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Abstract 

INFLUENCE OF A SEROTONIN TRANSPORTER PROMOTER POLYMORPHISM 
ON CORTICOLIMBIC ABNORMALITIES IN BIPOLAR DISORDER 
 
Maulik P. Shah, and Hilary P. Blumberg.  Department of Psychiatry, Yale University 
School of Medicine, New Haven, CT. 
 

Bipolar disorder (BD) is associated with abnormalities of the subgenual anterior cingulate 

cortex (sgACC) and the amygdala, components of a corticolimbic neural system that subserves 

emotional regulation.  The short s allele—as opposed to the long l allele—of a serotonin 

transporter promoter (5-HTTLPR) polymorphism is associated with more severe course features 

of BD and impaired functional connectivity between the sgACC and amygdala in healthy control 

(HC) individuals.  This study tests the hypothesis that the s allele influences the dysfunction in 

the sgACC-amygdala neural system in BD.  Twenty-six euthymic BD participants (17 s carriers, 

9 ll) and 43 HC participants (31 s, 12 ll) completed an event-related functional magnetic 

resonance imaging scan while processing fearful, happy, or neutral faces.  During fear and happy 

face processing, sgACC activation was significantly lower (p < 0.05) in the BD versus the HC 

group, and in HC and BD s carriers compared to HC and BD ll individuals respectively.  In the 

sgACC region where BD activation was less than HC, response to emotional faces was lowest in 

the BD s group, suggesting that the s allele may contribute to more severe sgACC dysfunction in 

a subset of individuals that represent a distinct genetically-derived subtype within the 

heterogeneous BD clinical phenotype.  Thus, sgACC dysfunction may be an endophenotype of 

BD, and the s allele appears to influence this dysfunction in a subset of BD individuals.  Future 

treatment may be optimized for this subset, by targeting treatments to affect this system, and by 

further study of treatment response amongst those who carry the s allele. 
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Introduction 

I. Bipolar Disorder 

The lifetime prevalence of bipolar disorder is estimated to be around 1.4%, with a 

mean and median onset of 18 years of age (1).  There is an exceptionally high rate (10 – 

15%) of completed suicide amongst this population (1), a rate that is the highest among 

individuals with any psychiatric illness.  In addition, bipolar disorder is the sixth leading 

cause of disability worldwide (2), with an estimated economic burden of greater than $20 

billion in the United States per year, in terms of both the direct costs of treatment and 

indirect costs of lost wages and productivity (3).  Clearly, there is a large societal burden 

associated with bipolar disorder, a reflection of its profound effect on not only the 

individual but also his or her family and surrounding community.  

The hallmark of bipolar disorder is severe emotional dysregulation, and the 

disorder is defined, in the Diagnostic and Statistical Manual of Mental Disorders (4), by a 

clinical course of at least one manic, hypomanic, or mixed episode, often with 

intermittent major depressive episodes.  Mania, seen in bipolar disorder type I, is 

characterized by at least one week (or any time course if hospitalization is required) of 

extreme mood elevation, exhibited as euphoria or irritability, and symptoms including 

grandiosity, decreased need for sleep, pressured speech, racing thoughts, distractibility, 

psychomotor agitation, impulsivity, increased goal-directed activity, and excessive 

involvement in pleasurable activities.  Hypomania, seen in bipolar disorder type II, has 

similar symptoms, but of lesser duration and/or severity relative to mania.  A mixed 

episode is one in which the individual experiences both manic and depressive symptoms 

every day for at least one week. To meet diagnostic criteria, episodes cannot be the direct 
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result of a general medical condition or exposure to substances of abuse or medications 

(4).  Within the spectrum of the disorder, there are also subsets associated with distinct 

clinical features; these include individuals with pediatric-onset bipolar disorder, those 

who experience psychotic symptoms as part of the disorder, and those with rapid-

cycling—having four or more distinct mood episodes in one year (4).   

 Unfortunately, despite potentially devastating consequences, there is usually a 

delay in diagnosing and treating individuals with bipolar disorder (5-6) and often 

treatment and medication strategies are changed due to side effects, ineffectiveness, and 

compliance difficulties.  Thus, there is a vital and increasing interest in studying the 

pathophysiology of bipolar disorder with the hopes that research may better elucidate the 

molecular and cellular mechanisms that underlie the disorder, and therefore guide future 

treatment and management modalities.  The goal of this work is to better understand how 

genetic variation may influence the development of neurobiological abnormalities in 

bipolar disorder and may contribute to and underlie the clinical variation within the 

spectrum of the illness.  

II. Neuroimaging in Bipolar Disorder 

 Recent advances in the sophistication and availability of neuroimaging 

technology has dramatically improved the manner in which researchers study the 

structure and function of the human brain.  Psychiatry in particular has benefited from the 

advent of these tools, as they have permitted non-invasive examination of neurobiological 

abnormalities amongst individuals with psychiatric illness (and comparison with healthy 

volunteers), thus increasing understanding and acceptance of the idea that neural circuitry 

dysfunction underlies the development of these illnesses (7).  
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Prior to current methodologies, studies of neural function were limited to ablation 

and electrical stimulation strategies in animal models, or evaluation of patients with 

discrete neurological deficits and attempts to correlate these with structural changes; 

innovations in technology, including functional magnetic resonance imaging (fMRI) as 

well as electroencephalography, magnetic resonance spectroscopy (which allows relative 

quantification of neuronal biochemicals), cerebral perfusion imaging, and nuclear 

medicine imaging modalities, dramatically changed the field by offering a window into 

the dynamic functioning of neural circuits.  In particular, fMRI provides spatial and 

temporal resolution of brain structure and function, and, as a non-invasive instrument that 

does not involve administration of any dyes or radioactive tracers, allows for repeated 

longitudinal scanning without long-term risks to the participant (8). 

Functional Magnetic Resonance Imaging 

 The current work employs fMRI to examine neural function in individuals with 

bipolar disorder and healthy comparison participants.  FMRI is able to reveal changes in 

regional brain activity by highlighting differences in blood oxygenation with a temporal 

resolution on the order of seconds.  During response to an fMRI task, neurons, and in turn 

local neural networks, expend energy in order to fire action potentials and signal other 

cells via neurotransmission across synapses. Thus, an increase in neural activity—in a 

region that is particularly relevant to the task—over time creates a local energy demand, 

and this is met by recruiting additional oxygen and glucose in the form of increased blood 

flow (9). This is known as the hemodynamic response.  This relationship was first noted 

visually after scientists noted a ‘flush of red blood’ following exogenous electrical 

stimulation of an exposed area of a cat’s brain in the late 19th century (10).  The differing 
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magnetic signal properties between oxygenated and deoxygenated blood enable fMRI to 

non-invasively highlight changes in blood flow.  This produces the blood oxygen level 

dependent (BOLD) contrast, and serves as a surrogate measure of neural activation (8). 

 BOLD contrast maps are derived from subtracting the response to a ‘baseline’ 

component of a task (e.g. presentation of a fixation cross-hair) from the experimental 

condition (e.g. presentation of an emotionally-salient stimulus), such that the resulting 

difference in activation can be attributed to the specific component of interest (i.e. 

processing of the emotional stimulus).    An ‘event-related’ design is often used to present 

the stimuli to the participant in the scanner, with the condition(s) of interest presented 

repeatedly and as isolated events between varying periods of the baseline condition.  This 

protocol decreases the likelihood of habituation from responding to a stimulus that 

appears at set-intervals, and allows modeling of the hemodynamic BOLD response over 

several data points (8).  

In sum, fMRI is an important instrument in determining the neurobiological 

abnormalities associated with psychiatric illness, and, by keeping the above principles in 

mind, tasks can be designed to reliably identify areas in which the BOLD response varies 

in association with the stimulus of interest.  Below, we review the insights fMRI and 

other imaging tools have revealed about neural processing in bipolar disorder, with 

particular focus on two key structures that are involved in the processing of emotions: the 

anterior cingulate cortex (ACC) and the amygdala.  

Anterior Cingulate Cortex 

 The cingulate cortex is a structure that is located in the midline of the brain, 

superior to and surrounding the corpus callosum and extending anteriorly and wrapping 
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around the genu of the corpus callosum.  It has long been considered part of the classic 

limbic system (11) and the historic Papez circuit (12) that anatomically defined the brain 

structures—and the relationships between the structures—in a neural circuit involved in 

emotion regulation.  Ablative lesions of the cingulate lead to a variety of symptoms 

including emotional instability, dramatic mood and personality changes, and 

distractibility (13-14). Similarly, phenomenological descriptions of patients with known 

cingulate cortex epileptic seizure foci include alterations in mood state ictally and 

impulsive behaviors interictally (15). 

 Based on structural cytoarchitectural and functional distinctions, the cingulate 

cortex has been divided into the anterior cingulate cortex (ACC) that is involved with 

‘executive’ functions and a posterior part that is ‘evaluative.’  The ACC consists of 

Brodmann areas 24, 25, 32, and 33 (16).  The ACC has been further divided into a 

supragenual cognitive division that is situated superior to the anterior genu of the corpus 

callosum and is involved in allocating attention, executive functioning, and monitoring 

task completion; and the subgenual ACC (sgACC), an affective division that abuts the 

genu and extends ventrally and is involved in “assessing the salience of emotional and 

motivational information and the regulation of emotional responses” (17). The affective 

division is connected to several subcortical structures, including the amygdala, and an 

important function of the sgACC is the regulation of these subcortical structures. 

These divisions of the ACC can also be distinguished by fMRI: within a sample 

of healthy volunteers, a cognitive version of a scanner task elicited activation in only the 

cognitive portion of the ACC (18) while an emotionally-valenced version of the same 

task led to increased activation in the affective division alone (19).  In addition, tasks 
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designed to simulate emotional conflict, via presentation of emotionally-incongruent 

stimuli, have demonstrated the role of the sgACC in recognizing and then suppressing 

amygdala hyperactivation during emotional conflict (20). Thus, researchers have come to 

appreciate the central role of the sgACC in emotional regulation and processing, and have 

also designed fMRI probes that effectively interrogate this structure. 

Given the profound emotional dysregulation that defines bipolar disorder, it 

follows that sgACC dysfunction has been associated with the illness.  Multiple structural 

imaging studies of adults with bipolar disorder have demonstrated overall gray matter 

ACC volume reductions in comparison to healthy volunteers (21-22) and specifically 

within the sgACC (23).  Interestingly, volumetric studies of the ACC in pediatric bipolar 

samples have yielded inconsistent results, with some groups reporting decreases (24-26) 

and others no difference (27-28), suggesting that structural changes in the ACC develop 

as a consequence of aberrant neurodevelopment during adolescence (29) or earlier (30). 

FMRI and metabolic studies of individuals with bipolar disorder have been 

consistent with these structural studies, and have afforded the ability to assess differences 

across mood state.  Decreased activation in the dorsal ACC during a cognitively-

demanding fMRI task (31) and the sgACC in response to faces exhibiting emotional 

expressions (32) have been described in individuals with bipolar disorder.  Blood flow 

and metabolism in the sgACC also appears to be abnormal in the depressive state (23).  

In addition, proton magnetic resonance spectroscopy of the ACC in participants with 

bipolar disorder revealed abnormal levels of choline-containing compounds thought be 

involved in neuronal signaling mechanisms, the levels of which correlated with 

depression severity at the time of scan (33); and myo-inositol—a compound that is part of 
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a biochemical pathway that may be targeted by lithium treatment— abnormalities in 

juveniles with pediatric-onset bipolar disorder (34).  

In sum, sgACC abnormalities have been consistently reported in bipolar disorder 

across several neuroimaging modalities, and given its role in emotional processing, is 

likely associated with the profound mood dysregulation that defines the disorder.   

Amygdala 

 The amygdala is a subcortical and evolutionarily important structure with 

significant reciprocal connections to the sgACC that is essential in processing emotional 

stimuli.  The almond-shaped structure is located bilaterally in the anteromedial temporal 

lobe, anterior to the hippocampus (35).  Amygdala pathology has been described in 

patients with elevated mood, grandiosity, distractibility, and psychosis as part of an 

epileptic syndrome (36-37).  Similarly, animal models have revealed the importance of 

the amygdala in emotional memory and learning (38) and ablative lesions of the 

amygdala are associated with impulsivity, fearlessness, aggression, excessive 

involvement in pleasurable activities, and an inability to recognize familiar objects (39).   

 The role of the amygdala in emotional processing can be successfully interrogated 

by fMRI tasks; specifically, the amygdala is activated when presented with either positive 

or negative emotionally-valenced stimuli (40), with greatest activation seen in response to 

negative stimuli such as fearful or angry faces (40).  Highlighting its role in social 

cognition, there is greater activation to pictures of human faces depicting negative 

emotions relative to non-face negatively-valenced images (41).  The amygdala is also 

hyperactivated by subliminal presentation of negatively valenced stimuli (42), perhaps 

indicative of its evolutionarily important task of initiating rapid response to a possible 
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threat.  Of note, patients with bilateral amygdala lesions lose the capacity to recognize the 

emotional valence of faces (43) and the amygdala also displays adaptive capacity: it 

exhibits response habituation and decreased responsivity when stimuli are presented 

repeatedly (44) without the development of an actual threat.  

Given that there is evidence of impaired processing of emotional faces (45) and 

affective cues in bipolar disorder, especially during mania (46), it is not surprising that 

imaging research has found consistent evidence of amygdala abnormalities amongst this 

psychiatric population. 

Structural imaging has shown reduced amygdala volumes in adolescents with bipolar 

disorder (26, 47-49), and this abnormality appears to remain stable throughout this 

neurodevelopmental epoch (50), until adulthood. Studies of amygdala size in adults with 

bipolar disorder have yielded highly variable results including decreased (47, 51), 

increased (52-54), and no difference (55) in comparison to matched healthy adults.  The 

reason for this variability is unclear but may suggest that amygdalar reductions are 

specific to pediatric populations or subsets of the broader bipolar spectrum, and/or that 

the accumulation of neurotoxic exposures and medication effects may lead to changes in 

amygdala structure over time.  Alternatively, the variability may reflect the heterogeneity 

of the adult population and MRI methodologies in general (56).  Of note, this is the 

opposite of the ACC findings, where there was greater consistency in the adult 

populations compared to the pediatric populations, suggesting differential effects of 

neurodevelopment on these structures. 

 Functional imaging differs from structural results in that amygdala dysfunction 

has been described across bipolar populations and subsets.  Specifically, adolescents (57-
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58) and adults with bipolar disorder exhibited a heightened amygdala response to 

positively- and negatively-valenced emotional faces, and this was seen in manic, mixed, 

depressed, and euthymic participants (32, 59-62).  Metabolic function and cerebral blood 

flow is also consistently elevated in the amygdala of individuals with bipolar disorder 

(63-64).  In addition, medication appears to blunt and ‘normalize’ this hyperactivation in 

individuals with bipolar disorder (32).  Lastly, preliminary results also reveal functional 

connectivity deficits between the amygdala and the ACC specifically, suggesting that 

communication between the two structures may be impaired in bipolar disorder (65). 

In sum, there is a wealth of evidence suggesting that amygdala abnormalities are 

consistent across groups of individuals with bipolar disorder and neuroimaging 

modalities, and that this is likely associated with specific deficits in emotional processing, 

particularly the processing of facial expressions.   The amygdala and sgACC form a 

connected circuit that appears to be functionally and structurally abnormal in the 

disorder.  In addition, the findings of sgACC structural changes consistently seen in 

adults and not in pediatric samples, suggest that bipolar disorder is a neurodevelopmental 

disorder (56), whereas consistent amygdala volume changes and dysfunction in pediatric 

populations suggests that subcortical dysfunction may predate cortical abnormalities (66).  

These studies also highlight the potential role of functional assessment tools in the 

detection of early markers of bipolar disorder. 

Other Cortico-Limbic Regions 

 Neurobiological dysfunction in bipolar disorder is not limited to the amygdala and 

ACC.   
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Functional and metabolic imaging has implicated abnormalities in subcortical structures 

such as the ventral striatum and thalamus (61, 67) as well as higher-order cortical 

structures such as the ventral prefrontal cortex (68-69).  Thus, it is clear that aberrancy is 

present in several nodes of a network involved in emotion processing, of which the 

amygdala and ACC circuit appears to be particularly salient and the most relevant to 

bipolar disorder, and is the focus of this work.   

III. Genetics and Bipolar Disorder 

 While neuroimaging has afforded ‘visualization’ of neural activity in individuals 

with bipolar disorder, the integration of genetics with neuroimaging has allowed insight 

into the molecular and cellular pathways that underlie these neural circuitry 

abnormalities.  Bipolar disorder is highly heritable with estimates of heritability of 80% 

(70).  There is an increased risk of development of disease in the relatives of affected 

probands (71), and greater concordance in monozygotic versus dizygotic twin pairs (70, 

72).  While several genetic loci have been linked to bipolar disorder, many results have 

failed replication attempts, and there has not been as much success as there has been in 

schizophrenia (73).  A potential reason for this is that the variability within the spectrum 

of bipolar disorder (i.e. bipolar I vs. II, pediatric vs. adult-onset, cycling differences, 

presence of psychosis) suggests overlapping but possibly differentiable entities, and that 

different sets of genes may predispose to a particular phenotype within the spectrum (74). 

 To deal with this issue of phenotypic heterogeneity amidst a polygenic 

background, there has been a paradigm shift in the field, with a new focus on identifying 

and investigating endophenotypes within bipolar disorder.  Endophenotypes are 

considered intermediate, internal phenotypes that are associated with the illness, 
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heritable, increased in frequency amongst relatives of probands, and state-independent.  

The genes that influence the heritability of these endophenotypes are assumed to be fewer 

in number than for the overall illness itself, and the endophenotype is meant to serve as a 

mechanistic bridge between the biochemical and cellular consequence of genes and the 

features of the clinical phenotype.  Endophenotypes that have been evaluated in 

psychiatric illness including bipolar disorder include behavior traits, response to 

psychotropic medications and neurotransmitter depletion, and neurobiological 

abnormalities (75). 

 Initial studies associating a functional polymorphism within the promoter region 

of a serotonin transporter gene (SLC6A4) with anxiety-related personality traits (76-77) 

was of immediate interest to research in psychiatry as a potential substrate for an 

endophenotype model.  The transporter protein regulates reuptake and transmission of 

serotonin in the synapse (78). The polymorphism (5-HTTLPR) consists of two common 

alleles that differ in length by 44 base pairs, with the dominant shorter s allele having 

decreased in vitro transcriptional activity compared to longer l allele, and this difference 

was seen in those with one or two copies of the s allele, suggesting that the s allele acts 

dominantly (76-77). The lack of a consistent in vivo demonstration of differential 

serotonin transporter binding and concentration in adults as a function of variation at the 

locus, however, suggests that the polymorphism may exert its effects on 

neurodevelopment early in life rather than directly altering binding (79).  In addition, the 

phenotypic expression of the gene may also be related to specific environmental 

exposures, as carrying one or two copies s allele has been associated with increased 

incidence of depression and suicidality in relation to life stress (80-81). 
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 The findings of decreased levels of serotonin metabolites and impaired turnover 

in individuals with bipolar disorder (82), plus the fact that the serotonin system is the 

target of many pharmacological therapeutics in bipolar disorder, suggests that influence 

and variation of the 5-HTTLPR polymorphism may explain some of the variation in the 

phenotypic expression of the disorder.  Although genetic linkage studies have not 

definitively related this 5-HTTLPR polymorphism with bipolar disorder (83) nor found a 

susceptibility locus near the serotonin transporter gene (84), there is some evidence for an 

association of the s allele with younger age of bipolar onset (85), and differences in 

mood-state cycling (86), suggesting that it may be related to specific genetic subsets 

within the disorder spectrum.   

 In sum, while no specific genes have been definitively linked to bipolar disorder 

despite its high heritability, there is a growing interest for endophenotypes within the 

spectrum that may be more readily associated to a subset of genes, of which the 5-

HTTLPR is a strong candidate. 

IV. Imaging Genomics: Focus on the 5-HTTLPR Polymorphism 

 Given the associations of the 5-HTTLPR polymorphism with specific 

psychological traits and risk for development of psychiatric symptoms, the concept of 

imaging genomics was developed to attempt to bridge the mechanistic gap between genes 

and behavior by revealing the effect of genetic variation on neurobiological functioning.  

Building on the concept of endophenotypes, imaging genomics posits that 

neurobiological function is a more proximal consequence of genetic variation than 

behavior, and provides a quantifiable effect of this variation.  Similarly, dysfunction in 

neural circuits may then be linked to behavior and clinical differences in participants.  In 
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addition, while gene-behavior associations often require evaluation of thousands of 

subjects, the proximity of neurobiological function to gene effects implies that fewer 

subjects are required to achieve statistical power (87-88). 

 Using functional imaging to evaluate neural function, a seminal work by Hariri 

and colleagues found that healthy volunteers carrying the s allele had greater activation in 

the amygdala in response to fearful faces in comparison to ll homozygous individuals, 

suggesting that the s allele may mediate amygdala hyperreactivity which in turn 

contributes to the anxiety-related traits that have been linked to the locus (89).  This 

intriguing result has been replicated in other healthy volunteer samples (90-92) and has 

been reported amongst participants with depression (93), social phobia (94), and as a 

trend in panic disorder (95)—individuals for whom amygdala hyperreactivity may indeed 

contribute to the development of psychopathology.  Further, it follows that amygdala 

hyperreactivity is a plausible endophenotype—perhaps not specific to a single psychiatric 

illness, but associated with specific genes and clinical symptoms. 

 Of particular relevance to the current work, the s allele has also been associated 

with reductions in the gray matter volume of both the amygdala and the ACC in healthy 

volunteers (96).  In addition, the s allele was associated with impaired structural and 

functional connectivity between the amygdala and the sgACC.  There is evidence of 

coupling between the amygdala and the sgACC, suggesting a circuit whereby amygdala 

activation is transmitted to the sgACC, whose reciprocal connections in turn respond and 

suppress the amygdala (96).  Given that the ACC contains the richest concentration of 

serotoninergic neurons of any cortical structure (97), it is not surprising that this structure 

is particularly influenced by variation in the serotonin transporter gene. 
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 In sum, the field of imaging genomics has allowed identification of neural 

circuitry dysfunction as the results of variation at specific gene loci.  In particular, the 5-

HTTLPR polymorphism appears to influence the structure, function, and inter-structure 

connectivity of the ACC and the amygdala, and may be associated with distinct genetic 

subsets within the overall bipolar disorder phenotype. 
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Statement of Purpose and Hypothesis 

Previous studies implicate aberrancy in both the (sgACC) and the amygdala in 

bipolar disorder, structures that share reciprocal connections and are prominently 

involved in affective processing.  Furthermore, there is convergent evidence that the s 

allele of the 5-HTTLPR polymorphism is associated with abnormalities in these same 

regions.  Thus, the aim of this project is to investigate whether variation in the 5-

HTTLPR polymorphism influences dysfunction in the sgACC and the amygdala in 

bipolar disorder.   

To achieve this end, healthy control participants (HC) and individuals with 

bipolar disorder (BD) were recruited to participate in fMRI scanning during processing of 

emotionally salient stimuli, namely a series of emotional faces exhibiting fearful, happy, 

and neutral expressions.  Genotyping for the 5-HTTLPR polymorphism of the SLC6A4 

gene allowed for comparison of BOLD fMRI signal within the sgACC and amygdala 

between diagnostic and genotypic groups. 

It was specifically hypothesized that in the sgACC, response to fearful faces in 

particular would be 1) decreased in BD participants compared to HC individuals, and 2) 

decreased amongst s allele carriers compared to ll homozygotes within each diagnostic 

group, such that 3) within the area of decreased BD activation, the BD s carriers would 

have the greatest magnitude of dysfunction.  Similar differences were predicted in 

response to happy faces, but of lesser magnitude, and no difference is predicted for 

neutral faces.   

In addition, it is hypothesized that activation in response to fearful faces in the 

amygdala will be increased in 1) BD participants relative to the HC group and 2) in both 
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BD and HC carrying the s allele compared to ll homozygous individuals, such that 3) BD 

s carriers will exhibit the greatest magnitude of amygdala response. Similar relationships 

were expected for happy faces but of lesser magnitude; no difference was predicted for 

neutral faces. 

Secondary analyses explored the potential influence of demographic (age and 

gender) and clinical factors on dysfunction in these regions.  Clinical factors included 

presence of rapid cycling, history of psychosis, age of bipolar disorder diagnosis (all of 

which have been associated with 5-HTTLPR), as well as history of alcohol or substance 

abuse/dependence, and medication status and medication subclass. 
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Methods 

Participants 

 The HC group included 43 participants, 60% of whom were female, with mean 

age and standard deviation of 28.8 ± 10.8 years (range 19 – 54), while the BD group 

included 26 participants, 65% female, age of 31.7 ± 13.2 yrs (range 18 – 60).  Fifty-six 

percent of the HC group were Caucasian, 23% were African American, 9% were Asian 

American, and 12% were of other ethnicity, while 69% of the BD group were Caucasian, 

26% were African American, and one individual (6%) was of other ethnicity, but not 

Asian American (see Table 1 for further details).  Participants were recruited from the 

Yale School of Medicine Medical Center in New Haven, CT, the Veteran Affairs 

Connecticut Healthcare System in West Haven, CT, and their surrounding communities.  

Common exclusion criteria for both groups included: any history of neurological disease, 

loss of consciousness for greater than or equal to five minutes, any medical condition that 

may potentially affect neurovascular function including hypertension, or current alcohol 

or substance abuse or dependence.  Presence or absence of psychiatric illness was 

assessed by trained evaluators using the Structured Clinical Interview for DSM-IV Axis I 

Disorders (SCID) Version 2.0 (98).  Exclusion criteria for the HC group included any 

personal history of DSM-IV Axis I diagnosis or known first-degree family member 

history of such illnesses.  Written informed consent was obtained prior to participation in 

accordance and with approval of the human investigation committees of the Yale School 

of Medicine and the Veteran Affairs Connecticut Healthcare System. 

BD diagnosis was confirmed via the SCID, which also allowed collection of 

relevant clinical history.  Only euthymic BD participants were included to remove the 
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potential confound of state-related effects; mood state at the time of scanning was 

assessed via the SCID as well.  Forty-six percent (12 of 26) of the BD participants met 

criteria for rapid-cycling and 27% (7) had a history of psychosis, but none were psychotic 

at time of scan.  Twelve percent (3) were off medications at time of scan, all for greater 

than one year prior to scan, with the remaining participants taking psychotropic 

medications at time of scan, including lithium (27%, 7 of 26), anticonvulsants (62%, 16), 

atypical antipsychotics (38%, 10), antidepressants (38%, 10) and benzodiazepines (12%, 

3).  There were seven (27%) BD participants with a history of alcohol abuse or 

dependence and eight (31%) with history of substance abuse or dependence; in all 

instances, individuals had been in remission for greater than six months at time of scan.  

The average age at diagnosis for the BD group was 23.2 ± 9.7 yrs.  

Genotyping 

 Ten milliliter blood samples were drawn from participants to allow genotyping at 

the SLC6A4 locus.  PCR amplification was completed using an MJR tetrad cycler.  

Amplification was done using PCR primers previously designed by Gelernter and 

colleagues (78) based on reported sequences of the two polymorphisms (76): specifically, 

a 419 base pair product corresponding to l allele and a 375 base pair product 

corresponding to the s allele.  PCR was done with KlenTaq polymerase with standard 

buffer PC2 and the addition of 5% glycerol.  Cycling temperatures for 30 cycles and 30 

seconds at each point were 98/66/72°C.  Since the s allele has been found to be dominant 

in transcriptional activity versus the ll genotype (76), genotyping led to the creation of 

two genotype comparison groups, ll individuals and s carriers (ls or ss). 

MRI Data Acquisition and Emotional Face Paradigm 
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 Participants were scanned using a 3-Tesla Siemens Trio MR scanner (Siemens, 

Erlangen, Germany) at the Yale Magnetic Resonance Research Center in New Haven, 

CT.  FMRI data were acquired with a single-shot echo planar imaging (EPI) sequence in 

alignment with the anterior commissure-posterior commissure (AC-PC) plane to create 

32 three-mm thick slices without gap with the following parameters: TR = 2000 ms, TE = 

25 ms, matrix = 64 x 64, FOV = 240 x 240 mm2, and flip angle = 80°.   

During the functional runs, an event-related emotional face task was completed by 

each participant.  Faces from the Ekman series (99) depicting expressions of fear, 

happiness, or neutrality were shown to the participants via the PsyScope software 

package (100) on a computer attached to a projector.  Participants were asked to make a 

male-female discrimination via a two-response button box that they were oriented to prior 

to scanning. This task was chosen to induce implicit rather than explicit processing of the 

emotional face as the former has been found to activate the emotional processing neural 

circuit more readily (42).  Each face was presented for two seconds and separated by 

four, eight, or twelve second intervals during which time a cross-hair fixation point was 

displayed.  Face stimuli included images of ten actors (five of each gender), with each 

individual exhibiting all three of the expressions for a total of 30 faces per run.  Ordering 

of face stimuli was varied systematically to control for sequential dependencies and 

counterbalanced for facial expression, sex, the identity of the face, and the length of the 

interval between stimuli.  Each run lasted 4 minutes and 50 seconds and data was 

compiled and averaged over four runs. 

fMRI Data Processing 
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 Raw data pre-processing was completed using Statistical Parametric Mapping 

(SPM99) software (101).  Two images at the beginning of each fMRI run were discarded 

to account for the approach of the hemodynamic response to steady-state. The functional 

scans were realigned to the first volume to correct for inter-scan movements.  After 

motion correction, the functional data were spatially normalized to a standard EPI 

template from the Montreal Neurological Institute (MNI).  FMRI data was resampled to 4 

mm3 voxels during normalization.  Lastly, they were spatially smoothed with a 12 mm 

FWHM Gaussian kernel. 

 SPM99 was also used for the model specification and estimation.  At the 

individual subject level, event-related response amplitudes were estimated using the 

general linear model for each of the three event types: fearful, happy, and neutral 

expression.  This created statistical images of the BOLD contrast response of each face 

type versus the baseline fixation cross-hair control for each individual subject. 

Anatomical Structures of Interest Definition  

 Anatomy-based masks were created to limit voxel-by-voxel comparison to the 

hypothesized structures of interest.  Bilateral amygdala regions were defined by the WFU 

toolbox (102), each 1920 mm3 in volume (30 voxels).  Similarly, the sgACC region was 

defined by dividing the WFU-defined anterior cingulate cortex region at the axial plane 

of z = 0, creating a ventral region that was 5560 mm3 (87 voxels) in volume with center 

at MNI coordinates of x = 0 mm, y = 38 mm, z = -4 mm.  This division approximates the 

sgACC, the region of the ACC most associated with emotional regulation (17) and with 

strong reciprocal connections with the amygdala whose disruption is associated with the s 

allele (96).  See Figure 1 for visualization of these regions. 
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SPM Group Level Analysis 

 Individual BOLD contrast maps of response to fear faces were computed in 

SPM99 for each subject to use in comparisons between diagnostic groups (HC versus 

BD).  Groups were compared with t-tests at each voxel within the sgACC and amygdala 

with significance considered at a p-value < 0.05 and a cluster extent threshold of five 

voxels.  This combined application of a statistical threshold and cluster size filter has 

been shown to reduce the identification of false-positive activation clusters (103).  Using 

the MarsBar toolbox for SPM (104), clusters of significance were used to create binary 

images of regions with differential activity due to the effect of diagnosis.  Next, 

comparisons were done in an identical manner comparing genotype within a diagnostic 

category, namely HC ll vs HC s carriers, and BD ll vs BD s carriers.  Significant clusters 

were similarly used to create binary images of regions with differential activity due the 

effect of genotype.  These between-diagnosis and between-genotype clusters were then 

compared visually in SPM99 to assess degree of overlap, and their binary images 

combined by a function in MarsBar producing an output image containing only the 

voxels common to the input images.  These same analyses were then completed for 

happy and neutral face contrasts.  Thus, these analyses allowed assessment of response to 

a positive stimulus (happy faces), a negative stimulus (fear faces), and a non-emotional 

face stimulus. 

Mean BOLD signal change values for each subject were then extracted from these 

clusters of differential activity to allow for analysis of the effects of demographic factors 

including age and gender on the above comparisons.  Exploratory analyses were 

performed on these single subject values as well to assess for potential effects of clinical 
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variables among BD participants, including presence of rapid cycling, medication 

subclass (lithium, anticonvulsants, atypical antipsychotics, and antidepressants), history 

of psychosis, history of substance or alcohol abuse/dependence, and age at time of 

bipolar diagnosis.  

Description of Student’s Role in Project 

 I helped in the interview for assessment of diagnosis and symptoms of 

participants under the supervision of faculty and fellows in the Mood Disorders Research 

Program Laboratory at Yale, and helped to organize the clinical and demographic data 

that was gathered during these interviews.  I was involved in the development and 

programming of the emotional face task and its timing parameters, and was involved in 

supervising and attending the scans of participants in the study. In addition, I supervised 

and assisted in the acquisition of images from the fMRI scanner, and in the completion 

and review of all imaging data preprocessing and contrast map formation, and then 

completed the group level analysis using the software tools described above. I consulted 

with statisticians to help organize and complete the post-hoc analyses of the individual 

subject mean signal values, and was able to build off of my years of fMRI experience to 

interpret the results of these analyses and evaluate their potential clinical implications.  

Also, while I helped in coordinating the transport of blood samples and organizing the 

genetic data in relation to this study, all genotyping was done in the laboratory of Dr. Joel 

Gelernter as described above, under the supervision of Dr. Gelernter and Ms. Ann Marie 

Lacobelle, MS. 
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Results 

Participants 

 The HC and BD groups did not differ significantly in age (T = 0.99, p = 0.33) or 

gender distribution (Z = 0.40, p = 0.69).  Genotyping at the SLC6A4 locus led to the 

formation of four diagnosis-genotype groups: 12 HC ll participants, 31 HC s carriers (26 

ls and 5 ss), 9 BD ll, and 17 BD s carriers (15 ls and 2 ss).  The frequency of the l allele 

in this sample was 60.1%, and the frequency of the s allele was 39.9%.  Clinical 

characteristics for these groups are summarized in Table 1.  There was no difference in 

age between HC and BD, and no statistically significant difference in age between HC ll 

and HC s carriers, as well as BD ll and BD s carriers.  There was not a statistically 

different distribution of Caucasians and African Americans between HC and BD groups 

(p = 0.91); there were too few non-Caucasian, non-African American participants in the 

study for statistically meaningful analysis of distribution of all ethnicities.  There was a 

trend for a difference in the percentage of participants with substance abuse history, with 

BD ll having a greater percentage than BD s carriers (p = 0.051).    

In the scanner, the groups did not have significantly different physical head 

motion in terms of translational (with HC ll having 0.61 ± 0.29 mm, HC s car having 0.56 

± 0.27 mm, BD ll having 0.69 ± 0.28 mm, and BD s car having 0.68 ± 0.27; F = 0.88, p = 

0.45; values given as mean ± standard deviation) and rotational movement (with HC ll 

having 0.49 ± 0.36 degrees, HC s car having 0.46 ± 0.27 degrees, BD ll having 0.53 ± 

0.22 degrees, and BD s car having 0.57 ± 0.50 degrees; F = 0.35, p = 0.79).  Of note, the 

magnitude of movement overall was well below standards in the literature (105). 

Fear Faces 

The BD group had significantly decreased BOLD activation compared to the HC group 
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Table 1.  Clinical Features of the Bipolar Disorder and Healthy Control Groups 
 

 HC ll 
n = 12 

HC s car 
n = 31 

BD ll 
n = 9 

BD s car 
n = 17 

Test for 
Significance 

Gender      
  Female 6 (50) 20 (65) 5 (55) 12 (71) p = 0.69 
  Male 6 (50) 11 (35) 4 (45) 5 (29)  

Age, in yrs 24.5 ± 6.4 30.4 ± 11.7 38.1 ± 16.1 28.2 ± 10.3 HC, p = 0.11 
BD, p = 0.07 a 

Ethnicity      
  Caucasian 5 (42) 19 (61) 5 (55) 13 (76)  
  African American 5 (42) 5 (16) 4 (45) 3 (18)  
  Asian American 1 (8) 3 (10) 0 0  
  Other 1 (8) 4 (13) 0 1 (6)  
Presence of Rapid 
Cycling - - 3 (33) 9 (53) p = 0.35 

Hx of Psychosis in Past - - 1 (11) 6 (35) p = 0.20 
On Medication at Scan 
Time - - 9 (90) 15 (88) p = 0.96 

  Lithium at Scan Time - - 1 (11) 6 (35) p = 0.20 
  Anticonvulsant at   
  Scan Time - - 6 (67) 10 (59) p = 0.70 

  Atyp. Antipsychotic at  
  Scan Time - - 2 (22) 8 (47) p = 0.23 

  Antidepressant at Scan  
  Time - - 3 (33) 7 (41) p = 0.70 

  Benzodiazepine at   
  Scan Time - - 2 (22) 1 (6) p = 0.22 

History of Alcohol 
Abuse/Dependence - - 4 (44) 3 (18) p = 0.15 

History of Substance 
Abuse/Dependence - - 5 (55) 3 (18) p = 0.051 

Age at Diagnosis of 
BD, in yrs - - 26.8 ± 12.1 21.1 ± 7.8 p = 0.17 b 
BD, Bipolar Disorder; HC, Healthy Control; CARS-M = Clinician-Administered Rating Scale for Mania  
Values as whole number and (percentage), except in case of continuous variable, given as mean ± standard deviation  
Statistical tests: continuous variable: Student’s t-test, categorical variable:  nonparametric test, Mann-Whitney 
a Age: compared across genotype within diagnostic category: HC ll vs HC s car: p = 0.11; BD ll vs BD s car: p = 0.07  
b Age of BD onset not available for one subject, n = 25 of 26 
 
 

in response to fear faces in a sgACC cluster of 38 voxels (T = 2.21, puncorr = 0.015, 

nearest MNI maxima at x = 8 mm, y = 36 mm, z = -4 mm) that includes part of 

Brodmann Area 24 and crosses the midline.  In the between genotype comparisons, the 
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HC s carriers had significantly decreased activation compared to the HC ll individuals in 

a sgACC cluster of 84 voxels that extended bilaterally (T = 2.81, puncorr = 0.003, with 

MNI maximum at x = 8 mm, y = 36 mm, z = -4 mm) and the BD s carriers had 

significantly decreased activation in a cluster of 73 voxels that also extended bilaterally, 

including parts of BA 32 (T = 2.81, puncorr = 0.003,with MNI maximum at x = -12 mm, y 

= 36 mm, z = -8 mm).  By visualization, the cluster of difference between-diagnostic 

groups was almost entirely within the larger between-genotype clusters, and this was 

confirmed by the MarsBar function that created a 35 voxel (2240 mm3) region 

representing the area in which all three clusters shared the same voxel.  Using the 

extracted mean signal change values, it was found that there was no effect of age or 

gender in any of the comparisons. 

See Figure 2 for visualization of these regions. 

 There were no significant differences detected between HC and BD or between 

genotype in either the left or right amygdala in response to fear faces.   

Happy Faces 

 The BD group had significantly decreased BOLD activation compared to the HC 

group in response to happy faces in a sgACC cluster of 7 voxels that was primarily in the 

left hemisphere near BA 32 (T = 1.88, puncorr = 0.032, MNI maxima at x = -4 mm, y = 32 

mm, z = -8 mm).  The HC s carriers had significantly decreased activation compared to 

the HC ll individuals in a sgACC cluster of 73 voxels that extended bilaterally (T = 3.02, 

puncorr = 0.002, MNI maxima at x = -4 mm, y = 28 mm, z = -4 mm), while the BD s 

carriers had significantly decreased activation compared to BD ll individuals in 

essentially the same region (73 voxels, T = 3.02, puncorr = 0.002, MNI maxima at x = -8 
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mm, y = 28 mm, z = -4 mm).  The seven voxel cluster of difference between diagnostic 

groups was entirely within the between genotype clusters by visualization and this was 

confirmed by the creation of a 7 voxel (440 mm3) region that represented the overlapping 

voxels.  There was no effect of age or gender on these differences based on the extracted 

mean values. See Figure 3 for visualization of these regions. 

 Similar to the fear faces, there were no significant differences detected in any of 

the comparisons within the right or left amygdala in response to happy faces. 

Neutral Faces 

 There was not a significant difference between HC and BD groups in BOLD 

response to neutral faces.  There was an 8 voxel cluster extending bilaterally in the 

sgACC representing decreased activation in the HC s carriers versus the HC ll group (T = 

2.05, puncorr = 0.022, MNI maxima at x = -4 mm, y = 24 mm, z = -8 ), and an 86 voxel 

cluster extending bilaterally in which BD s carriers had decreased activation in BD ll (T = 

2.98, p = 0.002, nearest gray matter maximum at x = -4, y = 40, z = 0).  See Figure 4 for 

visualization of these regions; the graph displays the mean BOLD signal change from an 

eight voxel region presenting the overlap of these two regions.  There was a significant 

effect of age on these between-genotype comparisons, with BOLD activation in the both 

between-genotype clusters being negatively correlated with age (r = -0.34, p = 0.004).  

There was no effect of gender. 

 There were no significant differences in any comparison within the left and right 

amygdala in response to neutral faces. 

Clinical Factors 
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Amongst BD participants, no significant effects on response in the sgACC and 

amygdala to any of the face types were detected for presence of rapid cycling, history of 

psychosis, or history of alcohol abuse/dependence.  A history of substance 

abuse/dependence did affect the neutral face response, with BD individuals who did have 

such history having increased activation compared to those who did not (T = 3.50, p = 

0.002); it did not affect response to fear or happy faces.  There were not enough 

unmedicated participants (n = 3) to allow for statistically meaningful comparisons 

between medicated and unmedicated participants.  Amongst those who were on 

medication there was no effect of medication subclass for the BD comparisons.  Age at 

diagnosis of bipolar disorder did not significantly correlate with activation in any of the 

clusters. 
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Discussion 

 In this study, fMRI analyses demonstrated decreased response in the sgACC 

amongst BD participants compared to the HC group in response to fearful faces, and, to a 

lesser extent but still statistically significant, to happy faces.  In addition, for both fear 

and happy faces, sgACC activation was decreased amongst carriers of the s allele of the 

5-HTTLPR polymorphism in both the HC and BD groups compared to the ll individuals 

within the respective diagnostic group.  Furthermore, via an overlay method revealing 

common voxels, it was shown that the aberrant functioning in the BD group compared to 

a group of healthy volunteers was influenced by variation in the 5-HTTLPR 

polymorphism, such that BD participants carrying the s allele had the greatest magnitude 

of dysfunction in the region. 

 The results of this study showed that in response to emotionally valenced stimuli 

(but not to neutral faces) there was a reduction in response of the sgACC amongst 

participants with BD.  This is consistent with previous reports of sgACC functional and 

metabolic abnormalities in BD (23, 32-34), and may suggest, given that this sample 

included only euthymic participants, that this sgACC dysfunction is a trait-feature of BD.  

That is, there is evidence that sgACC dysfunction is a key component to the 

neurobiological pathophysiology of the disorder, and that it exists during euthymia with 

possible exaggerations during alterations of mood state (23).  This dysfunction may 

develop during adolescent neural maturation, as previous work has shown structural 

changes in amongst adults with BD (21-23) but not consistently in pediatric BD 

populations (25-29). 
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 Differences in sgACC activation were also seen amongst HC s carriers versus HC 

ll individuals; in fact, the HC s carriers decrease was highly significant and involved a 

majority of the sgACC total voxels (as per our anatomical definition).  While previous 

studies in healthy volunteers reported an association of the s allele with dysfunction of 

the amygdala and disruption of functional connectivity between it and the sgACC (96), 

the current study suggests functional abnormality in the sgACC itself.  Thus, the s allele 

may be associated not only with aberrancy in the reciprocal connections specific to the 

amygdala, but also impaired processing ability in the sgACC overall.  In addition, it is 

important to note that the HC group was screened for potential psychiatric disease and 

were also excluded for any such familial history. This suggests that the influence of the 5-

HTTLPR polymorphism on emotional processing neural circuitry does not necessarily 

lead to the development of psychiatric illness.  It is part of a balance of genes and 

environmental exposures whose combined influences and interactions may contribute to 

the expression of clinical pathology.  

 The finding of a difference within the sgACC between BD s carriers and BD ll 

individuals in response to both fearful and happy faces helps to link the results of the two 

comparisons already discussed.  While function in the sgACC was found to be impaired 

in BD participants as a group overall, those carrying one or two copies of the s alleles 

exhibited the greatest magnitude of impairment in this region.  This suggests that the BD 

s carriers may represent a biologically salient subtype within the spectrum that is distinct 

in its degree of sgACC-amygdala circuitry dysfunction, with similarly distinct clinical 

features that future work with larger samples and statistical power may be able to 

elucidate and define.  In addition, the BD s carriers may be the subset of individuals with 
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BD that most benefit from treatments targeting serotoninergic transmission or treatments 

that target the sgACC.  This finding also adds to the argument that there are genetically-

derived subsets within the disorder, each linked to a different set of genes (74), with the 

5-HTTLPR polymorphism being one such genetic locus.          

 The mean BOLD signal change values that were extracted from the clusters of 

differential activity in the sgACC included group means that were negative, especially for 

BD subgroups carrying the s allele (see Figures 2-4).  These negative values were derived 

from the subtraction of the baseline from the face conditions.  Thus, it is possible that the 

value indicates a failure of recruitment of the sgACC during face processing due to 

abnormalities in the region.  It is also possible that additional structures are recruited 

during the task, leading to an inhibition of sgACC (106). Alternatively, the decreases may 

represent a suppression of high tonic activation in these regions in resting conditions 

(106).  Metabolic studies in healthy volunteers have reported heightened resting-state 

activity in ventral and medial prefrontal cortices (107-108), and ‘deactivations’ during 

task performance in proportion to task difficulty (109).  Thus, while exact interpretation 

of negative values is not possible, there is evidence that it may represent a suppression of 

increased tonic resting activity during emotional face processing, especially in BD s 

carriers. 

 In the amygdala comparisons, there were no significant differences seen across 

diagnosis or across genotype.  This was not expected, as it was predicted that the BD 

group would have increased amygdala reactivity compared to the HC group for both the 

fearful and happy faces (32, 59-62) and that the s carriers would have increased activity 

compared to ll individuals in response to fearful faces in particular (89-92).  Mean signal 
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change values were extracted for individual subjects to assess the level of BOLD 

response, and it was found that the mean BOLD signal change ± standard error for left 

amygdala activation was 0.37 ± 0.04 and for right amygdala was 0.31 ± 0.03.  These 

values suggest that the task was successful in activating the amygdala, but that there were 

no significant detected differences across groups.  

One possible reason for this result is the fact that a majority of the BD group 

(88%) were on psychotropic medication at the time of scan, and prior work has shown 

that individuals on medication do not exhibit the degree of amygdalar hyperreactivity that 

is typically seen in unmedicated individuals or even those in a manic or depressive mood 

state (32).  Thus, there may have been sufficient ‘normalization’ of amygdala response 

due to medication in the BD group so as to preclude detection of a difference with the HC 

group and even between the BD ll and BD s carrier groups.   

However, medication status does not explain the lack of difference between the 

HC ll and s carrier groups.  One possibility for this result may be related to aspects of the 

fMRI analyses used in the current study, namely the use of the crosshair fixation point as 

the subtraction baseline from the response to the emotional faces to form the contrast 

maps for each individual subject.  Canli and colleagues have reported that increased 

amygdala activation in healthy volunteers carrying the s allele carriers may be driven by 

relative deactivation when viewing neutral faces (91) compared to hyperactivation in the 

amygdala at rest—that is, when not focusing on a task-relevant stimuli (110).  Thus, 

subtraction of the response to a non-face, non-active baseline, during which time there 

may be resting amygdala hyperactivation, from the response to an emotional face may 

lead to a perceived blunting of response to the emotional stimuli of interest.  Indeed, 
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some studies have used a non-emotional version of the task (e.g. activation response 

during a matching task of non-face stimuli subtracted from activation response during a 

matching task of emotional face stimuli) as the baseline subtraction condition (89).  To 

this end, a secondary analysis in SPM99 was done using response to neutral faces as the 

subtracted baseline from the fear and happy conditions to look for potential differences in 

the amgydala across genotype.  There was a trend for increase in the HC s carriers greater 

than HC ll carriers in the happy – neutral contrast in the amygdala bilaterally and in the 

right amygdala for the fear – neutral contrast (see Figure 5).   

In relation to the overall aims of the current study, however, it was decided that 

while subtracting neutral from the other emotion types may be an appropriate contrast for 

a HC group, this would be problematic in BD.  Specifically, there are studies showing 

impairments in BD in emotional affect recognition (45), as well as limbic hyperactivation 

in pediatric BD populations responding to neutral faces (58), thus calling to question the 

validity of a ‘neutral’ face when perceived by a BD individual, as they may attribute an 

emotional valence to an ambiguous expression.  Thus, the subtraction of the response to 

neutral faces from the fear and happy face conditions would make meaningful 

interpretation of results extremely challenging, and so the cross-hair fixation point 

baseline was used in the analyses of this study. 

 Another pertinent consideration in this study was the relative ethnic heterogeneity 

within the overall participant sample.  While the overall measured 5-HTTLPR allele 

frequency in our sample overall was 60.1% for the l allele and 39.9% for the s allele—

which is nearly identical to frequencies reported for European American populations—

looking specifically at the African Americans in the sample revealed a frequency of 
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76.5% for the l allele and 23.5% for the s allele within this subgroup.  This difference 

highlights the variability in the frequency of these alleles across ethnic populations (78), 

and in fact the measured African American frequencies in this sample are quite similar to 

reports of frequencies in African American populations (111).  This is important to note 

because any imbalance in distribution of ethnicities across genotype groups may make it 

difficult to disentangle the effect of a specific allele versus the effect of ethnicity.  

Unfortunately, while secondary analyses involving only the Caucasians (the largest 

represented group in this sample) in the study may have adjusted and accounted for this 

potential contributing factor, this left too few subjects for statistically meaningful 

between genotype comparisons; however, this will be a focus of future work, and the 

accumulation of a larger samples will allow for validation of results within a more 

ethnically homogeneous subset of participants.  

 Recently, there has been a new triallelic classification of the 5-HTTLPR 

polymorphism, with description of two l allele variants, LA and LG, with the latter having 

in vitro transcriptional functioning more similar to the s allele (112).  This has led some 

to suggest a reclassification of the allelic system, with LG aligned with the s allele to form 

a ‘risk’ allele subset; in addition, some studies have suggested that African Americans are 

more likely to carry the LA variant of the l allele (113) and thus a lower proportion of 

both risk alleles.  Studies using this triallelic classification system have found differences 

in metabolic function after tryptophan depletion in the amygdala and sgACC in 

individuals with remitted major depressive disorder (114), suggesting that there may be a 

gradient of effects on function across the three genotype groups.  However, although 

triallelic characterization was available for many of the participants in the current sample, 
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it was found that reclassification would yield a LALA group with sample size too small for 

statistically powered group comparisons, and, so the original classification scheme was 

used in this work.  It is hoped that these relationships can be further explored in future 

studies, in which larger sample sizes will allow for comparison across groups with 

sufficient statistical  power to detect differences. 

Associations between features of BD such as age of bipolar diagnosis onset, 

presence of rapid cycling, and history of psychosis, with the s allele were not seen.  

Similarly, there was no effect of these clinical features with BOLD response in the 

sgACC or amygdala, perhaps due to insufficient power.  Thus, future studies will 

continue to assess possible associations with the s allele in BD participants with specific 

clinical features that may only be appreciated with the accumulation of large samples.  

This will allow characterization of a ‘gene expression’ to ‘neural circuit dysfunction’ to 

‘clinical phenotype’ mechanistic bridge, and further characterize the BD s carrier 

subgroup. 

 In comparison to previous work showing medication subclass effects on 

activation and neurochemical metabolism (32, 34) within the sgACC and amygdala, this 

study did not reveal any medication subclass effects on the comparisons within BD.  

However, medication may, as discussed above, have blunted some of the response in 

these structures, and the continued scanning of unmedicated individuals with BD in the 

future will also help clarify these potential effects in relation to the s allele.  Similarly, in 

the future, adding participants who are in an active mood state would allow assessment of 

how the 5-HTTLPR may influence state-related activation changes associated with either 

depression or mania.  
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 Future directions also include completing functional connectivity analyses to 

assess for an effect of the s allele on possible sgACC-amygdala communication 

impairment in BD.  In addition, studies of adolescents with BD would allow examination 

of a group less likely to be affected by medications and perhaps more phenotypically (and 

thus genetically) homogenous.  Similarly, longitudinal studies of both HC and BD 

participants may reveal how the 5-HTTLPR influences neurodevelopmental changes over 

time.  Also, results from microarray and genome-wide studies of BD may serve as the 

next set of candidate genes to investigate within the imaging genomics field, allowing 

assessment of how these genes may affect neural function and contribute to the BD 

phenotype.  Lastly, studies examining the additive or synergistic effects of two or more 

genes will allow insight as to how a subset of genes may define a larger phenotypic 

subset in BD. 

 

 In conclusion, the present work provides evidence for an association of the s allele 

of the 5-HTTLPR with dysfunction in the sgACC—a key structure in processing and 

regulation of emotion—in comparison to the ll genotype.  This difference was also seen 

in a sample of euthymic individuals with BD, an illness that is characterized by profound 

emotional dysregulation, with dysfunction greatest in those in the BD group carrying the 

s allele.  In combination, these findings suggest that the s allele is associated with 

abnormal functioning of the sgACC, and that this dysfunction may be a trait-related, 

heritable neurobiological endophenotype, that underlies a distinct subtype within the 

more heterogeneous clinical phenotype.  Clinically, knowledge of this molecular 

mechanism may in fact guide therapeutic treatment strategies for the individual patient, 
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as there is evidence of influence of this polymorphism on response to medications (115), 

and allow for individualized assessment and selection of treatment options.  In addition, it 

may guide selection of therapeutic targets, such as the growing interest in deep brain 

stimulation modulation of the ACC (116), and may in the future also allow clinicians to 

distinguish, based on genetic profile, which patients may or may benefit from these more 

invasive treatments.  The combination of multimodal neuroimaging research and the 

exponentially increasing wealth of genetic information will continue to yield greater 

insights into the pathophysiology of BD—and provide hope to those who live with it 

every day. 
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Appendix 
 
Figure 1. 

 
Anatomical Structures of Interests, Defined for Between Group Analyses 
Images depicting the masks used to limit analyses to voxels within our hypothesized 
regions 
a. Image shows WFU definition of total ACC (both blue structures); ddaarrkk  bblluuee region represents 
our division of structure to create subgenual ACC at z = 0; created based on functional 
subdivision with sgACC representing affective division 
b. WFU definition of lleefftt and rriigghhtt amygdala regions of interest 
  L = left, ACC = anterior cingulate cortex, sgACC = subgenual ACC 
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Figure 2. 

 
Fear Faces: Between group Comparisons of BOLD Response within sgACC 
a. Sagittal image at x = 4 displaying the sgACC subregion where activation to fear faces was 
significantly greater in the HC compared to the BD group (38 voxel cluster, puncorr = 0.015) 
b. Image at x = 0 displaying the sgACC subregion where activation was significantly greater in 
the HC ll homozygotes compared to the HC s carriers (84 voxel cluster, puncorr = 0.003) 
c. Image at x = 0 displaying the sgACC subregion where activation was significantly greater in 
the BD ll compared to the BD s carriers (73 voxel cluster, puncorr = 0.003) 
d. Image at x = 0 displaying region of common voxels from clusters seen in a through c with 
graph depicting mean signal change ± standard error of BOLD response to Fear faces in this 
region; HC ll > HC s carriers; BD ll > BD s carriers; HC > BD; greatest decrease in BD s carriers  
   sgACC = subgenual anterior cingulate cortex  
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Figure 3. 

 
Happy Faces: Between Group Comparisons of BOLD Response within sgACC  
a. Sagittal image at x = -4 displaying the sgACC subregion where activation to happy faces was 
significantly greater in the HC compared to the BD group (6 voxel cluster, puncorr = 0.032) 
b. Image at x = 0 displaying the sgACC subregion where activation was significantly greater in 
the HC ll homozygotes compared to the HC s carriers (73 voxel cluster, puncorr = 0.003) 
c. Image at x = -8 displaying the sgACC subregion where activation was significantly greater in 
the BD ll compared to the BD s carriers (73 voxel cluster, puncorr = 0.003) 
d. Image at x = -4 displaying region of common voxels from clusters seen in a through c with 
graph depicting mean signal change ± standard error of BOLD response to Happy faces in this 
region; HC ll > HC s carriers; BD ll > BD s carriers; HC > BD; greatest decrease in BD s carriers  
   sgACC = subgenual anterior cingulate cortex 
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Figure 4.  

 
Neutral Faces: Between Group Comparisons of BOLD Response within sgACC 
There were no significant differences between HC and BD in response to neutral faces 
a. Sagittal image at x = 4 displaying the sgACC subregion where activation to neutral faces was 
significantly greater in the HC ll group compared to the HC s carriers (8 voxel cluster, puncorr = 
0.022) 
b. Image at x = -2 displaying the sgACC subregion where activation was significantly greater in 
the BD ll compared to the BD s carriers activation (86 voxel cluster, puncorr = 0.002) 
c. Graph depicting mean signal change ± standard error response to Neutral faces; values derived 
from a region of shared voxels from a and b; HC ll > HC s carriers; BD ll > BD s carriers 
   sgACC = subgenual anterior cingulate cortex  
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Figure 5. 

 
 
Amygdala Differences: HC Genotype Differences using Neutral Face Reponse as 
Baseline 
These images depict clusters in the amygdala where activation was greater in HC s carriers 
compared to HC ll individuals 
a. Fear – Neutral contrast; coronal image at y = 0 
   -R Amygdala: 1 voxel, puncorr = 0.093; MNI at x = 24 mm, y = 4 mm, z = -20 mm 
b. Happy – Neutral; coronal image at y = 0 
   -R amygdala: 3 voxels, puncorr = 0.071, MNI maximum at x = 24 mm, y = 0 mm, z = -24 mm 
   -L amygdala: 4 voxels, puncorr = 0.080, MNI maximum at x = -20, y = 0, z = -16 
     In images, Left is Left 
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