACES can stratify high risk ER-positive/HER2-negative 

breast cancers in a blinded manner from a different institution, and 2) if the previous aim 
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could be demonstrated, to combine the two validation cohorts (cohort 2 and cohort 3) to 

increase the power for detecting a significant stratification by ACES.   

This cohort was obtained after searching the published literature and public 

databases, which included the Gene Expression Omnibus (GEO), and by contacting 

researchers. Dr. Thomas Karn, based in Goethe-University Frankfurt in Germany, agreed 

to collaborate. In validation cohort 2, 22% of patients received AC (cyclophosphamide 

and doxorubicin), 46% EC (epirubicin and cyclophosphamide), 10% CMF 

(cyclophosphamide, methotrexate and 5-fluorouracil), and 22% TAC (docetaxel, 

doxorubicin and cyclophosphamide)5, and all ER positive patients received endocrine 

therapy. Some of the cases in this cohort are from GeparTrio, a completed multi-center 

randomized trial by the German Breast Group [44].  

Gene expression profiling was performed with Affymetrix U133A and 2.0 gene 

chips in Dr. Karn’s laboratory. Raw intensity files (.CEL files) of 252 cases were 

provided without any clinical information. Outcome data was not provided initially in 

order to create a blinded validation study. ER positive/HER2 negative cases were 

included in our analysis only if microarray based ER and HER2 determination matched 

the clinical ER and HER2 status provided by Dr. Karn. Thus, 127 cases from the German 

cohort were analyzed for this thesis.    

 

Data Processing and Generation of Predictions 

Microarray data processing:  All the raw data (.CEL) files from microarrays were 

processed using Bioconductor (www.bioconductor.org) and R (www.r-project.org,  

5 Types of anthracyclines include doxorubicin and epirubicin, and types of taxanes include docetaxel.  

 
 

                                                            

http://www.bioconductor.org/
http://www.r-project.org/
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version 2.10.1) and normalized using custom R programs (packages) developed and 

provided by Dr. Hatzis. 

Standardization of microarray dataset for cohort 3 (i.e. validation cohort 2):  Since tumor 

sample preparation and microarray protocols differed between cohort 3 and cohorts 1 and 

2, normalization was done of the genomic indices calculated for cohort 3. Normalization 

served to transform data within cohort 3, in order to make measurements between the 

different microarray datasets comparable [45]. The four gene signatures or 

subcomponents of the ACES algorithm (Figure 1) are each associated with a quantitative 

score and a numerical threshold which defines its predicted class. The four sub-scores 

were each separately normalized. Five normalization strategies were used, outlined below 

(Appendix Tables A4 and A5).   

• Normalization Strategy 1: Distributions (or proportions of cases) of 

subcomponents of ACES were matched between validation cohort 2, and the 

combined discovery and validation cohort 1. 

• Normalization Strategy 2: Since the original ACES study demonstrated that T-

stage was significantly associated with DRFS within a multivariate model which 

included ACES and ER status [42], normalization was done to account for 

potentially prognostic variables. In normalization strategy 2, ACES 

subcomponent distributions were matched within T-stage stratified cases (T1/T2 

versus T3/T4 tumors) of validation cohort 2. 

• Normalization Strategy 3: Similarly, ACES subcomponent distributions were 

matched within lymph node stratified cases (lymph node positive versus negative) 

of validation cohort 2. 
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• Normalization Strategy 4: ACES subcomponent distributions were matched 

within grade stratified cases (grade 1 or 2, versus grade 3). 

• Normalization Strategy 5: Multivariate linear regression models were built to 

adjust for differences between the microarray datasets by adjusting for imbalances 

in disease spectra between validation cohort 2, and the combined development 

cohort and validation cohort 1. The ACES subcomponents were the response 

variables, and the predictor variables were age, T-stage, nodal status, grade and 

cohort (1 and 2 versus 3). Any significant effect from cohort 3 was estimated 

from the model and subtracted from the corresponding subcomponent score. 

• Normalization of baseline risk classifiers: GGI values were normalized in  

cohort 3 by redefining the numerical threshold that determines high versus low 

GGI. Oncotype DX RS was not normalized as its microarray based thresholds 

have not been validated. PAM50 was not normalized as this assay does not 

involve numerical thresholds but determines molecular subtype by closest 

similarity to prototypical expression patterns, or subtype centroids.  

Definition of Risk Groups:  “High risk” cases were defined as: high RS classification by 

Oncotype DX, Luminal B molecular class by PAM50, or high grade by GGI. Standard, 

previously published methods were used when applying the prognostic predictors to the 

three cohorts [42]. Since the Oncotype DX is a proprietary assay of Genomic Health and 

is performed by using a polymerase chain reaction (PCR) assay, a published genomic 

surrogate version of the test was used. The surrogate version uses gene expression values 

of the same 21 genes as in the proprietary assay, but is generated by Affymetrix gene 

expression arrays [46]. 
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Generation of ACES predictions:  The ACES algorithm was applied to each of the “high 

risk” groups (high RS, Luminal B and high GGI) within the three cohorts.  For validation 

cohort 2, the ACES algorithm was applied after each of the five normalization strategies 

was carried out.  The “high risk” cases were stratified by ACES into predicted “treatment 

sensitive” and “treatment insensitive” strata. 

 

Statistical Analysis 

Assessment of Predictor Performance:  Kaplan-Meier relapse-free survival (RFS) curves 

were plotted of each “high risk” group by response strata predicted by ACES. RFS was 

defined as the time from initial biopsy at diagnosis until relapse was diagnosed. Distant 

relapse was the outcome of the discovery and validation cohort 1, while any relapse 

(local or distant) was the outcome of validation cohort 2 (because distant relapse free 

survival was not made available). Observations were right censored at the time of loss to 

follow-up. The ACES predicted “treatment sensitive” and “treatment insensitive” strata 

were compared by the log-rank test.  Multivariate Cox regression models were used to 

adjust the risk associated with ACES for other clinical prognostic variables: age, T-stage, 

and nodal status at time of diagnosis. 

The ACES predicted strata were also compared by calculating the Absolute Risk  

Reduction (ARR) at 4 years (and 10 years in validation cohort 2); the associated 95% 

confidence interval (CI) was calculated under bootstrap [42]. The performance of ACES 

in predicting RFS was assessed by calculating the algorithm’s sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV), diagnostic positive and 

negative likelihood ratios (LR+ and LR-) and Odds Ratio (which equals LR+/LR-) with  
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associated 95% CI [42].  

The data analysis was done using a combination of R, SAS 9.3 and Excel 

2010.The statistical analysis was conducted by me under the primary supervision of Dr. 

Hatzis, and also by Dr. Pusztai. As the outcome data of validation cohort 2 was initially 

blinded, Dr. Karn performed the initial survival analysis of this dataset.  

 

RESULTS 

Pre-treatment characteristics 

Patient demographics and tumor characteristics for the three cohorts (discovery 

cohort, n=176; validation cohort 1, n=123; and validation cohort 2, n=127) are shown on 

Table 1. The discovery cohort and validation cohort 1 were similar in age, grade, T-stage, 

nodal status, AJCC stage and Progesterone Receptor (PR) status. Comparison of 

validation cohort 2 with the combined discovery and validation cohort 1 showed a 

significant difference in T-stage or tumor size (p=0.000), nodal status (p=0.001) and 

pathologic grade (p=0.041) distribution. There were more T1 stage tumors, less lymph 

node positive cases, and more pathologic grade 1 or 2 tumors within validation cohort 2, 

but no difference was seen in age. Normalization strategies 2, 3, 4 and 5 of validation 

cohort 2 adjusted for the impact of these clinical prognostic variables on RFS (Appendix 

Table A4-A5). 

 

High risk classification by Oncotype DX, PAM50 and GGI  

The GGI assigned the highest number of patients to high risk category in all three 

cohorts; n=90 (51%) in the discovery cohort, n=64 (52%) in validation cohort 1, and 
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TABLE 1. Pre-treatment Characteristics 

Characteristic Discovery 
Cohort 

 
N (% of 176)  

Validation 
Cohort 1 

 
N (% of 123)  

Validation  
Cohort 2 

 
N (% of 127) 

 
Odds Ratio†  

 
p-value† 

Age 
     <50  
     >50 
     Mean (SD) 

 
90 (51) 
86 (49) 
51 (10) 

 
64 (52) 
59 (48) 
50 (10) 

 
63 (50) 
64 (50) 
51 (10) 

 
1.08 

 
0.751 

T-stage 
1 
2 
3 
4 
Unknown 

 
26 (15) 
94 (53) 
28 (15) 
21 (12) 

7 (4) 

 
8 (7) 

54 (44) 
41 (33) 
19 (15) 

1 (1) 

 
43 (34) 
69 (54) 

9 (7) 
6 (5) 

0 

 
0.25 

 
0.000 

Nodal Status 
Negative 
Positive 
Unknown 

 
61 (35) 
113 (64) 

2 (1) 

 
46 (37) 
77 (63) 

0 

 
69 (54) 
57 (45) 

1 (1) 

 
0.47 

 
0.001 

AJCC stage 
I 
II 

     III  
     Unknown 

 
1 (1) 

103 (59) 
71 (40) 

1 (1) 

 
1 (1) 

51 (41) 
45 (37) 
26 (21) 

 
- 

 
- 

 
- 

Grade 
1 
2 
3 
Unknown 

 
19 (11)  
100 (57) 
46 (26) 
11 (6) 

 
10 (8) 

53 (43) 
54 (44) 

6 (5) 

 
12 (9) 

83 (65) 
32 (25) 

0 

 
0.61 

 
0.041 

 

PR status 
Negative 
Positive 
Indeterminate 

 
43 (24) 
130 (74) 

3 (2) 

 
30 (24) 
93 (76) 

0 
 

 
- 

 
- 

 
- 

† Odds ratio and p-value reflects the results of Fisher’s exact test when Validation Cohort 2 is compared 
with the combined Discovery Cohort and Validation Cohort 1; age, T-stage, lymph node involvement and 
pathologic grade at time of diagnosis were compared between the cohorts. Abbreviations: PR, progesterone 
receptor; SD, standard deviation; AJCC, American Joint Committee on Cancer 
 

 

n=54 (43%) in validation cohort 2 (Table 2). The number of high RS and Luminal B 

cases were smaller within each cohort, ranging from n=37 (29%) to n=39 (32%) for high 

RS, and from n=18 (14%) to n=40 (23%) for Luminal B. This study was determined to 

have 80% power in detecting statistical significance when it exists, for a sample size of at 

least 60. Therefore, for high GGI cases, there was sufficient statistical power to detect  
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TABLE 2. Distribution of risk classification by Oncotype DX, PAM50 and GGI 

† Odds ratio and p-value reflects the results of Fisher’s exact test when Validation Cohort 2 is compared 
with the combined Discovery Cohort and Validation Cohort 1. ‡ Normalized. Abbreviations: RS, 
Recurrence Score; GGI, Genomic Grade Index 
 

 

the HR=0.206, but the study was underpowered for Luminal B and high RS groups due to 

the lower prevalence of high risk predictions by these methods. Furthermore, in 

validation cohort 2, all high risk categories contained less than 60 cases. Therefore, the 

two validation cohorts were combined to increase sample size and thus the ability to 

detect statistical significance when present. 

There were more Luminal B cases in the discovery and validation cohort 1, than 

in validation cohort 2 (p=0.055), but the distribution of high RS and high GGI cases did 

not differ (Table 2).  The overlap between the three high risk groups is shown on Table 3.  

The majority of Luminal B tumors, 85-100%, are also classified as high GGI, within all 

three cohorts. The next highest level of overlap is seen among high RS tumors which are 

also high GGI, ranging from approximately 50-70% within the cohorts. The overlap 

between the other high risk groups is lower, ranging from 5% to 36%. It has been 

reported previously that Oncotype DX classifies most Luminal B tumors into high RS  

Group Discovery 
Cohort 

N (% of 176)  

Validation 
Cohort 1 

N (% of 123)  

Validation 
Cohort 2 

N (% of 127)  

Odds 
Ratio†  

 
p-value† 

Oncotype DX 
High RS 
Intermediate  RS 
Low RS 

 
39 (22) 
21 (12) 
116 (66) 

 
39 (32) 

9 (7) 
75 (61) 

 
37 (29) 
31 (24) 
59 (46) 

 
0.89 

 
0.648 

 

PAM50 
Luminal B 
Luminal A 
Basal 
HER2 
Normal 

 
40 (23) 
99 (56) 
11 (6) 
11 (6) 
15 (9) 

 
33 (27) 
55 (45) 
15 (12) 

9 (7) 
11 (9) 

 
18 (14) 
94 (74) 

2 (2) 
5 (4) 
8 (6) 

 
1.72 

 
0.055 

GGI 
High 
Low 

 
90 (51) 
86 (49) 

 
64 (52) 
59 (48) 

 
54 (43)‡ 
73 (57)‡ 

 
1.21 

 
0.349 
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TABLE 3. Overlap in risk prediction the three baseline risk classifiers  
 

High Risk Group 
 

Discovery Cohort Validation Cohort 1 Validation Cohort 2 

High RS 
Luminal B 
High GGI 

N (% of High RS cases) 
10 (26) 
28 (72) 

2 (5) 
23 (59) 

4 (11) 
18 (49) 

 
Luminal B 

High RS 
High GGI 

N (% of Luminal B cases) 
10 (25) 
37 (93) 

2 (6) 
28 (85) 

4 (22) 
18 (100) 

 
High GGI 

High RS 
Luminal B 

N (% of High GGI cases) 
28 (31) 
37 (41) 

23 (36) 
28 (44) 

18 (33) ‡ 
18 (33) ‡ 

‡ Normalized. Abbreviations: RS, Recurrence Score; GGI, Genomic Grade Index 
 

 

categories [24]. In this dataset, about 25% of Luminal B cases are also high RS in the 

discovery cohort, but only about 5-11% are so in validation cohorts. 

 

ACES prediction of residual risk 

The ACES algorithm (Figure 1) classified 22-50% of “high risk” cases (high RS, 

Luminal B, and high GGI) as treatment sensitive. This proportion did not differ 

significantly from the proportion of all ER positive tumors (regardless of baseline risk) in 

the cohorts predicted to be ACES treatment sensitive. The Kaplan-Meier relapse free 

survival plots of the high risk cases re-stratified by ACES, are shown in Figure 2. The 

Kaplan-Meier survival plots of validation cohort 2, after normalization, are shown in 

Appendix Figure A1. The median follow-up time was 3 years for both the discovery 

cohort and validation cohort 1, and the range was from 0-7 years. For validation cohort 2, 

median time of follow-up was 5 years, with range from 0.4-10 years. 

In all “high risk” categories within all cohorts (discovery cohort, validation cohort  
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1, and normalized validation cohort 2), the ACES predicted treatment sensitive strata 

showed a trend toward improved RFS when compared to the ACES predicted treatment 

insensitive groups. Within validation cohort 2, consistent trends were only seen after 

normalization utilizing stratification by T-stage (normalization strategy 2; Appendix 

Figure A1 and Table A6); therefore, this normalized dataset was pooled with validation 

cohort 1. Within Luminal B cases of the discovery cohort, the trend of ACES predicted 

sensitive strata having improved RFS was only present before four years.  No such time 

dependence was seen in other groups.  

• High RS 

A significant difference in RFS was seen between the ACES predicted treatment 

sensitive and insensitive strata among high RS cases of validation cohort 1 and the 

combined validation cohorts (p=0.048 and p=0.033). High RS cases in the discovery 

cohort had a corresponding log-rank test p-value of 0.108. There were 0-1 (0-8%) 

relapses within the ACES predicted treatment sensitive groups, and 5-7 (21-28%) 

relapses in the predicted treatment insensitive groups of all cohorts (Table 4). The 4-year 

RFS in the validation cohorts was 92-100% (95% CI: 54-100%) in the ACES predicted 

sensitive strata of the validation cohorts. In validation cohort 1, the 4-year RFS in the 

predicted treatment insensitive strata was 64 (95% CI: 36-82%) in the predicted 

insensitive strata, with an ARR in relapse at 4 years of 41% (95% CI: 14-60%) favoring 

the predicted treatment sensitive strata. The ARR at 4-year for validation cohort 2 was 

0% (95% CI: -21-17%), but by 10 years, the ARR rose to 19% (95% CI: 3-30%). 

• Luminal B 

Statistically significant differences in RFS were not seen between the ACES 
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Figure 2. Kaplan Meier Estimates of Relapse Free Survival  
 

High RS 
 

Luminal B 

High RS cases of Discovery Cohort 

 

Luminal B cases of Discovery Cohort 

 
High RS cases of Validation Cohort 1 

 

Luminal B cases of Validation Cohort 1 

 
High RS cases of Validation Cohorts 1/2† 

 

Luminal B cases of Validation Cohorts 1/2† 

 
Number of cases at risk shown within plot. †Normalized using stratification by T-stage. 
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Figure 2 (continued). Kaplan Meier Estimates of Relapse Free Survival 
 

High GGI 
 

High GGI cases of Discovery Cohort 

 
High GGI cases of Validation Cohort 1 

 
High GGI cases of Validation Cohorts 1 and 2† 

 
Number of cases at risk shown within plot. †Normalized using stratification by T-stage.   
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predicted treatment sensitive and insensitive strata among Luminal B cases. The ARR at 

4 years ranged from 0-17% (95% CI: 1-38%) in the validation cohorts, and was -5% 

(95% CI: -25-10%) in the discovery cohort. In the discovery cohort, although lower risk 

of relapse was seen before 4 years in the ACES predicted treatment sensitive group, this 

trend did not continue after this time. In both validation cohorts, there were 0-1 (0-17%) 

relapses in the treatment sensitive strata, and 3-4 (16-25%) relapses in the treatment 

insensitive strata. The RFS at 4-years for the treatment sensitive groups was 100% (95% 

CI: 100-100%) in both validation cohorts, and ranged from 80-83% (95% CI: 39-95%) in 

the predicted treatment insensitive groups. The ARR at 10-years was 20%6 in validation 

cohort 2, rising from 0% (9 to 36%) at 4-years. 

• High GGI 

A significant difference in RFS was seen between the ACES predicted strata 

within high GGI cases of the discovery cohort (p=0.004). Such a significant difference 

was not found in validation cohort 1 (p=0.113), but the 14 high GGI cases predicted to be 

treatment sensitive in this cohort did not experience any relapses while 10 (20%) had a 

relapse in the predicted treatment insensitive strata. The ARR at 4-years was 25% (95% 

CI: 18-38%) in validation cohort 1. The ARR at 4-years was 0% (95% CI: -24-23%) in 

validation cohort 2, but the ARR at 10-years increased to 16%7. 

 

Clinical Factors associated with Relapse Free Survival 

Clinical factors associated with relapse free survival were explored with 

multivariate Cox Proportional Hazards regression models (Appendix Table A1). The  

6 95% Confidence Interval could not be obtained under bootstrap. 
7 95% Confidence Interval could not be obtained under bootstrap 
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TABLE 4. Survival Analysis  

‡p-value reflects that of the combined validation cohort 1 and 2. †Normalized using stratification of cohort 
by T-stage (See Strategy 2 in Methods). *Values could not be obtained under bootstrap. Abbreviations: RS, 
Recurrence Score; GGI, Genomic Grade Index; No., number; RFS, relapse-free survival; Rx, treatment; CI, 
confidence interval; ARR, absolute risk reduction (where positive number indicates lower risk in the ACES 
predicted treatment sensitive strata); yr, year 

High Risk Group Cohort 1 Cohort 2 Cohort 3† 
High RS  

ACES Rx Insensitive  
No.  
No. Relapses (Event Rate, %) 
No. Censored 
4-yr RFS (95% CI)  
10-yr RFS (95% CI) 

ACES Rx Sensitive  
No. 
No. Relapses (Event Rate, %) 
No. Censored 
4-yr RFS (95% CI) 
10-yr RFS (95% CI) 

     ARR at 4-yr 
     ARR at 10-yr 
     p-value of Log-Rank test 

 
 

25 
7 (28) 

18 
64 (35 to 83) 

- 
 

14 
1 (7) 
13 

93 (59 to 99) 
- 

29 (3 to 46) 
- 

0.108 

 
 

28 
7 (25) 

21 
64 (36 to 82) 

- 
 

11 
0 

11 
100 (100 to 100) 

- 
41 (14-60) 

- 
0.048 

 
 

24 
5 (21)  

19 
92 (71 to 98) 
73 (45 to 88) 

 
13 

1 (8) 
12 

92 (54 to 99) 
92 (54 to 99) 
0 (-21 to 17) 
19 (3 to 30) 

0.033‡ 
Luminal B  

ACES Rx Insensitive  
No.  
No. Relapses (Event Rate, %) 
No. Censored 
4-yr RFS (95% CI) 
10-yr RFS (95% CI) 

ACES Rx Sensitive  
No. 
No. Relapses (Event Rate, %) 
No. Censored 
4-yr RFS (95% CI) 
10-yr RFS (95% CI) 

     ARR at 4-yr 
     ARR at 10-yr 
     p-value of Log-Rank test 

 
 

25  
5 (20) 

20 
76 (51 to 89) 

- 
 

15 
3 (20) 

12 
71 (34 to 90) 

- 
-5 (-25 to 10) 

- 
0.612 

 
 

25  
4 (16) 

21 
83 (61-93) 

- 
 

8 
 0 
8 

100 (100 to 100) 
- 

17 (0.8 to 38) 
- 

0.274 

 
 

12 
3 (25%) 

9 
80 (39 to 95) 
60 (16 to 86) 

 
6 

1 (17%) 
5 

100 (100 to 100) 
80 (20 to 97) 
0 (9 to 36) 

20 (*) 
0.363‡ 

High GGI  
ACES Rx Insensitive  

No.  
No. Relapses (Event Rate, %) 
No. Censored 
4-yr RFS (95% CI) 
10-yr RFS (95% CI) 

ACES Rx Sensitive  
No. 
No. Relapses (Event Rate, %) 
No. Censored 
4-yr RFS (95% CI) 
10-yr RFS (95% CI) 

     ARR at 4-yr 
     ARR at 10-yr 
     p-value of Log-Rank test 

 
 

45  
13 (29) 

32 
58 (34 to 76) 

- 
 

45 
5 (11) 

40 
81 (60 to 92)  

- 
23 (-2 to 51) 

- 
0.004 

 
 

50 
10 (20) 

40 
75 (58 to 86) 

- 
 

14 
0  

14 
100 (100 to 100) 

- 
25 (18 to 38)  

- 
0.113 

 
 

32 
10 (31) 

22 
80 (60 to 91) 
56 (30 to 75) 

 
22  

5 (23) 
17 

80 (55 to 92) 
72 (44 to 88) 
0 (-24 to 23) 

16 (*) 
0.264‡ 
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models included ACES, age, clinical T-stage and clinical nodal status at time of at 

diagnosis. Age was greater than or equal to 50 (versus less than 50), T-stage was T3/T4 

(versus T1/T2), node positive (versus negative) at time of diagnosis, and ACES predicted 

strata was treatment sensitive (versus treatment insensitive). 

Within high GGI cases, the ACES algorithm was significantly associated with 

RFS in the discovery cohort and validation cohort 1 (p=0.017 and p=0 respectively). 

Being predicted treatment sensitive by ACES within high GGI cases indicated a relapse 

rate of about one-third that of the treatment insensitive group (HR = 0.3) in the discovery 

cohort. The HR was 10-9 in validation cohort 1, which reflects that almost all events 

(relapses) are associated with the ACES predicted treatment insensitive strata. Positive 

nodal involvement was significantly associated with RFS in validation cohort 2 (HR=4, 

p=0.042) among high GGI tumors.  

Within high RS cases, the ACES algorithm was associated significantly with RFS 

in validation cohort 1 (HR=10-9, p=0). In the combined validation cohorts, HR was 0.1 

with p of 0.072. No significant effect of ACES was seen in validation cohort 2 alone, but 

in this cohort, T-stage was extremely strongly associated with RFS (HR=10-9, p=0). 

Lymph node involvement was also associated with RFS in validation cohort 2 and the 

combined validation cohorts (HR=5-9, p=0.047 and 0.042).  

In Luminal B tumors of validation cohort 1 and 2, ACES was significant with 

HR=10-9 – 0.15 (p=0 and p=0.013). In Luminal B cases of the discovery cohort, none of 

the model’s variables were significant predictors of RFS.  In the initial analysis of the 

ACES algorithm in 2011, a multivariate Cox regression model showed that ACES, T-

stage and ER status were associated with DRFS [42], but not lymph node involvement. In 
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this analysis, nodal status was a significant predictor of RFS among both high RS and 

high GGI tumors only within validation cohort 2.  T-stage was a significant predictor of 

RFS only within validation cohort 2.  

 

Performance of ACES algorithm 

Performance of the ACES algorithm in accurately predicting relapse free survival 

at 4-years is shown in Table 5. A positive test is being predicted treatment insensitive by 

ACES. The sensitivity and NPV of ACES was higher compared to the sensitivity and 

positive predictive value (PPV). Sensitivity ranges from 60-100% (95% CI: 9-100%) for 

all three high risk groups. In tests with high sensitivity, a negative test (ACES predicted 

treatment sensitive) is associated with no event (relapse). The important performance 

parameter here is the NPV, which is the probability of no relapse among those predicted 

to be treatment sensitive by ACES, and ranges 71-100% (95% CI: 48-100%). Specificity 

is lower ranging from 25-56% (95% CI: 13-67%). The positive predictive value (PPV) of 

ACES (probability of relapse among those predicted as treatment insensitive), is low at 8-

44% (95% CI: 0-64%).  

The LR- indicates how many times more likely it is for those without relapse to 

have an ACES treatment sensitive prediction, than it is for those with relapse. The LR- 

was significant (less than 1) in high RS cases in the discovery cohort and validation 

cohort 1, among Luminal B cases of the validation cohorts, and within high GGI cases of 

validation cohort 1; LR- was 0 (95% CI: 0.01-0.01). The LR+ indicates how much more 

likely it is for a patient with relapse to have an ACES predicted treatment insensitive 

tumor, compared to a patient without relapse. The LR+ ranged from  
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TABLE 5. Performance of the ACES algorithm in predicting Relapse Free Survival  

Risk Category Discovery Cohort 
Value or % (95% CI) 

Validation Cohort 1 
Value or % (95% CI) 

Validation Cohort 2† 
Value or % (95% CI) 

 
High RS 

Sensitivity  
Specificity  
PPV 
NPV 
LR+ 
LR- 
OR 
 

 
88 (47 to 100) 
42 (25 to 61) 
36 (6 to 56) 

93 (80 to 100) 
1.6 (0.65 to 2.84) 
0.2 (0.01 to 0.37) 
7.3 (1.8 to 229) 

 
100 (59 to 100) 
34 (19 to 53) 
36 (8 to 56) 

100 (100 to 100) 
1.8 (0.45 to 5.10) 
0 (0.01 to 0.01) 

Infinite (45 to 510) 

 
67 (9 to 99) 

35 (20 to 54) 
8 (0 to 19) 

92 (77 to 100) 
1.0 (0 to 3.06 ) 

1.0 (0.01 to 3.74) 
1 (0 to 244) 

Luminal B  
Sensitivity  
Specificity  
PPV 
NPV 
LR+ 
LR- 
OR 
  

 
63 (24 to 91) 
38 (21 to 56) 
24 (3 to 41) 

71 (48 to 100) 
0.8 (0.55 to 1.32) 
1.0 (0.41 to 2.5) 

0.8 (0.31 to 3.34) 

 
100 (40 to 100) 
28 (13 to 47) 
17 (0.3 to 31) 

100 (100 to 100) 
1.3 (0.71 to 2.39) 
0 (0.01 to 0.01) 

Infinite (71 to 239) 
 

 
100 (16 to 100) 
38 (15 to 65) 
20 (0 to 42) 

100 (100 to 100) 
1.7 (0.50 to 2.82) 
 0 (0.01 to 0.01) 

Infinite (50 to 282 ) 
 

High GGI  
Sensitivity  
Specificity  
PPV 
NPV 
LR+ 
LR- 
OR 
  

 
72 (47 to 90) 
56 (43 to 67) 
42 (16 to 60) 
81 (68 to 98) 

1.7 (0.63 to 4.2) 
0.5 (0.11 to 1.27) 
3.2 (0.83 to 23) 

 
100 (69 to 100) 
26 (15 to 40) 
25 (10 to 38) 

100 (100 to100) 
1.3 (0.46 to 1.77) 
0 (0.01 to 0.01) 

Infinite (46 to 177) 

 
60 (26 to 88) 
41 (26 to 57) 
44 (15 to 64) 
72 (53 to 97) 

0.98 (0.28 to 2.19) 
0.98 (0.01 to 2.59 ) 

1.0 (0.22 to 22) 
 

†Normalized using stratification of cohort by T-stage (See Strategy 2 in Methods). Abbreviations: PPV, 
positive predictive value; NPV, negative predictive value; LR+, Positive Likelihood Ratio; LR-, Negative 
Likelihood Ratio; OR, Odds Ratio.  

 

0.8-2.0 (95% CI: 0-8). The associated OR (LR+/LR-) of the groups with significant LR- 

was thus undefined, but indicates that there is increase in the odds of having a relapse 

when predicted treatment insensitive by ACES.  

The performance measures (sensitivity, specificity, PPV, NPV, LR+, LR-) of all 

ER positive cases were calculated and compared to that of the high risk cases. The only 

significant differences found were among Luminal B tumors of validation cohort 2.  The  
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NPV is greater, and the LR- is lower with a higher OR, among Luminal B cases of 

validation cohort 2 compared to all ER positive cases of the cohort; in the composite ER 

positive cases, NPV was 88% (95% CI: 79-98%), LR- was 0.8 (95% CI: 0.4-1.5), and OR 

was 1.4 (95% CI: 0.4-2.8). 

 

Distribution of subcomponents of ACES 

The distribution of the four subcomponents of the ACES algorithm (SET Index, 

predicted RCB-0/I, RCB-III and early relapse/death gene signatures shown in Figure 1) 

within the high risk groups was compared to all ER positive cases in its corresponding 

cohort (Appendix Table A2). One purpose of this comparison was to see if the high risk 

tumors have fewer proportion of cases that are sensitive to endocrine therapy (according 

to SET Index), lower rates of pathologic response (according to the RCB-0/I or RCB-III 

gene signatures) and/or greater rates of death or early relapse within 3 years of diagnosis.    

No such differences were seen in Validation Cohort 2 (after normalization). 

Among Luminal B tumors, the only significant difference in the distribution of 

ACES subcomponents seen was in the SET Index, when compared with all ER positive 

cases. SET Index classification of high/intermediate status (i.e. high/intermediate 

sensitivity to endocrine therapy) alone is sufficient to classify cases as overall ACES 

predicted treatment sensitive (Figure 1). There were only 0-1 (0-3%) Luminal B cases 

classified as SET high/intermediate in the discovery and validation cohort 1. In contrast, 

more tumors [14-45 (11-26%)] were classified as SET high/intermediate within the 

composite ER positive cohorts which contain low risk tumors as well (p=0.001 and 

p=0.042 in the discovery and validation cohort 1 respectively).  
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Among high GGI cases, there were also fewer tumors with SET high/intermediate  

classification when compared to the proportion of all ER positive cases with SET 

high/intermediate status in validation cohort 1 (p=0.003). Fewer high GGI cases had 

extensive residual cancer burden compared to all ER positive cases in the discovery 

cohort; this pattern was not seen in validation cohort 1. No other ACES subcomponent 

showed a different distribution among high GGI cases as compared with all ER positive 

cases.            

Within the high RS tumors, a greater proportion of cases were predicted to have 

early relapse/death, than within all ER positive cases (p=0.022) in the development 

cohort; such a difference was not seen in validation cohort 1. In high RS cases, no other 

ACES subcomponent showed a different distribution from the composite ER positive 

groups. 

The high risk cases were also stratified by each of the four subcomponents of the 

ACES algorithm (Appendix Figure A2). High RS tumors predicted to have high or 

intermediate SET class showed trends toward improved RFS compared with tumors with 

low SET class, in the development and combined validation cohorts. None of the 11 

SET-high/intermediate tumors experienced relapse, while 8 -13 (19-23%) of SET-low 

tumors did. High RS tumors predicted to be at high risk for early relapse/death (within 3 

years of diagnosis) by this ACES subcomponent, demonstrated a trend toward lower 

RFS. Stratification by RCB-0/I and RCB-III predictors did not show consistent trends in 

all cohorts.  None of the subcomponents demonstrated statistically significant 

stratification by the log-rank test.  

Among Luminal B tumors, there was a significant stratification of cases by the  
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early relapse/death predictor (p < 0.0001) in the discovery cohort. However, in the  

combined validation cohorts, while tumors with high risk for early relapse/death had 

higher probability of RFS before 6 years compared with low risk tumors, the trend was 

not present after this time.  Only 1-2 (3-4%) Luminal B tumors were predicted to be SET-

High/Intermediate class; hence the risk stratification power of SET Index could not be 

assessed. The RCB-0/I and RCB-III predictors within Luminal B cases did not show 

consistent trends in all cohorts.   

In high GGI tumors, there was a statistically significant stratification of cases by 

the SET index in the development and combined validation cohorts (p=0.0316 and 

p=0.0318 respectively). High risk tumors by the early relapse/death predictor also 

showed significant stratification in the development cohort (p < 0.0001), but not in the 

validation cohorts. Again, the stratification by RCB-0/I or RCB-III predictors were not 

prominent. Therefore, the dominant subcomponents that drive the stratification power of 

the overall ACES algorithm in predicting RFS are likely SET Index and the early 

relapse/death predictors.  

 

Performance of gene signature for predicting pathologic response 

 Two of the subcomponents of the ACES algorithm predict post-chemotherapy 

pathologic complete response and minimal residual cancer burden (RCB-0/I), or 

extensive residual cancer burden (RCB-III) (Figure 1). The performance of these two 

gene signatures in predicting actual pathologic response in the high risk groups of the 

discovery and validation cohort 18  are shown in Appendix Table A3. There was limited 

data available for validation cohort 1. The sensitivity, specificity, PPV and NPV were 

8 Actual pathologic response data was not available for Validation Cohort 2 for comparison. 
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variable, ranging from 13-96% (95% CI: 2-100%). The LR- was significant for High RS, 

Luminal B cases and high GGI cases and the RCB-0/I predictor, and within high RS and 

Luminal B cases and the RCB-III predictor [0-0.4 (95% CI: 0-0.99)]. These performance 

measures were similar to that of the corresponding entire ER positive cohort.  

 

DISCUSSION 

This thesis demonstrated the potential of the ACES algorithm to classify “high  

risk” (high RS, Luminal B and high GGI) invasive breast cancers into low and high 

residual risk strata after treatment with chemotherapy and endocrine therapy. A 

statistically significant difference in relapse free survival was found between the ACES 

predicted treatment sensitive and insensitive strata, within high RS cases of validation 

cohort 1 and in the combined validation cohorts (log rank test p=0.048 and p=0.033), and 

within high GGI cases of the discovery cohort (p=0.004).  These results were confirmed 

by Cox regression analysis after adjusting for the effects of other clinical covariates age, 

T-stage and nodal status at time of diagnosis (for high RS, HR=10-9 to 0.15, p=0 and 

0.072 in validation cohort 1 and the combined validation cohorts; and for high GGI, 

HR=10-9 to 0.29, p=0 and 0.017 in validation cohort 1 and the discovery cohort). Among 

Luminal B tumors, multivariate Cox regression also showed a significant association of 

ACES with RFS in both validation cohorts (HR=10-9 to 0.15, p=0 and 0.013). 

High GGI cases of the discovery cohort had the largest sample size and most 

recurrence events compared to all other risk groups. This may be a reason why a strong 

statistically significant risk re-stratification could be detected in this cohort. In other high 

risk group/cohort combinations, trends showed toward lower residual risk in the ACES 
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predicted treatment sensitive strata, but statistical significance was not consistently 

reached. These groups may not have had the adequate number of cases needed to detect 

statistical significance. In the power calculations for this thesis proposal, it was estimated 

that the study would have 80% power to detect statistical significance with a sample size 

of 60, and event size of at least 12. In the high GGI cases of the discovery cohort, sample 

size was 90 and 18 relapses occurred, meeting the required numbers estimated in the 

power analysis. The next largest sample size of 64 was within high GGI cases in the 

validation cohort 1, but only 10 events occurred in this group.  

A second validation cohort was therefore utilized to further assess the 

performance of ACES. One general limitation of this approach is that when 

heterogeneous microarray platforms are used in the analysis of tumors, the same 

numerical measurements may become harder to compare across platforms. The ACES 

algorithm was developed and validated using tumors assessed with Affymetrix Human 

Gene U133A GeneChip microarrays. Not all cases in validation cohort 2 utilized the 

U133A platforms. Small differences in sample collection and preparation protocols can 

also lead to large deviations in microarray results [47].  Therefore, the use of different 

microarray platforms likely introduced a bias in the performance of ACES within 

validation cohort 2.  

A potential solution employed by this thesis was normalization to make 

measurements between the different microarrays comparable. Blinded assessment of 

different normalization strategies showed that standardization of the distributions of 

individual subcomponents within strata defined by T-stage appeared promising. High RS, 

Luminal B, and high GGI cases within this normalized validation cohort 2 data 
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demonstrated consistent trends in lower residual risk in the ACES predicted treatment 

sensitive strata. Stratification by T-stage or tumor size may have been successful due to 

the association of T-stage with relapse; this association was demonstrated in the initial 

study which described the ACES algorithm [42]. By controlling for the effect of T-stage, 

the association of ACES with relapse may have become easier to detect. 

The difference in relapse between ACES predicted treatment sensitive and 

insensitive strata within the normalized validation cohort 2 was not statistically 

significant however; the sample size (18-54) and event size (1-10) were below the 

numbers needed in this study to detect statistical significance. Therefore, the normalized 

data of validation cohort 2 was pooled with validation cohort 1 to increase the size of the 

study to detect statistical significance if present. Among high RS cases of the pooled 

dataset, a significantly different relapse rate was found between the ACES predicted 

treatment sensitive and insensitive strata (p=0.033). Among Luminal B cases, the sample 

size of 51 and event size of 8 remained too small for detection of statistical significance 

even after pooling the validation cohorts; the trend of these Luminal B cases toward 

higher residual risk of relapse in ACES predicted treatment insensitive cases was seen.  

For high GGI cases of the pooled validation cohorts, which had the highest 

sample size and event rates, significance was not reached. This may be related to two 

other biases in assessing the performance of ACES in validation cohort 2. One bias may 

be secondary to the chemotherapeutic regimen used. The ACES algorithm has previously 

been shown to predict well only in taxane-anthracycline containing regimens, and not to 

be effective in cisplatin treated patients [42]. All patients in the discovery and validation 

cohort 1 were uniformly treated with a combined anthracycline and taxane regimen, in 
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addition to other chemotherapeutic agents. In the ER positive/HER2 negative cases of 

validation cohort 2, only 22% received combined taxane and anthracycline; 68% had an 

anthracycline but not taxane, and 10% did not receive either of these two classes of 

chemotherapy.  

A second potential bias in assessing the performance of ACES in validation  

cohort 2 is that the outcome in this cohort was any form of relapse, which includes a 

local, regional or distant relapse. In the discovery and validation cohort 1, the outcome 

assessed was distant relapse. The ACES algorithm was developed to predict distant 

relapse, not local or regional ones [42] The molecular and pathologic drivers for local and 

regional relapses are typically different and may relate predominately to local disease 

control factors, such as surgical margins and radiation therapy. 

Despite these biases, ACES demonstrated a relatively high NPV in predicting 

RFS [71-100% (95% CI: 48-100%)]. The clinical relevance of this thesis is that upon 

adequate validation of ACES: (i) patients with low residual risk by ACES can be safely 

treated with current adjuvant chemotherapies and reassured about their prognosis, (ii) 

patients who remain at substantial risk for relapse or death despite receiving the current 

standard of care adjuvant therapies, we be advised to seek out clinical trials that aim to 

improve the efficacy of current therapies. Further molecular characterization of these 

truly high risk cancers could also lead to the discovery of new drug targets for the very 

patient population who needs novel therapies in order to improve their survival [3, 24, 

48]. Costs may be potentially saved if research trials are recruiting and enrolling only the 

specific subset of patients for whom improvement in therapy is needed. Costs may also 
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be reduced if patients are not being over-treated with therapeutic regimens of limited 

value to them [49].  

This thesis placed the ACES gene signature into the context of commonly  

used clinical predictors of prognostic risk – the Oncotype DX as well as PAM50 and GGI 

assays for comparison – and utilized three independent cohorts to attempt to generate 

evidence. This study provides the initial evidence to suggest that the ACES algorithm 

may further risk stratify high RS and high GGI tumors into those with low and high 

residual risk after adjuvant chemotherapy and endocrine. For Luminal B cases, trends 

consistently showed the ability to ACES to identify those patients who remain at high 

risk, and ACES was significantly associated with RFS after controlling for other 

prognostic clinical variables. Before ACES can be adopted for routine use it would 

require independent validation in an adequately powered prospective trial and require 

adoption of the technology into a certified9 clinical molecular pathology laboratory with 

standardized operating procedure for the test. The results presented in this thesis suggest 

that future validation of the ACES algorithm as residual risk prediction tool should be 

pursued. 

 

REFERENCES  
 
1. Sotiriou, C. and L. Pusztai, Gene-expression signatures in breast cancer. N Engl J Med, 

2009. 360(8): p. 790-800. 
2. Gradishar, W.e.a. NCCN Clinical Practice Guidelines in Oncology Breast Cancer. 

NCCN Guidelines, 2013. Version 1.2014, 180. 
3. Harbeck, N., et al., Molecular and protein markers for clinical decision making in breast 

cancer: Today and tomorrow. Cancer Treat Rev, 2013. 
4. Kennecke, H., et al., Metastatic behavior of breast cancer subtypes. J Clin Oncol, 2010. 

28(20): p. 3271-7. 

9 Certified by governmental Clinical Laboratory Improvement Amendments 

 
 

                                                            



40 
 

5. Edge, S.B., D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A., AJCC Cancer 
Staging Manual. Vol. 7th ed. . 2010: Springer. 649. 

6. Paik, S., et al., A multigene assay to predict recurrence of tamoxifen-treated, node-
negative breast cancer. N Engl J Med, 2004. 351(27): p. 2817-26. 

7. Hayes, D.F., B. Trock, and A.L. Harris, Assessing the clinical impact of prognostic 
factors: when is "statistically significant" clinically useful? Breast Cancer Res Treat, 
1998. 52(1-3): p. 305-19. 

8. Harris, L., et al., American Society of Clinical Oncology 2007 update of 
recommendations for the use of tumor markers in breast cancer. J Clin Oncol, 2007. 
25(33): p. 5287-312. 

9. Goldhirsch, A., et al., Thresholds for therapies: highlights of the St Gallen International 
Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol, 2009. 
20(8): p. 1319-29. 

10. Goldstein, L.J., et al., Prognostic utility of the 21-gene assay in hormone receptor-
positive operable breast cancer compared with classical clinicopathologic features. J 
Clin Oncol, 2008. 26(25): p. 4063-71. 

11. Bueno-de-Mesquita, J.M., et al., Use of 70-gene signature to predict prognosis of patients 
with node-negative breast cancer: a prospective community-based feasibility study 
(RASTER). Lancet Oncol, 2007. 8(12): p. 1079-87. 

12. Kelly, C.M., et al., Utility of oncotype DX risk estimates in clinically intermediate risk 
hormone receptor-positive, HER2-normal, grade II, lymph node-negative breast cancers. 
Cancer, 2010. 116(22): p. 5161-7. 

13. Buyse, M., et al., Validation and clinical utility of a 70-gene prognostic signature for 
women with node-negative breast cancer. J Natl Cancer Inst, 2006. 98(17): p. 1183-92. 

14. van 't Veer, L.J., et al., Gene expression profiling predicts clinical outcome of breast 
cancer. Nature, 2002. 415(6871): p. 530-6. 

15. Parker, J.S., et al., Supervised risk predictor of breast cancer based on intrinsic subtypes. 
J Clin Oncol, 2009. 27(8): p. 1160-7. 

16. Liedtke, C., et al., Genomic grade index is associated with response to chemotherapy in 
patients with breast cancer. J Clin Oncol, 2009. 27(19): p. 3185-91. 

17. Hess, K.R., et al., Pharmacogenomic predictor of sensitivity to preoperative 
chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in 
breast cancer. J Clin Oncol, 2006. 24(26): p. 4236-44. 

18. Iwamoto, T., et al., First generation prognostic gene signatures for breast cancer predict 
both survival and chemotherapy sensitivity and identify overlapping patient populations. 
Breast Cancer Res Treat, 2011. 130(1): p. 155-64. 

19. Tordai, A., et al., Evaluation of biological pathways involved in chemotherapy response 
in breast cancer. Breast Cancer Res, 2008. 10(2): p. R37. 

20. Sotiriou, C., et al., Gene expression profiling in breast cancer: understanding the 
molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst, 2006. 
98(4): p. 262-72. 

21. Metzger-Filho, O., et al., Genomic grade adds prognostic value in invasive lobular 
carcinoma. Ann Oncol, 2013. 24(2): p. 377-84. 

22. Metzger-Filho, O., et al., Genomic Grade Index (GGI): feasibility in routine practice and 
impact on treatment decisions in early breast cancer. PLoS One, 2013. 8(8): p. e66848. 

23. Metzger Filho, O., M. Ignatiadis, and C. Sotiriou, Genomic Grade Index: An important 
tool for assessing breast cancer tumor grade and prognosis. Crit Rev Oncol Hematol, 
2011. 77(1): p. 20-9. 

24. Eroles, P., et al., Molecular biology in breast cancer: intrinsic subtypes and signaling 
pathways. Cancer Treat Rev, 2012. 38(6): p. 698-707. 

 
 



41 
 

25. Nielsen, T.O., et al., A comparison of PAM50 intrinsic subtyping with 
immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen 
receptor-positive breast cancer. Clin Cancer Res, 2010. 16(21): p. 5222-32. 

26. Chia, S.K., et al., A 50-gene intrinsic subtype classifier for prognosis and prediction of 
benefit from adjuvant tamoxifen. Clin Cancer Res, 2012. 18(16): p. 4465-72. 

27. Bastien, R.R., et al., PAM50 breast cancer subtyping by RT-qPCR and concordance with 
standard clinical molecular markers. BMC Med Genomics, 2012. 5: p. 44. 

28. Martin, M., et al., PAM50 proliferation score as a predictor of weekly paclitaxel benefit 
in breast cancer. Breast Cancer Res Treat, 2013. 138(2): p. 457-66. 

29. Ward, S., et al., Gene expression profiling and expanded immunohistochemistry tests to 
guide the use of adjuvant chemotherapy in breast cancer management: a systematic 
review and cost-effectiveness analysis. Health Technol Assess, 2013. 17(44): p. 1-302. 

30. Paik, S., et al., Gene expression and benefit of chemotherapy in women with node-
negative, estrogen receptor-positive breast cancer. J Clin Oncol, 2006. 24(23): p. 3726-
34. 

31. Habel, L.A., et al., A population-based study of tumor gene expression and risk of breast 
cancer death among lymph node-negative patients. Breast Cancer Res, 2006. 8(3): p. 
R25. 

32. Dowsett, M., et al., Prediction of risk of distant recurrence using the 21-gene recurrence 
score in node-negative and node-positive postmenopausal patients with breast cancer 
treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol, 2010. 28(11): 
p. 1829-34. 

33. Dowsett, M., et al., Comparison of PAM50 risk of recurrence score with oncotype DX 
and IHC4 for predicting risk of distant recurrence after endocrine therapy, in J Clin 
Oncol. 2013. p. 2783-90. 

34. Sparano, J.A. and S. Paik, Development of the 21-gene assay and its application in 
clinical practice and clinical trials. J Clin Oncol, 2008. 26(5): p. 721-8. 

35. Gianni, L., et al., Gene expression profiles in paraffin-embedded core biopsy tissue 
predict response to chemotherapy in women with locally advanced breast cancer. J Clin 
Oncol, 2005. 23(29): p. 7265-77. 

36. Chang, J.C., et al., Gene expression patterns in formalin-fixed, paraffin-embedded core 
biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Res 
Treat, 2008. 108(2): p. 233-40. 

37. Albain, K.S., et al., Prognostic and predictive value of the 21-gene recurrence score 
assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast 
cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol, 
2010. 11(1): p. 55-65. 

38. TAILORx. ClinicalTrials.gov Identifier: NCT00310180.; Available 
from: http://clinicaltrials.gov/ct2/show/NCT00310180?term=TailoRx&rank=1. 

39. RxPONDER. ClinicalTrials.gov Identifier: NCT01272037. Available 
from: http://clinicaltrials.gov/ct2/show/NCT01272037?term=NCT01272037&rank=1. 

40. Naoi, Y., et al., High genomic grade index associated with poor prognosis for lymph 
node-negative and estrogen receptor-positive breast cancers and with good response to 
chemotherapy. Cancer, 2011. 117(3): p. 472-9. 

41. Criscitiello, C., et al., High Ki-67 score is indicative of a greater benefit from adjuvant 
chemotherapy when added to endocrine therapy in Luminal B HER2 negative and node-
positive breast cancer. Breast, 2014. 23(1): p. 69-75. 

42. Hatzis, C., et al., A genomic predictor of response and survival following taxane-
anthracycline chemotherapy for invasive breast cancer. JAMA, 2011. 305(18): p. 1873-
81. 

 
 

http://clinicaltrials.gov/ct2/show/NCT00310180?term=TailoRx&rank=1
http://clinicaltrials.gov/ct2/show/NCT01272037?term=NCT01272037&rank=1


42 
 

43. Symmans, W.F., et al., Genomic index of sensitivity to endocrine therapy for breast 
cancer. J Clin Oncol, 2010. 28(27): p. 4111-9. 

44. Group., G.B. GeparTrio.; Available 
from: http://www.germanbreastgroup.de/studien/neoadjuvant/gepartrio/english-summary-
.html. 

45. Gentleman, R.e.a., Bioinformatics and Computational Biology Solutions Using R and 
Bioconductor. 2005: Springer. 473. 

46. Haibe-Kains, e.a. “genefu: a package for breast cancer gene expression analysis”, 
Bioconductor package v.2.13. 2013; Available 
from: http://www.bioconductor.org/packages/2.13/bioc/vignettes/genefu/inst/doc/genefu.
pdf. 

47. Consortium, M., et al., The MicroArray Quality Control (MAQC) project shows inter- 
and intraplatform reproducibility of gene expression measurements. Nat Biotechnol, 
2006. 24(9): p. 1151-61. 

48. Pusztai, L.H., C., Breast cancer biomarkers beyond molecular classification., Y.U.S.o. 
Medicine, Editor. 2013. p. 6. 

49. Simon, R., Roadmap for developing and validating therapeutically relevant genomic 
classifiers. J Clin Oncol, 2005. 23(29): p. 7332-41. 

  

 
 

http://www.germanbreastgroup.de/studien/neoadjuvant/gepartrio/english-summary-.html
http://www.germanbreastgroup.de/studien/neoadjuvant/gepartrio/english-summary-.html
http://www.bioconductor.org/packages/2.13/bioc/vignettes/genefu/inst/doc/genefu.pdf
http://www.bioconductor.org/packages/2.13/bioc/vignettes/genefu/inst/doc/genefu.pdf


43 
 

APPENDIX 
 
 
 
TABLE A1. Multivariate Cox Proportional Hazards Analysis of Association with Relapse Free Survival 
 

High Risk 
Group 

Discovery Cohort Validation Cohort 1 
 

Validation Cohort 2† 
 

Validation Cohort 1 and 2† 
 

 HR  
(95% CI) 

p- 
value 

 

HR  
(95% CI) 

p-
value 

 

HR  
(95% CI) 

p- 
value 

 

HR  
(95% CI) 

p- 
value 

 
High RS 

Age  
T-stage  
Node 
ACES 
 

 
1.45 (0.4-6.9) 
2.46 (0.5-11) 
1.17 (0.2-6.8) 
0.16 (0.0-2.3) 

 
0.604 
0.249 
0.863 
0.174 

 
0.45 (0.1-2.0) 
 2.13 (0.4-1.2) 
 3.66 (0.5-50) 

2E-9(6E-10-8E-9)  

 
0.298 
0.381 
0.326 
2E-16 

 
3.38 (0.6-1.8) 

3E-9 (6E-10-1E-8 ) 
9.07 ( 1.1-7.6) 
0.31 (0.0-2.6) 

 
0.160 
2E-16 
0.042 
0.280 

 
1.53 (0.6-4.3) 
1.46 (0.4-5.0) 
5.35 (1.0-28) 
0.15 (0.0-1.2) 

 
0.415 
0.554 
0.047 
0.072 

Luminal B  
Age  
T-stage  
Node 
ACES 

 
1.11 (0.3-4.2) 
0.65 (0.1-6.6) 
1.31 (0.1-18) 

0.81 (0.16-4.1) 

 
0.879 
0.715 
0.836 
0.802 

 
0.22 (0.0-2.7) 

 2.75 (0.07-9.5) 
 0.48 (0.0-1.0) 

3E-9(2E-10-5E-8)  

 
0.239 
0.521 
0.641 
2E-16 

 
3.18 (0.3-32) 
0.65 (0.1-6.5) 
3.96 (0.5-29) 
0.15 (0.0-0.7) 

 
0.330 
0.720 
0.180 
0.013 

 
0.95 (0.2-4.1) 
0.98 (0.2-5.2) 
1.6 (0.3-9.9) 
0.4 (0.1-2.4) 

 
0.950 
0.980 
0.620 
0.310 

High GGI 
Age  
T-stage  
Node 
ACES 
 

 
1.25 (0.5-3.4) 
1.55 (0.5-4.4) 
2.28 (0.6-9.3) 
0.29 (0.1-0.8) 

 
0.662 
0.414 
0.252 
0.017 

 

 
0.52 (0.14-1.9) 
4.52 (0.6-3.4) 
1.41 (0.2-8.1) 

4E-9 (1E-9-2E-8) 

 
0.318 
0.143 
0.702 
2E-16 

 
1.27 (0.5-0.6) 
1.33 (0.3-5.5) 
3.70 (1.0-13) 
0.58 (0.2-2.0) 

 

 
0.691 
0.694 
0.042 
0.386 

 
0.77 (0.3-1.7) 
0.70 (0.3-1.6) 
2.7 (0.94-7.8) 
0.78 (0.3-2.1) 

 
0.530 
0.396 
0.066 
0.619 

Age, T-stage, Node and ACES were binary variables where 1 was defined as age greater than or equal to 50 (versus less than 50), T-stage of T3/T4 (versus 
T1/T2), node positive (versus negative) at time of diagnosis, and ACES predicted treatment sensitive (versus insensitive).  
†Normalized using stratification of cohort by T-stage (See Strategy 2 in Methods).  
Abbreviations: HR, Hazard Ratio; RS, recurrence score; GGI, genomic grade index 
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TABLE A2. Distribution of sub-components of ACES algorithm 

Group Discovery Cohort 
  

Validation Cohort 1 
 

Validation Cohort 2† 
 

High RS 
SET-High/Intermediate 
Predicted early relapse/death 
Predicted RCB-III 
Predicted RCB-0/I  
ACES Rx Sensitive 
 

N (% of High RS cases) 
4 (11) 

13 (33)* 
13 (33) 
14 (36) 
14 (36) 

 

2 (5)  
19 (49) 
19 (49) 
20 (51) 
11 (28) 

 

5 (14) 
15 (41) 
11 (30) 
20 (54) 
13 (35) 

 
Luminal B 

SET-High/Intermediate 
Predicted early relapse/death 
Predicted RCB-III 
Predicted RCB-0/I  
ACES Rx Sensitive 
 

N (% of Luminal B cases) 
1 (3)* 
5 (13) 
12 (30) 
16 (40) 
15 (38) 

 

0* 
13 (39) 
13 (39) 
17 (52) 
8 (24) 

 

2 (11) 
8 (44) 
7 (39) 

10 (56) 
6 (33) 

High GGI 
SET-High/Intermediate 
Predicted early relapse/death 
Predicted RCB-III 
Predicted RCB-0/I  
ACES Rx Sensitive 
 

N (% of High GGI cases) 
16 (18) 
17 (19) 

27 (30)* 
39 (43) 
45 (50) 

 

0* 
28 (44) 
28 (44) 
36 (56) 
14 (22) 

 

10 (19) 
20 (37) 
18 (33) 
28 (52) 
22 (41) 

All ER positive/HER2 negative 
SET-High/Intermediate 
Predicted early relapse/death 
Predicted RCB-III 
Predicted RCB-0/I  
ACES Rx Sensitive 

N (% of all ER positive/HER2 negative cases) 
45 (26) 
28 (16) 
79 (45) 
64 (36) 
80 (45) 

14 (11) 
40 (33) 
58 (47) 
57 (46) 
37 (30) 

36 (28) 
31 (24) 
54 (43) 
55 (43) 
54 (43) 

*Fisher’s exact test shows that there is a statistically significant difference between this value and the corresponding one in the entire ER positive/HER2 negative 
cohort.  
†Normalized using stratification of cohort by T-stage (See Strategy 2 in Methods).  
Abbreviations: RS, Recurrence Score; GGI, Genomic Grade Index; SET, Sensitivity to Endocrine Therapy; RCB, Residual Cancer Burden; ER, Estrogen 
Receptor; HER2, Human Epidermal Growth Factor Receptor 
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TABLE A3: Performance of RCB-0/I and RCB-III gene signatures in predicting actual pathologic response 

Risk 
Category 

RCB-0/I Prediction 
Discovery Cohort 

% (95% CI) 

RCB-0/I Prediction 
Validation Cohort 1 

% (95% CI) 

RCB-III Prediction 
Discovery Cohort 

% (95% CI) 

RCB-III Prediction  
Validation Cohort 1 

% (95% CI) 
High RS 

Sensitivity  
Specificity  
PPV 
NPV 
LR+ 
LR- 
OR 
 

 
71 (42-92) 
84 (64-95) 
71 (42-92) 
84 (64-95) 

4.5 (0.1-undefined) 
0.3 (0-0.99) 

13.1 (undefined) 

 
40 (19-64) 
18 (2-52) 
47 (23-72) 
14 (2-43) 

0.5 (0-0.99) 
3.5 (0.004-undefined) 

0.1 (0-0.8) 

 
80 (28-99) 
74 (56-87) 

             31 (9-61) 
    96 (80-100) 

3.0 (0.02-undefined) 
    0.3 (0-0.99) 
  11.1 (undefined) 

 
67 (9-99) 
54 (34-72) 
13 (2-40) 

94 (70-100) 
1.4 (0.005-undefined) 

0.6 (0-1) 
2.3 (0.3-undefined) 

Luminal B  
Sensitivity  
Specificity  
PPV 
NPV 
LR+ 
LR- 
OR 
 

 
71 (42-92) 
76 (55-91) 
63 (35-85) 
83 (61-95) 

3.0 (0.01-undefined) 
     0.4 (0-0.99) 
  7.9 (undefined) 

 

 
46 (19-75) 
60 (15-95) 
75 (35-97) 
30 (7-65) 

1.2 (0-undefined) 
0.9 (0-1) 

1.3 (0.05-undefined) 

 
100 (69-100) 
97 (82-100) 
91 (59-100) 

100 (88-100) 
29 (52-undefined) 

0 (0.00-0.98) 
Infinite (undefined) 

 
100 (16-100) 

69 (41-89) 
29 (4-71) 

100 (72-100) 
3.2 (0.08-undefined) 

0 (0.00-0.995) 
Infinite (undefined) 

High GGI  
Sensitivity  
Specificity  
PPV 
NPV 
LR+ 
LR- 
OR 
 

 
74 (55-88) 
73 (60-84) 
61 (43-76) 
84 (70-93) 

2.8 (0.01-undefined) 
0.4 (0-0.99) 

7.9 (undefined) 

 
65 (44-83) 
54 (25-81) 
73 (52-90) 
44 (20-70) 

1.4 (0.005-undefined) 
0. (0-1) 

2.2 (0.2-undefined) 

 
94 (71-100) 
89 (79-95) 
67 (45-84) 

98 (91-100) 
8.2 (0.12-undefined) 
0.07 (undefined-0.99) 

124 (undefined) 

 
100 (48-100) 

68 (49-83) 
31 (11-59) 

100 (85-100) 
3.1 (0.08-undefined) 

0 (0.00-0.996) 
Infinite (undefined) 

Abbreviations: RS, Recurrence Score; GGI, Genomic Grade Index; RCB-0/I, Pathologic Complete Response or Minimal Residual Cancer Burden; RCB-III, 
Extensive Residual Cancer Burden  
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TABLE A4. Normalization of Validation Cohort 2, by stratification with prognostic factors and adjusting ACES subscore thresholds 

Characteristic Discovery Cohort and 
Validation Cohort 1 

Validation Cohort 2 
 

Odds Ratio 
 

p-value 

T1 and T2 
SET-Low 
SET-Intermediate/High 
 
High Risk early death/relapse 
Low Risk early death/relapse 
 
RCB-III 
Not RCB-III 
 
RCB-0/I 
Not RCB-0/I 
 

T3 and T4 
SET-Low 
SET-Intermediate/High 
 
High Risk early death/relapse 
Low Risk early death/relapse 
 
RCB-III 
Not RCB-III 
 
RCB-0/I 

       Not RCB-0/I 

N (% of 182) 
140 (77) 
42 (23) 

 
32 (18) 
150 (82) 

 
83 (46) 
99 (54) 

 
65 (36) 
117 (64) 

 
N (% of 115) 

99 (86) 
16 (14) 

 
36 (31) 
79 (69) 

 
52 (45) 
63 (55) 

 
55 (48) 
60 (52) 

N (% of 112) 
33 (29) → 34 (30) 
79 (71) → 78 (69) 

 
30 (27) → 27 (24) 
82 (73) → 85 (76) 

 
57 (51) → 45 (40) 
55 (49) → 67 (60) 

 
69 (62) → 50 (45) 
43 (38) → 62 (55) 

 
N (% of 15) 

9 (60) → 13 (87) 
6 (40) → 2 (13) 

 
5 (33) → 4 (27) 

10 (67) → 11 (73) 
 

9 (60) → 9 (60) 
6 (40) → 6 (40) 

 
10 (67) → 5 (33) 
5 (33) → 10 (67) 

 
2.6 → 2.5 
0.3 → 0.3 

 
0.7 → 0.7 
1.1 →  1.1 

 
0.9 →  1.1 
1.1 → 0.9 

 
0.0 → 0.8 
1.7 →  1.2 

 
 

1.4 →  0.99 
0.4 → 1.0 

 
0.9 →  1.2 
1.0 →  0.9 

 
0.8 → 0.8 
1.4 →  1.4 

 
0.7 → 1.4 
1.6 → 0.8 

 
0.000→ 0.000 
0.000→ 0.000 

 
0.154 → 0.307 
0.526 → 0.652 

 
0.601 → 0.586 
0.681 → 0.691 

 
0.580 → 0.368 
0.017 →  0.492 

 
 

0.518 → 1 
0.086 → 1 

 
1 →  1 
1 → 1 

 
0.640 →  0.640 
0.632 → 0.633 

 
0.498 →  0.616 
0.464 → 0.655 

 
“→”  represents values after normalization of data by stratification with T-stage, lymph node involvement and grade, respectively within validation cohort 2. The 
Fisher’s exact test was used to compare proportions of cases within the cohorts before and after normalization, and the resulting odds ratio and p-value are 
reported. Age (less than 50 versus greater than or equal to 50), T-stage (T1/T2 versus T3/T4), lymph node status (positive versus negative) and grade (1 or 2 
versus 3) are at time of diagnosis.  
Abbreviations: SET, Sensitivity to Endocrine Therapy; RCB, Residual Cancer Burden 
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TABLE A4 (continued). Normalization of Validation Cohort 2, by stratification with prognostic factors and adjusting ACES subscore 
thresholds 

Characteristic Discovery Cohort and 
Validation Cohort 1 

 

Validation Cohort 2 
 

Odds Ratio 
 

p-value 

Node Negative 
SET-Low 
SET-Intermediate/High 
 
High Risk early death/relapse 
Low Risk early death/relapse 
  
RCB-III 
Not RCB-III 
 
RCB-0/I 
Not RCB-0/I 

 
Node Positive 

SET-Low 
SET-Intermediate/High 
 
High Risk early death/relapse 
Low Risk early death/relapse 
 
RCB-III 

       Not RCB-III 
 
RCB-0/I 
Not RCB-0/III 

 

N (% of 106) 
81 (76) 
25 (24) 

 
19 (18) 
87 (82) 

 
40 (38) 
66 (62) 

 
45 (42) 
61 (58) 

 
N (% of 190) 

157 (83) 
33 (17) 

 
49 (26) 
141 (74) 

 
94 (49) 
96 (51) 

 
75 (39) 
115 (61) 

N (% of 69) 
19 (28) → 49 (71) 
50 (72) → 20 (29) 

 
16 (23) → 11 (16) 
53 (77) → 58 (84) 

  
35 (51) → 30 (43) 
34 (49) → 39 (57) 

 
45 (65) → 32 (46) 
24 (35) → 37 (54) 

 
N (% of 57) 

20 (35) → 43 (75) 
37 (65) → 14 (25) 

 
19 (33) → 16 (28) 
38 (67) → 41 (72) 

  
31 (54) → 24 (42) 
26 (46) → 33 (58) 

 
33 (58) → 19 (33) 
24 (42) → 38 (67)  

 

 
2.8 → 1.1 
0.3 → 0.8 

 
0.8 → 1.1 
1.1 → 1.0 

 
0.7 → 0.9 
1.3 → 1.1 

 
0.7 → 0.9 
1.7 → 0.7 

 
 

2.4 → 1.1 
0.3 → 0.7 

 
0.8 → 0.9 
1.1 → 1.0 

 
0.9 → 1.2 
1.1 → 0.9 

 
0.7 → 1.2 
1.4 → 0.9 

 

 
0.000 → 0.812 
0.000→ 0.613 

 
0.572 → 0.842 

0.816 → 1 
 

0.328 → 0.667 
0.437 →  0.800 

 
0.116 → 0.781 
0.098 → 0.797 

 
 

0.002 → 0.733 
0.000 → 0.354 

 
0.425 → 0.869 
0.724 → 0.908 

 
0.701 → 0.592 
0.791 → 0.612 

 
0.146 → 0.663 
0.195 →  0.718 

 
“→”  represents values after normalization of data by stratification with T-stage, lymph node involvement and grade, respectively within validation cohort 2. The 
Fisher’s exact test was used to compare proportions of cases within the cohorts before and after normalization, and the resulting odds ratio and p-value are 
reported. Age (less than 50 versus greater than or equal to 50), T-stage (T1/T2 versus T3/T4), lymph node status (positive versus negative) and grade (1 or 2 
versus 3) are at time of diagnosis. Abbreviations: SET, Sensitivity to Endocrine Therapy; RCB, Residual Cancer Burden. 
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TABLE A4 (continued). Normalization of Validation Cohort 2, by stratification with prognostic factors and adjusting ACES subscore 
thresholds 

Characteristic Discovery Cohort and 
Validation Cohort 1 

 

Validation Cohort 2 
 

Odds Ratio 
 

  

p-value 

Grade 1 and 2 
SET-Low 
SET-Intermediate/High 
 
High Risk early death/relapse 
Low Risk early death/relapse 
 
RCB-III 
Not RCB-III 
 
RCB-0/I 
Not RCB-0/I 

 
Grade 3 

SET-Low 
SET-Intermediate/High 
 
High Risk early death/relapse 
Low Risk early death/relapse 
 
RCB-III 
Not RCB-III 
 
RCB-0/I 
Not RCB-0/I 
 

N (% of 182) 
136 (75) 
46 (25) 

 
30 (16) 

152 (84) 
 

90 (49) 
92 (51) 

 
62 (34) 

120 (66) 
 

N (% of 100) 
93 (93) 
7 (7) 

 
34 (34) 
66 (66) 

 
40 (40) 
60 (60) 

 
54 (54) 
46 (46) 

 

N (% of 95) 
25 (26) → 77 (81) 
70 (74) → 18 (19) 

 
20 (21) → 11 (12) 
75 (79) → 84 (88) 

 
58 (61) → 64 (67) 
37 (39) → 31 (33) 

 
57 (60) → 36 (38) 
38 (40) → 59 (62) 

 
N (% of 32) 

14 (44) → 26 (81) 
18 (56) → 6 (19) 

 
15 (47) → 13 (41) 
17 (53) → 19 (59) 

 
8 (25) → 10 (31) 

24 (75) → 22 (69) 
 

22 (69) → 16 (50) 
10 (31) → 16 (50) 

 

 
2.8 → 0.9 
0.3 → 1.3 

 
0.8 → 1.4 
1.1 → 0.9 

 
0.8 → 0.7 
1.3 → 1.5 

 
0.6 → 0.9 
1.7 →  1.1 

 
 

2.1 → 1.1 
0.1 → 0.4 

 
0.7 → 0.8 
1.2 → 1.1 

 
1.6 → 1.3 
0.8 → 0.9 

 
0.8 →  1.1 
1.5 →  0.9 

 

 
0.000 → 0.703 
0.000 → 0.380 

 
0.520 → 0.380 
0.777 → 0.781 

 
0.341 → 0.145 
0.306 → 0.080 

 
0.013 → 0.712 
0.030 → 0.839 

 
 

0.033 → 0.765 
0.000 → 0.103 

 
0.446 → 0.697 
0.617 → 0.870 

 
0.317 → 0.694 
0.526 → 0.747 

 
0.512 → 0.864 
0.444 → 0.859 

 
“→”  represents values after normalization of data by stratification with T-stage, lymph node involvement and grade, respectively within validation cohort 2. The 
Fisher’s exact test was used to compare proportions of cases within the cohorts before and after normalization, and the resulting odds ratio and p-value are 
reported. Age (less than 50 versus greater than or equal to 50), T-stage (T1/T2 versus T3/T4), lymph node status (positive versus negative) and grade (1 or 2 
versus 3) are at time of diagnosis. Abbreviations: SET, Sensitivity to Endocrine Therapy; RCB, Residual Cancer Burden. 
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TABLE A5. Normalization of Validation Cohort 2, by multivariate linear regression model of prognostic factors 

Multivariate Model p-value 
 

Age 
 

T-stage Nodal Status Grade Cohort 

 
SET-Index = 1.3 –0.3(age) – 0.4(T-stage) – 
0.1(nodal status) – 0.6(grade) + 0.7(cohort) 
 

 
0.020 

 
0.013 

 
0.510 

 
0.000 

 
0.000 

 

Early Death/Relapse Score = -0.6 + 0.03(age) + 
0.1(T-stage) + 0.04(nodal) + 0.4(grade) + 
024(cohort) 
 

0.621 0.322 0.554 0.000 0.000 
 

RCB-III Score = 0.6 – 0.3(age) + 0.5(T-stage) + 
1.3(nodal status) – 2.6(grade) – 0.2(cohort)  
 

0.550 0.399 0.008 0.000 0.426 

RCB-0/I Score = -2.4 – 0.7(age) + 0.1(T-stage) – 
2.0(nodal status) + 2.6(grade) + 1.5(cohort) 
  

0.255 0.883 0.003 0.000 0.000 

In this multivariate linear regression model, the dependent variable is quantitative and the dependent variables are binary: Age (less than 50 versus greater than or 
equal to 50), T-stage (T1/T2 versus T3/T4), lymph node status (positive versus negative) and grade (1 or 2 versus 3), all at time of diagnosis, and cohort 
(Discovery Cohort or Validation Cohort 1, versus Validation Cohort 2).  
Abbreviations: SET, Sensitivity to Endocrine Therapy; RCB, Residual Cancer Burden. 
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TABLE A6. Survival Analysis of Validation Cohort 2 

Normalization Method 
 
 

Log-Rank Test 
p-value 

 

ACES  
Treatment Sensitive 

 

ACES 
Treatment Insensitive 

 
No. Event Rate (%) No. Event Rate (%) 

Normalization Strategy 1  (Overall Matched Proportions) 
High RS 
Luminal B 
High GGI† 

 
0.472 
0.358 
0.233 

 
10 
2 

15  

 
10 
50 
40 

 
27 
16  
39  

 
19 
19 
23 
 

Normalization Strategy 2 (Stratification by T-stage) 
High RS 
Luminal B 
High GGI† 
 

 
0.307 
0.704 
0.654 

 
15  
8  

25  

 
7 

13 
20 

 
22  
10  
29  

 
23 
30 
34 

Normalization Strategy 3 (Stratification by Nodal Status) 
High RS 
Luminal B 

         High GGI† 
 

 
0.894 
0.704 
0.902 

 
13  
6  

23  

 
15 
17 
26 

 
24  
12  
31  

 
17 
25 
29 

Normalization Strategy 4 (Stratification by Grade) 
High RS 
Luminal B 

         High GGI† 
 

 
0.755 
0.631 
0.245 

 
10  
3  

15  

 
20 
33 
40 

 
27  
15  
39 

 
15 
20 
23 

Normalization Strategy 5 (Multivariate Model) 
High RS 
Luminal B 

         High GGI† 
 

 
0.931 
0.295 
0.989 

 
12  
3  

17  

 
17 
0 

29 

 
25  
15  
37  

 
16 
27 
27 

†Normalized GGI.  
Abbreviations: RS, Recurrence Score; GGI, Genomic Grade Index  
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FIGURE A1. Kaplan-Meier Estimates of Relapse Free Survival Stratified by ACES, in high risk cases of Validation Cohort 2 
High RS cases – Normalization 1 
(Overall matched Proportions) 

 

Luminal B cases – Normalization 1  
(Overall matched Proportions) 

 
 

High GGI cases – Normalization 1  
(Overall matched Proportions) 

 
 

High RS cases - Normalization 2 
(Stratification by T-stage)

 

Luminal B cases - Normalization 2 
(Stratification by T-stage)

 
 

High GGI cases - Normalization 2 
(Stratification by T-stage)
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FIGURE A1 (continued). Kaplan-Meier Estimates of Relapse Free Survival Stratified by ACES in Validation Cohort 2 
High RS cases - Normalization 3 
(Stratification by nodal status)

 

Luminal B cases – Normalization 3 
(Stratification by nodal status)

 

High GGI cases - Normalization 3 
(Stratification by nodal status)

 
High RS cases - Normalization 4 

(Stratification by grade)

 

Luminal B cases - Normalization 4 
(Stratification by grade)

 

High GGI cases - Normalization 4 
(Stratification by grade)
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FIGURE A1 (continued). Kaplan-Meier Estimates of Relapse Free Survival Stratified by ACES in Validation Cohort 2 

High RS cases – Normalization 5 
(Multivariate model) 

 

Luminal B cases – Normalization 5 
(Multivariate model) 

 

High GGI cases – Normalization 5 
(Multivariate model)
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Figure A2. Kaplan Meier estimates of Relapse Free Survival in High RS cases stratified by ACES subcomponents  

Stratified by  
SET Class 

Stratified by Early Relapse/Death 
Predictor 

Stratified by  
RCB-III Predictor   

Stratified by  
RCB-0/I Predictor   

High RS/ Cohort 1 

 

High RS/ Cohort 1 

 

High RS/ Cohort 1 

 

High RS/ Cohort 1 

 
 
High RS/ Cohorts 2 and 3   

 

 
High RS/ Cohorts 2 and 3

  

 
High RS/ Cohorts 2 and 3   

 

 
High RS/ Cohorts 2 and 3   
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Figure A2 (continued). Kaplan Meier estimates of Relapse Free Survival in Luminal B cases stratified by ACES subcomponents 

Stratified by  
SET Class 

Stratified by Early Relapse/Death 
Predictor 

Stratified by  
RCB-III Predictor 

Stratified by  
RCB-0/I Predictor 

 
Luminal B/ Cohort 1 

 

Luminal B/ Cohort 1

 

Luminal B/ Cohort 1 

 

Luminal B/ Cohort 1 

 
Luminal B/ Cohorts 2 and 3 Luminal B/ Cohorts 2 and 3 Luminal B/ Cohorts 2 and 3 Luminal B/ Cohorts 2 and 3 
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Figure A2 (continued). Kaplan Meier estimates of Relapse Free Survival in High GGI cases stratified by ACES subcomponents 
Stratified by  
SET Class 

Stratified by Early Relapse/Death 
Predictor 

Stratified by  
RCB-III Predictor 

Stratified by  
RCB-0/I Predictor 

High GGI/ Cohort 1 

 

High GGI/ Cohort 1 

 

High GGI/ Cohort 1 

 

High GGI/ Cohort 1 

 
High GGI/ Cohorts 1 and 2 High GGI/ Cohorts 1 and 2 High GGI/ Cohorts 1 and 2 High GGI/ Cohorts 1 and 2 
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Abbreviations: SET, Sensitivity to Endocrine Therapy; RCB-0/I or RCB-III, Minimal or Extensive Residual Cancer Burden; RS, Recurrence Score; GGI, 
Genomic Grade Index  

FIGURE A3. Early relapse predictor genes for Estrogen Receptor positive tumors in ACES algorithm 

 
 



58 
 

 

 
 



59 
 

FIGURE A3 (continued). Excellent pathologic response predictor genes for Estrogen Receptor positive tumors in ACES algorithm 
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FIGURE A3 (continued). Extensive residual disease predictor genes for Estrogen Receptor positive tumors in ACES algorithm 
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FIGURE A3 (continued). Extensive residual disease predictor genes for Estrogen Receptor positive tumors in ACES algorithm 
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FIGURE A3 (continued). Extensive residual disease predictor genes for Estrogen Receptor positive tumors, in ACES algorithm 

 

             Figures A2 from Hatzis et al, 2011 
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