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INDUCTION OF PLURIPOTENCY IN HUMAN KERATINOCYTES THROUGH 

mRNA TRANSFECTION.  Robert D. Leone, Peter M. Rabinovich, Eugenie Cheng, 

Efim Golub, and Sherman M. Weissman. Department of Genetics, Yale University, 

School of Medicine, New Haven, CT.  

Induced pluripotent stem (iPS) cells are epigenetically reprogrammed somatic cells that 

exhibit developmental and proliferative characteristics of embryonic stem (ES) cells. 

Other than alterations made during the reprogramming process, iPS cells are 

genotypically identical to donor tissue, giving them significant potential in regenerative 

medicine, basic biology of genetic disease, and drug development. Presently, iPS cell 

derivation largely relies on the introduction of reprogramming factors (eg, OCT4, SOX2, 

KLF4, c-MYC) directly into cellular genomes, leaving cells vulnerable to insertional 

mutagenesis and persistent expression of oncogenic transcription factors. This severely 

limits their use in clinical and research settings. Here we describe the reprogramming of 

human keratinocytes through the introduction of exogenous mRNA transcripts.  mRNA 

presence within cells is transient and is unlikely to have permanent effects on the cellular 

genome, thus avoiding the pitfalls of present methods of iPS cell generation. Several 

benchmarks have been achieved toward this end, includ-ing: 1) successful expression in 

human cells of reprogramming factor proteins through the introduction of exogenous 

mRNA transcripts; 2) phenotypic transformation of human keratinocytes toward ES cell 

morphology by transfection with mRNA reprogramming factors; and 3) alkaline 

phosphatase activity (a well described early marker of pluripotency) in a small proportion 

of transformed cells. These results imply that mRNA transfection may be a viable method 

for reprogramming somatic cells towards pluripotency.
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BACKGROUND 

Human embryonic stem (hES) cells are characterized by two fundamental qualities: the 

ability to indefinitely self-renew, and the capacity to differentiate into any and all tissues 

of the body. Since first being isolated in 1998, hES cells have been the subject of 

significant attention from researchers as well as the lay public (1). Potential applications 

of these pluripotent and inexhaustible cells include studies of basic mechanisms of 

disease, screens for drug discovery, and the possibility of generating tissue for use in 

patients with degenerative diseases such as Parkinson disease, patients in need of bone 

marrow transplantation, or patients with infarcted cardiac tissue (2,3,4,5). One limitation 

of ES cells, however, is that they are generic in nature, and as such are unrelated to 

patients who may be the beneficiaries of such use. Consequently, tissues derived from 

hES cell lines will likely be the target of immune rejection in recipients (6,7). Also, 

because the only known source of hES cells is the inner cell mass of a human blastocyst, 

research into the basic nature and potential application of hES cells has been embroiled in 

ethical, religious, and political concerns. Spurred on by both the promise, as well as the 

limitations of hES cells, researchers have investigated alternative means of achieving 

pluripotency. These investigations have taken the form of nuclear transfer experiments 

(8,9), cell fusion experiments between somatic cells and ES cells (10,11), and the design 

of transformative cell culture conditions to attain pluripotency in testis cells (12,13).  

 

Somatic cell nuclear transfer (SCNT), wherein a somatic cell nucleus is transplanted into 

an oocyte or ES cell and subsequently achieves pluripotency through epigenetic 

reprogramming, has been successfully demonstrated in a variety of non-human, 
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mammalian species (most notably in “Dolly” the sheep in 1996) (9,14,15).  The products 

of successful SCNT experiments are pluripotent cells that are identical in genomic 

makeup to the starting cell nucleus (14). While this approach would theoretically produce 

patient-specific, rejection-proof pluripotent cells for therapeutic and analytical use, it is 

limited by several challenges. SCNT technology requires the use of unfertilized oocytes, 

which are difficult to obtain. Though it is possible that this limitation may be overcome 

by the use of fertilized zygote cells, as was recently shown in the mouse, SCNT is also a 

very technically challenging and inefficient technology that is not at present viable for 

routine use in the clinic (16). 

 

Despite limitations, SCNT experiments have shown unequivocally that cellular 

differentiation is not necessarily a one-way street. By exposing a somatic nucleus to the 

appropriate cytocellular environment (oocyte or ES cell), epigenetic reprogramming is 

facilitated and pluripotency established. In the last several years, researchers have applied 

these concepts as they have attempted to more fully understand the specific elements 

present in oocytes and ES cells that affect nuclear reprogramming and maintain 

pluripotency. By carefully sifting through data examining transcription factors present in 

ES cells, researchers were able to identify a set of four such factors that were sufficient to 

reprogram somatic cells to pluripotency. In a biomedical milestone reported in 2006, 

Takahashi and Yamanaka successfully reprogrammed murine embryonic fibroblasts to 

de-differentiated states of pluripotency using retroviral insertion of gene sequences of 

four transcription factors: Oct4, Sox2, Klf2, c-Myc (7). These cells have been termed 

“induced pluripotent stem cells” (iPS cells). These results were extended to the 
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reprogramming of human fibroblast cells in the laboratory of James Thompson in 2007 

using retroviral insertion of gene sequences for OCT4, SOX2, NANOG, and LIN28 (17). 

In the last few years iPS cells have been derived by various researchers from several 

different human cell types including keratinocytes, hematopoietic cells, cord blood, and 

hair follicle cells (18, 19, 20, 21). 

 

Though the precise criteria for pluripotency is the subject of ongoing debate (22), iPS 

cells have been shown to be similar to embryonic cells in several important ways (23, 

24).  iPS cells show significant similarity to ES cells morphologically, epigenetically, and 

in their expression of key ES cell marker genes. iPS cells also demonstrate other 

important characteristics of pluripotency, including the ability to form teratomas when 

injected into mouse testes, the ability to contribute to tissues of adult chimeric mice that 

are germline competent, and the ability to form all tissues of a viable organism through 

tetraploid complementation assays (23, 24, 25). Though the most stringent of these 

assays—chimera formation and tetraploid complementation—are not ethically available 

for work involving human iPS cells, these cells have been successfully induced to form 

teratomas comprising three primary germ cell layers and have been subjected to several 

differentiation schemes to form specific human tissues, such as cardiomyocytes, 

hematopoietic stem cells, osteoclasts, hepatocytes, and neurons (18, 23, 24, 26, 27, 28, 

29). 

 

The ability to reprogram somatic cells to pluripotency has led to great excitement in the 

field of stem cell research and regenerative medicine. These reprogrammed somatic cells 



 

 

9 

have several important advantages over ES cells in biomedical application. First, iPS cell 

technology avoids ethico-religio-political complexities that have bridled embryonic stem 

cell research for much of the last decade. Second, iPS cells are derived in a patient-

specific manner, and so, organs and tissue derived from these cells are likely to avoid 

immune rejection that would otherwise complicate application in regenerative medicine. 

Third, the patient-specific nature of iPS cells allows for the observation of developmental 

irregularities that are likely inherent in many disease states. For example, iPS cells 

derived from individuals with Parkinsons Disease or ALS can be differentiated into 

dopaminergic neurons and monitored developmentally for insight into sequential 

pathologic aberrations inherent in the disease process (30, 31, 32). Lastly, this technology 

holds great promise for evaluating medication-induced abnormalities in a tissue-specific, 

patient-specific manner.  That is, although the nature of the toxicity of a particular drug 

on heart tissue may theoretically be ascertained by studies on cardiomyocytes derived 

from ES cells, the results could not take into account phenotypic and functional 

polymorphisms that may present in a given individual. iPS cell derivation could allow 

such tailored study (33).  

 

Despite the enormous promise of iPS cell technology, the field is presently limited in 

clinical application due to the manner of iPS cell derivation. Present methods of somatic 

cell reprogramming rely largely on viral vectors to introduce genetic material 

permanently into the genome. Inserted genetic material includes both the viral backbone, 

as well as transgene sequences coding for the transformative factors (OCT4, SOX2, 

KLF4, c-MYC, NANOG, LIN28) (7,17). Such an approach engenders several significant 
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pitfalls that at present limit clinical application. First, virally introduced material can 

produce insertional mutagenesis, disrupting the normal function of endogenous genetic 

material and leading to unintended phenotypes and possibly malignant transformation 

(34). Mutagenetic effects may also have significant effects on the differentiation potential 

of established iPS cells. Second, inserted transgenes may continue to be active after 

pluripotency has been established. This may also have implications for the differentiation 

potential of iPS cells, but, perhaps more importantly, has the potential to activate a 

tumorigenic phenotype, which is especially concerning considering the association of 

several of the induced factors (c-MYC, KLF4) with malignant transformation (17, 35).  

 

In order for the full promise and clinical viability of iPS technology to be realized, 

pluripotency must be achieved by means that minimize or eliminate unanticipated and 

undesired phenotypes such as malignant transformation. This problem has been 

approached by several researchers in a variety of ways, including using adenoviruses or 

episomal vectors to provide nonintegrating transfer of genetic material (36, 37), 

Cre/LoxP recombination and Piggy-Bac technology to remove inserted genetic material 

after cellular transformation has been achieved (38, 39, 40), and protein-based schemes 

have been reported. Unfortunately these approaches also have significant drawbacks that 

limit their usefulness in the clinical setting, including very low yield, long turn-around 

time, and complicated procedures. In addition, many of these approaches continue to rely 

on the introduction of exogenous DNA into host cells, failing to completely remove the 

possibility of genetic recombination at the level of the genome. Post-transformation 

excisional schemes using Cre/LoxP recombination has the additional limitation of 
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imprecise excision of integrated transgenes, thus failing to circumvent concerns of 

insertional mutagenesis. The use of DNA constucts, such as episomal material, for 

transient transfection is problematic because of the inherent toxicity of DNA which limits 

the concentration range that can be used effectively (41). DNA also requires nuclear entry 

which is limited in some cell types (41). Such methods can also lead to low-frequency 

integration into host genome (42). 

 

In an attempt to address many of the limitations of current procedures in deriving human 

iPS cells, we have investigated the viability of using mRNA transfection of somatic cells 

to induce pluripotency. The most important aspect of this approach lies in the fact that 

mRNA, unlike DNA, is unlikely to have a permanent effect on the cellular genome. 

mRNA is completely and irreversibly degraded, eventually leaving transfected cells 

absent of any transgene expression. Also, translation of mRNA into protein, unlike DNA-

based methods, does not require nuclear entry. Rabinovich et al. have recently developed 

a fast and effective approach for in vitro synthesis of mRNA that can be introduced into 

human cells (41). These studies showed that mRNA transfection of human cells can be 

achieved at efficiencies much higher than that of DNA transfection, with a more uniform 

introduction of material across cell populations. This approach has successfully been 

employed to reprogram different types of primary cells and cell lines, including T 

lymphocytes, NK cells, B cells, and several cancer cell lines. T lymphocytes, and natural 

killer cells have been reprogrammed with chimeric immune receptor (CIR) constructs 

that direct these cells towards various surface targets (43). For example, by using anti-

CD19 CIR and anti-8H9 CIR, a variety tissue types have been targeted by the 
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reprogrammed killer cells, including B cells, Daudi lymphoma, primary melanoma, 

breast ductal carcinoma, breast adenocarcinoma, and rhabdomyosarcoma (43). In the 

present study we have adapted these methods of mRNA transfection to develop an 

approach for the reprogramming of somatic cells to pluripotent states.  

 

Recently, many researchers have addressed the poor efficiency and slow kinetics of iPS 

cell generation. Various methods have been successful in this regard. First, the choice of 

starting cell type bears heavily on the speed and efficiency of the reprogramming process. 

Although fibroblasts have been the standard starting tissue for most iPS cell studies, 

several investigators have reported that keratinocytes reprogram faster and more 

efficiently in both mouse and human systems (18, 44). There have also been mouse 

studies showing that early progenitors and hematopoietic stem cells are more easily and 

more quickly reprogrammed than more well-differentiated hematopoietic cells (45).  

Second, small molecule epigenetic modifying factors, such as valproic acid (histone 

deacetylase inhibitor) and 5’-azacytidine (DNA-hypomethylating agent), have also been 

shown to enhance the success of reprogramming (46). It is thought that these agents aid 

in the chromatin remodeling that must occur to produce fully transformed cells. Valproic 

acid has been shown to increase efficiency of reprogramming up to 40 times and has 

allowed reprogramming with the use of only two exogenous factors, OCT4 and SOX2 

(46, 47). Third, recent studies have demonstrated that knock-down of P53 activity can 

enhance reprogramming. The process of reprogramming has been shown to activate the 

P53 pathway which in turn acts as a barrier to full reprogramming (48, 49). Lastly, the 

use of five factors (OCT4, SOX2, KLF4, c-MYC, NANOG) instead of the standard four 
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factors has shown promise in increasing yield and kinetics of iPS cell formation, 

especially in systems that do not employ retroviruses as the means of reprogramming (37, 

50). 

 

In the present work, we have optimized mRNA electroporation protocols for 

keratinocytes, performed in vitro mRNA synthesis of factors required for iPS 

reprogramming (OCT4, SOX2, KLF4, c-MYC, and NANOG) and demonstrated that, 

upon transfection, these transcripts produce detectable protein. In an effort to optimize 

the yield of transformed cells, we have also synthesized a truncated form of P53, known 

as P53DD, which has been shown to have a dominant negative effect on P53 activity in 

human cells (49, 51). We have investigated the capacity of both human keratinocytes and 

human fibroblasts to transform under various conditions, including 4 and 5 factor mRNA 

transfection, in the presence of valproic acid, and with concomitant transfection with a 

P53 dominant negative construct.  The presence of iPS cell generation has been assessed 

by the presence of alkaline phosphatase activity of formed colonies, which is well known 

as an early marker of pluripotency.  We have observed the generation of a small number 

of alkaline phosphatase-positive cells by electroporating human keratinocytes with 

OCT4, SOX2, KLF4, c-MYC, and NANOG. 
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MATERIALS AND METHOD 

Cell Culture. Neonatal human epidermal keratinocytes (nHEK) and nenotal human 

foreskin fibroblasts (nHFF) were obtained from the Yale Cell Culture Core Facility. 

Keratinocytes were cultured in serum-free low calcium medium (Epilife, Invitrogen); 

fibroblasts were cultured in DMEM medium in 10% heat-inactivated fetal bovine serum 

(Gibco). For viral reprogramming, keratinocytes, passage 5-6, were infected with a 

1:1:1:1 mix of retroviruses with OCT4, SOX2, KLF4, and c-MYC in the presence of 

1µg/ml polybrene and centrifuged for 45 minutes at 750g on 2 consecutive days. For 

reprogramming with mRNA constructs, keratinocytes were electroporated with mRNA 

transcripts corresponding to reprogramming factors as described below. For initial 

experiments mRNA corresponding to each of four transcription factors (OCT4, SOX2, 

KLF4, c-MYC) were used in a 1:1:1:1 ratio respectively. For experiments using high 

OCT4 concentrations, the same four factors were used in a 3:1:1:1 ratio. For experiments 

using the initial four factors plus either NANOG or P53DD, the five mRNA transcripts 

were present in a ratio of 1:1:1:1:1.  After viral infection or electroporation, keratinocytes 

were grown in fresh serum-free, low calcium medium at 37C and 5% CO2 for 2 days, 

after which they were trypsinized and seeded onto multi-well plates containing irradiated 

mouse fibroblasts. Transfected cells were seeded 2.5 x 106 cells/cm2 and cultured with ES 

cell medium (DMEM/F12 containing 20% KOSR (vol/vol), 5–10 ng ml- 1 bFGF, 1 mM 

L-GIn, 100 M nonessential amino acids, 100 M 2-mercaptoethanol, 50 U ml- 1 

penicillin and 50 mg ml- 1 streptomycin).  Neonatal human foreskin fibroblasts were used 

to confirm the expression of individual mRNA constructs of the various reprogramming 
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factors and were cultured in DMEM with 10% heat inactivated fetal bovine serum.  All 

cell culture procedures were carried out by Robert Leone. 

 

Retroviral production. Following the method of Park, et al., retroviruses containing 

OCT4, SOX2, KLF4, and c-MYC were formed using pMIG vectors (Addgene) which 

also contained sequence for GFP expression (52).  The production of retroviruses was 

carried out by Eugenie Cheng in the laboratory of Haifan Lin. 

 

RNA synthesis.  As described in Rabinovich et al. (41, 43), green fluorescent (GFP) 

mRNA constructs were produced in vitro with T7 polymerase and were based on the 

Pontellina plumata GFP sequence of plasmid pmaxGFP (Amaxa Biosystems, Cologne, 

Germany) (41,43). OCT4, SOX2, KLF4, c-MYC, P53DD, and NANOG constructs were 

created by replacing the GFP coding region in pmaxGFP with the appropriate open 

reading frame from each gene. DNA templates were produced by polymerase chain 

reaction (PCR) using AccuPrime Pfx DNA polymerase (Invitrogen) according to 

manufacturer’s protocol. Twenty-five to 30 cycles of PCR were performed in a standard 

50-µl reaction using 0.1 mg of template DNA. The forward primer contained the T7 

RNA promoter and an anchoring sequence in the proximal part of the gene expression 

cassette. The reverse primer, with anchoring sequence in the distal part of the gene 

expression cassette, contained a stretch of 100 dT residues. Design of DNA inserts for 

OCT4, KLF4, SOX2, c-MYC, and NANOG was carried out Peter Rabinovich. Design of 

the DNA insert sequence for the P53 dominant negative construct (P53DD) was carried 

out by Robert Leone. PCR was carried out by Efim Golub. 
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mRNA synthesis with T7 RNA polymerase has been described by Rabinovich et al. (41, 

43). This was performed with an mMESSAGE mMACHINE T7 Ultra kit (Ambion, 

Austin, TX), using the procedure recommended by the manufacturer. One hundred to 200 

ng of DNA made by PCR with no further purification was used for the standard 20-µl 

transcription reaction. The product was treated with Escherichia coli poly(A) polymerase 

(from the same kit) in the presence of 1mM ATP according to the Ambion 

polyadenylation protocol. The yield of mRNA was 20 to 60 mg of mRNA per reaction. 

The final product was treated with DNase I (Ambion) and purified by LiCl precipitation. 

RNA was stored at -80C.   mRNA production was performed by Robert Leone.  

 

mRNA transfection of human cells 

Electroporation of human keratinocytes and fibroblasts. 

Electroporation was performed with an Amaxa Nucleofector II (Amaxa, Gaithersburg, 

MD) in accordance with manufacturer recommendations. Keratinocytes were 

electroporated with ‘‘Human Keratinocyte Nucleofector Kit Solution’’ and programs 

T007, T018, and T024. Human fibroblasts were electroporated with ‘‘Human Dermal 

Fibroblast Nucleofector Kit Solution’’ using program U020. For GFP transfection 

experiments, keratinocytes were electroporated with DNA (20µg/ml) or mRNA (30-

200µg/ml) per sample. Cells were used at a concentration of 10–250 million/ml. In this 

interval of values the efficiency of transfection does not depend on cell density 

(Rabinovich et al., 2006). The efficiency of transfection was determined by flow 

cytometry 18 hours after transfection.  Cell viability post-transfection was assessed by 

tryptan blue staining hemocytometry. In standard reprogramming experiments, OCT4, 
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SOX2, KLF4, and c-MYC were used in a 1:1:1:1 ratio with 30µg/ml final concentration 

of each factor. In experiments containing high OCT4, a 3:1:1:1 ratio was used. In 

experiments using NANOG, a 1:1:1:1:1 ratio (OCT4:SOX2:KLF4:c-MYC:NANOG) was 

used. In experiments using P53DD (P53 dominant negative construct), a 1:1:1:1:1 ratio 

(OCT4:SOX2:KLF4:c-MYC:P53DD) was used.  All electroporation procedures reported 

on in this work was performed by Robert Leone. 

 

Cationic liposomal transfection of human keratinocytes and fibroblasts. 

Cationic-liposomal transfection experiments were carried out using the TransIT®-mRNA 

Transfection Kit (Mirus).  Conditions were optimized for keratinocyte and fibroblast 

transfection according to the manufacturer’s recommendations using both GFP plasmid 

as well as GFP mRNA transcripts produced by the above methods.  Transfection of both 

keratinocytes and fibroblasts was performed in cell culture conditions on a feeder layer of 

irradiated mouse embryonic fibroblasts as described above. Optimization of transfection 

conditions for keratinocytes was performed by Robert Leone. Optimization of 

transfection conditions for fibroblasts was performed by Eugenie Cheng. Mirus 

transfection experiments using reprogramming factors was carried out by Eugenie Cheng. 

 

Flow Cytometry. Flow cytometric analysis of cell subpopulations was performed at the 

Yale Cancer Center Flow Cytometry Shared Resource (New Haven, CT), using a 

FACSCalibur (BD Biosciences). Fluorescence signals were collected using a 488-nm 

laser on a logarithmic scale. Unless otherwise noted, at least 10,000 events were acquired 

for each sample. Data were analyzed with FlowJo software (TreeStar, Ashland, OR).  
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Flow cytometric analysis was carried out by Robert Leone with assistance from Eugenie 

Cheng and Peter Rabinovich. 

 

Electrophoresis. All protein expression assays were performed on cell lysates from 

transfected neonatal human foreskin fibroblasts, passage 7-12. In the presence of protease 

inhibitors, whole cell extracts were obtained by lysis using either RIPA buffer and 

standardized against untransfected control cells using BCA protein quantitation (c-MYC, 

NANOG, P53DD) or laemmli buffer and standardized against untransfected controls by 

cell concentration measurement (KLF4, SOX2, OCT4). Protein extracts were analyzed 

by Western blot analysis using specific antibodies against c-MYC (StemGent 09-0032 at 

1:100 dilution); NANOG (Abcam ab80892 at 1:100 dilution); P53 (Calbiochem Pab421 

at 1:10 dilution), KLF4, SOX2, OCT4. Alkaline phosphatase-conjugated goat anti-mouse 

antibody (sc-2005, Santa Cruz) and goat anti-rabbit antibody (sc-2004, Santa Cruz) were 

used as secondary antibodies at 1/500-1/2000 dilution range. Blots were developed using 

SuperSignal West Pico Chemiluminescent Substrate System (Pierce). Electrophoresis 

analysis of OCT4 and SOX2 was performed by Eugenie Cheng. All other electrophoresis 

experiments were performed by Robert Leone. 

 

Alkaline phosphatase analysis. Direct alkaline phosphatase (AP) activity was assessed 

using Alkaline Phosphatase Staining Kit (Stemgent, Inc, Cambridge, MA) according to 

the manufacturer’s recommendations. Alkaline phosphatase analysis was performed by 

Robert Leone.
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RESULTS 

mRNA and DNA transfection. Transfection experiments were performed on human 

neonatal keratinocytes and fibroblasts. Keratinocytes have been reported to reprogram to 

iPS cells with faster kinetics and greater efficiency than human fibroblasts (18, 44). In 

unpublished data from our lab (Peter Rabinovich), it was demonstrated using rt-PCR that 

GFP mRNA transcripts maintain a half-life of approximately 4-5 hours in human 

lymphocytes, leaving only 10% of material after 15 hours. Because transfected mRNA 

transcripts are transient in cells and because translated proteins are diluted two-fold with 

each cellular division, the kinetic advantage of keratinocytes in reprogramming was 

thought to be an important attribute of our system. mRNA transfection was attempted by 

both electroporation using the Amaxa Nucleofector II as well as the Mirus system of 

cationic liposome-mediated transfection. To determine optimal electroporation 

parameters using Amaxa Nucleofector II, we first transfected keratinocytes with a green 

fluorescent protein (GFP) reporter gene from Pontellina plumata, using mRNA and DNA 

transgenes. Using keratinocyte electroporation solution proprietary to Amaxa we tested 

several electroporation protocols and determined that Nucleofector II program T-024 

gave the highest efficiency of transfection when assessed by geometric mean (fig. 1).  

Transfection experiments using liposomal reagents on cells in fibroblast and 

keratinocytes in cultures were assessed by similar methods and attained similar 

efficiencies of transfection (data not shown). 

 

To assess the functionality of mRNA transcripts, transcripts for OCT4, SOX2, KLF4, c-

MYC, P53DD, and NANOG were individually transfected into neonatal human foreskin 



 

 

20 

fibroblasts. Protein synthesis was assessed by Western blot analysis as shown in figure 2. 

Upon transfection each transcript allowed for significant protein production compared 

with untransfected control fibroblasts. (Sample quantities were standardized by 

determining pre-lysis cell quantity or by protein quantitation of cell lysates by 

bicinchoninic acid (BCA) protein assay). In all cases protein synthesis was evident above 

levels of untransfected control samples. Western blot analysis for NANOG showed 

detectable protein in untransfected controls fibroblasts. This is in concordance with a 

recent report of low-level basal NANOG expression in human fibroblasts (53).  

 

Introduction of pluripotency factors into keratinocytes and fibroblasts.  

Introduction of reprogramming factors using mRNA retroviruses.  

For preliminary studies, retroviral transfection was performed to induce pluripotency in 

keratinocytes according to published methods (18, 52). Using a 1:1:1:1 mixture of 

retroviruses containing reprogramming factors (OCT4, SOX2, KLF4, c-MYC), 

keratinocytes (passage 5) were infected twice, 24 hours apart. Two days after the last 

infection, cells were trypsinized and seeded onto a feeder layer of irradiated mouse 

embryonic fibroblasts (iMEFs) in embryonic stem (ES) cell medium.  Expression of 

retrovirally inserted genes was assessed by fluorescent microscopy and flow cytometric 

analysis of GFP expression one day post transfection. (fig. 3a-c) The fraction of cells 

expressing reprogramming factor ranged from 15% to 78% among the four samples.  

Despite rather low expression rates, induction of pluripotency was evidenced by 

formation of three colonies displaying typical ES cell morphology, each of which was 

positive for alkaline phosphatase activity, an early marker of pluripotency (fig. 3d). 
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Introduction of reprogramming factors by mRNA transfection.  

Using optimized conditions, keratinocytes were transfected with mRNA transcripts 

coding for reprogramming transcription factors. Initially, keratinocytes were 

electroporated with OCT4, SOX2, KLF4, and c-MYC mRNA transcripts (day 0).  After 

transfection, cells were grown in keritinocyte medium for 2 days without a feeder cell 

layer. On day 2, cells were trypsinized and moved to iMEF feeder cell layers in multi-

well plates at a density of approximately 5000 cells/cm2. Medium was changed to ES cell 

medium on day 3 after transfection. Thereafter, cells were grown in ES cell medium with 

or without 10 mM valproic acid (VPA) supplement. Medium was changed every other 

day. Two control populations of keratinocytes were treated to the same culture 

conditions, again with and without VPA. Transfected keratinocytes began to show 

evidence of transformation on day 4, at which time small colonies began to form that 

were particularly abundant in VPA-containing cultures. The colonies were tightly packed 

and mostly circular with relatively smooth edges (fig. 4b,d), bearing significant 

morphologic similarity to both human embryonic stem cell colonies as well as virally 

induced iPS cell colonies (fig. 4a). There were approximately 10-15 colonies/cm2 in 

VPA-containing culture conditions and 6-10 colonies/cm2 in cultures without VPA, and 

the rate of growth of individual colonies appeared to be slightly higher in VPA-

containing conditions. However, the morphology of the colonies was not appreciably 

different between culture conditions (with or without VPA; fig. 4b,d).  No colonies were 

observed in control cell cultures (no mRNA transfection performed) in either the 

presence or absence of VPA (fig. 4c,e). Colonies were assessed for pluripotency by 

determining alkaline phosphatase activity at day 10 and day 14. Colonies failed to show 
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alkaline phosphatase activity in this initial experiment. Human fibroblasts were 

transfected using a similar protocol, but showed no evidence of colony growth in either 

VPA treated or untreated culture conditions (data not shown). It was observed that 

keratinocytes survived the above transfection relatively poorly, demonstrating a viability 

only of about 3 percent.  

 

We also attempted serial transfections of reprogramming factors into human 

keratinocytes using a liposomal delivery of mRNA transcripts.  Three transfections were 

carried out on days 0, 3, and 6 on keratinocytes cultured on irradiated mouse embryonic 

fibroblast feeder cells. While cellular transformation was again achieved in a manner 

similar to results reported for electroporation experiments described above, all colonies 

were alkaline phosphatase negative (data not shown).  Using GFP mRNA, it was 

discovered that keratinocytes were actually resistant to transfection of mRNA material 

after the initial transfection at day 0 (data not shown). 

 

In subsequent experiments several additional approaches were attempted to affect 

successful transformation to pluripotency. In published reports, addition of NANOG to 

OCT4, SOX2, KLF4, and c-MYC increased the efficiency and the kinetics of 

reprogramming in human and mouse fibroblasts. This has been shown in both retroviral 

as well as episomal systems of transformation (37, 50). Particularly interesting about this 

approach is that the addition of NANOG seems to increase the kinetics of reprogramming 

in a fashion that is relatively independent of cellular proliferation rates (50). This is 

especially applicable to our system since mRNA transcripts in our system, unlike mRNA 
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produced from retrovirally-integrated genes, are not being actively produced or 

replenished by the cell during reprogramming. Thus, in addition to the loss in 

cytoplasmic mRNA concentration due to normal cellular control mechanisms, transcripts 

are diluted by half with each population doubling. NANOG mRNA was synthesized in 

vitro as described for the other four factors. Using Western blot analysis, we confirmed 

expression of NANOG protein by a transfection experiment using nHFF cells (fig. 5). 

The immunoblot showed increased levels over untransfected nHFF cells, however the 

evidence of endogenous NANOG expression in control sample was unexpected and 

likely due to contamination or nonspecific staining. In an attempt to induce pluripotency, 

nHEK cells were transfected with OCT4, SOX2, KLF4, c-MYC, and NANOG in a 

1:1:1:1:1 ratio. In culture conditions without valproic acid (VPA), small colonies began 

to become evident on day 4 post-transfection. Two of these colonies showed steady 

growth over the first 11 days post transfection after which time their size stabilized. 

These colonies appeared smaller than colonies formed from the four factors alone, 

however they shared their general morphological attributes, being round with distinct 

borders.  (No colonies were evident in culture conditions containing 1 mM valproic acid.) 

Cells were stained for alkaline phosphatase activity. We observed two alkaline-

phosphatase positive cells that were round with smooth cell borders, distinct from both 

native keratinocyte morphology, as well as fibroblast morphology of the feeder layer 

cells (fig. 6).  Beyond these findings of individual cells, cell colonies in this sample 

showed no alkaline phosphatase activity. Approximately 9 x 104 cells were plated in one 

well of a 24-well plate to achieve these results. 
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In another approach, we took advantage of recent reports showing that the stoichiometry 

of the expression of the four factors plays a role in optimal cellular transformation to 

pluripotency (54). Specifically, Papapetrou et al. have shown that reprogramming human 

fibroblasts to iPS cells is highly sensitive to levels of OCT4 and is optimized when the 

four proteins are present intracellularly in a ratio of 3:1:1:1 (OCT4:SOX2:KLF4;c-

MYC).  Accordingly, we transfected nHEK cells with the mRNA of the four factors in 

precisely this ratio. In both VPA-positive and VPA-negative culture conditions, cellular 

transformation was noted, showing one large colony per well, and many small round 

colonies that began to appear at day 4 post-transfection. These were similar in appearance 

to those produced through four factor transfection pictured in figure 4. On day 16 post-

transfection, these colonies were stained for alkaline phosphatase activity as described. 

There was no significant alkaline phosphatase activity above negative control cells of 

untransfected nHEK. 

 

Lastly, there have been several reports of the increased efficiency of reprogramming in 

the setting of P53 knockdown through use of either shRNA or a P53 dominant negative. 

P53 activity was more completely inhibited using a P53 dominant negative construct 

consisting of the first 14 N-terminus codons plus the C-terminus 302-390 originally 

described by Shaulian et al. (55).  We synthesized this construct (P53DD) and confirmed 

expression by immunoblot analysis (fig. 5) with a primary antibody directed against the 

carboxy terminus of P53 (Pab421, Calbiochem). nHEK cells were transfected with 

OCT4, SOX2, KLF4, c-MYC, and P53DD in a 1:1:1:1:1 ratio. Very small colonies began 
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to appear on day 4 post-transfection.  In contrast to experiments using the four factors and 

either NANOG or high OCT4 levels, these colonies remained very small without 

noticeable growth. Staining for alkaline phosphatase was done and yielded no significant 

results above negative control cells.  There was no observable difference between VPA-

positive and VPA-negative culture conditions. 

 

Assessing keratinocyte viability in mRNA electroporation experiments. In carrying 

out the above experiments, it was observed that there was significant loss of cell viability 

after each mRNA transfection of keratinocytes. Cell loss ranged from 96-98% in 

experiments using all four factors, which used a total mRNA concentration of 120-150 

µg/ml.  This was significantly more than control keratinocytes that were electroporated 

without any mRNA in the transfection solution and which showed a more modest 60% 

loss in viability.  It had previously been reported that mRNA showed very little toxicity 

in the electroporation of various other human cell types, including lymphocytes, 

fibroblasts and monocytes (41, 43, 64). The experiments described in these reports used 

mRNA at levels approximately equal to those used in our experiments. Initially, it was 

unclear whether the significant toxicity observed in our experiments was secondary to 

high mRNA levels or to the effect of the expression of the reprogramming factors 

themselves. To investigate this further, we compared viability data from nHEK 

electroporation experiments using increasing concentrations of GFP mRNA, expression 

of which has been previously shown not to be toxic in human cells (41, 43).  We 

compared three groups of nHEK cells, including cells undergoing electroporation with no 

mRNA present, and two groups of cells electroporated with 30 µg/ml and 200µg/ml of 
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GFP mRNA respectively. Post-transfection all cells were incubated overnight in 

keratinocyte medium, after which they were trypsinized and anaylized for cell viability 

by manual counting with a hemocytometer (fig. 7). Data from this experiment show that 

increasing concentrations of GFP mRNA is toxic to human keratinocytes. 
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DISCUSSION 

The use of retrovirally introduced transcription factors has been exceptionally and 

reproducibly successful as a general approach to the induction of pluripotency in somatic 

cells. We are indebted to researchers using these methods in the inception and early 

development of the field iPS cell technology. Beginning with the revelatory work of 

Yamanaka, the use of retroviruses to introduce transformative factors has produced great 

advances in our understanding of the capacity for differentiated cells to adopt pluripotent 

states. Using these methods researchers have unlocked the ability of somatic cells to be 

transformed into many tissues of the body, including cardiomyocytes, hematopoietic stem 

cells, osteoclasts, hepatocytes, and neurons (18, 23, 24, 56, 57, 58, 59). Researchers have 

also been successful in correcting genetic mutations in iPS cells derived from patients or 

mouse models with genetic mutations causing Duchenne muscular dystrophy, 

hemophilia, and sickle cell anemia, and subsequently differentiated these cells into 

disease-free phenotypes (60, 61, 62, 63). Work has also been accomplished, using similar 

methods of viral transformation, in transdifferentiating between somatic cell types, such 

as transforming pancreatic exocrine cells into insulin-producing beta islet cells (64). 

Importantly, all of this work has been accomplished—much of it in human systems—

without the specter of ethical suspicion or political-legal regulation hindering advances. 

Indeed, the advances that have already been uncovered, along with the promise of things 

to come are truly historic and will likely have implications on many aspects of society. 

  

Holding at bay future promise from becoming accepted advances, however, are current 

limitations of the technology of virally induced genetic material that has, to this point, 
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brought the field so far in such a short time. Insertional mutagenesis, transgene 

reactivation, and oncogenic transformation are all serious pitfalls in any reprogramming 

technology using DNA as the transformative element, especially those employing 

retroviruses. The potential of using mRNA transfection technology to induce 

pluripotency is an important advance in removing these last hurdles before clinical 

application of iPS technology. 

 

In the current work we have accomplished important steps toward fulfillment of this goal.  

We have successfully synthesized mRNA constructs corresponding to the transformative 

factors OCT4, SOX2, KLF4, c-MYC, and NANOG and demonstrated their expression 

individually in human fibroblasts. We have also demonstrated that these factors can be 

used reproducibly to affect cellular transformation of human keratinocytes in culture.  

Lastly, although the efficiency was low, we have observed the presence of two alkaline-

phosphatase-positive cells through keratinocyte reprogramming with OCT4, SOX2, 

KLF4, c-MYC, and NANOG in the absence of valproic acid. It remains to be seen if 

these cells are capable of forming viable colonies. The pluripotent potential of cells 

transformed in this way will be investigated in future work. Evaluation of expression of 

other markers of pluripotency markers such as SSEA-4, SSEA3, TRA-1-60, TRA-1-81 

will be very important, as well as assessing the potential of these cells to form teratomas 

or differentiate into other somatic cell types by known methods. 

 

We believe the most significant advantage of our approach—the transient nature of 

intracellular mRNA—is also its most challenging limitation. Previous experiments 
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showed GFP protein expression up to 2 weeks post-electroporation in human cells 

(unpublished data, Peter Rabinovich). However, in our examination of protein expression 

of OCT4 and SOX2 in mRNA-transfected human fibroblasts, transgene proteins were 

expressed for less than 6 days post-transfection (data not shown). Previous studies 

investigating the kinetics of reprogramming have found that at least 7 days of transgene 

expression is necessary for pluripotent transformation. We have attempted to address this 

issue by using approaches that have been reported to increase the kinetics of 

reprogramming, including the use of the four standard factors plus either NANOG or 

knockdown of P53 activity. (Our choice of keratinocytes as starting cells, which have 

been reported to have faster reprogramming kinetics, was also made with this in mind). 

Though it appears that the use of four factors plus NANOG has improved the 

reprogramming process (as evidenced by the generation alkaline-phosphatase positive 

cells), the efficiency of the process must be further optimized. This limitation may be 

further addressed in one of several ways. One approach would be to increase the half-life 

of mRNA in cells. It is possible that this could be achieved using constructs from 

negative RNA viruses, such as the Sendai virus, which enable the replication of mRNA 

strands in mammalian cytosol. Our lab is presently investigating the viability of this 

approach in several systems. Another approach would be to investigate the viability of 

repeated transfections of reprogramming factors performed in the course of cellular 

transformation. A similar approach was successfully implemented by Zhou et al. who 

achieved pluripotent transformation using recombinant protein reprogramming factors 

(65). In the present study we attempted serial transfections using a cationic-liposomal 

method. Using this approach, which allows for in situ transfection of cells in culture, we 

found that keratinocytes were unable to be transfected once they were exposed to ES 
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culture conditions (data not shown). While the reason behind this recalcitrance is unclear, 

it may be possible that optimization of transfection medium during reprogramming could 

produce a more favorable environment for transfection (66).  While multiple 

electroporations of keratinocytes was an untenable idea in our present system considering 

the extremely low cell viability using the Amaxa Nucleofector II, there are other 

approaches to electroporation which may allow the possibility of multiple in situ 

transfections of these adherent cells (67, 68). 

 

An unexpected finding in our study was that of the apparent toxicity of high levels of 

mRNA on keratinocytes during electroporation. The implications of this finding are 

unclear at present. Several previous reports, including work done in our lab, had 

uncovered no toxic effect of similar levels of mRNA (GFP) on mammalian cells, 

including human fibroblasts, lymphocytes, peripheral blood mononuclear cells, and 

murine splenocytes (41, 43, 69). In these studies, the subsequent expression of GFP 

protein was also not found to be toxic to these cells. This led us to speculate that it was 

the increasing concentration of mRNA itself that was toxic to keratinocytes. It is known 

that keratinocytes are subject to a phenomenon known as the “ribotoxic stress response.” 

This response involves the activation of stress-activated protein kinases (SAPK) and is 

typically triggered by damage to ribosomal RNA by toxins, antibiotics, UVB radiation, or 

other cellular stressors. Interestingly, the SAPK cascade, which often results in cellular 

apoptosis, can only be triggered by ribosomes that are actively translating (70, 71, 72). It 

is possible that such a mechanism, wherein cell death is correlated to the intensity of 

protein synthesis, may be involved in the results we have observed. That is, as a higher 
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concentration of mRNA is introduced into cells and translational machinery is more fully 

engaged, all during the stress of electroporation and concomitant recovery, cells become 

more highly susceptible to the mechanisms of ribotoxic stress response. Future 

investigations should be made into the benefit of delaying protein translation for some 

amount of time after electroporation.  This could be accomplished by the use of a 

reversible inhibitor of protein biosynthesis such as cyclohexamide. If keratinocyte cell 

death is in fact related to the degree of ribosomal activity, a delay of such activity until 

after cellular recuperation might lessen the effect.  Whatever the mechanism of cell death, 

it is clear that the electroporation process is selecting for a rather small subpopulation of 

keratinocytes. Whether these surviving cells are more or less likely to be reprogrammed 

is not known. The fact that they have demonstrated morphological transformation and 

some evidence of alkaline-phosphatase activity is quite encouraging, however. In the 

future, the issue of poor cell viability may be addressed by decreasing mRNA 

concentration in electroporation experiments, as well as investigating alternative 

transfection procedures. Using keratinocytes at lower passage number may also increase 

the health and subsequent viability of these cells. 

 

Future work on this project will be directed in several directions. First, effort will be 

directed towards more fully elucidating the nature of the transformed cell colonies that 

have been produced from the reprogramming of keratinocytes in this work.  Because of 

the poor cell viability after electroporation with mRNA, we did not have sufficient cells 

from experiments that produced alkaline-phosphatase activity to apply more stringent 

pluripotency assays.  This will be of foremost importance in future work.  The important 
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question is whether these cells (as well as cells that have been morphologically 

transformed and do not show alkaline phosphatase activity) show any further 

characteristics of pluripotency.  This can be done by comparing molecular markers such 

as epigenetic patterns of CpG methylation and histone acetylation on promoter regions of 

key pluripotency genes such as OCT4 and NANOG. Microarray data could also be 

obtained and compared between transformed cells, iPS cells, ES cells, and known 

malignant phenotypes of keratinocytes. RT-PCR experiments would also be valuable in 

determining precise levels of transcripts that are known to be associated with 

pluripotency (SSEA-4, SSEA3, TRA-1-60, TRA-1-81), as well as levels of transcripts 

that specifically indicate a differentiated keratinocyte phenotype. Second, increasing the 

half-life of mRNA in cells will be an important step towards more effective 

reprogramming. This work is presently being engaged in our lab with emphasis on 

uncovering proteins or nanoparticles which have the ability to stabilize ectopic mRNA.  

As mentioned above, strategies that allow for repeated in situ transfections would be 

useful in prolonging the presence of mRNA and expressed protein factors in cells.  Third, 

there will be continued effort directed toward improving the kinetics of reprogramming in 

our system. Possible approaches include using additional transformative factors such as 

Lin28, which has been shown to increase rate and efficiency of iPS cell formation (44). 

Lastly, using alternative starting cell populations may also allow faster and more efficient 

reprogramming. A recent study by Eminli et al. et al showed that less differentiated cells 

of the hematopoietic system are more amenable to reprogramming than mature cells (45).  

A trial using CD34+ cells as a starting population, for instance, would be an interesting 

experiment. In our experience, keratinocytes appear to be unusual in their sensitivity to 

high mRNA concentrations during electroporation. As such, we believe that cell types 
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other than keratinocytes will likely not encounter similar problems with post-

electroporation viability. 
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FIGURES 

 

 

 

 

    

   

  

 

Figure 1. Flow cytometry analysis of keratinocyte (nHEK) transfection reactions 

using three Amaxa Nucleofector II programs. (A) Untransfected control keratinocytes 

show essentially no fluorescence. (B) Electroporation of keratinocytes with GFP mRNA 

compared with GFP DNA plasmid with fraction of GFP-expressing cells shown; 

GM=Geometric Mean; nHEK=neonatal Human Epidermal Keratinocytes; GFP=Green 

Fluorescent Protein.. 
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Figure 2. Immunoblots of neonatal human foreskin fibroblasts (nHFF) transfected 

with mRNA as shown. (A) First lane: untransfected nHFF; second lane: nHFF 

transfected with OCT4 mRNA transcripts. (B) First lane: untransfected nHFF; second 

lane: nHFF transfected with SOX2 mRNA transcripts. (A) First lane: untransfected 

nHFF; second lane: nHFF transfected with KLF4 mRNA transcripts. (A) First lane: 

untransfected nHFF; second lane: Jurkat cells as positive control; third lane: nHFF 

transfected with c-MYC mRNA transcripts. Samples were standardized either by cell 

counts (A-C) or direct protein quantitation (75 µg in each lane of gel pictured in D). 

A B C D 
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Figure 3.  Neonatal human epidermal keratinocyes (nHEK) infected with four 

retroviruses containing reprogramming factors OCT4, SOX2, KLF4, and c-MYC. 

(A) Flow cytometry data for nHEK cells individually infected with retroviruses 

containing one of the four reprogramming factors. (B) Infected nHEK cells infected with 

all four reprogramming factors, three days post-infection at 100x magnification; (C) 

nHEK cells from (B) under UV microscopy and displaying production of GFP marker, 

confirming transgene expression; (D) Representative colony stained by alkaline 

phosphatase assay. nHEK=neonatal Human Epidermal Keratinocytes. 
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Figure 4. Representative morphology of transformed cell colonies 7 days post-

transfection. (A) Representative colonies of human embryonic stem cells (hES H1 P60) 

grown on iMEF feeder layer pictured here for morphologic comparison; (B) 

Representative colony of transformed nHEK cells at day 7 post-transfection with no VPA 

exposure; (C) Control well seeded with untransfected nHEK cells and exposed to the 

same culture conditions (no VPA) as cells in (B); (D) (B) Representative colony of 

transformed nHEK cells at day 7 post-transfection with 3 days of VPA exposure; (E) 

Control well seeded with untransfected nHEK cells and exposed to the same culture 

conditions (3 days in VPA) as cells in (D). 
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Figure 5. Immunoblot analyses of neonatal human foreskin fibroblasts (nHFF) 

transfected with mRNA as shown. (A) First lane: untransfected nHFF; second lane: 

nHFF transfected with NANOG mRNA transcripts. (B) First lane: untransfected nHFF; 

second lane: nHFF transfected with P53DD mRNA transcripts.  
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Figure 6. Alkaline phosphatase activity of human embryonic stem cells and 

transfected human keratinocytes (A) Representative colonies of human embryonic 

stem cells (hES H1 P60) grown on matrigel and stained for alkaline phosphatase activity; 

(B-C) Two small round cells produced from electroporation of five transcription factors 

(OCT4, SOX2, KLF4, c-MYC, and NANOG) into neonatal human epidermal 

keratinocytes demonstrating alkaline phosphatase activity at day 16 post transfection. 
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Condition Cell survival at 18 hours 

Electroporation: no mRNA 6.4 x 104 cells 96 

Electroporation: 30 µg/ml GFP mRNA 5.3 x 104 cells 109 

Electroporation: 300 µg/ml GFP mRNA 6.2 x 103 cells 5 
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Figure 7. Keratinocyte viability after electroporation with increasing concentrations 

of GFP mRNA.  (A) Cell counts 18 hours post-transfection show decreasing viability 

relative to increasing mRNA concentration used in transfection. Starting amount was 

approximately 2 x106 cells in each transfection. (B) Flow cytometry data showing 

showing increasing mean fluorescence with increasing mRNA concentration. A low-

fluorescing population of cells make up a more significant percentage of cell population 

in the high-concentration mRNA transfection sample. nHEK=neonatal Human Epidermal 

Keratinocytes.
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