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Abstract
Cholinergic Neurotransmission in Partial Limbic Seizures. Geoffrey Liu, Joshua E. 
Motelow, Wei Li, Qiong Zhan, Asht M. Mishra, Robert N. S. Sachdev, Abhijeet Gumma-
davelli, Zaina Zayyad, Hyun Seung Lee, Victoria Chu, John P. Andrews, Dario J. Englot, 
Peter Herman, Basavaraju G. Sanganahalli, Fahmeed Hyder, Hal Blumenfeld.

Partial limbic seizures impair consciousness, but the mechanism of impairment is not 

known. Most views hold that structures necessary for consciousness are disrupted by 

overexcitation from spread of seizure activity. Against this view, we hypothesize that 

partial limbic seizures cause pathological long-range inhibition of cortical activity. Using 

a rat model for partial limbic seizures, we demonstrate BOLD fMRI signal increases in 

the hippocampal seizure focus, but decreases in arousal promoting regions such as the 

thalamus and midbrain tegmentum. Second, direct single unit recordings from choliner-

gic neurons in two arousal nuclei, the basal forebrain and the pedunculopontine 

tegmental nuclei, demonstrate suppressed firing during seizures. Finally, using enzyme-

based amperometry, we probe levels of the arousal neurotransmitter acetylcholine in 

the cortex and thalamus and observe decreased cholinergic neurotransmission during 

seizures. These findings demonstrate that an arousal center is suppressed during par-

tial limbic seizures and suggest that decreased arousal may lead to impaired con-

sciousness. 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Introduction
The mechanism by which partial seizures originating from 
the temporal lobe impair consciousness is unknown

Epilepsy is a serious medical condition. Defined as the tendency for recurrent, un-

provoked seizures, epilepsy is common (2 million in the United States are affected 

(Chang and Lowenstein 2003)), debilitating (affecting driving, work performance and 

leading to social stigmatization (Vickrey, Berg et al. 2000, Drazkowski 2007)), and even 

lethal (mortality rate 2-3x above the general population (Sperling 2004)).

The most common form of epilepsy — temporal lobe epilepsy (TLE) — is a condition 

in which seizures originate in the temporal lobe, typically the hippocampus (Engel 

1996). Temporal lobe seizures are either confined to the temporal lobe, termed ‘partial 

seizures’ or secondarily generalize from the seizure focus in the temporal lobe to the 

rest of the cortex. Here, we focus on partial seizures originating in the temporal lobe, 

which can be further subdivided based on whether consciousness is lost or preserved 

during seizures. ‘Simple’ partial temporal lobe seizures are seizures in which con-

sciousness is preserved, and typically are characterized by epigastric sensations, emo-

tional changes, and sometimes olfactory hallucinations (Engel 1996). ‘Complex’ partial 

seizures, by contrast, are seizures in which consciousness is impaired. Complex partial 

seizures have a more stereotyped phenomenology: averaging 2 minutes in duration 

during which patients are unresponsive, with accompanying automatisms such as lip 

smacking and grunting (Sharbrough 1987).
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Despite being the most common form of epilepsy, TLE is arguably the poorest un-

derstood. Basic features about the pathophysiology of TLE remain unclear. In particular, 

one question which has eluded neuroscience research is why partial temporal lobe 

seizures impair consciousness. It is of interest to neuroscientists because it is not clear 

why a seizure confined to the temporal lobe would cause impairment of consciousness. 

The temporal lobe is associated with memory functions, along with audition and olfac-

tion. But the temporal lobe is not typically thought of as a seat of consciousness. The 

patient HM famously underwent bilateral temporal lobectomy and became unable to en-

code new memories but was nevertheless conscious (Scoville and Milner 1957).  Fur-

thermore, this is a question of deep relevance to patients with TLE, since a considerable 

portion of patients are treatment refractory (Picot, Baldy-Moulinier et al. 2008). Uncover-

ing the etiology of impaired consciousness in TLE may provide new avenues for pre-

venting loss of consciousness in this treatment-refractory population.

The prevailing theory has limitations
A number of theories have been put forward to explain why complex partial seizures 

in the temporal lobe cause impaired consciousness (Englot and Blumenfeld 2009, Yu 

and Blumenfeld 2009). One popular theory posits that onset laterality of the partial 

seizure is an important determinant for whether or not consciousness will be preserved 

during partial seizures (Inoue and Mihara 1998, Lux, Kurthen et al. 2002, Hoffmann, El-

ger et al. 2008). Evidence for this theory comes from the observation that patients with 

left or bilateral temporal involvement more frequently exhibited impaired consciousness 

than patients with an isolated right temporal lobe seizure. This led the authors (Lux, Kur-
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then et al. 2002) to suppose that the left temporal lobe is necessary for the maintenance 

of consciousness.

There are several limitations to this theory. 1) Impairment of consciousness in these 

studies was assessed by verbal responsiveness, thereby confounding consciousness 

with language and motor domains (i.e. patients are possibly unresponsive not because 

of impaired consciousness but because of inability to respond due to aphasia or lack of 

motor control). 2) Some isolated right temporal lobe seizures did cause impairment of 

consciousness, meaning the role of the right temporal lobe in maintenance of con-

sciousness can not be discounted entirely. 3) The patient HM, who underwent bilateral 

mesial temporal lobectomy had no anterograde memory but was nevertheless con-

scious (Scoville and Milner 1957), arguing against the necessity of either temporal lobe 

for maintenance of the conscious state. While the observation that laterality of seizures 

correlates with impairment of consciousness may have utility as a clinical predictive 

rule, there are several limitations which make it less attractive as a foundation for a the-

ory of impaired consciousness.

Human EEG demonstrate neocortical slow activity, not 
seizure activity, during hippocampal seizures

One potential clue to the pathophysiology of impaired consciousness in complex 

partial seizures comes from clinical studies in humans examining the effects of temporal 

lobe seizures on areas outside the temporal lobe. In an intracranial electroencephalo-

gram (EEG) study of complex partial seizures (Blumenfeld, Rivera et al. 2004), patients 

demonstrated, as expected, fast polyspiking activity in the temporal lobe at seizure on-

set, consistent with seizure activity. Surprisingly however, EEG traces from the frontal 
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and ipsilateral parietal cortex demonstrated neither baseline activity nor polyspiking ac-

tivity seen in the temporal lobe but a distinct rhythm altogether: high amplitude, low fre-

quency delta-range slow activity, a pattern reminiscent of slow wave sleep, deep anes-

thesia and coma (Figure 1) (Steriade, Amzica et al. 1993, Haider, Duque et al. 2006). A 

follow-up study (Englot, Yang et al. 2010) demonstrated that this relationship between 

slow activity and impaired consciousness is quantitative: patients with impaired con-

sciousness exhibited considerable delta-range activity in the cortex as assessed by 

spectral power analysis, whereas patients with preserved consciousness exhibited only 

modest changes.

These findings replicate prior intracranial EEG studies of complex partial seizures 

(Lieb, Dasheiff et al. 1991, Franaszczuk, Bergey et al. 1994, Mayanagi, Watanabe et al. 

1996), though these authors interpreted slow wave activity as a seizure propagation 

pattern. This interpretation was based on the observation that slow waves are some-

times seen when recording over a seizure focus using scalp EEG (French, Williamson 

et al. 1993, Pacia and Ebersole 1997).

If it were the case that neocortical slowing represented seizure propagation, then 

one would expect to see accompanying increases in cerebral perfusion. Several studies 

have examined cerebral perfusion by single-photon emission computed tomography 

(SPECT) in partial seizures in humans (Rabinowicz, Salas et al. 1997, Chang, Zubal et 

al. 2002, Van Paesschen, Dupont et al. 2003, Blumenfeld, McNally et al. 2004). As ex-

pected, hyperperfusion is seen within the temporal lobe in complex partial seizures; 

however, there is marked hypoperfusion in the frontal and parietal association cortices, 

which is not observed during simple partial seizures. The observation that the frontal 
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and parietal cortices are hypoperfused during complex partial seizures argues against 

the interpretation that extratemporal slow activity represents a propagation pattern of 

seizures, but rather, represents a distinctive depressed state of cortex, perhaps mimick-

ing slow wave sleep.

In summary, human intracranial EEG and functional neuroimaging during complex 

partial seizures demonstrate distinctive extratemporal manifestations of temporal lobe 

seizures: 1) a distinctive slow rhythm in the neocortex and 2) hypoperfusion in corre-

sponding cortical regions. Taken together, these data argue that the cortical state during 

seizures represents a globally depressed state reminiscent of sleep.

A rat seizure model finds slow oscillations during partial 
temporal lobe seizures; modulated by subcortical inhibitory 
structures

To study the effects of these partial temporal lobe seizures more closely, our lab re-

cently developed a rat model for partial temporal lobe seizures (Englot, Mishra et al. 

2008). The seizure paradigm consisted of an electrical stimulus delivered to the hip-

pocampus. This stimulus generated focal limbic seizure recapitulates several features of 

human temporal lobe seizures. First, rats experiencing stimulus-induced seizures mimic 

human symptomatology, including behavioral arrest, staring and facial automatisms. 

Second, these seizures recapitulate the electrographic and perfusion findings in hu-

mans: EEG demonstrated extratemporal slow activity and blood oxygen dependent lev-

el functional magnetic resonance (BOLD fMRI) demonstrated decreased activity in cor-

responding cortical areas (Englot, Mishra et al. 2008, Englot, Modi et al. 2009).

Page �  of �11 61



This model has led to several important insights into the mechanism of impaired 

consciousness in TLE. Recordings of multiple neurons (multi-unit activity) revealed a 

prominent slow-oscillatory component to slow activity as evidenced by characteristic up 

and down states (Steriade, McCormick et al. 1993, Crunelli and Hughes 2010). Further 

studies support the notion that the lateral septum plays an important role in generating 

slow waves. In particular, lesioning the fornix, which connects the hippocampus and lat-

eral septum abolishes cortical slowing during seizures in this rodent model and stimulat-

ing the lateral septum is sufficient to drive slow wave activity in non-seizing animals 

(Englot, Modi et al. 2009).

In conclusion, rat models of temporal lobe seizures have face validity for human 

seizures and have led to new insights into the mechanism of impaired consciousness in 

TLE, including the notion that neocortical slowing is comprised of slow oscillations.

Slow oscillations during physiologic sleep are modulated by 
subcortical arousal systems

Why would slow oscillations appear in the neocortex during temporal lobe seizures? 

One possibility is that focal seizures disrupt pathways involved in maintaining arousal, 

instigating a transition from waking to sleep when slow oscillations appear physiological-

ly. Here, we review what is known about slow oscillations in the context of physiologic 

sleep. In particular, we focus on their control by subcortical arousal systems such as the 

acetylcholinergic arousal system.

From a neurobiological standpoint, sleep and waking are brain states defined by 

their EEG and electromyographic (EMG) properties (Steriade, McCarley et al. 2005, 

Brown, Basheer et al. 2012). Waking is characterized by low voltage fast activity (LVFA) 
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and high muscle tone whereas sleep is subdivided into two categories. The first, non-

rapid eye movement (NREM) sleep, is defined by high amplitude low frequency activity 

and decreased muscle tone. The second, REM sleep, is defined by LVFA on EEG, but 

muscle atonia on EMG.

The slow oscillation is one of the component EEG rhythms of NREM sleep (Steriade, 

Dossi et al. 1991). It appears at the onset of NREM sleep and disappear during transi-

tion to waking or REM. A low frequency (0-1Hz) high amplitude rhythm, the slow oscilla-

tion consists of two states. The downgoing (depth-negative) portion of the wave corre-

sponds at the network level to the synchronous depolarization of neurons to threshold 

potential followed by a series of action potentials, called an ‘up state’ (Compte, Reig et 

al. 2008). The upgoing (depth-positive) portion of the wave corresponds to the hyperpo-

larization of neurons and an arrest of firing, called a ‘down state’.

The slow oscillation is primarily a cortically-generated rhythm, and is thought to rep-

resent a ‘default’ rhythm when outside inputs to the cortex are withdrawn. Support for 

this assertion comes from studies demonstrating that: 1) the slow oscillation is abol-

ished in the thalamus after decortication in cats (Timofeev and Steriade 1996) 2) the 

slow oscillation survives in the cortex of cats with extensive thalamic lesions (Steriade, 

Nuñez et al. 1993) and 3) in vitro slices of cortex in ferrets are sufficient to generate the 

rhythm (Sanchez-Vives and McCormick 2000). The function of the slow oscillation as it 

relates to sleep is not definitively known, but some evidence suggests that the slow os-

cillation represents an organizing rhythm upon which other NREM sleep rhythms are 

superimposed. (Steriade, McCormick et al. 1993, Steriade, Nuñez et al. 1993).
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Slow oscillations are generated by the cortex when disconnected from subcortical 

input (Timofeev and Steriade 1996, Sanchez-Vives and McCormick 2000). How does 

cortical disfacilitation occur in a physiological context to instigate a transition from wak-

ing to sleep? Early studies support an important role for the brainstem and basal fore-

brain. Brainstem transection at the level between the inferior and superior colliculus 

produced comatose rats (Bremer 1935). Furthermore, brainstem reticular formation 

stimulation produced fast rhythms associated with waking in anesthetized cats (Moruzzi 

and Magoun 1949). Since that time, a number of brainstem and basal forebrain arousal 

systems have been identified, classified by their mode of neurotransmission, including 

acetylcholine (ACh), norepinephrine, serotonin, dopamine and orexin (Steriade, McCar-

ley et al. 2005, Brown, Basheer et al. 2012).

Of these arousal systems, the acetylcholinergic contributions to the sleep-wake tran-

sition are arguably the best studied. The ACh arousal system contains two nuclei: 1) the 

pedunculopontine tegmental nucleus (PPT) in the brainstem, which sends projections to 

the thalamus (De Lima and Singer 1987, Hallanger and Levey 1987) and 2) the basal 

forebrain (BF) which projects diffusely to cortex (MESULAM and MUFSON 1984, Gritti 

and Mainville 1997). The acetylcholinergic system is thought to promote fast EEG activi-

ty (such as gamma, beta and theta rhythms) associated with REM and waking. Con-

versely, withdrawal of cholinergic stimulation of thalamus and cortex is thought to be 

important for ushering in slow activity of NREM sleep such as slow oscillations. Evi-

dence for this relationship comes from 4 lines of evidence:

1) BF cholinergic neurons fire more frequently during REM and waking and are less 

active during NREM (Duque and Balatoni 2000, Szymusiak, Alam et al. 2000, 
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Manns, Alonso et al. 2003); increased firing of PPT cholinergic neurons anticipate 

sleep-wake transitions (Steriade, Datta et al. 1990, Boucetta and Jones 2009)

2) ACh concentrations are highest in the cortex and thalamus (targets of basal 

forebrain and PPT cholinergic neurons) during REM sleep and waking (Celesia and 

Jasper 1966, Williams and Comisarow 1994)

3) in vitro application of cholinergic agonists to cortical (datBuhl, Tamás et al. 1998, 

Blatow, Rozov et al. 2003) and thalamic (Lörincz, Crunelli et al. 2008) slabs pro-

motes EEG activity associated with waking (alpha, beta, gamma rhythms)

4) stimulation of the PPT cholinergic areas enhances waking rhythms such as 

gamma and beta (Steriade and Dossi 1991)

While stimulation of the cholinergic system promotes waking, lesion studies of the 

cholinergic systems have been mixed. Some studies have shown that large lesions to 

the cholinergic system is sufficient to produce some sleep-“like” changes on EEG, while 

others show no significant changes. The failure of lesion studies to produce EEG 

changes is likely from physiological redundancy between multiple arousal systems 

(Berntson, Shafi et al. 2002, Kaur, Junek et al. 2008).

To summarize, cholinergic nuclei in the BF and PPT fire during waking and REM and 

shut off during NREM sleep, and cholinergic stimulation is sufficient to generate waking 

activity on EEG. Thus, the cholinergic arousal system likely plays an important role in 

the generation of slow oscillations during the wake-sleep transition.

Hypothesis and Specific Aims
Why do focal temporal lobe seizures cause impairment of consciousness? We have 

presented evidence to support the notion that there is diffuse cortical suppression dur-
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ing partial seizures (see ‘Human EEG demonstrate…’ and ‘A rat seizure model’). Fur-

thermore, the appearance of a slow neocortical rhythm on EEG is reminiscent of slow 

oscillations seen during sleep, coma and anesthesia. It is plausible that focal temporal 

lobe seizures cause cortical depression by disrupting physiologic pathways important 

for maintaining arousal, such as those in the brainstem and basal forebrain.

To this end, we propose a network inhibition hypothesis to explain impaired con-

sciousness in focal temporal lobe seizures (Figure 2) (Blumenfeld and Taylor 2003, 

Blumenfeld 2012). This hypothesis states that focal temporal lobe seizures impair con-

sciousness by seizure spread to subcortical ‘inhibitory structures’, such as the lateral 

septum and anterior hypothalamus. These structures, rich in GABAergic connections to 

brainstem and basal forebrain arousal centers, suppress their firing during seizures 

(MESULAM and MUFSON 1984, Semba and Fibiger 1992, Varoqueaux and Poulain 

1999). The loss of tonic excitation from arousal centers leads to a phenomenon analo-

gous to a rapid wake-sleep transition in the cortex, producing neocortical slow activity 

on EEG and impairment of consciousness.

This hypothesis makes several testable predictions:

1) limbic and subcortical inhibitory structures such as the lateral septum and anteri-

or hypothalamus should increase their firing during focal temporal lobe seizures; 

whereas the cortex and subcortical arousal areas should decrease their firing

2) neurons located in arousal nuclei such as the cholinergic basal forebrain and 

PPT should have depressed firing rates during seizures

3) given suppression of arousal nuclei, arousal neurotransmitter levels should show 

decreases during seizures
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In this thesis, we present three experiments using a rat model ( Englot, Mishra et al. 

2008) to test these predictions. Previous experiments (Englot, Modi et al. 2009) had im-

aged rats using blood oxygen-level dependent functional magnetic resonance imaging 

(BOLD fMRI) during focal temporal seizures, but imaging had been limited to dorsal 

structures due to technological constraints. In particular, subcortical structures such as 

the upper brainstem were omitted. Here, we use an improved magnetic fMRI coil to ex-

pand our analysis of network activity to include more ventral structures to test prediction 

1. Second, using single unit recordings, we assess activity of single cholinergic neurons 

in the PPT and basal forebrain to test prediction 2. Finally, using enzyme-based amper-

ometry, we evaluate changes in choline, as a proxy for acetylcholine in the cortex and 

thalamus, where the basal forebrain and PPT project to test prediction 3. 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Methods
This section is adapted from (Motelow, Li et al. 2015).

Animal Preparation
All experiments were performed in compliance with institutional animal use policies. 

One hundred and thirty-eight adult Sprague-Dawley female rats (Charles River laborato-

ries) were used (10 for BOLD fMRI, 108 for juxtacellular recordings, 20 for choline 

recordings), weighing between 202-365 grams. All experiments shared a common pro-

tocol for 1) placement of the HC stimulating electrode 2) stimulation and 3) sacrifice, fix-

ation of tissue and immunohistochemistry.

Placement of hippocampal stimulating electrode 

All animals were anesthetized using ketamine (90 mg/kg) and xylazine (15mg/kg) 

and assessed by toe pinch every 15 minutes to ensure adequate depth of anesthesia. A 

bore hole was drilled and a biphasic electrode (E363/2-2TW, PlasticsOne for juxtacellu-

lar and choline recordings; ~0.1 MΩ, MicroProbes, WE(35)ST30.1A10 for fMRI experi-

ments) was placed at [anteroposterior (AP),-3.8; mediolateral (ML), 2.5; superior–inferi-

or (SI)], 2.6 relative to bregma. The stimulating electrode was cemented to the skull. In 

BOLD fMRI experiments, surgical placement of the hippocampal stimulating electrode 

occurred 6 days prior to imaging and at a 50 degree angle to allow greater proximity be-

tween the fMRI coil and the skull.  In juxtacellular recordings and choline recordings, an-
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imals were permitted to return to a light anesthesia phase for same-day seizure induc-

tion and experimentation, and a 70-90 degree angle of entry was used.

Seizure induction paradigm 

A 2 second long 60Hz biphasic pulse with 1 millisecond phases was delivered 

through the implanted hippocampal electrode (procedure described above), with current 

titrated to seizure threshold (between 200uA - 800uA in 200uA increments).

Animal sacrifice and histology 

After experimentation, animals were sacrificed using Euthasol (Virbac). Brains were 

harvested and analyzed histologically to confirm location of electrodes. For juxtacellular 

recording experiments, prior to brain harvesting rats were perfused with heparinized 

saline and 4% paraformaldehyde followed by immunohistochemistry (see Methods, jux-

tacellular recordings).

BOLD fMRI
Six days prior to experimentation, an MRI compatible hippocampal stimulating elec-

trode was placed (described above) and fixed to the skull using 2-4 nylon screws 

(MN-0265-015P-C, Small Parts, Inc.). On the day of experimentation, animals were 

anesthetized with a cocktail of ketamine and xylazine (90/15 mg/kg, i.m. q1 hour). Ani-

mals were paralyzed with d-tubocurarine (0.5 mg/kg initial dose, 0.25 mg/kg q2 hour 

maintenance, i.v; Sigma-Aldrich) to decrease motion artifact during imaging, tra-

cheotomized and artificially ventilated (70% air and 30% O2). The femoral artery was 
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cannulated (Intramedic PE50 tubing; Becton Dickinson)  to facilitate arterial-blood gas 

and pressure monitoring. Carbon fiver electrodes (EL254RT, BIOPAC Systems) were 

placed between the scalp and the skull in order to obtain scalp EEG.

fMRI imaging was acquired by a modified 9.4T system with Varian spectrometer (Ag-

ilent Technologies, Santa Clara, CA) using a custom 2 x 1 1H surface coil in two phas-

es: 1) anatomic imaging and 2) BOLD imaging. Anatomic images were obtained using 

either gradient echo or fast spin-echo in the coronal plain in 1mm slices. The resolution 

for acquired images was 0.1mm (superior-inferior) x 0.1mm (medial-lateral) x 1mm (an-

terior-posterior). BOLD data was acquired in the same plane using spin-echo contrast. 

BOLD images were acquired in 1 second with a 2 second delay between images. 

Therefore for a 600 second experiment, there were 200 BOLD acquisitions. Seizures 

(see induction paradigm above) initiated 1 minute after first acquisition.

t-Map analysis was performed using in-house software developed in Matlab (Math-

works Inc.). Data were masked to remove non-brain pixels. A ten point average BOLD 

signal was used as a baseline. A mean ictal map for each animal was computed and 

compared to baseline as a percent change. Statistics were calculated using a 1 sample 

t-test, taking a p value < 0.05 as a threshold for comparison.

Timecourse data were acquired for all ROIs bilaterally except for the intralaminar 

thalamus and hippocampus which were imaged on the right side only due to concern for 

interference from the L hippocampal stimulating wire. ROI were mapped on a high reso-

lution brain atlas. BOLD signal at each acquisition was computed as a percent change 

for each ROI. For group data, each run was aligned to seizure onset and the first thirty 

seconds were used to create an averaged curve (3 seconds per acquisition, 10 acquisi-
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tions total). From this thirty-second run, mean ictal change was calculated and com-

pared to baseline using a 1-sample t-test to test for significance, correcting with Holm-

Bonferonni for multiple comparisons.

Juxtacellular Recordings
For juxtacellular recordings, animals were prepared with a hippocampal stimulating 

electrode (as above, Animal Preparation, Placement of Hippocampal stimulating elec-

trode). Additionally, in order to measure intracranial EEG from cortex, rats were implant-

ed with a high impedance monopolar electrode in the lateral orbitofrontal cortex at a 20 

degree angle, coordinates: (AP, +4.2; ML, 2.2; SI, 2.4) relative to Bregma. Juxtacellular 

recordings were conducted as described previously (Pinault 1996). Briefly, glass elec-

trodes (World Precision Instruments, #1B150F-4) were pulled using a P-1000 horizontal 

puller (Sutter Instruments). Electrodes were bumped under a microscope to produce a 

resistance between 15-30MΩ. Electrodes were filled with neurobiotin (4%; Vector Labo-

ratories, SP-1120), in saline (0.9% NaCl). The pedunculopontine tegmental nucleus 

(PPT) and basal forebrain were targeted and cells recorded during partial seizures in-

duced using an electrical stimulus as described above (see Animal Preparation, Seizure 

induction paradigm). Single unit activity was recorded on an Axoclamp-2B amplifier 

(Molecular Devices). After recording activity during seizures, cells were labelled by in-

jecting neurobiotin during current pulses (5-200nA, pulse duration 150ms, 3Hz) as de-

scribed (Pinault 1996).

After experimentation, animals were sacrificed and perfused with paraformaldehyde 

as above (see Animal Preparation, Animal sacrifice and histology). Brainstem was cut at 

60 µM and approximately thirty slices were prepared using a vibratome (Leica, 
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VT1000S). Slices were incubated with cyanine-3 conjugated to streptavidin (1:1000, 

Jackson ImmunoResearch, #016-160-084) diluted in 5% donkey serum (D9663, Sigma-

Aldrich) in PBS-triton (PBS-T; 0.3% triton-X). Slices were washed x3 for 10 minutes in 

PBS. Slices were incubated with goat anti-choline acetyltransferase antibody (Millipore; 

1:500, #AB1449). Slices were washed x3 for 10 minutes in PBS. Slices were incubated 

with secondary antibody donkey anti-goat (Alexa Fluor 647). Slices were washed in 

PBS-T x3 for 10 minutes, then one PBS wash for ten minutes and mounted on glass 

slides for viewing.

Juxtacellular activity was recorded in Spike2 software and analyzed using in-house 

software programmed in Matlab (Mathworks Inc.). Analyses were grouped into three 

groups based on their cellular identity per immunhistochemistry: cholinergic, non-

cholinergic and unrecovered. Single unit activity during seizures was compared to thirty 

seconds of baseline activity using a paired t-test, corrected with Holm-Bonferroni for 

multiple comparisons.. Results are reported as mean change in firing rates ± standard 

error.

Enzyme-based amperometry
For choline recording experiments, all recordings were performed on amperometric 

biosensor probes (Quanteon) using a FAST system (FAST16-mkI, Quanteon). Sampling 

frequency is 2Hz. Three days prior to experimentation choline probes were prepared. 

Their preparation is described elsewhere in greater detail (Parikh, Pomerleau et al. 

2004). Choline probes are ceramic electrodes with four platinum pads (15x333 um; S2, 

Quanteon). Two pads are coated with choline oxidase (Sigma-Aldrich, C5896-100UN), 

which converts choline to hydrogen peroxide, an electron donor, which generates a cur-

Page �  of �22 61



rent which is captured by the platinum pads. The remaining two pads are not coated in 

choline oxidase, and capture background electrical noise. The subtraction of the two 

signals therefore represents the current attributable to choline only. To coat two pads in 

choline oxidase, choline oxidase is suspended in a mixture of bovine serum albumin 

(Sigma-Aldrich, C5896-100UN), glutaraldehyde (Sigma-Aldrich, G5882 -10x1ML) and 

applied under a light microscope to the bottom two electrode pads only. Electrodes are 

‘cured’ in the fridge for 48-72hrs to allow the enzyme to form a solid matrix.

On the day of experimentation, electrodes are plated in methyl-phenyldiamine (m-

PD; BRAND) via electropolymerization. m-PD is a size exclusion lattice which prevents 

large interferents such as dopamine and ascorbic acid from donating electrons. Elec-

trodes were calibrated by fixed voltage amperometry (supplementary Figure 2). A -0.7V 

voltage was applied between the electrode and a silver/silver chloride reference wire. 

Using sequential addition of the following substrates into a 40mL solution of PBS (final 

concentrations), current was recorded: ascorbic acid (250µM), choline (20, 40, 60µM), 

DA (2µM) and H2O2 (8.8µM). Only electrodes that met the following calibration criteria 

were used for experimentation: > 5 pA/µM sensitivity for detecting choline on the coated 

electrodes, limit of detection (LOD) < 350 nM choline, ratio of selectivity for choline and 

AA, >180:1, linearity for detection of increasing analyte concentrations (20-60 µM) on 

coated electrodes, R2 > 0.99.

Animals were prepared with a hippocampal stimulating electrode as above (see An-

imal Preparation, Placement of Hippocampal stimulating electrode). Additionally, in or-

der to measure intracranial EEG from cortex, rats were implanted with a high im-

pedance monopolar electrode in the lateral orbitofrontal cortex at a 20 degree angle, 
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coordinates: (AP, +4.2; ML, 2.2; SI, 2.4) relative to Bregma. Choline recording elec-

trodes were lowered into LOF until “pockets” of choline signal were identified (by sud-

den rises in current). Peaks were allowed to normalize to baseline before seizures were 

initiated, using the above stimulation paradigm (see Animal Preparation, Seizure Induc-

tion Paradigm). After seizures, animals were given further anesthesia and seizures and 

toe pinches were administered: 1 minute toe clamp, 2 minutes release, 1 minute toe 

clamp. After experimentation, animals were sacrificed as above.

Results were smoothed using a 10 point moving average. Signal “drift” (very low fre-

quency oscillations between 0.01 to 0.001Hz) was removed by subtracting a 400 point 

average. A large artifact was produced in the first 5s of seizure by 2s hippocampal stim-

ulation. This artifact was removed for statistical purposes so as not to skew the drift cor-

rection. A thirty second baseline was compared to mean ictal choline signal after dis-

carding the first 12.5s to allow for achievement of steady state. Baseline was also com-

pared to toe pinch after the first 25s to achieve steady state. Data were compared using 

paired t-tests, correcting for multiple comparisons using the Holm-Bonferroni correction.

Student Contribution
Enzyme-based amperometry had been used in other in vivo settings, but prior to this 

study had never been used to probe choline levels during seizures (Parikh, Kozak et al. 

2007, Parikh, Ji et al. 2010). This author optimized and modified the original protocol 

(Parikh, Pomerleau et al. 2004) for use in an in vivo animal seizure model, which en-

tailed maintaining a library of more than fifty biosensor probes and maintaining and 

teaching the electrode preparation protocol to others in the laboratory. This author per-
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formed in vivo choline recordings in twelve animals, which generated 42% of data re-

ported in the Choline Recordings section of this thesis (n=4 for choline recordings dur-

ing partial seizures, n=4 for choline recordings during generalized seizures n=4 for 

choline recordings during toe pinch). This writer also assisted in preparation of choline 

recording figures, and prepared figure 2. 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Results
fMRI shows decreased BOLD activity in arousal centers

Previous work in our lab demonstrated subcortical BOLD increases and cortical 

BOLD decreases during partial seizures in rats (Englot, Modi et al. 2009). However, due 

to technical limitations, ventral structures such as the anterior hypothalamus and mid-

brain tegmentum were poorly visualized. In order to clarify activities in ventral regions 

during partial seizures, we performed fMRI using an improved fMRI coil in rats during 

partial seizures (n=10 animals, 34 seizures, mean seizure duration: 70.72±4.01 sec-

onds) induced by an electrical stimulus delivered to the hippocampus as described pre-

viously (Englot, Mishra et al. 2008, Englot, Modi et al. 2009).

Our t-map BOLD results indicate decreases in the lateral orbitofrontal cortex (LO) 

and increases in the hippocampus, which is consistent with prior investigations (Englot, 

Mishra et al. 2008, Englot, Modi et al. 2009). However, our t-map data also demonstrate 

BOLD decreases in the intralaminar thalamus, midbrain tegmentum and anterior hy-

pothalamus, areas which have been traditionally implicated in arousal (figure 3) (Steri-

ade, McCormick et al. 1993, Saper, Scammell et al. 2005).

In order to clarify the time course of these changes, we repeated the analysis while 

quantifying BOLD changes in these regions of interest (ROI) as a function of time: the 

lateral orbitofrontal cortex, the hippocampus, the intralaminar thalamus, the anterior hy-

pothalamus, and the midbrain tegmentum (figure 3). We also selected the lateral sep-

tum as an ROI given previous work implicating this area in the generation of cortical 
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slowing (Englot, Modi et al. 2009). We observed ictal BOLD increases in three regions: 

the hippocampus, lateral septum and anterior hypothalamus (figure 4), followed by de-

cline post-ictally and eventual return to baseline (figure 4). We observed ictal BOLD de-

creases in three regions: the lateral orbitofrontal cortex, the midbrain tegmenjtum and 

the intralaminar thalamus, followed by continued post-ictal decrease and eventual return 

to baseline (figure 4).

Cholinergic neurons in a brainstem arousal center demon-
strate suppression of firing by juxtacellular recordings dur-
ing seizures

Since fMRI demonstrated BOLD decreases in midbrain tegmentum, we speculated 

that a nucleus located in this region, the pedunculopontine tegmental nucleus (PPT), 

may show depressed activity during partial seizures. The PPT is a heterogeneous nu-

cleus harboring both cholinergic and non-cholinergic populations (Hallanger and Levey 

1987, Semba and Fibiger 1992). Cholinergic neurons in the PPT have been implicated 

in the sleep-wake transitions (Steriade, Datta et al. 1990, Steriade and Dossi 1991). We 

reasoned that the PPT may be involved in the generation of cortical slow waves during 

partial seizures. In order to determine whether there was depression of activity in the 

PPT during partial seizures, we performed single-cell recordings of PPT neurons.

A representative recording for a cholinergic PPT neuron is shown (Figure 5). Neuro-

biotin is injected via the single-cell recording electrode, marking the cell during histology. 

This neuron costains with choline acetyltransferase, which is a marker for cholinergic 

neurons (Figure 5b). At baseline, the cell is tonically firing (Figure 5a). However, during 

a seizure, there are slow oscillations in the cortex (as described previously (Blumenfeld, 
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McNally et al. 2004, Englot and Blumenfeld 2009)), and a decrease in firing in this cell. 

Post-ictally, cell firing normalizes after a period of recovery.

Other cholinergic cells (n=8, 8 animals) in the PPT displayed a similar pattern of ictal 

suppression followed by postictal recovery and eventual normalization (figure 7a-b; 

mean ictal change in firing rate -2.31 ± 0.71 Hz, paired t-test corrected by Holm-Bonfer-

roni method, P < 0.05). By contrast, non-cholinergic cells (n=21, 19 animals) in the PPT, 

thought to consist primarily of glutamatergic and GABAergic cell populations, in aggre-

gate showed no significant change from baseline firing (fig 7c-d; mean change +1.04 ± 

3.45 Hz, paired t-test corrected by Holm-Bonferroni method, P > 0.05).

Given suppression of activity in cholinergic neurons in the PPT during partial 

seizures, we speculated that basal forebrain (BF) cholinergic neurons may also alter 

their firing patterns during seizures. The basal forebrain and the PPT are the two major 

outputs for acetylcholine in the brain (Brown, Basheer et al. 2012). Like the PPT, basal 

forebrain cholinergic neurons have also been shown to be important for sleep-wake 

transitions (Duque and Balatoni 2000, Szymusiak, Alam et al. 2000, Lee, Hassani et al. 

2005). To probe activity of BF neurons during seizures, we performed single-cell record-

ings on these cells.

Like PPT neurons, we observed decreases in firing during seizures in BF cholinergic 

neurons (figure 7e-f; mean change in firing rate: -4.36 Hz ± 1.01 Hz; Holm-Bonferonni 

corrected, paired t-test, P < 0.05; 7 neurons from 6 animals; mean seizure duration: 

77.21 seconds ± 16.17 seconds.). An example recording is depicted (figure 6).

In-non cholinergic BF neurons, some cells increased in firing, decreased, or re-

mained the same.  In the aggregate, cells showed no significant change from baseline 
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firing was observed (figure 7g-h; mean change in firing rate -1.97 Hz ± 1.71 Hz; paired t-

test, uncorrected P = 0.4; 18 neurons from 12 animals, mean seizure duration: 86.61 

seconds ± 10.16 seconds)

Choline recordings from the thalamus and cortex demon-
strate decreases during partial seizures

The primary components of the cholinergic arousal system are the PPT and the 

basal forebrain (Steriade, McCarley et al. 2005, Brown, Basheer et al. 2012). The 

cholinergic basal forebrain projects primarily to cortex, while the cholinergic PPT 

projects to the thalamus (Hallanger and Levey 1987, Gritti and Mainville 1997). Having 

demonstrated suppression of cholinergic PPT neurons by single cell recordings (Figures 

5-7), we sought to determine whether this suppression leads to detectable changes in 

levels of acetylcholine in thalamus and cortex.

To probe acetylcholine levels in the cortex and thalamus, we employ an enzyme-

based amperometry assay. Traditional techniques such as microdialysis have a tempo-

ral resolution on the order of minutes (Marrosu, Portas et al. 1995). Since seizures pro-

duced in our model averaged approximately one minute in length, we reasoned that the 

temporal resolution of microdialysis was insufficient to capture what were likely rapid 

changes in acetylcholine levels on the order of seconds. Enzyme-based amperometry 

samples choline, as a proxy for acetylcholine at 2Hz, allowing for more rapid detection 

of changes in acetylcholine.

An example choline trace, recording from the lateral orbitofrontal cortex is depicted 

in figure 9. Partial seizures induced by hippocampal stimulation induce hippocampal 
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polyspiking activity and cortical slow oscillations (Figure 9b). After a brief stimulus arti-

fact, in which signal rises in all four leads, the reference electrodes normalize to base-

line whereas the choline-oxidase coated electrodes  demonstrate decreases with even-

tual normalization several minutes post-ictally (figure 9a). The subtracted choline signal 

(blue line), representing the subtraction of the choline-oxidase-coated electrodes from 

the reference electrodes demonstrate choline decreases ictally, with eventual normal-

ization after approximately five minutes.

In the aggregate (n=6 animals), choline signal decreased significantly during 

seizures when recording from the lateral orbitofrontal cortex (Figure 10a; -0.086 ± 0.032 

μM, paired t-test corrected by Holm-Bonferroni method, P < 0.05). Choline recordings 

from the intralaminar CL nucleus thalamus also demonstrated significant choline de-

creases (Figure 10c; n=5 animals, -0.031 ± 0.009 μM, paired t-test corrected by Holm-

Bonferroni method, P < 0.05).

While we had validated the fidelity of our assay in vitro (figure 8) to detect changes 

in choline concentration, we sought to validate the fidelity of our assay in vivo. Having 

shown that the assay is sensitive to choline decreases, we sought to measure choline in 

vivo under conditions in which we would expect choline to increase: 1) secondarily gen-

eralized seizures and 2) toe pinch. We reasoned that secondarily generalized seizures, 

involving excitatory activity in many brain regions, may spread to cholinergic neurons 

and cause choline increases in the thalamus in cortex. As a physiologic in vivo control, 

we also employed toe pinch, which is known to increase firing in cholinergic PPT neu-

rons and increase cortical acetylcholine (Boucetta and Jones 2009).
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Our choline recordings from generalized seizures show significant increases when 

recording from both the LO cortex and intralaminar CL nucleus in the thalamus (figure 

10b,d,e; LO cortex: 5 animals, +0.076 ± 0.011 μM, paired t-test corrected by Holm-Bon-

ferroni method, P < 0.05; thalamus: 7 animals, +0.030 ± 0.009 μM, paired t-test correct-

ed by Holm-Bonferroni method, P < 0.05). Our choline recordings during toe pinch show 

significant increases in the cortex and thalamus as well (Fig. 10e; cortex: 9 animals, 

+0.122 ± 0.032 μM, paired t-test corrected by Holm-Bonferroni method, P < 0.05; thal-

amus: 8 animals, +0.040 ± 0.014 μM, paired t-test corrected by Holm-Bonferroni 

method, P < 0.05).
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Discussion
Why do complex partial seizures cause impaired consciousness? Here, we present 

findings that support a network inhibition hypothesis (Blumenfeld and Taylor 2003, Blu-

menfeld 2012): focal seizures originating in the hippocampus cause inhibition of arousal 

systems leading to long-range deactivation of the cortex. First, we find BOLD fMRI sig-

nal increases in the hippocampus and lateral septum, alongside BOLD decreases in the 

cortex which replicates prior studies in rodents (Englot, Mishra et al. 2008, Englot, Modi 

et al. 2009). We also find BOLD decreases in the midbrain tegmentum, which has not 

been observed previously and suggests that the reticular activating systems may be 

suppressed during seizures. Given the possibility of suppressed activity in reticular acti-

vating systems during seizures, we probed the cholinergic neurons in PPT and basal 

forebrain, given the importance of cholinergic nuclei in sleep-wake transitions (Steriade, 

Datta et al. 1990, Steriade and Dossi 1991, Steriade, Amzica et al. 1993). There, we 

find marked depressed activity in cholinergic PPT and basal forebrain neurons during 

seizures. By contrast, we failed to observe an aggregate change in the firing patterns of 

non-cholinergic. Finally, to correlate decreased firing in these nuclei with neurotransmis-

sion, we assessed choline, as a proxy for acetylcholine, in the cortex and thalamus. We 

find transient choline decreases during seizures. Taken together, these findings provide 

strong evidence that suppression of arousal is an important mechanism for impaired 

consciousness during focal temporal lobe seizures.
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Our theory coheres with current clinical findings in patients with partial seizures. A 

recent study examined responsiveness across multiple response domains in patients 

experiencing partial seizures (e.g. ability to recall name, identify a watch etc.) (Cunning-

ham, Chen et al. 2014). Interestingly, the authors found that responsiveness across 

domains was either more or less preserved or entirely impaired. The bimodal distribu-

tion of partial seizures is consistent with the notion that complex partial seizures are 

disorders of arousal, affecting all domains of brain activity globally, rather than selective 

impairment of individual domains.

Our theory is discrepant with a recent imaging study of patients during sleep. In a 

study of 14 human subjects, the authors of this study report activity BOLD signal in-

creases within frontal areas during slow oscillations in NREM sleep (Dang-Vu 2008). 

This finding contrasts with our interpretation of BOLD decreases in cortex of rodents as 

evidence of a transition to a sleep-like state. However, one explanation for the discrep-

ancy is our different comparison groups. In their study, they compare BOLD signal dur-

ing slow oscillations to non-slow oscillation rhythm, though both signals are recorded 

during NREM sleep. This finding is nonetheless compatible with an overall signal de-

crease from waking to NREM sleep. Indeed, multiple studies by PET and fMRI validate 

this position (Braun, Balkin et al. 1997, Maquet 2000, Nofzinger, Buysse et al. 2002, 

Kaufmann, Wehrle et al. 2006). Thus, this study does not contradict our interpretation of 

BOLD signal decreases during partial seizures as evidence of a sleep-like state.

A limitation of our series of experiments was that we did not demonstrate a causal 

relationship between suppressed arousal and impaired consciousness. However, com-

plementary studies do support a causal relationship. Optogenetic stimulation of PPT 
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cholinergic neurons decreases slow activity during seizures in rats (Furman, Motelow et 

al. 2013). Furthermore, thalamic stimulation of the intralaminar CL nucleus, a target of 

PPT cholinergic neurons, reduces slowing and prevents behavioral arrest during 

seizures (Gummadavelli, Motelow et al. 2014). It is unlikely that suppression of the 

cholinergic system alone is sufficient to generate cortical slowing and impaired con-

sciousness since lesioning the basal forebrain or the PPT produces only modest effects 

on the EEG and behavior (Berntson, Shafi et al. 2002, Kaur, Junek et al. 2008). The ab-

sence of a dramatic response in lesion studies is likely a result of redundancy in multiple 

arousal systems including orexin, norepinepherine, dopamine, serotonin (Saper, 

Scammell et al. 2005, Steriade, McCarley et al. 2005, Brown, Basheer et al. 2012). The 

response of these other arousal systems during seizures is unknown and worthy of fur-

ther investigation.

Future directions
The finding that an arousal system is suppressed during seizures raises a number of 

additional questions. We have advanced a theory that seizure spread to nearby inhibito-

ry structures causes deactivation of arousal systems. However, the identity of these in-

hibitory structures is unknown. Our BOLD data suggest that the anterior hypothalamus 

and the lateral septum are candidate regions, given that they demonstrate BOLD in-

creases during seizures and are known to be rich in GABAergic neurons (MESULAM 

and MUFSON 1984, Semba and Fibiger 1992, Varoqueaux and Poulain 1999, McGinty 

and Szymusiak 2001). Furthermore, lesioning the fornix in rats, the connection between 

the hippocampus and lateral septum, abolishes ictal neocortical  slowing and stimulation 

of the lateral septum alone is sufficient to produce neocortical slowing (Englot, Modi et 
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al. 2009). Future investigations into these and other candidate areas will be helpful in 

clarifying the mechanism of impaired consciousness in focal seizures and providing new 

targets for intervention.

Another question this finding raises is whether chronic pathological suppression of 

an arousal system (i.e. repeat seizure episodes) induces plastic changes. For example, 

patients with epilepsy have a higher incidence of comorbid dysomnias and report poorer 

quality of sleep (Bazil 2003, Weerd, Haas et al. 2004). This observation has typically 

been attributed to reduction in sleep quality from anti-epileptic medications (Gigli, Placidi 

et al. 1997).  However, our study raises the possibility that long term synaptic changes 

in this hippocampal-arousal system circuit may underpin sleep disturbances in patients 

with TLE. One approach to begin investigating this possibility would be to probe for dif-

ferences in patterns of gene expression before and after repeat induced seizures in 

rats. Regions of interest would be areas predicted to be excited during hippocampal 

seizures (lateral septum, anterior hypothalamus) and suppressed (basal forebrain, 

PPT). DNA microarray has emerged as a powerful tool of interrogating gene expression 

changes in the setting of neuronal plasticity (Tropea, Kreiman et al. 2006, Cazzin, Mion 

et al. 2011). Comparing DNA microarrays may provide a window into candidate genes 

and perhaps an opportunity to reverse or prevent potentially pathological plastic 

changes from repeat seizures.

Similarly, this finding also casts a familiar clinical observation seen in patients with 

TLE in a new light. Sleep deprivation is classically cited as a trigger for seizures in 

epileptic patients (Rajna and Veres 1993, Bazil 2003, Badawy, Curatolo et al. 2006, 

Haut, Hall et al. 2007). Is it possible that sleep deprivation could drive the hippocampal-
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arousal circuit in reverse? One important investigation to shed light on this question 

would be to examine the behavior of the ventrolateral preoptic nucleus (VLPO) during 

seizures. The VLPO has a number of reciprocal connections with arousal nuclei, includ-

ing the PPT, and it seems to act as a barometer of sleep deprivation: firing rate more 

than quadruples at the initiation of sleep after a period of sleep deprivation (Saper, Chou 

et al. 2001)

Finally, this finding raises important possibilities for new interventions in treatment 

refractory TLE. Epilepsy is a debilitating condition which impairs a patient’s ability to dri-

ve, work, learn and function in a social context (Sperling 2004, Drazkowski 2007). Al-

though epilepsy is a condition with effective pharmacologic treatment, a considerable 

portion of patients are treatment resistant, with estimates as high as 25% (Picot, Baldy-

Moulinier et al. 2008). In this treatment-refractory population, can we prevent loss of 

consciousness during partial seizures? This study suggests a number of promising av-

enues for intervention. First, this work implies that complex partial seizures are disor-

ders of arousal. An arousal-promoting medication such as modafinil may improve alert-

ness during seizures (Ballon and Feifel 2006). A second possibility is deep brain stimu-

lation of arousal-promoting regions during seizures to prevent loss of consciousness. 

Indeed, a proof-of-concept study demonstrates that stimulation of the CL nucleus of the 

thalamus in rats during partial seizures maintains arousal (Gummadavelli, Motelow et al. 

2014).

Conclusion
What is consciousness and how does it arise from the human brain? For neuro-

science, this problem has fascinated researchers for decades. Importantly, for patients, 
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this problem can have severe impact on quality of life. Here, in this series of experi-

ments, we scratch the surface of this question. We demonstrate, for the first time, the 

suppression of an arousal center during a focal temporal lobe seizure in rats. Based on 

this finding, we propose a new paradigm for how we understand partial seizures: some 

partial seizures, it would seem, put patients transiently to sleep. 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Appendix 1: a primer on enzyme-based amperometry
In this thesis, we present three experiments to investigate the cause of impaired 

consciousness in temporal lobe epilepsy. Two of these experiments rely on established 

experimental methods: BOLD fMRI and juxtacellular recordings. However, one experi-

ment employs enzyme based amperometry, a relatively novel technique, which is wor-

thy of further discussion. Here, we review the rationale for enzyme-based amperometry 

in the context of this particular scientific problem, the mechanism of choline detection, 

the extent of its validation with controls and finally its limitations. We conclude that am-

perometry is the most appropriate assay to study this scientific problem particularly giv-

en the limitations of its alternatives such as microdialysis.

We have proposed a network inhibition hypothesis for impaired consciousness dur-

ing partial temporal lobe seizures (figure 2). One prediction of this hypothesis is that 

suppression of arousal centers during partial seizures leads to decreased levels of 

arousal neurotransmitters in the cortex, such as acetylcholine. Therefore, we sought a 

method to capture changes in acetylcholine levels during seizures.

Microdialysis is a technique pioneered in 1985 and relies on the principle that the 

concentration of a substrate of interest (e.g. acetylcholine) should equilibrate between 

two fluid compartments separated by a semi-permeable membrane (Osborne, O'Connor 

et al. 1991, Pepeu and Giovannini 2004, Nirogi, Mudigonda et al. 2010). Exploiting this 

principle, the investigator inserts a probe consisting of a dialysis membrane at its tip into 

a brain region of interest, and draws off serial vials of dialysate. Acetylcholine concen-
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tration is then probed by analytic chemistry, typically high-performance liquid chro-

matography, though other techniques are under development (Wang, Roman et al. 

2009, Nirogi, Mudigonda et al. 2010). This technique is highly sensitive (lower limit of 

detection of 50µM) (Wang, Roman et al. 2009) and well-validated in live animals (mOs-

borne, O'Connor et al. 1991, Williams and Comisarow 1994, Marrosu, Portas et al. 

1995). However, one feature of this assay which limits its application to our scientific 

problem is its temporal resolution: established microdialysis techniques can sample, at 

best, once every 2.4 minutes (Schultz and Kennedy 2008, Wang, Roman et al. 2009). 

Problematically though, induced seizures are transient events (in our model, the aver-

age seizure length was ~1 minute, see Results). We reasoned that any changes in 

acetylcholine, if present, would happen within this time frame, meaning that a sampling 

rate of once per 2.4 minutes may conceivably miss rapid changes. This limitation made 

microdialysis less than ideal for the study of ictal acetylcholine concentrations.

Recently, an enzyme-based microelectrode assay to detect choline, as a proxy for 

acetylcholine, was developed (Burmeister, Palmer et al. 2003). Electrochemical meth-

ods, broadly speaking, involve converting a non-electroactive substrate of interest (such 

as choline) into an electroactive reporter such as hydrogen peroxide. An electrode 

probe then detects current generated by the reporter, the magnitude of which can then 

be back-correlated to the concentration of the substance of interest. For the choline 

probes, Burmeister and colleagues apply a choline oxidase coating (which converts 

choline to hydrogen peroxide) to a micro electrode (figure 11). Then, using known con-

centrations of choline in vitro, investigators can generate a choline-response curve 

which can be extrapolated to infer concentrations of choline in vivo (a sample calibra-
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tion, figure 8). Importantly, this electrochemical technique has a theoretical temporal 

resolution upwards of 20,000Hz, though it has been currently validated up to 2Hz 

(Parikh, Pomerleau et al. 2004).

One historical limitation of this technique is that electroactive interferents in the ex-

tracellular space such as ascorbic acid and dopamine typically drown out the signal. To 

overcome this pitfall, they make two additional modifications (Parikh, Pomerleau et al. 

2004). First, a size exclusion lattice of methyl-phenyl diamine is applied to prevent pen-

etration of interferents into the electrode space. Second, each choline-oxidase channel 

(a total of two per electrode) is normalized to a non-choline oxidase coated channel, fur-

ther improving signal-to-noise ratio.

Electrochemical choline probes have been validated in both exogenous and en-

dogenous control paradigms. Exogenous addition of choline and acetylcholine into the 

same stereotactic space as the choline probe produced spikes in current (Parikh, 

Pomerleau et al. 2004, Parikh, Apparsundaram et al. 2006). Potassium chloride, a de-

polarizing agent, also produced choline spikes, presumably due to depolarization of the 

presynaptic cell and acetylcholinergic vesicular fusion (Parikh, Apparsundaram et al. 

2006). Finally, various biochemical manipulations produced their expected results: 1) 

application of the acetylcholinesterase inhibitor neostigmine decreased choline signal 

(due to decreased breakdown from acetylcholine to choline) 2) addition of 

tetrodotoxin-1, an agent which prevents vesicular fusion, decreased choline signal and 

3) the addition of hemicholinum-3, a presynaptic choline reuptake inhibitor, causes in-

crease in choline concentration (Parikh, Kozak et al. 2007). Taken together, these find-

ings argue in favor of the robustness of this assay.
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Since its initial introduction, choline biosensors have been employed in several sci-

entific studies to yield novel scientific insights. In one study, investigators found that 

acetylcholine spikes in the cortex (as detected by choline biosensors) predicted cue de-

tection in rats (Parikh, Kozak et al. 2007). Another study found that in dopamine trans-

porter knocked-down mice, there is decreased capacity for choline reuptake, which was 

inferred from experiments performed using these probes (Parikh, Apparsundaram et al. 

2006). Finally, investigations into glutamate neurotransmission employing electrochemi-

cal probes with the same basic design have yielded important insights into altered glu-

tamate signaling in animal models of Parkinson’s (Fan, Zhao et al. 2014). Despite the 

relative novelty of the technique, electrochemical sensors have been quickly assimilated 

into the neuroscientist toolkit.

One main criticism of enzyme-based amperometry is that choline (which is directly 

measured) is not necessarily a reliable proxy for acetylcholine. For instance, varying 

concentrations of acetylcholinesterase at the synapse could conceivably impact the rate 

of generation of choline. While it is true that there may be theoretical conditions under 

which choline and acetylcholine concentrations uncouple, this is unlikely to make an 

measurable difference in the physiologic context. Acetylcholinesterase has the highest 

rates of turnover of any enzyme with a KES of 104 s-1, which is equivalent to  25,000 

molecules of acetylcholine converted per molecule of acetylcholinesterase per second 

(Quinn 1987). Therefore, even wide variation in concentrations of acetylcholinesterase 

are unlikely to limit the reaction rate and therefore the generation of choline from acetyl-

choline. Furthermore, in this study, we seek to answer a question with a qualitative an-

swer: whether or not cortical and thalamic choline decreases, increases or remains the 
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same during hippocampal seizures. While reaction kinetics and local variation in recep-

tor count/acetylcholinesterase concentration may impact the quantity of choline gener-

ated, it will not affect the direction of the relationship (e.g. choline will not decrease in 

the face of choline increases). For these reasons, we find that enzyme-based amper-

ometry is better suited to this scientific problem than microdialysis. 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Appendix 2: Figures

Figure 1: human intracranial EEG during focal temporal lobe seizures demonstrates neocortical 
slow activity. A representative intracranial EEG trace from various cortical leads at temporal lobe 
seizures onset (A), 30 seconds into seizure (B), 60 seconds into seizure (C) and post-ictally at 
100s (D). The seizure ends at 98s. Seizure activity in the temporal lobe is accompanied by slow 
activity most prominently in lateral and orbitofrontal leads thirty seconds after seizure onset (B). 
The occipital and perirolandic areas are relatively spared. The phenomenon continues post-ic-
tally. Mes T - mesial temporal; Lat T - lateral temporal; OF - orbitofrontal; Lat F - lateral frontal; 
Med F - medial frontal; Lat P - lateral parietal; C - perirolandic; O - occipital. Adapted from (Blu-
menfeld, Rivera et al. 2004) 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Figure 2: Network inhibition hypothesis. (1) Hippocampal seizures spread via the fornix to in-
hibitory structures such as the hypothalamus and lateral septum. (2) These inhibitory structures 
suppress subcortical arousal systems such as the pedunculopontine tegmental nucleus (PPT) 
and basal forebrain, causing decreased excitatory drive to the cortex (3).
This hypothesis makes three predictions
(A) increased activity in the hippocampal seizure focus and inhibitory structures such as the lat-

eral septum and hypothalamus and decreased activity in brainstem arousal centers, the 
thalamus and the cortex

(B) suppression of firing of brainstem arousal nuclei such as the PPT and basal forebrain during 
seizures

(C) decreases in acetylcholine in the thalamus and cortex during seizures
ACh - acetylcholine; BF - basal forebrain; Glu - glutamate; HC - hippocampus; HT - hy-
pothalamus; S - lateral septum; PPT - pedunculopontine tegmental nucleus. 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Figure 3: BOLD signal changes during focal hippocampal seizures. BOLD signal is superim-
posed on coronal sections, where red represents signal increases and blue represents de-
creases. There are signal increases in the hippocampus which is the site of the seizure stimu-
lus, as well as increases in anterior hypothalamus and septum, which are known to contain 
many GABAergic neurons (MESULAM and MUFSON 1984, Varoqueaux and Poulain 1999). 
There are prominent decreases in frontal cortex and centrolateral thalamus, as well as midbrain 
tegmentum which contains among other structures, the superior portion of the brainstem reticu-
lar activating system., which contains Ant hyp - anterior hypothalamus; CL - thalamic centrolat-
eral nucleus; HC - hippocampus; LO/VO - lateral orbitofrontal/ventral orbitofrontal cortex; MT - 
midbrain tegmentum. Taken from (Motelow, Li et al. 2015). 

Page �  of �45 61



Figure 4: Region of interest (ROI) time course analysis reveals that signal increases and de-
creases occur ictally with eventual normalization. (A) ROI targeted for this analysis shown on 
representative coronal sections. (B) ROI averaged time courses (±SEM) for thirty seconds of 
baseline prior to seizure, during seizure, post-ictally and during recovery. Note ictal increases in 
hippocampus, septum and anterior hypothalamus and decreases in lateral orbitofrontal, CL nu-
cleus and midbrain tegmentum. These changes normalize after a recovery period. (C) Mean 
ictal signal change (±SEM).  All changes are significant as compared to baseline. Ant Hyp - an-
terior hypothalamus; CL - thalamic centrolateral nucleus; LO - lateral orbitofrontal cortex; MT - 
midbrain tegmentum. Taken from (Motelow, Li et al. 2015). 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Figure 5: a representative pedunculopontine tegmental (PPT) nucleus cholinergic neuron 
demonstrates depressed firing during seizures. (A) simultaneous multi-unit (MUA), single-unit 
(SUA) and local field potential (LFP) recordings capture changes in neurophysiologic properties 
during seizures. Recording from the hippocampus (HC) LFP demonstrates baseline activity, fol-
lowed by a stimulus (black box), followed by polyspiking activity of a seizure (inset magnified) 
followed by quiescence post-ictally. LFP recording from the lateral orbitofrontal cortex (LO) 
demonstrates baseline fast activity but slow activity following the hippocampal stimulus, contin-
ued slow activity post-ictally, with eventual normalization (recovery). MUA recordings from the 
LO demonstrate characteristic synchronous firing with the depth-positive and depth-negative 
portions of the wave recorded from the LFP trace, consistent with the up and down states of 
slow oscillations, respectively. Single unit recordings from one cell in the PPT demonstrate 
marked decreases in firing during seizures as compared with baseline, with eventual normaliza-
tion post-ictally. (B) Cell stained with neurobiotin (NB; left panel) indicates recorded cell from 
single unit recording. Cell stained with choline acetyltransferase (ChAT; middle panel), a marker 
for cholinergic neurons. Images overlayed (right panel). Taken from (Motelow, Li et al. 2015). 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Figure 6: a representative basal forebrain (BF) cholinergic neuron demonstrates depressed fir-
ing during seizures. (A) simultaneous multi-unit (MUA), single-unit (SUA) and local field potential 
(LFP) recordings capture changes in neurophysiologic properties during focal limbic seizures. 
Single unit recordings from the BF demonstrate marked decreases in firing during seizures as 
compared with baseline, with eventual normalization post-ictally. (B) Cell stained with neurobi-
otin (NB; left panel) indicates recorded cell from single unit recording. Cell stained with choline 
acetyltransferase (ChAT; middle panel), a marker for cholinergic neurons. Images overlayed 
(right panel). Taken from (Motelow, Li et al. 2015). 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Figure 7: pedunculopontine tegmental nucleus (PPT) and basal forebrain (BF) cholinergic neu-
rons have depressed firing rates while non-cholinergic neurons are mixed. Single unit record-
ings from cholinergic PPT neurons (A and B), non-cholinergic PPT neurons (C and D), choliner-
gic BF neurons (E and F), and non-cholinergic BD neurons (G and H) during baseline activity, 
seizures, post-ictally and during recovery. Firing represented as a raster plot and mean firing 
rates histogram. Note decreases in firing rates during seizures in PPT and BF cholinergic neu-
rons only (A and B, E and F).
Baseline panels show thirty seconds prior to seizure, seizure panels show first thirty seconds of 
seizure, post-ictal panels show first thirty-seconds after the end of the seizure and recovery 
panels show  thirty seconds prior to reapplication of anasthetic or neuronal labelling by juxtacel-
lular method. Firing rates are binned by 1 second. Taken from (Motelow, Li et al. 2015). 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Figure 8: sample in vitro calibration of a choline-detecting biosensor electrode. Biosensor 
probes are ceramic electrodes with four platinum channels. Two channels are coated in choline 
oxidase, which converts choline to hydrogen peroxide which generates a current. Two channels 
are uncoated and act as ‘sentinel’ pads, capturing background noise. The subtraction between 
the mean signal of the two sets of channels represents the current attributable to choline alone.
Here, the electrodes are suspended in a beaker containing PBS. The addition of 250µM ascor-
bic acid (AA) does not alter currents since a size exclusion layer of methyl-phenyldiamine (m-
PD) prevents entry of AA to the platinum pads. Three additions of 20µM choline (Chol) produces 
step-wise signal increase in the choline-oxidase coated pads only. The addition of 2µM 
dopamine (DA) does not alter current since it is also excluded by the m-PD layer. Addition of 
8.8µM hydrogen peroxide (H2O2) yields signal increase in all four pads. Taken from (Motelow, Li 
et al. 2015). 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Figure 9: choline signal decreases during seizures in the lateral orbitofrontal cortex. A sample 
set of recording from a representative animal during an electrically induced limbic seizure. (A) 
after a brief stimulus artifact, choline-oxidase coated channels demonstrate ictal decreases in 
current (red line), with eventual return to baseline (not shown). Non choline-oxidase coated 
electrodes (green line) reflect the stimulus artifact but return to baseline levels during seizures. 
The subtracted choline signal (blue line) subtracts the stimulus artifact and demonstrates ictal 
decreases. (B) Simultaneous recording from the hippocampus (HC) and lateral orbitofrontal 
(LO) cortex using local field potential electrodes (LFP). After the electrical stimulus LFP traces 
from the hippocampus demonstrate polyspking activity while LFP traces from the lateral or-
bitofrontal cortex demonstrate slow activity. Lower insets depict magnified traces. Taken from 
(Motelow, Li et al. 2015). 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Figure 10: choline signal in the lateral orbitofrontal cortex (LO) and thalamus (Thal) decreases 
during partial seizures, and increases during generalized seizures and in response to toe pinch.
(A and C): mean choline signal ± SEM during electrically-stimulated partial seizures decreases 
in the lateral orbitofrontal cortex and thalamus. Choline signal shown for thirty second periods 
during baseline (Bs), seizure (Sz), post-ictally (PI) and in recovery (Rec).
(B and D): mean choline signal ± SEM during electrically-stimulated secondarily generalized 
seizures increases in the lateral orbitofrontal cortex and thalamus. Secondarily generalized 
seizures can be electrically induced in the same manner as partial seizures by increasing the 
current delivered to the hippocampus. Choline signal increases during generalized seizures.
(E): mean ictal changes in the lateral orbit frontal cortex and thalamus during partial, general-
ized seizures and toe pinch. All changes are statistically significant (paired t-tests, corrected with 
Holm-Bonferroni, P < 0.05). Taken from (Motelow, Li et al. 2015). 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Figure 11: detection principle for enzyme-based amperometry. Choline-oxidase coated micro-
electrodes convert endogenously produced choline to hydrogen peroxide, which generate an 
electric current, captured by platinum electrodes. methyl-phenylenediamine dyhydrochloride is a 
size exclusion layer which prevents the penetration of interferents like dopamine and ascorbic 
acid. Each electrode consists of four channels of which two channels are choline-oxidase coat-
ed. The remaining two are reference electrodes which capture background noise. The subtrac-
tion of the reference signal from signal derived from choline-coated electrodes represents the 
true choline signal. Modified from (Sarter and Parikh 2005). 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