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ABSTRACT 

 

Clostridium difficile is the most common infectious cause of nosocomial diarrhea, 

affecting thousands of patients annually and exacting enormous costs on the U.S. health 

care system. Early diagnosis is critical to prevent transmission and reduce morbidity and 

mortality, yet sensitive and specific diagnostic tests with a quick turnaround time are 

lacking.  The objective of this study was to determine if a new commercially available 

real time polymerase chain reaction (PCR) test would prove more rapid, sensitive and 

specific than standard methods for the diagnosis of C. difficile infection (CDI).  BD 

GeneOhm™ Cdiff assay, a real-time PCR assay for detection of C. difficile toxin B 

(tcdB) gene, was compared with Tox A/B II™ ELISA and a two-step algorithm which 

includes C. Diff Chek-60™ Glutamate Dehydrogenase (GDH)-antigen assay followed by 

cytotoxin neutralization. Four-hundred liquid or semisolid stools submitted for diagnostic 

C. difficile testing were selected: 200 GDH antigen-positive and 200 GDH antigen-

negative. All samples were tested by the C. Diff Chek-60™ GDH antigen, cytotoxin 

neutralization, Toxin A/B II™ ELISA, and BD GeneOhm™ Cdiff assay. Discrepant 

specimens were tested by toxigenic culture as an independent gold standard.  Chart 

review was performed on patients with discrepant specimens. As BD GeneOhm™ Cdiff 

assay was not FDA-cleared at the time of study, PCR results were not clinically reported.  

Of 200 GDH-positive samples, 71 were positive by Tox A/B II, 88 were positive by the 

two-step method, 93 were positive by PCR, and 96 were positive by GDH-antigen only. 

Of 200 GDH-negative samples, 3 were positive by PCR only. Toxigenic culture was 

performed on 41 samples with discrepant results and 39 were culture-positive. After 
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culture resolution of discrepants, Tox A/B II detected 70 (66.7%), the two-step method 

detected 87 (82.9%), and PCR detected 96 (91.4%) of 105 true positives. The BD Gene-

Ohm™ Cdiff assay was more sensitive in detecting toxigenic C. difficile than Tox A/B II 

(p <0.0001); however, the difference between PCR and the two-step method was not 

significant (p=0.1237).  The BD GeneOhm™ Cdiff assay took a similar amount of time 

to perform as the Tox A/B II and was more rapid than the two-step method. Chart review 

revealed that 18 patients with cytotoxin-negative, PCR-positive discrepant samples were 

given 1-2 days of therapy (n=8), or no treatment at all (n=10). Yet symptoms resolved 

and no further C. difficile testing was requested for 13 of 18 patients for 6-8 months after 

hospital discharge.  Only one patient had a subsequent cytotoxin positive stool submitted 

22 days after the study sample was tested.  Enhanced sensitivity and rapid turnaround 

time make the BD GeneOhm™ Cdiff assay an important advance in the diagnosis of 

toxigenic C. difficile infection. The BD GeneOhm™ Cdiff assay is significantly more 

sensitive than a commonly-used ELISA toxin assay and has a sensitivity and specificity 

comparable to the two-step method.  Its turnaround time is similar to ELISA toxin assays 

and more rapid than the two-step method.  Disadvantages to implementation of BD 

GeneOhm™ Cdiff assay include increased cost and potential treatment of asymptomatic 

carriers and mild, self-resolving disease. 
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INTRODUCTION AND BACKGROUND 

Clostridium difficile infection (CDI) is increasing as the most common infectious cause 

of nosocomial diarrhea in hospitalized patients in the United States (1).  C. difficile 

infection (CDI) accounts for 15-25% of all cases of antibiotic-associated diarrhea (2). It is 

estimated that approximately half a million cases of CDI occur in the United States per 

year and 15,000-20,000 of these patients die from CDI (1).  In the U.S., CDI is 

responsible for more deaths than all other intestinal infections combined (3). One study 

estimated that CDI costs an average of $3600 more per patient with length of stay in the 

hospital extended by 3.6 days.  When extrapolated, the cost of CDI disease burden to the 

United States health care system was $1.1 billion annually (4).  In response to this disease 

burden, hospitals have had to institute systems of early identification and isolation of C. 

difficile- positive patients in order to minimize morbidity and prevent spread to other 

patients (5). The effectiveness of early detection depends upon the speed and accuracy of 

the laboratory tests, which until now have been suboptimal.   Commercial polymerase 

chain reaction (PCR) tests are now becoming available, but their performance compared 

to current methods has not been established. 

 

Microbiology of Clostridium difficile 

C. difficile is an obligately anaerobic gram-positive rod. It forms spores that can remain 

in the environment for months and are resistant to the low pH of stomach acid (6, 7).  

Spores have been found to be resistant to non-chlorine based cleaning agents and heat of 

common hospital laundry cycles, even cross-contaminating bed linens during laundering 

(8).  Other virulence factors include: adhesins, proteases, and toxin production (1). 
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Pathogenesis 

Typically C. difficile disease is caused by administration of broad-spectrum antibiotics to 

which C. difficile is not susceptible, leading to disruption of normal colonic bacterial 

flora and overgrowth of C. difficile after ingestion of spores.  Spores germinate and 

vegetative forms multiply, after which they adhere to and penetrate the mucous layer 

coating colonic epithelium with the aid of proteases, including a hydraluronidase, and 

flagella.   This then allows the bacteria to adhere to enterocytes via multiple adhesins and 

complete the colonization phase (7, 9). 

 

After colonization, C. difficile enters the toxin production phase.   Its main virulence 

factors are two protein exotoxins, toxin A (enterotoxin) and toxin B (cytotoxin), which 

are the largest bacterial single-molecule exotoxins known (6).  The toxin A (TcdA) and 

toxin B (TcdB) genes are located within a pathogenicity locus that is comprised of five 

genes, including TcdC, TcdE, and TcdR which encode regulatory proteins (9). 

Production of Toxin A and B is negatively regulated by the TcdC gene locus (10).  Both 

toxins act similarly by being endocytosed into colonic cells where they disrupt the actin 

cytoskeleton and tight junctions, leading to decreased transepithelial resistance, fluid 

accumulation and ultimately death of the intestinal epithelium.  Toxin B is about 1000 

times more potent than toxin A, having 100-fold higher enzymatic activity per toxin 

molecule.  Both toxins stimulate monocytes to produce TNF  and IL-8, leading to 

extravasation and tissue infiltration by neutrophils, which in turn cause an inflammatory 

response and contribute to mucosal cell destruction and pseudomembrane formation (7, 

11). 
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Toxins A and B are produced in the late log and stationary phases. Their levels are 

impacted by the availability of nutrients, temperature and sub-inhibitory levels of 

antibiotics (12). According to one in-vitro study, toxigenic C. difficile showed earlier and 

increased rates of toxin production when exposed to sub-MIC concentrations of 

vancomycin, metronidazole and linezolid, as compared to controls not exposed to 

antibiotics (13). 

 

Toxin B is necessary to produce clinical disease, whereas toxin A alone is insufficient.  

TcdA-negative and TcdB-positive strains have been reported (1). Nontoxigenic strains of 

C. difficile lack TcdA and TcdB  (14).  The pathogenicity locus is replaced with a non-

coding sequence (1).  Patients can be asymptomatically colonized with strains of C. 

difficile.  There is some evidence to suggest that asymptomatic carriage is associated with 

higher levels of IgG against C. difficile toxins and that colonized patients with lower 

levels of immunoglobulin are more likely to develop symptomatic disease (4). 

 

A relatively recent epidemiologic occurrence has been the emergence of a hypervirulent 

epidemic strain of C. difficile associated with hospital outbreaks in several countries with 

high rates of complications and mortality.  The strain – labeled BI/NAP1/027 for short – 

is restriction endonuclease analysis group BI, pulse-field gel electrophoresis type NAP1, 

and polymerase chain reaction ribotype 027.  Its unique virulence factors are 

characterized by increased levels of toxin A and B; synthesis of a third toxin, binary 

toxin; and resistance to fluoroquinolones.  The first factor is thought to be largely due to 

deletion of the tcdC gene that is a repressor of toxin A and B production. These strains 
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produce up to 23-fold more toxin than other strains without the same mutation (9, 15, 16). 

 

Another epidemiologic concern is the question of rising incidence of community-

acquired CDI in which patients have no recent history of hospitalization or antibiotic 

exposure.   Two surveys by the Centers for Disease Control in 2005-2006 found the rates 

of community-acquired CDI per 100,000 population in Philadelphia and Connecticut to 

be 7.6 and 6.9, respectively  (17, 18).  An earlier study in Boston found a rate of 7.7 per 

100,000 person years with 35% of the study population not having received antibiotics in 

the six weeks prior to onset of symptoms (19).  While the rate of CDI in the community 

is still much lower than in hospitalized patients, infections are increasingly being reported 

in populations that were otherwise thought to be at low-risk (1, 11). 

 

Risk Factors for C. difficile Infection 

The major risk factors for CDI that have been identified are: broad-spectrum antibiotic 

exposure, specifically to clindamycin, cephalosporins, extended-spectrum beta lactams, 

and aminopenicillins; prolonged hospitalization (>72 hours); and older age (>65 years) 

(1, 2, 9).  Other associated risk factors include concomitant use of antacids, 

immunosuppressive states or therapy (e.g. methotrexate), and inflammatory bowel 

disease (20).  There is conflicting evidence about whether or not fluoroquinolones 

increase the risk of developing CDI, though BI/NAP1/027 strains have been documented 

to be resistant to this antibiotic class (21). 
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Signs and Symptoms 

The typical clinical presentation of CDI is the onset of watery diarrhea with a typical 

foul-smelling odor in a patient who has received broad-spectrum antibiotics and been 

hospitalized for greater than 72 hours.  Fever and abdominal pain or cramping can also be 

present, though they may be absent.  Laboratory data may show leukocytosis, presence of 

fecal leukocytes, and hypoalbuminemia. The presentation of CDI can range from mild 

diarrhea to fulminant colonic failure.  Rarely, diarrhea will be absent, as in a patient with 

paralytic ileus, particularly in association with narcotics administration (2, 22). 

 

While CDI should be the first entity ruled out in a patient with antibiotic-associated 

diarrhea who has been hospitalized >72 hours, the differential diagnosis includes: 

antibiotic side effects; failure of colonic flora to catabolize carbohydrates; and other 

infectious etiologies such as Staphylococcus aureus (including methicillin-resistant 

strains), enterotoxin-producing strains of Clostridium perfringens, Salmonella species, 

and Klebsiella oxytoca, though these are rare (23). 

 

Complications 

Fulminant or severe complicated CDI includes the development of pseudomembranous 

colitis, which can lead to toxic megacolon or bowel perforation, septic shock and even 

death.  This can necessitate intensive care unit admission and surgical intervention 

including colectomy. These complications are rare but when they do occur the costs of 

hospitalization are high (1). 
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Treatment 

For mild, uncomplicated disease, oral metronidazole for 10-14 days is the preferred first-

line therapy, primarily because it is more cost-effective.
1
   In severe or complicated cases, 

oral vancomycin is the recommended treatment (24).  Intravenous metronidazole is 

reserved for patients who cannot take oral medications.  One recent randomized, placebo-

controlled, double-blind trial stratified by disease severity showed no statistically 

significant difference in outcomes for patients with mild CDI treated with oral 

metronidazole versus vancomycin.  However, for severe disease, oral vancomycin was 

shown to achieve a significantly higher cure rate than metronidazole, perhaps secondary 

to the higher intra-colonic concentrations achieved as a result of poor systemic absorption  

(25).  Both metronidazole and vancomycin have been associated with higher rates of 

colonization with vancomycin-resistant enterococci (VRE), though this has been 

insufficiently studied.  

 

Alternative antimicrobial treatment options that have not been well studied include 

rifaximin PO, nitazoxanide PO, and ramoplanin.  Adjunct treatments include toxin-

binding resins (i.e. tolevamer and cholestyramine), intravenous immune globulin and 

probiotics, though evidence for success of these agents is mixed and unclear (20).  A 

Cochrane review of the use of probiotics in C. difficile treatment found that in only one 

study had they been shown to reduce rates of disease recurrence, but otherwise there was 

no evidence to support their use as a sole treatment agent (26). 

 

                                                         
1 According to one estimate by Pepin, et al., a 10-day course of metronidazole costs approximately 
$20 whereas a 10-day course of vancomycin is approximately $600.  
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Recurrence 

Recurrence of CDI is likely due to the persistence of bacterial spores despite high intra-

colonic concentrations of antibiotic (assuming an oral form of antibiotic has been 

previously administered), which then germinate upon discontinuation of therapy. 

However, up to half of recurrent cases have been found to be due to re-infection with a 

new strain (23).  In spite of effective antibiotic therapy, up to 15-25% of patients will 

have recurrent disease after completion of treatment (27). 

 

A recent meta-analysis assessing risk factors studied for recurrent CDI reported that only 

three factors were significantly associated: continued use of non-C. difficile antibiotics 

after diagnosis of CDI, concomitant receipt of antacid medications and older age (28).  

However, these are also risk factors for acquisition of primary CDI as well.  A more 

specific explanation of risk for recurrent CDI was proposed by Kyne and colleagues, who 

found that levels of both IgM and IgG against C. difficile toxin A were higher in patients 

with only a single episode of CDI than in patients who had experienced recurrent disease.  

They suggest that immune response to toxin A confers a protective effect against future 

infections, and that failure to produce an anamnestic immune response is a risk factor for 

development of recurrent disease (29). 

 

In treatment of recurrent CDI, the following approach has been suggested.  Diagnosis of 

CDI should always be confirmed by laboratory tests. The first recurrent episode should 

be treated as per the guidelines elaborated above according to disease severity. For a 

second recurrent episode a taper of vancomycin PO is recommended, which is presumed 
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to induce germination of spores. 
2
  For further recurrent episodes there are many 

suggested regimens that can include vancomycin PO (tapered or not) plus an adjunctive 

treatment such as cholestyramine, probiotics or IVIG (27). Alternatively, another 

antibiotic such as nitazoxanide or rifaximin can be trialed. In severe recalcitrant cases, 

fecal transplants via enema from healthy living relatives has showed anecdotal success, 

though this procedure carries the risk of transmitting other intestinal infections and has 

not been widely studied (23). 

 

Prevention 

Interventions which have been shown to reduce incidence of nosocomial CDI include: 

timely diagnosis, cessation of offending antibiotic and treatment; prompt reporting of test 

results to clinicians and hospital epidemiology; discontinuation of anti-peristaltic 

medications when appropriate; placing the patient in isolation with contact precautions 

and handwashing station; and thorough cleaning of room after patient discharge with a 

bleach-based solution (5).  

 

Diagnosis 

Despite the urgent need for early diagnosis of CDI, sensitive and specific commercially 

available diagnostic tests with a rapid turnaround time are lacking (30).  Available test 

methods include:  

 

                                                         
2 The following taper regimen is suggested: 125 mg q 6 h for 7 days, then 125 mg q 12 h for 7 days, 
then 125 mg qd for 7 days, then 125 mg qod for 7 days, and finally 125 mg every 3 days for 7 days.  



 

 

15 

Toxigenic Culture.    Culture of stool samples on selective, pre-reduced cycloserine-

cefoxitin-fructose agar, followed by testing for the presence of toxin via ELISA or 

cytotoxin neutralization assay, is considered the ultimate gold standard for confirming the 

presence of toxigenic strains of C. difficile.  However, it is not routinely used as a 

diagnostic method because it can take up to 6 days to produce results and is not always 

specific for toxin production in vivo. Thus, it is considered too time-consuming for 

clinical use  (2).  

 

Cytotoxin Neutralization Assays (CNA).    Considered the traditional gold standard for 

diagnosis of CDI, these tests rely upon cell culture to detect the presence of toxin B and 

are generally considered to be relatively sensitive and specific (2).  However, there is a 

great deal of variability in methodology depending upon whether or not a commercial 

assay is used, which cell line is employed, lab technician expertise and subjectivity in 

reading cell culture for cytopathic effects, and the starting dilution at which the stool 

samples are tested (31).  In one recent study, a commonly used commercial assay 

(Wampole C. difficile Toxin B test; TechLab, Blacksburg, VA) was reported to have a 

sensitivity of 67.2% in comparison to toxigenic culture (32).  In addition, it can take up to 

48 hours to achieve results if the method is used alone and not in a two-step method.  

Because of the level of expertise required, CNA is only used by a minority of clinical 

laboratories.     

 

Enzyme-linked immunosorbent assays (ELISA).  For detection of toxins A and B, ELISAs 

are the most commonly employed tests for detection of CDI because they are relatively 
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cheap and quick to perform, achieving results within two hours if carried out upon 

immediate receipt of a stool sample.  The most popular commercially available assays 

detect both toxin A and toxin B.  A recent review by Planche and colleagues of 6 

different toxin ELISAs in 18 separate studies revealed that median sensitivities of these 

assays ranged from 76-95% and the median specificities were 93-100%.  They estimated 

the positive predictive value (PPV) of the various tests based upon hypothetical disease 

prevalence.  For disease prevalence of <10% half of the assays had a PPV <80%, with 

that value drastically reduced with decreasing prevalence (33). At Yale-New Haven 

Hospital (YNHH) the disease prevalence is 10-11% based upon the number of cytotoxin 

positive stools received in the lab. 
3
  Just as concerning with these assays is the low 

negative predictive value as related to their low reported sensitivities leading to higher 

rates of false negative results. From a clinical perspective, this leads to repeat testing with 

minimal diagnostic yield and increased cost per patient (34, 35). 

 

Common-antigen ELISA and Two-Step Method. The common-antigen ELISA detects the 

glutamate dehydrogenase (GDH) antigen that is specific to C. difficile.  It has been shown 

to have a very high sensitivity (31, 36, 37), which therefore makes it an ideal screening 

test to confirm the presence or absence of C. difficile.  However, it does not discern 

whether or not the strain is toxigenic. For this reason, this assay is commonly used in a 

two-step method in which GDH antigen-negative results are clinically reported as such 

and GDH antigen-positive results are reflexively tested by a toxin ELISA or cytotoxin 

neutralization assay. This method achieves relatively high sensitivity and specificity and 

                                                         
3 This number is an overestimation because it fails to account for repeat samples from the same 
patient. 
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can rapidly report most samples that are negative for C. difficile, but can still take up to 

48 hours to report low cytotoxin-positive results (36-38). The two-step method is 

currently used for diagnosis of C. difficile at YNHH by the Clinical Virology Laboratory. 

 

Polymerase Chain Reaction (PCR). Real-time polymerase chain reaction (RT-PCR) 

assays are not widely employed for C. difficile infection because, prior to this study, 

commercial kits were not available.  However, in December 2008, as this study was 

being completed, the Food and Drug Administration approved the first commercially 

available RT-PCR assay (BD GeneOhm™ Cdiff assay, BD Diagnostics, San Diego, CA) 

to directly detect the toxin B (tcdB) gene in stool to aid in the diagnosis of CDI.
4
  Other 

studies evaluating PCR have only used in-house assays with variable gene targets, small 

numbers of samples and few positive results, making their general applicability 

problematic  (39-45).  Three prospective studies have been published to date comparing 

the BD GeneOhm™ Cdiff assay, a cytotoxicity assay, and toxigenic culture (32, 46, 47).  

Only one tested an ELISA toxin test in comparison (47).   All reported the BD 

GeneOhm™ Cdiff assay to have a higher sensitivity than the cytotoxicity assay using 

toxigenic culture as the reference standard. None of the studies compared the BD 

GeneOhm™ Cdiff assay to a two-step testing algorithm, which is used to cost-effectively 

enhance sensitivity and specificity of C. difficile diagnosis.  

 

Further evaluation of the BD GeneOhm™ Cdiff assay in comparison with other 

commonly-utilized diagnostic methods, e.g. toxin ELISA and a two-step method, is 

                                                         
4 Though the BD GeneOhm™ Cdiff assay had not been FDA-approved for clinical diagnostic use at the 

start of this study, the kits were made available to the author by BD for research purposes. 
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needed to assess whether or not it should be recommended for widespread clinical use.  

In addition, analysis of the cost-effectiveness of the BD GeneOhm™ Cdiff assay in 

contrast to other methods is an important factor for clinical applicability.  

 

STUDY OBJECTIVES 

The objective of this study was to determine if a new commercially available PCR test 

would prove more sensitive and specific than standard methods for the diagnosis of CDI.  

The performance of the new BD GeneOhm™ Cdiff PCR assay for detection of C. 

difficile toxin B gene was compared with the two-step method currently used at YNHH 

(C. Diff Chek-60™ GDH-antigen assay followed by cytotoxin neutralization), and with 

Tox A/B II™ ELISA, the test method used in most U.S. hospitals.  Toxigenic culture, the 

„gold standard‟ test, was used to resolve discrepant results.  The hypothesis was that PCR 

would prove to be the most sensitive and specific test of the clinically used methods. 

 

MATERIALS AND METHODS 

Clinical Samples. Liquid or semi-solid stool samples from hospitalized patients in 

YNHH submitted for C. difficile testing were entered into the study from August 2008 to 

December 2008. All samples were tested within 24 hours of receipt with C. Diff Chek™-

60 GDH antigen ELISA, as part of the hospital‟s standard two-step diagnostic routine. 

All C. difficile GDH antigen-positive with sufficient stool available, and an equivalent 

number of GDH antigen-negative stools were selected on each study day. All study 

samples were subsequently tested by cytotoxin neutralization, Tox A/B II™ ELISA, and 

BD GeneOhm™ Cdiff PCR Assay (Figure 1).  
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Figure 1. Algorithm for Testing Stool Samples 

 

 

 

ELISA and PCR were performed by study personnel blinded to the results of the two-step 

method. When ELISA or PCR could not be performed on the same day, samples were 

frozen and thawed only once according to the manufacturers‟ instructions. An aliquot of 

each original stool sample was saved at -70° C for further testing. Samples that did not 

have all four tests positive or all four tests negative were sent for toxigenic culture, 

excluding antigen-positive only samples. Discrepant samples from patients who were on 

treatment for CDI at time of sample collection were excluded from analysis.  Only two 

samples per patient in a 7-day period were included. Repeat samples sent on the same day 

were excluded. 
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Two-Step Method: C. Diff Chek™ -60 and Cytotoxicity Assay. The C. Diff Chek™-60 

(TechLab, Blackburg, VA) was performed according to the manufacturer‟s instructions.  

Briefly, 0.05ml of specimen was transferred to 0.2 ml of specimen diluent (buffered 

protein solution containing preservative
5
) in a 1.5 ml centrifuge tube, vortexed and then 

centrifuged at 5000 x g for 10 minutes. To the test microwells, 0.5 ml of conjugate 

solution was added, after which 0.1 ml of centrifuged specimen was added. 
6
To the 

positive control well 0.1 ml of positive control (GDH-antigen) was added and to the 

negative control well 0.1 ml of diluent was added. The wells were covered and incubated 

for 50 minutes at 37 C and then they were washed in an automated washer for 7 cycles 

with 0.35 mL wash solution (phosphate-buffered saline and detergent).  After ensuring no 

residual liquid was remaining, 0.1 ml of substrate (tetramethylbenzidine and peroxide) 

were added to each well and incubated at room temperature for 10 minutes. Then, 0.05 

ml of stop solution (0.6N sulfuric acid) was added to each well and optical density 

measured on a microplate reader. A positive result had an optical density of ≥0.080 and a 

negative result had an optical density of < 0.080 using the spectophotometric dual 

wavelength 450/620 nm.  Stool samples received before 1:00 pm were tested on the same 

day. Samples received after 1:00 pm were stored at 4° C and tested within 24 hours.  

Stool samples positive for GDH antigen were tested by cytotoxicity assay. Stool samples 

(0.5 ml) were added to 0.5 ml of phosphate-buffered saline with antibiotics (vancomycin, 

gentamicin, and amphotericin
 
B) and then vortexed, and the toxin was allowed to elute 

for 5
 
minutes. After centrifugation for 10 min in a microcentrifuge, the supernatant was 

removed and passed through a 0.45-µm-pore-size
 
filter. Then, 20 µl of filtrate was 

                                                         
5
 The preservative is 0.02% thimerosal.  

6
 The conjugate is GDH antigen-specific mouse monoclonal antibody coupled to horseradish peroxidase. 
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inoculated in duplicate onto foreskin fibroblast
 
monolayers (MRHF cells; BioWhittaker, 

Walkersville, MD) in 96-well
 
plates using serial 10-fold dilutions (1:10 to 1:10,000). 

C. difficile
 
antitoxin (20 µl; TechLab, Inc., Blacksburg, VA.) was added to

 
one of the 

duplicate wells inoculated with the 1:10 and 1:100 dilutions.  Thus, after addition of 

antitoxin, the final dilution in the first culture well was 1:20.  Monolayers were
 
read at 

4, 24, and 48 hours after inoculation using an inverted microscope.
 
A known positive 

control, run with each assay, was required to show cytotoxicity in the expected range. A 

positive result consisted
 
of cytotoxicity that was neutralized by C. difficile antitoxin.

 

Results were recorded as the highest dilution showing specific
 
cytotoxicity.  All study 

samples underwent the cytotoxicity assay on the same day or within 24 hours of receipt if 

the sample was received after 1:00 p.m.    

Toxin A/B II ELISA.  Toxin A/B II ELISA  (TechLab, Blacksburg, VA) was 

performed according to the manufacturer‟s instructions. Briefly, 0.05 ml of specimen was 

transferred to 0.2 ml of specimen diluent (buffered protein solution with preservative) in 

a 1.5 ml centrifuge tube, vortexed and then centrifuged at 5000 x g for 10 minutes. To the 

test microwells, 0.5 ml of conjugate solution was added, after which 0.1 ml of centrifuged 

specimen was added.
7
  To the positive control well 0.05 ml of positive control 

(inactivated toxins A and B) was added and to the negative control well 0.05 ml of 

diluent was added. The wells were covered and incubated for 50 minutes at 37 C and 

then they were washed in an automated washer with 0.35 mL wash solution for 7 cycles.  

After ensuring no residual liquid was remaining, 0.1 ml of substrate 

                                                         
7
 The conjugate solution is a mouse monoclonal antibody specific for toxin A coupled to horseradish 

peroxidase and goat polyclonal antibody specific for toxin B coupled to horseradish peroxidase in a protein 

buffered solution. 
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(tetramethylbenzidine and peroxide) were added to each well and incubated at room 

temperature for 10 minutes. Then, 0.05 ml of stop solution (0.6N sulfuric acid) was added 

to each well and after 2 minutes the optical density was measured on a microplate reader. 

A positive result had an optical density of ≥0.080 and a negative result had an optical 

density of < 0.080 using the spectrophotometric dual wavelength 450/620 nm.  Samples 

not tested within 24 hours of receipt were stored at -20° C and tested within 72 hours. 

BD GeneOhm™ Cdiff PCR Assay . The BD GeneOhm™ Cdiff Assay (BD Diagnostics, 

San Diego, CA) utilizes real-time PCR to amplify the toxin B (tcdB) gene in C. difficile 

and fluorogenic target-specific hybridization probes for the identification of amplified 

target DNA.  The procedure was performed directly on stool specimens, according to the 

manufacturer‟s instructions. A sterile cotton swab was dipped into the stool specimen and 

then broken off into the sample buffer tube containing the Tris- EDTA sample 

preparation buffer that was provided by the manufacturer. The suspension in the sample 

buffer was vortexed at high speed for 1 min. For specimen dilution, 40 l of fresh sample 

buffer was added to a lysis tube with glass beads before transfer of 10 l of sample buffer 

containing the stool sample suspension. The lysis tube was vortexed for 5 min at high 

speed and pulse-spinned for 10 seconds in a centrifuge.  It was then incubated in a 

heating block at 95°C for 5 minutes. The lysed, inactivated sample was kept on a cooling 

block at 3 to 5°C until testing was performed, within 30 minutes. Sample tube and 

reagent manipulations were performed under a ventilation hood, and reagent tubes were 

kept on cold blocks at 3 to 5°C. Each sample from the lysis tube (3 l) was added to a 

SmartCycler tube containing 25 l of the reconstituted master mix. Included in the master 

mix was an Internal Control, a 333-bp DNA fragment of which only 55 bp shares 
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homology with C. difficile, to detect inhibition of the PCR. Every PCR run included a 

PCR-positive control (reconstituted DNA from the manufactured kit) and an uninoculated 

sample buffer was used as a negative control. Following centrifugation for 10 s using a 

Cepheid microcentrifuge especially adapted to fit the SmartCycler tubes, the reaction 

tubes were placed in the SmartCycler I-CORE module (Cepheid, Sunnyvale, CA) and run 

using Cepheid SmartCycler software with the BD GeneOhm Cdiff assay amplification 

protocol. Results were automatically interpreted by the software as follows: “negative,” 

no tcdB gene was detected; “positive,” the tcdB gene was detected; “unresolved,” either 

the IC was inhibited or there was reagent failure; “invalid assay run,” the PCR control 

(positive or negative) failed; “not determined,” there was an I-CORE module malfunction 

(32).  Samples with unresolved results were retested from the frozen eluate after thawing. 

The remaining eluate in the lysis tubes was frozen at -70°C. The entire procedure 

required about two hours, depending on the number of samples being run. All samples 

not tested within 24 hours were stored at -20° C and tested within 5 days, as per 

manufacturer instructions.  

Toxigenic Culture. One 2 mL vial of stool from each of the 400 samples was saved and 

stored at -70°C until the completion of the study, after which coded discrepant samples 

were tested by toxigenic culture at Montefiore Medical Center, Bronx, NY by personnel 

blinded to prior test results. Stool was treated with ethanol to kill non-spore flora, and 

inoculated in parallel onto selective cycloserine-cefoxitin-fructose agar (CCFA) 

supplemented with 0.1% taurocholate (Sigma, St Louis, MO) and chopped meat broth 

(BD BBL™, Sparks, MD) supplemented with 0.1% taurocholate, 250 µg/ml cycloserine 

and 16 µg/ml cefoxitin. If there was visible growth in the broth after 48 hrs, or at 5-7 
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days (late growth), it was subjected to the Meridian™ toxin A/B EIA (Meridian 

Bioscience, Cincinnati, OH).  A positive result (OD >0.10) supported the detection of 

toxigenic C. difficile.  Colonies of growth on the agar that had the appearance of C 

difficile (flat yellow colonies) were tested by PCR, using an internally-validated PCR for 

the tcdC putative toxin repressor gene (5‟-TCTAGCTAATTGGTCATAAG-3‟,5‟-

AATAGCAAATTGTCTGAT-3‟), as well as the GDH gene (gdh) using published 

primers [27].  All PCR reactions were performed using FastStart Hi-fidelity Taq PCR 

reagents (Roche, Indianapolis, IN) with  MgCl2 (2.5mM Mg final), on a Perkin-Elmer 

2400 thermocycler, with a  multiplex PCR protocol consisting of 5 min at 95
o
C, followed 

by 45 cycles of 94
 o

C x 1 min, 52
 o
C x 1 min and 72

 o
C x 2 min.  PCR amplicons were 

resolved on 2% agarose gels stained with ethidium bromide.   A positive ~200bp band on 

the tcdC PCR supported the detection of toxigenic C. difficile, and a ~750 bp gdh band 

confirmed C. difficile.  Specimens that did not have consistent results between the toxin 

A/B ELISA from broth culture and toxin gene PCR had all discordant tests repeated; in 

addition, the broth culture was subcultured onto agar to identify individual colonies 

which could be analyzed by PCR.  If there was a negative toxin ELISA result from broth 

but PCR-positive colonies on agar, the colonies were directly inoculated into broth and 

tested by toxin ELISA after 48 hrs. 

Discrepant Analysis. Results were considered discrepant if 1, 2 or 3 tests were positive, 

excluding GDH antigen-positive only samples.  Antigen-positive only samples were 

considered to represent colonization with non-toxigenic strains of C. difficile. To resolve 

discrepant results, three steps were taken.  First, all samples for which PCR results were 

discordant with two-step results were repeated by PCR.  Second, all discrepant samples 



 

 

25 

were submitted for toxigenic culture.  Lastly, chart review was conducted for all patients 

with discrepant samples. 

Statistical analysis.  Statistical analysis was performed using McNemar‟s test, which 

applies to matched pairs of dichotomous test results, e.g. when assessing the statistical 

significance of the observed difference between performance characteristics of two 

diagnostic tests (48). 

Student Responsibilities.  The author was responsible for: design of the study; 

submission of HIC protocol; performing BD GeneOhm™ Cdiff PCR and Tox A/B II 

assays on all stool specimens; performing chart review for all patients with discrepant 

results; analyzing results; writing the first draft of the manuscript for publication; 

incorporating suggestions and revisions from co-authors; and helping to revise the paper 

as recommended by journal reviewers.   The two-step method was performed on stool 

samples by YNHH Virology technicians and toxigenic culture was performed by Paul 

Riska at Montefiore Medical Center, Bronx, NY.  

 

RESULTS 

A total of 434 samples were initially tested. Of these, 18 were excluded because the 

patients were found to be on treatment for CDI and 16 were excluded because there were 

more than 2 samples per patient sent in a 7-day period.  Four-hundred stool samples from 

341 patients were included in the final analysis.   Overall, 66 samples were positive by all 

four tests. Of the 200 GDH-positive samples, 71 were positive by Tox A/B II, 88 were 

positive by the two-step method, 96 were positive by BD GeneOhm™ Cdiff assay, and 
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96 were positive by GDH antigen only.  For the 88 cytotoxin-positive samples in this 

study, 29 (33.0%) were positive at 4 hrs, 48 (54.5%) at 24 hrs, and 11 (12.5%) at 48 hrs.  

Six of the 11 positive at 48 hrs were positive only at the 1:20 starting dilution. Of 200 

GDH-negative samples, 3 were positive by PCR only and 197 were negative for all four 

tests. Results are shown in Table 1.  Two of 400 samples (0.5%) were initially 

unresolved by PCR but became negative upon repeat testing.  

 

Forty-one of the samples were considered discrepant (Table 1) and were cultured. Thirty-

nine of these were toxigenic culture-positive, and 2 were culture-negative. Fifteen 

cytotoxin-negative samples were GDH antigen and PCR-positive and 3 were PCR-

positive only.  All of these 18 were toxigenic culture positive (true positives). Twelve of 

41 discrepant samples were negative by Tox A/B II and positive by all other tests, 

including toxigenic culture. Ten discrepant samples were cytotoxin-positive and PCR-

negative and 9 were found to be toxigenic culture positive for C. difficile. Two of the 9 

eluates, stored at -70
o
C, were found to be PCR-positive upon re-testing. Eight of the 9 

toxigenic culture-positive samples had a very low yield of bacteria on agar culture (1+ or 

fewer by a semi-quantitative scoring system). Five of the 9 PCR-negative samples were 

cytotoxin positive at 4 or 24 hrs, and 4 were positive at 48 hrs. Chart reviews of the 9 

cytotoxin-positive, PCR–negative patients revealed multiple prior or subsequent C. 

difficile cytotoxin-positive stools in 4 (44.4%) of these 9 patients. Of the remaining two 

toxigenic culture negative samples, one was GDH antigen and Tox A/B II-positive and 

the other was positive by GDH antigen and cytotoxin at 1:10 dilution only.   These were 

designated false positives.



 

Table 1.  Results showing discrepants 

 

No. Initial 

Pos Tests
a
 

GDH Ag 

EIA 

 

Cytotoxicity 

Assay 

 

Tox A/B 

ELISA 

 

PCR 

 

No. with 

initial results
b
 

 

No. pos. by 

toxigenic culture 

 

No. neg. by  

toxigenic culture 

No. true positives
c
 

 

4 

 

+ 

 

+ 

 

+ 

 

+ 

 

66 

 

Not done 

 

Not done 

 

66 

 

1 

 

+ 

 

- 

 

- 

 

- 

 

96 

 

Not done 

 

Not done 

 

0 

 

0 

 

- 

 

- 

 

- 

 

- 

 

197 

 

Not done 

 

Not done 

 

0 

 

3 

 

+ 

 

+ 

 

+ 

 

- 

 

4 

 

4 

 

0 4 

 

3 

 

+ 

 

+ 

 

- 

 

+ 

 

12 

 

12 

 

0 12 

 

2 
 

+ 
 

+ 
 

- 
 

- 
 

6 
 

5 
 

1 5 
 

2 

 

+ 

 

- 

 

- 

 

+ 

 

15 

 

15 

 

0 15 

 

2 

 

+ 

 

- 

 

+ 

 

- 

 

1 

 

0 

 

1 0 

 

1 

 

- 

 

- 

 

- 

 

+ 

 

3 

 

3 

 

0 3 

 

TOTAL 

 

200 

 

88 

 

71 

 

96 

 

400 

 

39 

 

2 105 

 
a, This column represents the number of tests for which any given sample was positive. For example, a sample with 4 tests positive tested positive for GDH-

antigen EIA and cytotoxin neutralization assay (two-step method), Tox A/B II ELISA and PCR.  

b. In total, 41 discrepant samples were tested by toxigenic culture and 39 were positive 

c. A sample was considered a true positive if either all 4 tests were positive or if it was toxigenic culture positive.
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At the time of the study, the BD GeneOhm™ Cdiff assay was not an FDA-cleared test, so 

PCR results were not clinically reported.  Chart review was conducted on patients with 

samples that were PCR-positive but cytotoxin-negative. Eight PCR-positive, cytotoxin-

negative patients were treated for CDI for a median of 1.5 days until the negative 

cytotoxin result was reported, and then treatment was stopped. Ten patients received no 

treatment.  Only 5 of the 18 PCR-positive, cytotoxin-negative patients had additional 

testing in 6-8 months of follow-up and only one of these had a subsequent cytotoxin 

positive sample (22 days after the sample included in the study).    

 

The results and performance characteristics of all tests after resolution of discrepants by 

toxigenic culture are given in Table 2. After culture resolution, Tox A/B II detected 70 

(66.7%), the two-step method detected 87 (82.9%), and PCR detected 96 (91.4%) of 105 

true positives. There was a 93.0% concordance of PCR with the two-step method and a 

91.3% concordance of PCR with the Tox A/B II. The sensitivity, specificity, positive 

predictive value and negative predictive values as compared to toxigenic culture for BD 

GeneOhm™ Cdiff assay are 91.4%, 100%, 100% and 97%, respectively; for the two-step 

method are 82.9%, 99.7%, 98.9% and 94.2%, respectively; and for Tox A/B II ELISA are 

66.0%, 99.7%, 98.6% and 89.4%, respectively.  
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Table 2.  Comparison of GeneOhm Cdiff Real-time PCR assay, a two-step algorithm  

and Tox A/B II ELISA after resolution of discrepant results by toxigenic culture 

 

a. Samples with discrepant results were resolved by toxigenic culture.  

b. Calculations make the assumption that samples with all tests positive would be toxigenic culture-positive 

and samples that are either GDH antigen-only positive or negative by all tests would be toxigenic culture-

negative.  Only a subset of GDH-negative samples were tested. 

c. Positive predictive value 

d. Negative predictive value 

e. The difference between PCR and the two-step algorithm was not significant (p=0.1237). The difference 

between PCR and Tox A/B II ELISA was significant (p < 0.0001). McNemar‟s test.  

 

 

 

Assay  

  

No. with result after 

resolution by 

toxigenic culture
a 

 

 

Performance characteristics of assay
b
 

  

Positive 

 

Negative 

 

Sensitivity 

(%) 

 

Specificity 

(%) 

 

PPV
c
 

(%) 

 

NPV
d
 

(%) 

GeneOhm  

RT-PCR
e
 

 

  

91.4 

 

100 

 

100 

 

97.0 

 Positive 96 0     

 Negative 9 295     

 Total 105 295     

Two-step  

algorithm 

 

82.9 

 

99.7 

 

98.9 

 

94.2 

 Positive 87 1     

 Negative 18 294     

 Total 105 295     

Tox A/B II  

ELISA 

   

66.0 

 

99.7 

 

98.6 

 

89.4 

 Positive 70 1     

 Negative 35 294     

 Total 105 295     
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The average turnaround times and materials cost per test in our laboratory, based on 

5,000 samples a year are given in Table 3.  The BD GeneOhm™ Cdiff assay is the most 

expensive at $25.83 per test with the two-step method, Tox A/B II ELISA, and 

cytotoxicity assay following in order of decreasing cost for materials per test.  

 

Table 3. Comparison of time to result and materials costs for different methods 

 

Test 

 

Turnaround Time 

 

Materials cost per test
a
 

 

 

BD GeneOhm™ Cdiff assay  

 

 

2-24 hrs 

 

 

$25.83 

 

Tox A/B II ELISA 

 

2-24 hrs 

 

$4.12 

 

Two-Step  (GDH / 

Cytotoxicity Algorithm)
b
 

 

6-48 hrs 

 

$5.02 

 

Cytotoxicity assay only
c
 

 
4-48 hrs 

 
$3.97 

 
 

a, Actual costs in our laboratory.  Labor, controls, repeats, are not included.  

b, With the 2-step method, GDH antigen-negatives are reported within 2-24 hrs. GDH-positives are tested 

for cytotoxin, and cytotoxin results are reported after 4, 24 and 48 hrs of incubation. 

c, Cytotoxin positives are reported at 4, 24 and 48 hrs, and all negatives are reported at 48 hrs.  

 

 

DISCUSSION 

This is the first study comparing the performance characteristics of the commercial BD 

GeneOhm™ Cdiff assay to Tox A/B II and the two-step GDH antigen ELISA/cytotoxin 

protocol for diagnosis of CDI.  The BD GeneOhm™ Cdiff assay was significantly more 

sensitive than the Tox A/B II (91.4% vs. 66.0% respectively, p <0.0001). There was an 

absolute increase in the number of true positives detected by BD GeneOhm™ Cdiff assay 

as compared to the two-step method (91.4% vs. 82.9%, respectively), but the difference 
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was not statistically significant in our study (p=0.1237).  The concordance of the BD 

GeneOhm™ Cdiff assay with the two-step method (93.0%) is similar to that of BD 

GeneOhm™ Cdiff assay with the cytotoxicity assay as reported by Stamper, et al 

(94.8%), Barbut et al (92%) and Terhes, et al (92.6%) (32, 46, 47). 

 

All 18 two-step negative, PCR positive discrepant samples in our study were toxigenic 

culture positive. In contrast, Stamper et al (32) reported that 6 of 17 (35.3%) PCR-

positive, cytotoxin-negative samples failed to yield toxigenic C. difficile on culture.  

Terhes, et al, (47) similarly reported 17 cytotoxin negative, PCR positive samples that 

were toxigenic culture positive and only 5 that were toxigenic culture negative. While 

this could reflect differences in the culture methods used, further study is merited.   

 

Since PCR results were not clinically reported during our study, the 18 PCR-positive 

samples were reported as C. difficile negative and patients received brief empiric 

treatment or no treatment for CDI, with no apparent adverse consequences.  Only one 

(5.5%) of 18 patients had subsequent C. difficile disease 22 days later.  This highlights a 

concern for highly sensitive molecular amplification tests that target toxin genes, rather 

than in vivo toxin production. Patients may be colonized with toxigenic C. difficile but 

have diarrhea due to other causes.   There is evidence that carriers of toxigenic C. 

difficile, who may be inadvertently identified by PCR due to inappropriate sample 

submission, may have immune mechanisms, which abrogate the toxin effects of their 

strain (4, 49, 50). The effects of eradicating asymptomatic carriage by antibiotics on the 

immune response of the carrier are not known.   Thus, clinical correlation is even more 
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essential for accurate diagnosis of CDI in patients diagnosed by PCR to avoid treating 

patients unnecessarily (43).  

 

It is also possible that these PCR-identified cases have low-titers of toxin production that 

are below the detection limits of ELISA toxin tests or cytotoxin neutralization assays.  

These cases might represent a small pathogen burden.  In the 15-23% of CDI patients 

with mild disease, the symptoms may be cleared by simply removing the inciting 

antibiotics (22).  However, these patients may still be at risk of spreading C. difficile 

spores in the hospital setting, because they test „negative‟ by conventional methods, and 

are neither isolated nor treated. In theory, if these cases are detected by PCR, isolated 

and/or treated, nosocomial transmission to other more susceptible patients could be 

reduced. It is unclear whether or not these benefits would outweigh the costs of detecting, 

isolating and treating an increased number of patients with mild disease, and warrants 

further study.  

 

There is some evidence to suggest correlation between host humoral immune response 

and severity of CDI, as mentioned previously.  One study showed higher levels of 

antitoxin A immunoglobulin G in asymptomatic carriers of C. difficile than in those who 

developed symptomatic diarrhea (4). A later study identified a polymorphism in the 

interleukin-8 (IL-8) promoter gene that was associated with higher serum and fecal levels 

of IL-8 in hospitalized patients with C. difficile –associated diarrhea (CDAD) than with 

hospitalized controls with non-C. difficile diarrhea and without diarrhea (49).  Higher IL-

8 levels in patients were subsequently correlated with impaired levels of immunoglobulin 
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G to toxin A and thus enhanced susceptibility to CDAD as compared to two control 

groups (50).  These studies support the possibility that patients who are carriers or have 

self-resolving, mild CDAD might have a higher level of immune response contributing to 

the limitation of illness. However, patients who fail to mount a significant immune 

response could potentially develop more severe disease manifestations from the same 

organism.  Hypothetically, this would justify treating milder cases of CDAD that are 

cytotoxin negative but PCR positive.  However, it should also be noted that identification 

of these additional patients by PCR will increase costs of isolation and prolong 

hospitalization.  The costs and benefits of treatment for these patients merit further study. 

 

Although PCR detected more positives than other methods in this study, 10 samples were 

two-step method positive and PCR-negative. Nine of these 10 samples yielded toxigenic 

C. difficile in culture and one was culture negative. Chart reviews of the 9 cytotoxin-

positive, PCR–negative patients revealed multiple prior or subsequent C. difficile 

cytotoxin-positive stools in 4 (44.4%) of these 9 patients.  Eight of the 9 toxigenic 

culture-positive samples had a very low yield of bacteria on agar culture (1+ or fewer by 

a semi-quantitative scoring system) and thus may have been below the detection limit of 

the PCR assay.  This could have been due to poor initial sample quality.  On retesting of 

the frozen PCR lysates, 2 of the 10 two-step positive/PCR negative samples were PCR 

positive on repeat, implying some degree of inhibition or sampling variability on initial 

testing. The one sample that was two-step method positive, but toxigenic culture-

negative, had a low toxin titer of 1:20 at 48 hours.  This was considered a false positive 

cytotoxin result.  



 

 

34 

Stamper et al (32) reported only one cytotoxin-positive, toxigenic culture-positive sample 

missed by PCR, Terhes et al (47) reported two, and Barbut et al (46) reported none.  This 

difference might be explained by differences in cytotoxin testing methods.  Cytotoxicity 

testing in our institution is performed by Virology Laboratory personnel, using freshly 

prepared human fibroblast cell culture plates, starting at a lower final dilution than most 

laboratories (1:20) with serial 10-fold dilutions of sample, and read at 4, 24 and 48 hours, 

with almost 90% of positives reported within 4-24 hours.  Thus, our cytotoxin results 

may be superior to those obtained using higher starting dilutions of 1:50 (32)  or 1:100 

(46) using commercially prepared cell culture, and the BD GeneOhm™ Cdiff assay 

might perform even better compared to commercial cytotoxin neutralization.  This 

reasoning applies as well to the methods for cytotoxicity assay employed by Terhes et al 

(47), which was initially evaluated in comparison to the BD GeneOhm™ Cdiff assay, but 

also used as part of their gold standard to verify toxigenicity of bacterial cultures. They 

utilized a HeLa cell line for cell culture, which has been shown to have a 10-fold lower 

sensitivity than other cell lines such as human fibroblasts used by the Yale Virology 

Laboratory. In addition, their cytotoxicity assay was performed up to 5 days after the 

receipt of the stool specimen, which may permit toxin degradation (51).  The 

aforementioned factors are likely to greatly reduce the sensitivity of their cytotoxicity 

assay and, by comparison, make the performance of the BD GeneOhm™ Cdiff assay 

appear artificially elevated.   They report a sensitivity and specificity of 96.4% and 99.1% 

respectively (47), as compared to 83.6% and 98.2%, respectively, by Stamper et al (32) 

and  91.4% and 100.0%, respectively, in our study.  
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Nevertheless, the failure of PCR to detect 9 true positives detected by the two-step 

method was a concern. It is unlikely that the BD GeneOhm Cdiff assay PCR failed to 

detect these 9 samples due to inhibitors for several reasons.  First, each reaction mix has 

an internal amplification control to monitor reagent integrity and PCR inhibition. 

Inhibitory samples have an internal control result of “FAIL” and a BD GeneOhm Cdiff 

assay result of “Unresolved”. The 9 samples passed the test for internal control 

amplification. Secondly, eight of the nine samples had very low yield of C. difficile in 

direct anaerobic culture, with <10 cfu
8
 recovered for 5 of those samples. In addition, two 

of the stool samples were positive on repeat testing of the sample lysates, suggesting 

sample variability in the runs.  These findings support the idea that the inability of the BD 

GeneOhm Cdiff assay to detect these samples was more likely due to a bacterial load 

below the level of detection of the assay, suggesting that dilution of the samples will not 

likely improve PCR detection.  The quality of the stool sample at initial collection is 

more likely to be the source of low bacterial load.   

 

In addition to low numbers of bacteria and presence of inhibitors, another possible 

explanation for the failure of the BD GeneOhm™ Cdiff assay to detect samples that were 

positive by the two-step method is genetic variance at the tcdB locus, leading to 

mismatch of PCR primers. While the majority of isolates of toxigenic C. difficile come 

from toxinotype variants with an intact tcdB gene, mutations and deletions in tcdB have 

been documented (12, 52).  A recent study discovered a genotype of a binary toxin-

producing C. difficile strain that contained the toxin A and binary toxin genes, but was 

                                                         
8 Colony forming units. 
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negative for the toxin B gene (53). This strain is genetically distinct from the epidemic 

BI/NAP1/027 strain.  However, reports of such toxigenic C. difficile variants are very 

rare, as toxin B appears to be an essential virulence factor (54).  Preliminary unpublished 

data from Paul Riska shows that, in testing over 70 isolates of each type, the BD 

GeneOhm PCR is equally efficient at detecting the current North American epidemic 

(ribotype 27) and non-epidemic strains.  However, monitoring for evolution of new 

variants of tcdB is warranted. 

 

The Tox A/B II ELISA failed to detect 35 toxigenic culture-positive samples and yielded 

one false positive result, consistent with the documented low sensitivities of this class of 

tests (33, 55).  Cytotoxin neutralization as performed in our virology laboratory, detected 

9 true positives missed by PCR.  However, due to the techniques employed at YNHH 

mentioned above to maximize sensitivity of the cytotoxicity assay, it may be that our lab 

is an outlier in the quality of this test. Other labs that solely utilize an ELISA toxin assay 

or a commercial cytotoxin neutralization assay with much lower sensitivity than ours 

could be missing many true positive cases of CDI that would be detected by the BD 

GeneOhm™ Cdiff assay. 

 

The BD GeneOhm™ Cdiff assay was simple to perform and produced results in 

approximately 2 hours, compared to 2 hours for the Tox A/B II ELISA and 6-48 hours 

for the two-step method (Table 3). The PCR method is more expensive than other 

methods, but may reduce nosocomial transmission of toxigenic C. difficile, and thus lead 

to long-term savings for hospitals and patients.  Of note, the costs for each test will vary 
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among institutions depending on test volume, contracts with suppliers, and other factors.  

In our virology laboratory, cytotoxin neutralization is an inexpensive test.  Thus, to test 

5,000 samples a year using BD GeneOhm™ Cdiff assay as the sole assay will cost an 

additional $100,000 in reagents, which is a significant barrier to implementation.  In 

addition, the increased number of cases detected per year by PCR will require isolation 

and treatment, resulting in increased hospital costs over the short term. Yet, in the long-

term, these costs could be offset by reduction in the overall rates of transmission of C. 

difficile spores if more „true positives‟ are isolated and treated.  Moreover, more rapid 

diagnosis of cases would result in earlier isolation and presumably decreased nosocomial 

transmission. For instance, at YNHH the two-step diagnostic algorithm can take up to 48 

hours to receive a positive result for CDI, during which time the patient is not placed on 

isolation precautions. If PCR were used a positive result theoretically would be available 

within hours 2- 24 hours after the sample was submitted to the lab.   

 

Chart review of patients with discrepant samples revealed hospital-wide problems with 

stool sample submission for C. difficile analysis, including submission of samples from 

patients with minimal diarrhea, from patients who were already on treatment, and 

multiple samples from the same patient on the same day or within a 7-day period. Though 

discordant samples from patients found to be on therapy were excluded from analysis in 

the study, these problems were illustrative of inappropriate clinical use of the test, which 

ultimately drives up overall health care costs. To both avoid unnecessary treatment and 

reduce costs of PCR testing, clinicians will need to be educated about limiting C. difficile 

testing to patients with a reasonable probability of having disease, such as those patients 
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having 3 or more loose stools per day for 1 to 2 days (43).  Moreover, clinicians should 

not be ordering C. difficile testing for patients who are undergoing antibiotic treatment for 

CDI as this can interfere with the toxin gene expression and increase the likelihood of 

false negative test results.  Utilization of automatic clinician reminders or „pop-up‟ 

windows through computerized electronic ordering systems would be one way to reduce 

inappropriate ordering of these tests, and thus decrease overall costs associated with the 

disease.   

 

There were several limitations of this study.  Only the discrepant samples were cultured 

and not all samples tested were included in the study.  The performance characteristics of 

the various assays were compared to toxigenic culture as a gold standard, with the 

assumption made that samples for which all four tests were positive would be toxigenic 

culture-positive and those for which all four tests were negative would be toxigenic 

culture-negative. All GDH-antigen positive samples submitted on study days that met 

study criteria, but only a subset of GDH-antigen negative samples, were included.  In 

addition, samples were sent to a separate institution for toxigenic culture and different 

assays were used to determine whether strains of C. difficile were toxigenic. Specifically, 

a Meridian toxin A/B EIA and an in-house PCR assay to detect tcdC (toxin repressor 

gene) were utilized, rather than the TechLab toxin A/B ELISA and the tcdB-based PCR 

assay used in the initial analysis. Thus, some of the divergent results may be due to 

different performance attributes of these particular assays.  However, it is likely that a 

greater difference was attributable to the fact that the toxigenic culture assays were 

applied to an amplified culture rather than a crude stool sample.   
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In conclusion, the BD GeneOhm™ Cdiff assay is the first FDA-approved commercial 

PCR kit for diagnosis of toxigenic C. difficile and could be a promising new tool.  This 

study found it to be much more sensitive than a common ELISA toxin test for diagnosis 

of toxigenic C. difficile, which is the most widely used class of diagnostic assay for C. 

difficile infection, yet typically has poor sensitivities.  The BD GeneOhm™ Cdiff assay is 

as sensitive and specific as a two-step method, currently used at YNHH.  It is more 

expensive, but has a faster turnaround time than the two-step method, which could lead to 

earlier diagnosis of CDI and reduction of nosocomial transmission, hypothetically 

resulting in overall cost savings.  A potential concern is increased treatment of 

asymptomatic carriers or mild, self-resolving disease. This study also found inappropriate 

utilization of the two-step method to be quite common at YNHH, including ordering the 

test multiple times for one patient on the same day or within a 7-day period, and when the 

patient was being treated for CDI. The implementation of any diagnostic test should be 

accompanied by education of clinicians about appropriate use of the test and 

interpretation of its results 
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