
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

8-20-2004

Dose Threshold for Clinical Success in Coronary
brachytherapy: a nested case-control study
Harsimran Singh

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Singh, Harsimran, "Dose Threshold for Clinical Success in Coronary brachytherapy: a nested case-control study" (2004). Yale Medicine
Thesis Digital Library. 349.
http://elischolar.library.yale.edu/ymtdl/349

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Yale University

https://core.ac.uk/display/232770196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/349?utm_source=elischolar.library.yale.edu%2Fymtdl%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


    

 

 

 

 

 

 

Dose Threshold for Clinical Success in Coronary Brachytherapy: 
A Nested Case-Control Study  

 
 
 
 
 
 
 
 
 
 
 
 
 

A Thesis Submitted to the 
Yale University School of Medicine 

In Partial Fulfillment of the Requirements for the 
Degree of Doctor of Medicine 

 
 
 
 

 
 
 
 
 

 
 
 
 
 

by 
Harsimran Sachdeva Singh 

2004 

 



    

 

DOSE THRESHOLD FOR CLINICAL SUCCESS IN CORONARY BRACHYTHERAPY:  A 

NESTED CASE-CONTROL STUDY. Harsimran S. Singh, Ning Yue, Nassir Azimi, Kenneth B. 

Roberts,  Ravinder Nath, and Steven Pfau.  Section of Cardiovascular Medicine, Department of 

Internal Medicine, Yale University, School of Medicine, New Haven, CT 

Intravascular brachytherapy is the primary treatment for coronary in-stent restenosis. We 

hypothesized that differences in dose delivered to target may contribute to treatment failures. We 

compared dose distribution between arteries that developed recurrent restenosis (treatment failures) 

and those that remained patent at nine-months (treatment success).  A cohort of 207 patients receiving 

brachytherapy for coronary in-stent restenosis with four radiation delivery devices was followed to 

identify treatment failures and successes. This cohort was examined to establish which patient and 

lesion characteristics had an effect on outcome. A nested case-control construct was then used in 

which treatment failures (n=14) were compared 1:2 to treatment successes (n=28) matched by two 

variables: radiation delivery system and angiographic pattern of in-stent restenosis. At baseline, the 

groups had similar patient and lesion characteristics. The dose absorbed by 90% of the artery 

encompassed by the external elastic membrane (D90EEM) was calculated using intravascular 

ultrasound (IVUS) images taken at 2-mm intervals along the treated lesion. Dose calculations were 

performed using dose kernel integration techniques; the dose kernels were generated from Monte 

Carlo simulations.  The mean D90EEM minimum dose in treatment failures was 7.46±1.98 Gy, while 

for treatment success the mean D90EEM minimum dose was significantly higher: 8.87±1.13 Gy 

(p=0.007). Using a dose threshold of 8.4 Gy, a D90EEM minimum dose < 8.4 Gy occurred in 13 

(93%) patients with treatment failure, but in only 9 (32%) with treatment success (p<0.001). No 

confounding variables were found to be statistically significant.  In conclusion, current brachytherapy 

dose prescriptions result in significant inter- and intra-lesion variation in dose at the EEM. Arteries 

that receive < 8.4 Gy at any point along the EEM are more likely to be treatment failures. IVUS 

guided dosimetry may be critical to assure adequate dose regardless of radiation delivery system.
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INTRODUCTION 

 

Angioplasty is a standard non-surgical treatment of ischemia due to vascular stenosis 

most often caused by atherosclerosis. A major limitation of angioplasty has been restenosis 

(diameter renarrowing of ≥50% on angiographic follow-up) of the treated vessel.  It can occur 

acutely or subacutely in 30 to 50% of coronary angioplasty cases – generally within the first ~3 

months post-balloon dilation (1).  The causes of restenosis after balloon angioplasty include 

neointimal hyperplasia, elastic vascular recoil, arterial dissection, thrombosis formation, and 

atherosclerotic remodeling (1,2).  

For the past decade and a half, coronary interventions have included the placement of 

intravascular stents in addition to balloon angioplasty.  From amongst the ~900,000 angioplasties, 

performed annually in the USA, ~70-80% include coronary stent placement.  Stenting has been 

established to reduce angiographic and clinical restenosis when compared to percutaneous 

balloon interventions alone – by virtually eliminating the problem of elastic recoil and 

remodeling (3,4).  However, restenosis after stenting continues to persist – 15-35% of patients 

develop restenosis of the affected site within the first 6-8 months after stent placement (3,5-7), 

with clinically driven repeat coronary revascularization necessary in 50-80% of those cases. (7-9).  

Given the prevalence of stenting/angioplasties and thus the overall disease burden of restenosis, a 

large amount of research has been invested over the past two decades in attempting to discern its 

pathophysiology and find ways to prevent and appropriately treat the problem. 

 

 In-Stent Restenosis 

  In-stent restenosis (ISR) is secondary to neointimal hyperplasia – an endovascular 

infiltration of inflammatory cells, fibroblasts, and myo-fibroblasts in response to the injury 

induced by angioplasty and stenting.  Unlike the chronic pathology leading to atheroma 

formation, ISR may be localized or distributed over the length of the stent and is likely due 



  6  

 

to a maladaptive response to vascular injury (10).  The neointimal proliferation occurs in 

conjunction with macrophage and myo-fibroblast recruitment, presumably found within 

the tunica intima and also migrating from the tunica adventitia (11). 

  Several patient and lesion characteristics have been documented in the literature to affect 

ISR rates including: diabetes (12), long lesion length (13), small artery diameter (13), acute 

coronary syndrome (14), renal failure (12), and saphenous vein bypass grafts (15).  Patterns of 

restenosis have been described by Mehran et al that encompasses lesion length as well as the 

relationship of tissue proliferation to the implanted stent.  In-stent lesions are classified via an 

ordinal rank of Types I through IV – ranging from focal lesions of restenosis to total stent 

occlusion.  This system captures the magnitude of the proliferative response and is shown to 

predict long term prognosis (16).     

  While ISR and specifically neo-intimal hyperplasia is a problem over the first 6-8 months 

post stenting, there may be no further regression in luminal diameter or clinical failure at one-year 

and beyond (17,18).  The problem of ISR has been tackled through a variety of tactics in the past, 

including repeat angioplasties, ablative devices, laser ablation, and rotational artherectomy – all 

with minimal success in affecting recurrence rates and clinical course. 

  

 Radiation Therapy Theorized 

 The idea of radiation therapy for treating ISR in the vasculature was adapted from other 

fields of medicine relying upon radiation.  For many years this modality has been used to inhibit 

growth of tumor cells and non-malignant hyperplasias (post-surgical keloids, heterotrophic bone 

formations, recurrent pterygium, etc).  Brachytherapy literally means “local treatment” using 

radiation (as opposed to external beam radiation), thus limiting systemic side effects of diffuse 

radiation exposure.  Given our present day understanding of the pathology behind atherosclerosis, 

intravascular brachytherapy (IVBT) was theorized to be of benefit by preventing endothelial/ 
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intimal hyperplasia and/or matrix deposition after balloon injury – by either mediating apoptosis 

or inhibiting cellular proliferation (19). 

Over the past decade, two classes of ionizing radiation have been investigated – 1) 

Gamma rays (low energy/high penetration) using 192-Ir and 2) Beta-particles (high energy/low 

penetration) using a variety of isotopes including 32-P, 90-Sr/90-Y, 188-Re, and 133-Xe.  The 

radiation can be delivered either via a catheter-based system (ribbon, fixed-length wire, seed 

trains, and balloons – for radioisotopes in liquid phase) allowing temporary exposure or stent-

based system for permanent implantation.  Radiation may be delivered over a course ranging 

from 3 to 30 minutes depending on the dose required and isotope used.   

 

 Brachytherapy: Clinical Trials 

Initial proof-of-concept and dosing for IVBT was established through animal studies after 

which it was attempted in humans.  The first large scale randomized control trial for IVBT was 

SCRIPPS – a double blind trial (n=55) for in-stent restenosis and de-novo restenosis – showed a 

70% reduction of restenosis rates (53.6% v. 16.7% by angiography) with IVBT v. placebo at 6 

months; and a continuation of the effect at 3 years – 66.6% v. 33% restenosis.  The SCRIPPS trial 

recently published a five-year follow-up of their patients – in which the clinical effectiveness of 

IVBT is shown to slightly diminish over time, but maintains improved clinical outcomes. This 

positive result led to a series of multi-center trials each supporting one of the three IVBT systems 

currently in use.  1) GAMMA-1 (20,21) was the premier multi-center double blind randomized 

control trial (n=252) for in-stent restenosis trailed the Cordis - Checkmate system (192-Ir).  This 

study found a 36% reduction in major adverse cardiac events (MACE) in IVBT v. placebo 

(28.2% v. 43.8%).  2) START (22) was a significant multi-center trial that examined 472 patients 

in determining efficacy/safety of the Novoste - BetaCath balloon system (90-Sr/Y) for in-stent 

restenosis.  They found 9-month revascularization rates to be 24% placebo v 16% Beta-VBT.  3) 

INHIBIT (23) further solidified Beta-IVBT’s efficacy and safety.  Examining 332 patients using 
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32-P source (Guidant – Galileo) with 20 Gy dose 1 mm into vessel wall, INHIBIT found a 66% 

reduction in restenosis rates at 9 months. The clinical and angiographic outcomes found in these 

three trials are presented in Figures 1 & 2. Given the positive results of these studies, in 

November 2000, two systems for delivery of coronary IVBT were approved by the Food & Drug 

Administration (FDA):  the BetaCath system by Novoste and the Checkmate System by Cordis 

(24).  A third system, Galileo by Guidant, was approved one-year later in November 2001 

(23,25).     

 

 Brachytherapy Success & Reality 

  Over the past three years, brachytherapy has become established as the frontline 

treatment option for in-stent restenosis.  While drug-eluting stents may prove to be viable 

alternatives for ISR in the future,  IVBT has remained the only consistently proven treatment for 

ISR with decreased rates of repeat revascularization (26).  As described above, three large multi-

institutional, randomized control trials documented a 30-50% improvement in outcome compared 

to angioplasty alone, primarily driven by reduction in angiographic restenosis and the need for 

repeat revascularization (20-23).   

  To date very little data has emerged regarding the clinical application of IVBT in patients 

who receive treatment for ISR outside of clinical trials.  The RENO registry provided multi-

institutional outcomes on the use of the Novoste BetaCath system in Europe, providing insight 

into the more generalized application of this device.  At 6-month follow-up, the rate of MACE in 

RENO was 18.7%, similar to the randomized control trial.  RENO helps to prove that the clinical 

benefit of brachytherapy can be maintained outside of the strict environment of trial design 

(27,28), but there were two caveats to this study.  First, the registry was limited to patients treated 

with the Novoste radiation system.  Second, the analysis included patients with de novo lesions, 

which comprised 20% of the study population.  To date there has been no study examining all 

three approved brachytherapy systems in a general population.   
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  Despite this initial success, brachytherapy has not been the unconditional panacea for 

ISR.  Depending on the trial, 15 to 29% of patients given IVBT will still fail treatment and 

require another revascularization procedure within 9-months (20,29,30).  Certain risk factors 

associated with increased IVBT failure include diabetes (31,32), renal failure (33), and saphenous 

vein grafts (SVG) (34).  There also have been inverse associations with age (35), lesion length 

(36), and minimal luminal diameter (MLD) (36). 

  Two complications related to brachytherapy treatment are edge restenosis and an 

increased risk for late thrombosis.  Edge restenosis occurs when an inadequate dose is given to 

the edge of the stent, due to either dose fall out with inadequate dose prescriptions or due to 

“geographic misses” – where portion of the injured vessel are not accounted for when planning 

treatment.  This problem can be counteracted by adequate coverage (37).   Late thrombosis was a 

problem in initial studies, especially in patients who received additional stenting in addition to 

IVBT – however with long-term anti-thrombosis therapy this problem has been diminished 

(38,39).  

 

Brachytherapy Dosing 

  One factor that may be related to brachytherapy outcomes is radiation dose.  Few studies 

have explored the effects of ionizing radiation dose-distribution within the artery and different 

types of radiation sources (among the 3 FDA IVBT approved systems – different isotopes, Beta 

v. gamma sources) to clinical outcomes.  Animal data has suggested that doses between 8 and 40 

Gray (Gy) are effective (40-45), but steep dose gradients and concerns regarding toxicity have 

pushed clinical prescriptions to the lower limit of this range.  Early clinical studies used 

ultrasound to prescribe at least 8 Gy to the external elastic membrane (EEM), but adjusted dose to 

avoid more than 30 Gy to the nearest part of the vessel (20,21). 

  At present, radiation prescriptions for IVBT are rather empiric. Dose (in Gray as a 

measure of absorbed energy in tissue per unit mass) is prescribed either at a fixed amount at a 
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standard depth (generally at 2 mm depth from a radiation line source) or to a histological target 

such as the EEM (radiolucent border on ultrasound).  A minimal dose to the EEM in turn insures 

a minimal dose distribution to the intima, thought to be one putative biologic target in IVBT.  

While the exact cellular target for IVBT remains uncertain, in vitro data suggests that cells from 

the adventitia, media and neointima may all be involved (19,43,46).  Current strategies have 

focused on delivering enough radiation to the entire vessel wall without exceeding vessel 

tolerance. As radiation dose from a line source decreases rapidly as a function of distance from 

that source, the vessel wall is exposed to a highly variable dose gradient – with additional 

variability between different isotopes and dose prescriptions (Figure 3).  Dosing remains 

imprecise as the vascular anatomy and the position of the radiation source within the lumen are 

variable.   

  Current day dose prescriptions have evolved towards dosing regimens that are based on 

very few patient or lesion specific criteria.  All three FDA-approved brachytherapy devices 

recommend dose prescriptions which are standardized to a fixed distance from the source, with 

small adjustments based on lumen size for the beta emitters.  However, parameters such as plaque 

burden, plaque distribution (concentric v eccentric),  vessel curvature, and catheter position all 

contribute to uneven dose distribution because they affect the variability in distance from the 

source to EEM (47,48).  These factors result in variations of dose to target, which may ultimately 

impact the efficacy of this therapy.   
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STATEMENT OF PURPOSE & HYPOTHESIS 

 

 

Over the past few years, brachytherapy has been clinically established to be a frontline 

treatment option for in-stent restenosis.  Several multi-institutional, double blind randomized 

control trials have been conducted with 6 months to 5 years follow-up, all touting the 

effectiveness of IVBT for preventing MACE, repeat intervention, and site specific restenosis (as 

per angiography).  However, there is minimal literature regarding the brachytherapy experience 

outside of clinical trials.  Also, few studies have explored the role of radiation dose-distribution 

within the artery and its potential effect on the treatment efficacy of brachytherapy.  The goal of 

this study is two fold: 

 

1) Determine clinical effectiveness of brachytherapy at our institution & examine patient/lesion 

characteristics that may affect outcomes. 

Yale New Haven Hospital’s Endovascular Brachytherapy Center has been performing 

IVBT since November 2000 – and subsequently has a wealth of retrospective data that has not 

been formally explored.  In this study, we reviewed our single-center experience with intra-

coronary IVBT of 207 patients between November 2000 and November 2002 with subsequent 9-

month clinical outcomes.  We examined these patients’ clinical data, including their specific 

IVBT regimen and angiographic/ultrasound parameters with their clinical outcomes within the 

first 8-9 months post-IVBT.  By examining this cohort of patients, we hope to establish 

preliminary associations that assist in formulating parameters for dose prescription/distribution 

and radiation source selection for IVBT. 
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2) Examine the relationship between de facto dose distribution and brachytherapy treatment 

success. 

Given the variation in vascular anatomy, plaque distribution & burden, catheter 

placement, and brachytherapy systems/isotopes used, we hypothesize that despite standardized 

dose prescriptions, patients are in reality receiving very different amounts of radiation, and this 

variability may lead to treatment failure. We used a nested case-control construct using 

intravascular ultrasound (IVUS) images to examine dose delivered to the EEM in patients across 

radiation devices who failed brachytherapy treatment compared to those who had a durable result.  

Treatment failures (n=14) were compared 1:2 to treatment successes (n=28) matched by two 

variables: radiation delivery system and angiographic pattern of in-stent restenosis.  Our findings 

could lead to a refinement of dosing protocols and ultimately improvement in brachytherapy’s 

treatment of ISR.   
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METHODS 

 

A.  Treatment Cohort Methodology 

 Cohort Study Population 

We retrospectively examined the patient cohort who underwent intravascular 

brachytherapy at Yale New Haven Hospital between November 2000 and November 2002 – a 

total of 216 patients and 245 lesions.  Brachytherapy was performed on all referred patients with 

clinical evidence of ischemia and ISR evident by cardiac catherization, aside from two patients 

for whom IVBT was aborted because of technical difficulties in radiation catheter placement.  

IVBT was administered by one of four devices: 1) Novoste - BetaCath system – Beta radiation 

using 90-Sr/Y; 2) Cordis - Checkmate – Gamma radiation using 192-Ir; and 3) Guidant - Galileo 

– Beta radiation using 32-P. 4) Interventional Therapy – Gamma radiation using 192-Ir as part of 

clinical trial.  None of the patients in our study had received intravascular brachytherapy prior to 

this treatment.  This study was approved by the Yale Human Investigation Committee in 

accordance with institutional guidelines.   

 

 Intervention and Brachytherapy Protocol 

  Diagnostic catheterization was performed separate from the intervention in the majority 

of cases.  This allowed for decisions regarding appropriateness for brachytherapy, treatment 

planning and, device selection, especially early in the series when source length was a limiting 

factor in some cases.  Anticoagulation was achieved using unfractionated heparin to achieve a 

target activated clotting time (ACT) of 300 seconds.  Glycoprotein 2b/3a inhibitors were used 

only as a bailout strategy.  All cases were completed with 8F-guiding catheters.  Coronary 

intervention was performed using cutting balloon, rotational atherectomy, or balloon angioplasty.  

After the best angiographic result was obtained, IVUS was performed in all cases.  If further 

intervention was indicated from ultrasound imaging, another IVUS run was performed 
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immediately prior to brachytherapy treatment.  Lumen dimensions for the purposes of 

brachytherapy dose prescriptions were taken from MLD as designated by IVUS in all cases. 

  Several factors were used to determine the device for radiation delivery.  Many patients 

in the first 6 months of the series were enrolled in research studies, which dictated device 

selection.  Early in the series, the Checkmate device was used for the longest lesions, as the 

BetaCath was limited to a 40mm source (30mm injury length), and we avoided manual 

“stepping” of shorter sources because of inherent inaccuracies in delivered dose (49).  Beta 

emitters were favored if patients became ischemic during the intervention or if it was the clinical 

impression of the operator that long dwell time would not be tolerated.  Using this strategy, no 

cases required fractionation of treatment.  Gamma sources were favored in arteries with heavy 

calcification, or where significant length of overlapping stents (>2-3mm) was present.  In 

addition, we favored gamma sources for treatment of vein graft lesions because of the relative 

absence of data for beta-emitters in this anatomic subset.  All patients were encouraged to 

continue dual antiplatelet therapy for at least six months.  If a new stent was placed at the time of 

the brachytherapy procedure, we recommended 12 months of antiplatelet therapy. 

 

 Collection of Data & Analysis 

  This study was approved by the Yale Human Investigation Committee.   We compiled a 

database including information from a) the patient’s medical records – cardiac/medical histories, 

risk factors, comorbidities; b) angiography images – lesion and injury length, vessel 

diameter/degree of occlusion; c) IVUS images – MLD, dose-distribution within the vessels;   

d) Radiation treatment records – source type and dose prescription.  Double entry of data was 

done to ensure accuracy. 
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Coronary angiograms were reviewed by two independent observers who classified lesions 

as per the ISR classification system described by Mehran et al (16): 

Class I: Focal ISR group. Lesions are 10 mm in length and are positioned at the 

unscaffolded segment (i.e., articulation or gap), the body of the stent, the proximal or 

distal margin (but not both), or a combination of these sites (multifocal ISR)  

Class II: "Diffuse intrastent" ISR. Lesions are >10 mm in length and are confined to the 

stent(s), without extending outside the margins of the stent(s).  

Class III: "Diffuse proliferative" ISR. Lesions are >10 mm in length and extend beyond 

the margin(s) of the stent(s).  

Class IV: ISR with "total occlusion." Lesions have flow grade of 0. 

  

 Patient Follow-up/Outcomes 

  Clinical outcomes were obtained for patients at 9 months by telephone contact with the 

patients and confirmed by their referring/primary physicians.  As a quality control mechanism, 

the Yale Endovascular Brachytherapy Center uses a pre-established, standardized questionnaire 

to ask patients about their health status since undergoing brachytherapy – including whether or 

not they had stress testing, coronary artery bypass grafting (CABG), repeat percutaneous 

transluminal coronary angioplasty (PTCA), myocardial infarction (MI), and/or regular follow-up 

with a physician.  This database was utilized as the major source of endpoint identification.  From 

the 216 patients (245 lesions) treated with IVBT between November 2000 and November 2002, 

nine were lost to follow-up, leaving 207 patients (236 lesions) available for analysis– 96% 

follow-up.  Patients lost to follow-up were double checked in the National Death Index to 

minimize selection bias.  All cardiovascular endpoints were confirmed through the patients’ 

referring cardiologists and/or primary care physicians.   
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B. Case-Control Methodology 

 Nested Case-Control Patient Selection 

In order to perform detailed dosimetry, patients with reported MACE (that includes 

death, PTCA, CABG, and myocardial infarction) were identified from the Yale Endovascular 

Brachytherapy database who had received brachytherapy between November 2000 and June 

2002.  Follow-up angiography was reviewed to confirm treatment failure.  Cases were eligible for 

inclusion as treatment failures if the target lesion treated was within a native coronary artery, and 

failure of the target lesion was confirmed by angiography as the cause of MACE.  Cases with 

documented geographic miss were excluded (50). 

 Patients in our cohort who did not report MACE at 9 months were eligible as treatment 

successes. Treatment successes (controls) were then matched 2:1 to failure cases by two 

variables:  1) radiation delivery system and 2) angiographic pattern of ISR, according to the 

classification devised by Mehran et al (16). 

  

 IVUS Contours & Analysis 

Images from the pre-radiation IVUS acquisition were printed every 2 mm throughout the 

lesion length (Figure 4).  These images were scanned into an in-house computer calculation 

system and scaled to reflect their actual dimensions.  Contours demarcating the EEM of the 

coronary vessel were drawn on each scanned image.   

Figure 5 displays a typical EEM drawn on one of IVUS slices. The accuracy of this 

contouring was verified by two cardiologists.  All steps of the dose distribution analysis were 

blinded to patient outcomes.   
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 Dosimetry Calculations 

The catheter-based radioactive source was assumed to be a line source with the 

radionuclide used in the treatment uniformly distributed over the length of the source and with the 

same length and strength as that used in the treatment. Dosimetric calculations were performed 

using a numerical integration method.  Assuming that the point dose rate kernel per unit source 

strength of the radionuclide in interest is ( )rk v , the dose at a point of rv  is then (51): 

( ) ( ) rTdrrrkrD
L

′′′−= ∫
vvvvv ρ)(     

Where L is the length of radioactive source used in the treatment, ρ(r) is the source strength per 

unit length at the point r in the source, and T is the treatment time. The point dose rate kernels of 

various radionucliotides were obtained with Monte Carlo simulation in water.  The doses were 

normalized to the prescription doses at the prescription points.  The accuracy of the dose 

calculation was verified by the point-dose calculations at various points (other than the 

prescription points), comparing to the dose values provided by the manufacturers.  It was 

assumed that the source was positioned where the IVUS catheter was located in the slice-based 

IVUS images, except for treatment catheters with a centering balloon in which case the source 

was assumed to be centered within the lumen.  The longitudinal location of the source relative to 

IVUS slices was determined by comparing the IVUS images and corresponding angiograms.   

Dose surface histogram (DSH) was calculated on the EEM for each examined slice 

(Figure 5) (52).  The DSH was computed as follows: on each slice of interest, the EEM was 

divided into numerous points 0.001 mm apart from each other. The dose calculations were then 

performed on all the points. The calculated doses and percent of the points (representing EEM) 

were tabulated to form DSH. It should be noted that the dose calculations performed for DSH 

were only done on the contoured EEM lines, not on any points inside or outside the lines. Figure 

5 shows a typical integral DSH.  From the DSH on each slice of interest, the minimal dose that 

encompassed 90% of the EEM (D90EEM) was determined.  This is analogous to a parameter that 
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is predictive of success with cancer brachytherapy.  Subsequently, the minimum, maximum, and 

average D90EEM, were derived along the treated lesion.  

 

C. Statistical Analysis 

 A composite outcome measure commonly referred to as MACE was utilized.  Continuous 

data is presented as means with standard deviations, and discrete variables are presented as 

frequencies.  Post-brachytherapy outcomes and bivariate analyses were described by Kaplan-

Meier analysis, Pearson’s Chi Square, and Independent T-test as required.  Multivariate analysis 

was performed by conditional logistic regression to account for the controls matched to two 

variables.  The multivariate model was restricted to four covariates to account for study size.  

SPSS 11.5 software was used to carry out statistical calculations. 

 

D.  Delineation of Work 

As with most good research, our study was the joint effort of a group of dedicated 

individuals.  The actual brachytherapy procedure was administered by a team consisting of Dr. 

Steven Pfau, Dr. Kenneth Roberts, and Dr. Ning Yue.  The study concept was conceptualized by 

Dr. Steven Pfau, Dr. Kenneth Roberts, and Dr. Ning Yue. The epidemiological construct and 

study methodology was designed by Dr. Steven Pfau and Harsimran Singh.  The dosimetry 

calculations described above were theorized and carried forth by Dr. Ravi Nath and Dr. Ning 

Yue.  The IVUS delineation and angiography review (lesion typing) was performed by Harsimran 

Singh, Dr. Nassir Azimi, and Dr. Steven Pfau.  The brachytherapy database (data collection) was 

made by Harsimran Singh.  Cohort outcomes were obtained by Harsimran Singh, Mike Cabin, 

and Carol Roberts.  Data analysis, statistical work, and team coordination was performed by 

Harsimran Singh.   Data interpretation was performed by Harsimran Singh and Dr. Steven Pfau.
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RESULTS 

 

A. Patient Cohort Results  

 Patient demographics& Angiographic Characteristic: 

 Table 1 outlines the clinical characteristics of our study population.  From amongst 207 

patients, 152 (73%) were males whose ages ranged between 35-86 with a mean age of 63 and a 

corresponding 55 (27%) females with age range of 43-86 with a mean age of 67.   The most 

prevalent clinical presentation that resulted in IVBT referral was unstable angina with 154 (74%).  

From the cohort, 149 (72%) had diagnosed hypertension, 152 (73%) hyperlipidemia, 66 (32%) 

diabetes (Type I and Type II), and 23 (5%) chronic renal insufficiency (defined by a baseline 

creatinine of > 1.5).  Also, 82 (40%) patients had a previous myocardial infarction and 57 (27%) 

had undergone prior CABG. 

 

Table 1.  Cohort Characteristics & Outcomes  (207 patients) 
 

 
Pt Characteristics 

 

    Male 152 (73.4%) 
    Average Age (years) 62.5 ± 12.6 

 
Clinical Presentation  
    Unstable Angina 154 (74.4%) 
    Stable Angina 23 (11.1%) 
    Positive Stress Testing 14 (6.8%) 
    Post-MI 12 (5.8%) 
    Other 4 (1.9%) 

 
Risk Factor Profile  
    Hyperlipidemia 152 (73.4%) 
    Hypertension 149 (72.0%) 
    Diabetes – Types 1 & 2 66 (31.9%) 
    Chronic Renal Insufficiency  
       (Baseline Creatinine >1.5) 

23 (11.1%) 

    Smoking    39 (18.8%) 
    Cardiac Family History  
       (1st degree relative) 

87 (42.1%) 

Past Cardiac History  
    Remote MI 82 (39.6%) 
    CABG 57 (27.5%) 
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 Angiographic Characteristics 

 A total of 236 coronary lesions in 207 patients were treated with IVBT as listed in Table 

2:  the left anterior descending (LAD) in 78 (33%) lesions, circumflex (CFX) in 45 (19%) lesions, 

right coronary (RCA) in 73 (33%) lesions, ramus in 5 (2%) lesions, SVG in 33 (14%) lesions, and 

left internal mammary artery (LIMA) in 2 (1%).  A total of 177 (75%) lesions were treated with 

cutting balloon or a combination of cutting balloon and standard balloon, and 48 (20%) lesions 

required additional stenting.  The mean injury length for IVBT treatment was 22 mm.   

 

  

 Radiation Treatment 

The Novoste BetaCath device 

was the most frequently used device, 

comprising 69% of cases (Table 3).  

This stems in large part from the fact 

that it was the first clinically available 

device, and was obtained by the Center 

in April of 2001.  The Galileo device was available at Yale only as an investigational device 

during the period of this cohort, explaining the low number of patients treated with this device.  

Radiation dosing schemes were used as approved by the FDA for each individual system.  Also 

outlined in Table III are the mean dose prescriptions for each brachytherapy system.  Two 

patients had minimally shortened radiation treatment times due to ischemia (94% and 96% of 

prescription), while one patient had an increased treatment time (101% of prescription), due to 

difficulty in removing the radiation seeds. 

 

 

Table 2:  Vessel / Lesion Characteristics (n=236) 
 
Variable # of patients (%) 
 
Vessel 

 

  LAD 78 (33.1%) 
  CFX 45 (19.1%) 
  RCA 73 (30.9%) 
  SVG 33 (14.0%) 
  Ramus 5 (2.1%) 
  LIMA 2 (0.8%) 
  
Average Injury Length (mm) 22.44 ± 10.28 
Average MLD - post PTCA (mm) 3.07 ± 0.49 
  
Primary PTCA Modality  
    Cutting Balloon  177 (75.0%) 
    Rotational Atherectomy  17 (7.2%) 
    Balloon Only 38 (16.1%) 
Additional Stenting 48 (20.3%) 
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Table 3:  Brachytherapy System Used 
 
Radiation System Seed Train 

Length 
Dose Prescription Lesions Treated 

   
30 23 Gy @ 2mm from source 34 
30 18.4 Gy @ 2mm from 

source 
42 

40 23 Gy @ 2mm from source 38 
40 18.4 Gy @ 2mm from 

source 
43 
 

60 23 Gy @ 2mm from source 4 

Novoste (Beta – 90-Sr/Y) 

60 18.4 Gy @ 2mm from 
source 

2 
----- 
163 

   
39 14 Gy @ 2mm from source 8 
39 8 Gy at furthest EEM 12 
55 14 Gy@ 2mm from source 8 

Cordis Checkmate (Gamma – 192-
Ir) 

55 8 Gy at furthest EEM 28 
----- 
56 

Interventional Therapy (Gamma – 
192-Ir) 

 
45 

 
18 Gy @ 2 mm from 
source 

 
13 

Guidant Galileo (32-P)  
60 

 
20 Gy @ 1 mm into artery 
wall 

 
4 

 

 Outcomes In-Hospital 

 There were no in-hospital deaths.  Four lesions developed significant dissections during 

PTCA, all of which were treated successfully by additional stenting prior to IVBT.  Two lesions 

were unable to be completely encompassed by IVBT due to tapering of the target vessel lumen 

diameter distal to the lesion.  The IVUS catheter could not be passed into four lesions; in these 

cases MLDs were estimated from angiography alone.  Two patients had enzymatic evidence of 

non-Q-wave myocardial infarction after the procedure.  One patient with severe LV dysfunction 

and a large territory at risk had prophylactic placement of an intra-aortic balloon pump prior to 

the procedure.  None of the patients required CABG surgery or emergent PTCA during their 

initial hospitalization.  There was no incidence of subacute stent thrombosis. 
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Outcomes at 9-Month Follow-up 

 Table 4 summarizes the clinical outcomes obtained for our patient cohort at a mean time 

9.1 months (± 2.8 months).  44 patients (21%) experienced MACE through our follow-up.   

The large majority of MACE was in patients 

requiring repeat revascularization (91%), evenly 

divided between PTCA and CABG.  One patient 

with severe LV dysfunction died during the 

follow-up period.  The one-year outcomes for 

our study population are illustrated in Figure 6 

by means of a Kaplan Meier Survival Curve.  Upon bivariate analysis of lesion and patient 

characteristics with outcomes (Tables 5 & 6), age (p=0.001), PTCA modality (0.037), and vessel 

type (p=0.002) were found to have a statistically significant effect upon outcome.  An established 

diagnosis of hypercholesterolemia may eventually show a statistically significant effect on 9-

month MACE with augmentation of the sample size (currently p= 0.156).  Upon performing 

stepwise logistic regression with each independent variable, only age maintained statistical 

significance (p=0.001). 

 

Table 5:  Bivariate Analysis of Lesion Characteristics 
 

Variable MACE (n= 31) No MACE (n=109) Statistical P-
Value 

Age  58.24 ± 9.46 64.75 ± 12.88 0.001 
 

Mean Lesion Length 23.40 ± 10.28 22.16 ±10.29 0.445 
 

Mean MLD 3.07 ± 0.54 3.07 ± 0.48 0.990 
 

 

Table 4:  Clinical Outcomes at 9 months 
(n=207) 

Outcome Measure # of patients (%) 
 
MACE 

 
44 (21.3%) 

     Repeat PTCA       21 (10.1%) 
     CABG       19 (9.2%) 
     MI       3 (1.4%) 
     Death       1 (0.5%) 
  
No MACE 163 (78.7%) 
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Table 6:  Bivariate Analysis of Patient/Lesion Characteristics 
 
Variable Variable Choices Number of 

Patients 
8-month 
freedom from 
event (%) 

Statistical P-value 

Gender     
 Male 152 77.0 
 Female 55 83.6 

0.301 

Age     
 ≥65 98 87.8 
 <65 109 70.6 

0.001 

Hypertension     
 Yes 149 77.9 
 No 58 81.0 

0.615 

Hypercholesterolemia     
 Yes 152 76.3 
 No 55 85.5 

0.156 

Diabetes     
 Yes 66 75.8 
 No 141 80.1 

0.472 

Creatinine     
 > 1.5 23 70.0 
 ≤ 1.5 184 79.9 

0.254 

Previous CABG     
 Yes 57 79.3 
 No 150 77.2 

0.737 

Previous MI     
 Yes 82 81.7 
 No 125 76.8 

0.399 

Type of Treatment 
Angioplasty 

    

 Cutting 177 79.1 
 Balloon 17 76.3 
 Rotational 

Atherectomy 
38 58.8 

0.037 

Additional Stenting     
 Yes 48 73.7 
 No 188 76.1 

0.650 

     
Vessel     
   LAD 78 75.6 
   CFX 45 62.2 
   RCA 73 89.0 
   SVG 33 78.8 
   Ramus 5 60.0 
   LIMA 2 0.0 

0.002 
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Section B. Case-Control Results 

 

 For the case-control segment of this study, only patients treated with brachytherapy 

between November 2000 and June 2002 were eligible.  During this period, 145 patients (161 

lesions) were treated for in-stent restenosis.  The baseline characteristics of this cohort are 

reiterated in Table 7, and are consistent with those of the larger cohort described in 

Results Section A.  During this period, five patients were lost to follow-up, leaving 140 

patients available for analysis.  At 9 months, 31 patients had reached significant MACE: 

16 (11%) patients required repeat PTCA, and 14 (10%) patients needed CABG.  Two 

patients were reported having an MI, and there was one death (Table 7).   

 

Table 7.  Cohort Characteristics & Outcomes  
(140 patients | 156 lesions) 

 
Pt Characteristics 

 

    Male 102 (73%) 
    Average Age (years) 64 (35-86 range) 
Clinical Presentation  
    Unstable Angina 112 (80%) 
    Stable Angina 10 (7%) 
    Positive Stress Testing 10 (7%) 
    Post-MI 6 (4%) 
    Other 2 (1%) 
Risk Factor Profile  
    Hyperlipidemia 100 (71%) 
    Hypertension 96 (69%) 
    Diabetes –  
       Type II 36 (26%) 
       Type I 7 (5%) 
    Chronic Renal Insufficiency  
       (Baseline Creatinine >1.5) 

11 (8%) 

    Smoking    25 (18%) 
    Cardiac Family History  
       (1st degree relative) 

58 (41%) 

Past Cardiac History  
    Remote MI 55 (39%) 
    CABG 34 (24%) 
Clinical Outcomes (at 9-months)  
  MACE 31 (22%) 
     Repeat PTCA 16 (11%) 
     CABG 14 (10%) 
     MI 2 (1%) 
     Death 1 (1%) 
  No MACE 109 (78%) 



  25  

 

 

 Case-Control Patient Selection & Characteristics 

All 31 clinical failures were reviewed for use in the dosimetry analysis.  Four patients 

were excluded because the treatment segment was either a saphenous vein or internal mammary 

artery graft.   Five patients were excluded because the point of failure was outside the treated 

segment.  Two patients were excluded because of geographic miss.  Of the remaining 20 patients, 

6 were excluded from analysis because the EEM was not adequately visualized (at least 270 

degrees identifiable in at least 90% of the IVUS images); this was most commonly related to 

shadowing from calcification or severe non-uniform rotational distortion.  This left 14 patients 

with in-field failures of native coronary arteries with adequate IVUS imaging available for 

analysis (Figure 7). 

Controls were then selected 

from the 109 patients who remained 

MACE-free at 9-months. All controls 

were native coronaries matched to 

failures in a 2:1 ratio; radiation 

delivery system and angiographic 

pattern of in-stent restenosis were the 

variables used to match cases to 

controls (Table 8). 

 Matching created 2 groups that 

were similar with regard to 

demographics, lesion length, final MLD (by IVUS), and PTCA treatment modality (Table 9).  

Chronic renal failure and diabetes were slightly more common in the controls than in the cases, 

and more additional stenting was performed in the control group compared to failures. 
                                                 
A Lesion typing system as designated by Mehran: Circulation, 100(18): 1872-187. 

Table 8. Variables Used to Match  
Controls with Cases 

 Cases (n=14) Controls (n=28) 
 
Brachytherapy System   

     Novoste  
         (Beta – 90-Sr/Y) 4 10 

     Cordis Checkmate  
         (Gamma – 192-Ir) 8 15 

     Interventional Therapy   
         (Gamma – 192-Ir) 1 3 

     Guidant Galileo  
         (Beta – 32-P) 1 0 

   
     Beta Radiation 5 10 
     Gamma Radiation 9 18 
   
Lesion TypeA   
      Type I 3 7 
      Type II 5 11 
      Type III 6 7 
      Type IV 0 3 
   
      Types I & II 8 18 
      Types III & IV 6 10 
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Table 9.  Patient & Lesion Characteristics of Cases & Controls 
 
 Cases (n=14) Controls (n=28) 
 
Patient Characteristics 

  

     Male 12 (86%) 22 (79%) 
     Average Age (years) 60.00 ± 8.98 60.39 ± 12.88 
Clinical Presentation   
     Unstable Angina 13 (93%) 19 (68%) 
     Stable Angina 0 (0%) 1 (4%) 
     Positive Stress Testing 0 (0%) 4 (14%) 
     Post-MI 1 (7%) 4 (14%) 
Risk Factor Profile   
     Hyperlipidemia 11 (86%) 20 (71%) 
     Hypertension 11 (79%) 22 (79%) 
     Diabetes – Types I & II 3 (21%) 9 (32%) 
     Chronic Renal Insufficiency  
        (Baseline Creatinine >1.5) 

0 (0%) 1 (4%) 

     Smoking    3 (21%) 7 (25%) 
     Cardiac Family History  
        (1st degree relative) 

8 (57%) 15 (54%) 

Past Cardiac History   
     Remote MI 2 (14%) 16 (57%) 
     CABG 3 (21%) 1 (4%) 
Treated Vessel   
     LAD 5 (36%) 12 (43%) 
     CFX 5 (36%) 5 (18%) 
     RCA 4 (28%) 11 (39%) 
Lesion Dimensions   
     Average Injury Length (mm) 29.21 ± 11.73 26.71 ± 10.83 
     Average MLD post-PTCA (mm) 2.82 ± 0.43 2.89 ± 0.63 
Primary PTCA Modality   
     Cutting Balloon 12 (86%) 23 (82%) 
     Rotational Atherectomy  1 (7%) 2 (7%) 
     Balloon Only 1 (7%) 3 (11%) 
     Additional Stenting 3 (21%) 9 (32%) 

 

 

 Dose Distribution v. Clinical Outcomes 

 For every study patient, the D90EEM was calculated for each IVUS slice along the entire 

length of radiation treatment, inclusive of the entire injury length. D90EEM were then compiled to 

extrapolate the minimum, maximum, and average D90EEMs for each lesion.  An average of 22 

slices was analyzed per lesion.  A longitudinal display of D90EEM for one lesion is illustrated 

below (Figure 8). 



  27  

 

 Figure 9 illustrates the minimum D90EEMs plotted for all 42 patients.  The mean 

minimum D90EEM for the cases was 7.46 ± 2.07 Gy, while for the controls it was 8.87 ± 1.13 Gy.  

Upon bivariate analysis, minimum D90EEM was found to be a statistically significant predictor of 

clinical success (p=0.007).  All other patient and lesion characteristics were analyzed by bivariate 

analysis (selected variables shown in Table 10): 

Table 10.  Bivariate Analysis of Selected Variables 
Including Dose Distribution & Outcomes 

 Cases (n=14) Controls (n=28) P-Value 
    
Age (yrs) 60.00 ± 8.98 60.39 ± 12.88 0.919 
Diabetes 3 (21%) 9 (32%) 0.469 
Hyperlipidemia 11 (86%) 20 (71%) 0.306 
Remote MI 2 (14%) 16 (57%) 0.008 
Remote CABG 3 (21%) 1 (4%) 0.063 
Lesion Length (mm) 29.21 ± 11.73 26.71 ± 10.84 0.496 
MLD (mm) 2.82 ± 0.43 2.89 ± 0.63 0.393 
Primary PTCA Modality   
     Cutting Balloon 12 (86%) 23 (82%) 
     Rotational Atherectomy  1 (7%) 2 (7%) 
     Balloon Only 1 (7%) 3 (11%) 

 
 
0.933 

    
Average D90EEM Dose (Gy) 10.50 ± 3.06 10.90 ± 1.70 0.586 
Maximum D90EEM Dose (Gy) 13.62 ± 5.97 14.24 ± 2.86 0.681 
Minimum D90EEM Dose (Gy) 7.46 ± 2.07 8.87 ± 1.13 0.007 
    
Minimum D90EEM Dose ≤ 8.4 Gy 13 (93%) 7 (33%) 
Minimum D90EEM Dose > 8.4 Gy 1 (7.1%) 14 (67%) 

 
<0.001 

 

Only the presence of remote MI was found to be statistically significant (p=0.008).  The 

maximum and average D90EEM were neither numerically nor statistically different between the 

groups (figures not shown). 

 Using the dose distribution data displayed (Figure 9), a threshold for minimum dose of 

8.4 Gy demarcates clinical success from failure reasonably well.  Using this threshold, 13 (93%) 

of the cases had a minimum D90EEM ≤ 8.4 Gy, while only 7 (33%) of the controls were below 

this minimum (p<0.001).  A multivariate model was used including dose threshold, age, diabetes, 

remote MI, and lesion length.  Minimum D90EEM ≤ 8.4 Gy remained a significant predictor of 

clinical outcome with an odds ratio of 0.022 (CI of 0.002 to 0.300) when compared to minimum 

D90EEM > 8.4 Gy.  No other variable examined in our multivariate model was significant.  Step-
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wise, logistic regressions were also performed examining every variable in the multivariate 

analysis (Table 11).  Only minimum D90EEM retained its statistical significance. 

 

Table 11.  Logistical Regression Model of Select Variables for Clinical Success 
 
 Odds Ratio Lower 95% Limit ORA Upper 95% Limit OR 
 
Minimum D90EEM Dose 
    ≤ 8.4 Gy 0.022 0.002 0.300 
    > 8.4 Gy 1.000 1.000 1.000 
Age 
    < 65 0.371 0.054  2.555 
    ≥ 65 1.000 1.000  1.000 
Diabetes 
    Yes 1.000 1.000 1.000 
    No 0.315 0.041 2.402 
Remote MI 
    Yes 1.000 1.000 1.000 
    No 0.194 0.025 1.518 
Lesion Length 
    < 25 mm 1.000 1.000 1.000 
    ≥ 25 mm 0.603 0.082 4.447 

 

 

                                                 
A OR indicates odds ratios. 
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DISCUSSION 

  

Cohort Analysis Documenting Brachytherapy’s Effectiveness: 

We present our single-institution experience with coronary brachytherapy over the first 

two years since FDA approval in November of 2000.  When applied to a broad group of patients 

with ISR, using a variety of delivery devices, intracoronary brachytherapy is safe and effective.  

Our 9-month MACE rate of 21.3% corresponds well with clinical outcomes reported in the 

radiation groups of the three hallmark randomized control trials:  GAMMA-1 (28% at 9-months) 

(20,21), START (18% at 6-months) (22), and INHIBIT (22% at 6-months) (23).  All patients 

were treated with prolonged dual anti-platelet therapy, and there were no instances of late stent 

thrombosis.  While the larger Novoste based RENO registry in Europe has been reported (27,53), 

our registry is unique in that it incorporates experience with all the currently available devices 

and is limited strictly to patients treated for in-stent restenosis.  

 Several important lessons can be learned from the transition from initial clinical trials to a 

more general experience.  First, when patients generally excluded from clinical trials are 

examined, there is no significant change in overall outcome.  In our series, patients with SVG 

(14%) lesions, multivessel treatments (14%), total occlusions (9%) and chronic renal failure 

(11%), would have been excluded from randomized trials. Still, our cohort maintained treatment 

efficacy in spite of 36% of the total being “high risk” patients.  Second, universal treatment with 

dual antiplatelet therapy resulted in elimination of the clinical entity of late thrombosis that was 

seen in earlier clinical trials (39,54,55).  Without complete angiographic follow-up, however, the 

incidence of “subacute” late thrombosis (i.e. clinically silent total occlusion of the target vessel) 

could not be excluded.  Finally, other procedural parameters that have been related to worse 

outcomes in prior studies, such as additional stenting at the time of brachytherapy (27), had no 

effect on outcome in our series (see table 5). 
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 In bivariate and multivariate analysis of continuous variables, age was found to be a 

statistically significant inverse predictor of outcome.  This finding is consistent with observations 

made by Ajani (35), as well as in the RENO registry (27).  The reasons for the improved outcome 

in the elderly are not entirely clear; one hypothesis suggests that the ability for cellular 

regeneration and proliferate response to injury diminishes with age (35).  Lesion length and 

smaller MLD were not related to clinically driven revascularization, although other studies have 

suggested that these factors are important in target vessel restenosis (36).  Bivariate analysis of 

dichotomous variables failed to uncover any other significant relationships to outcome, similar to 

other studies of both diabetes (31,32), and chronic renal insufficiency (33).  Use of cutting 

balloon was associated with better outcome, similar to the findings of the RENO registry in 

addition to several other studies (56-58).  It has been suggested that precise limitation of injury 

with the cutting balloon may improve IVBT results by reducing the likelihood of geographic 

miss. 

 Certain limitations inherent in observational research must be considered when 

interpreting our findings.  While clinical endpoints are the most important effect of any therapy, 

we were unable to precisely differentiate between target lesion failure, target vessel failure, and 

non-target vessel failure in many cases because of lack of complete angiographic reexamination.  

Nevertheless, there is a paucity of published data about IVBT in a non-controlled case mix, and 

even less information derived from a ‘real world’ utilization of all three available IVBT devices.  

 Yale Endovascular Brachytherapy Center’s philosophy of using all available devices is a 

unique feature of this cohort.  Early in the series device selection was primarily dictated by lesion 

length, but in several instances we allowed treatment with a secondary device when the initial 

device could not be negotiated into the target lesion.  Furthermore, we believe strongly that 

appropriate device selection prevented severe ischemia during treatment and any need for dose 

fractionation.  Ultimately this philosophy of device selection based on lesion characteristics will 

result in improved clinical outcomes, however too many of the patients in this particular cohort 
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had the device dictated by availability of source train length.  Our more recent experience is that 

all devices now have the ability to treat injury lengths of 50mm, and the lesion characteristics that 

affect isotope-specific dose delivery such as calcium, overlapping stents, vessel curvature, 

involvement of bifurcations, and saphenous vein graft target will dictate device selection in order 

to most completely deliver dose to target. 

 The recent entry of drug-eluting stents into the US market will hopefully reduce the 

overall incidence of in-stent restenosis.  At present, brachytherapy is the treatment of choice for 

ISR because it is proven, effective, and safe.  Ongoing randomized trials of drug-eluting stents for 

restenosis may provide alternatives for this patient population, and ultimately the relative 

utilization of these modalities will be driven by efficacy, ease of application, and economics.  

Experiences from trials of IVBT have driven changes in practice that have further refined the 

protocol for IVBT treatment, leading to improved short-term and long term outcomes.  Technical 

improvements in catheter design and familiarity with the use of this modality have improved its 

penetration into the overall interventional practice.  Based on this data as well as that from other 

broad registries, it is likely that brachytherapy will remain an important part of the interventional 

landscape for the foreseeable future. 

 

 

 Case Control Suggesting a Dose Threshold for Clinical Success: 

The second goal of this study was to explore the possibility of dose distribution playing a 

role in dictating clinical success.  To our knowledge, this is the first study of coronary 

brachytherapy examining the relationship between actual delivered dose and clinical outcomes in 

a cohort of patients treated with a variety of radiation delivery devices, isotopes, and dose 

prescription algorithms.  We used a standardized method to assess dose delivery across radiation 

devices in order to establish the relationship between delivered dose and outcome after IVBT.  

This study is also the first to suggest that there is a relationship between delivered dose and 
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revascularization rates in coronary brachytherapy for in-stent restenosis regardless of device used 

to deliver that dose. 

 Other investigators have examined the relationship between dose and outcome, but those 

studies have differed in two important ways.  First, all have focused on a single delivery device 

and isotope.  Second, these studies have primarily examined the relationship between dose and 

intimal tissue volume as assessed by IVUS (59-62).  Although intimal tissue volume can be a 

surrogate for clinical outcomes in most of these prior studies the need for repeat revascularization 

was low, suggesting that changes in intimal tissue volume were not an appropriate correlate for 

the clinical effectiveness of coronary brachytherapy.  Verin et al did show a relationship between 

angiographic restenosis and dose prescription using an Sr90 source (63).  In de novo lesions 

treated with balloon angioplasty alone, dose prescriptions were 9, 12, 15, or 18Gy that resulted in 

angiographic restenosis rates of 29, 21, 16 and 15 percent.  This translated into an improvement 

in clinical outcome, with a revascularization rate of 18% in the lowest dose group and 6% in the 

highest dose group.  Unfortunately, this study did not include an IVUS examination, so that the 

relationship was between outcome and dose prescription rather than delivered dose.  Furthermore, 

this study was of de novo lesions rather than in-stent restenosis.   

 A series of studies from Waksman’s group have addressed the issues of dose with gamma 

emitters.  In an IVUS based analysis of long, diffuse ISR treated with brachytherapy, both volume 

of intimal hyperplasia and minimum lumen area at follow-up were related to target distances (64). 

Although specific dosimetric analysis was not performed, a fixed dose prescription (15 Gy at 

2mm) was used, so that longer source to target distances would have resulted in lower dose to the 

EEM.  In a comparison of two dose prescriptions (15 or 18 Gy at 2mm), Waksman and 

colleagues showed that by IVUS parameters (60) or by angiographic restenosis and MACE (65), 

higher dose prescriptions were associated with better outcomes.  

 The optimal dose and target for brachytherapy for in stent restenosis was not rigorously 

examined in the pivotal clinical trials.  Animal data suggests a dose-response in intimal growth 
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after balloon over-stretch injury in porcine coronary arteries, with the lowest doses (3.5 Gy) 

resulting in increased intimal growth, but higher doses (up to 14 Gy) showed a progressively 

beneficial effect (43,66).  In the first series of patient treatments, dose prescriptions were as high 

as 25Gy at a distance of 1.5mm from the Ir192 source (67).  Due to the lack of centering, estimates 

for maximum dose delivered to the vessel surface were as high as 92.5Gy.  Concern for toxicity 

to the vessel at these doses led to the use of IVUS based prescription algorithms to limit “near 

field” doses to 30 Gy in the earliest randomized trials of gamma emitters (20,68).  Randomized 

trials of beta emitters (23,69) did not use IVUS guided dosimetry, and have not performed IVUS 

analysis of delivered dose. For these isotopes (Sr90 and P32) steeper dose gradients would result in 

high lumen doses relative to Ir192.  None of the current dose prescription algorithms take into 

account source to target distance, i.e. the variability of distance to the EEM from the lumen. 

 Our finding that a dose threshold of 8.4 Gy at the EEM exists is the first time that such a 

high dose has been associated with clinical success.  In the SCRIPPS trial, angiographic late loss 

was significantly decreased when the adventitial border received at least 8 Gy (62).  Because of 

small numbers, however, this paper was not able to relate dose to clinical failure.  Further, it is 

important to note that this threshold exists across devices in our study.  Although in other diseases 

there may be some difference in biologic effect related to dose rate of a specific isotope, these 

differences may not be as important in the coronaries (70). 

 The study is limited because of relatively small numbers and its retrospective design.  

Furthermore, the patients were not consecutive, but selected primarily based on the 

interpretability of the IVUS images.  Other important determinants of dose delivery, such as 

degree of vascular calcification, curvature, and degree of stent overlap were not included as 

variables in this analysis.  We limited our analysis to patients who suffer “in-field” failure, which 

does not account for all patients who require target vessel revascularization after coronary 

brachytherapy.  Another limitation of the current study is the assumption that the line source 

location was assumed to be synonymous with the IVUS catheter.  
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 In early studies, intravascular brachytherapy focused on dose in an effort to balance 

concerns of toxicity with proof of efficacy.  These studies, both in animals and patients, suggested 

a dose response, and the concern for vascular toxicity led to IVUS guided dose prescriptions in 

the first randomized clinical trials primarily to avoid excessive “near field” doses.  IVBT has 

resulted in remarkably consistent improvement in outcomes regardless of isotope, and dose 

prescriptions are standardized using only visual estimates of lumen diameter for dose adjustment.  

Abandoning routine IVUS improves short term time and cost efficiencies in the catheterization 

laboratory, but at a great loss of artery specific information that is important to clinical outcome.  

The data in our study argues that we should not settle for dose algorithms that are ‘sufficient’ to 

allow a 20-40% failure rate; rather further refinement of our dosing strategy is necessary.  The 

improved image quality and general availability of IVUS, as well as future developments in 

intravascular imaging, should push this field to refine dose prescription to maximize benefit while 

minimizing potential toxicity.  We believe that this study adds to the body of existing evidence 

that shows how improved outcomes in coronary brachytherapy are related to dose.  Vessel and 

plaque anatomic data obtained by IVUS should be used in all patients undergoing brachytherapy 

to determine an optimal dose prescription. 
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ABBREVIATIONS 

 

 

IVBT  =  intravascular brachytherapy 

ISR  =  in-stent restenosis 

EEM  =  external elastic membrane 

IVUS  =  intravascular ultrasound 

CABG  =  coronary arterial bypass grafting 

PTCA  =  percutaneous transluminal coronary angioplasty 

MI  =  myocardial infarction 

MACE  =  major adverse cardiac events 

FDA  =  Food & Drug Administration 

DSH  =  dose surface histogram 

ACT  =  activated clotting time 

LV  =  left ventricular 

MLD  =   minimal luminal diameter 

D90EEM =  minimal dose that encompasses 90% of the 

    external elastic membrane 
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FIGURES 
 
 
 
 
 

 
 
Figure 1. Clinical Outcomes of Brachytherapy Trials: This chart compares the percentage of major 
adverse cardiac events (MACE) between placebo and brachytherapy groups of three multi-center 
randomized control trials.A 
 
 
 
 
 
 
 
 
 
 
 

                                                 
A Leon, M.B., et al., N Engl J Med, 2001. 344 
Waksman, R., et al., Circulation, 2000. 101(16). 
Waksman et al., Lancet, 2002. 359(9306) 
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Figure 2. Angiographic Outcomes of Brachytherapy Trials: This chart compares the percentage of 
target vessel revascularization (TVR) between placebo and brachytherapy groups of three multi-
center randomized control trials.A 
 
 
 

                                                 
A Leon, M.B., et al., N Engl J Med, 2001. 344 
Waksman, R., et al., Circulation, 2000. 101(16). 
Waksman et al., Lancet, 2002. 359(9306) 
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Figure 3. This figure illustrates theoretical dose variation for several different dose prescriptions and 
isotopes. It shows the de facto dose delivered is highly variable upon the distance to the target site. 
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Figure 1. IVUS Segments Across Target Vessel:  Caricture shows basic premise of obtaining 2mm 
IVUS images across the span of the irradiated lesion. 
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Figure 2. Sample IVUS with Dose Histogram:  The external elastic membrane (EEM) outlined on a 
typical IVUS slice and its corresponding dose surface histogram (DSH). 
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Figure 3. Kaplan-Meier survival curve over one year of the study cohort. 
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Figure 4. Schematic of Case-Control:  Details the inclusion and exclusion criteria used to select 
patients eligible for case-control study. 
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Figure 5. Dosing for a Single Vessel:  A longitudinal display of the dose absorbed by 90% of the 
artery encompassed by the external elastic membrane (D90EEM) in intravascular ultrasound IVUS 
slices every 2 mm across a treated lesion.  The maximum, mi 
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Figure 6. Dose Threshold:  Distribution of the minimum dose absorbed by 90% of the artery 
encompassed by the external elastic membrane (D90EEM) for each study patient. Triangles 
represent cases (treatment failures).  Diamonds represent the matched co 
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