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INTRAOCULAR PRESSURE, AQUEOUS HUMOR DYNAMICS, AND 
FIBROSIS USING A NOVEL GLAUCOMA DRAINAGE PATHWAY. 
Julius T. Oatts, Ze Zhang, Harry Tseng, M. Bruce Shields, John H. Sinard, Nils A. 
Loewen. Department of Ophthalmology and Visual Sciences, Yale University, School of 
Medicine, New Haven, CT. 
 

The purpose of this study was to compare fibrosis, aqueous humor dynamics, and 

intraocular pressure (IOP) of two suprachoroidal shunts that are part of a new class of 

glaucoma drainage devices. After in vitro testing, 20 rabbits were implanted with either a 

gold shunt (GS, GMSplus+, Solx) or polypropylene shunt (PS, Aquashunt, OPKO). Ten 

eyes received mitomycin C (MMC) and triamcinolone. Peak and trough IOP were 

monitored with a pneumatonometer and tono-pen through 15 weeks. Aqueous humor 

dynamics were evaluated fluorophotometrically and tonographically. Fibrosis was 

quantified using ImageJ. In vitro growth was similar. In vivo, both shunts were devoid of 

foreign body reaction but exhibited fibrosis, and GS showed vascularization. There was 

no significant difference in aqueous or uveoscleral flow. Preoperative morning IOP was 

23.7 ± 2 mm Hg and evening IOP was 26.5 ± 2 mm Hg (p=0.000). Morning IOP was 

decreased through 15 weeks and evening IOP through 8 weeks in all groups. The 

morning IOP decrease was most profound at 15 weeks in PS (41%) compared to GS 

(18%). Antifibrotics initially enhanced but eventually diminished shunt performance. At 

15 weeks, thickness of scleral fibrosis was greater in GS (246 ± 47 µ) and PS (188 ± 47 

µ, p=0.285) compared with GS+MMC (109 ± 26 µ, p=0.023 to GS) and PS+MMC (48 ± 

30 µ, p=0.028 to PS). In a rabbit model, suprachoroidal polypropylene and gold shunts 

allow access to a new drainage pathway with different IOP profiles that can be modified 

with antifibrotics.
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INTRODUCTION 

Glaucoma is the leading cause of irreversible blindness in those of African and 

Latino descent, and the second leading cause among Caucasians.1 The increasing burden 

of glaucoma is a direct result of higher life expectancy2 and the considerable risks of 

standard trabeculectomy and glaucoma drainage device procedures.3 This has led to a 

search for new surgical treatment modalities for moderate and advanced disease stages 

aimed at preventing the disease’s long-term sequelae. Trabeculectomy remains the most 

commonly used penetrating procedure for glaucoma, and the surgical standard of care for 

moderate to advanced glaucoma.4 Because classical glaucoma surgeries shunt aqueous 

humor to a subconjunctival or sub-Tenon pocket (“bleb”) on the outside of the eye, 

fibrosis and infection remain a lifelong threat.3 It follows that these procedures have 

many associated complications including bleb leaks, bleb infections, and bleb fibrosis. A 

high failure and complication rate has led to the use of adjuvant antifibrotic agents in 

addition to novel drainage devices such as tube-shunts.5 Even with the addition of 

Mitomycin C (MMC), a potent antifibrotic agent, the complication rate remains high, 

most notably increasing the life-long risk of vision-threatening endophthalmitis.6 

A recently introduced novel approach to glaucoma surgery involves creating a 

communication between the anterior chamber and the suprachoroidal space through the 

use of a suprachoroidal shunt. Suprachoroidal shunts have been developed in an attempt 

to avoid the complications of conventional drainage devices by draining aqueous humor 

into a potential space on the inside of the eye, the suprachoroidal space, taking advantage 

of the natural hydrostatic pressure gradient between the anterior chamber and the 

suprachoroidal space.7 Drainage into the suprachoroidal space has the theoretical 

potential to profoundly lower intraocular pressure (IOP) through increasing uveoscleral 
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pathway outflow; however, given the newness of this technology, long-term outcomes 

data is not available in humans or animals.8 

Risk of glaucomatous visual field progression correlates with IOP variability,9,10 

therefore an evaluation of IOP variability is useful in assessing novel glaucoma 

treatments. More specifically, characteristic changes have been reported in 24-hour IOP 

monitoring of early glaucomatous eyes: higher diurnal IOP’s as well as smaller 

differences in diurnal-to-nocturnal IOP change.11 Diurnal IOP variation has been widely 

reported in the literature, with peaks occurring in the morning, even in normal 

subjects.12,13 Prostaglandins have been shown to lower both nocturnal and diurnal IOP,14 

presumably by increasing outflow through the uveoscleral pathway.15 This suggests that 

nocturnal pressures may be particularly useful to study uveoscleral outflow. 

In this study, we compared two suprachoroidal shunts, a gold shunt (GS; 

GMSplus+; SOLX Ltd., Waltham, MA) and a polypropylene shunt (PS; Aquashunt; 

OPKO Health, Miami, FL), examining in vitro and in vivo growth patterns of the cell 

types that come into direct contact with these devices. Using rabbits as a species that has 

very little natural uveoscleral outflow, we hypothesized that we could create a fibrosis-

prone animal model to readily display differences in shunt function and the impact of 

antifibrotics on outflow. 

Because suprachoroidal shunts increase flow into the anatomic compartment that 

is primarily responsible for pressure-independent, uveoscleral outflow, we hypothesized 

that suprachoroidal shunts would reduce IOP the most at a time of the day when this 

outflow contributes the least. 
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HYPOTHESIS 

Suprachoroidal shunts provide a theoretically feasible approach to lowering eye pressure 

in the treatment of glaucoma, and we hypothesized these devices will lower eye pressure 

through increasing aqueous outflow in normotensive rabbits. Because the success of 

glaucoma surgery depends on postoperative wound healing and amount of scar tissue 

formation, we proposed that differences in eye pressure lowering between the gold shunt 

(GS) and polypropylene shunt (PS) would be a factor of differential fibrosis. In animals 

receiving anti-fibrotics (mitomycin C, MMC and triamcinolone, TAC) at the time of 

shunt implantation, we expected to see more profound pressure lowering and a smaller 

degree of fibrosis. 

 

SPECIFIC AIMS 

1. Establishment of a Suprachoroidal Shunt Fibrosis Model in the Rabbit 

To establish a suprachoroidal shunt model in the rabbit that allows the comparison of 

different shunt designs and materials (GS and PS) and the usefulness of two modulators 

of fibrosis and wound healing (MMC and TAC). 

 

2. Shunt Effect on Aqueous Humor Dynamics and Intraocular Pressure 

To assess the effect of GS and PS implantation on fluorophotometric and tonographic 

outflow facility, uveoscleral flow and intraocular pressure in rabbits with and without 

MMC and TAC. 
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METHODS 

In Vitro Proliferation Studies 

In vitro biocompatibility of suprachoroidal shunts was evaluated using cell lines 

of corneal endothelial, trabecular meshwork, and fibroblast origin that were transduced 

with feline immunodeficiency viral (FIV) vectors to stably express enhanced green 

fluorescent protein (eGFP) as described previously.16-21 Briefly, feline kidney fibroblast 

(CrFK) (ATCC, Manassas, VA), trabecular meshwork (NTM5) (gift from Alcon, Fort 

Worth, TX), and bovine corneal endothelial (BCE) (ATCC, Manassas, VA) cells were 

transduced with a multiplicity of infection (MOI) of 30 to achieve high and even 

expression levels followed by expansion.16  

eGFP-expressing CrFK, BCE, and NTM5 cells were seeded onto GS and PS 

inside 6-well plates at 75 cells mm2. Growth rate on these materials was compared to that 

of control wells by eGFP-optimized fluorescent image capture (Eclipse TE300; Nikon, 

Melville, NY). 

 

Study Design 

Right eyes of 20 rabbits were implanted with GS or PS (Figure 1) to have an 89% 

chance of detecting IOP difference of 3 ± 2 mm Hg or 93% for 5 ± 2 mm Hg (non-paired 

t-test, alpha error 5%). GS was the most recent generation device (GMSplus+; SOLX 

Ltd., Waltham, MA) with an external size of 3.2 x 5.2 x .05 mm3 while PS (Aquashunt; 

OPKO Health, Miami, FL) had an external size of 4 x 10 x .75 mm3. Half of each group 

(n = 5) received intraoperative, subconjunctival mitomycin C (MMC, 0.2mg; Gemini 

Bio-Products, West Sacramento, CA) and intra-cyclodialysis cleft triamcinolone acetate 

(TAC, Triesence; Alcon Laboratories, Fort Worth, TX) to maximize antifibrotic and anti-
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inflammatory action. IOP was measured with both a pneumatonometer and tono-pen 

preoperatively and weekly postoperatively at peak and trough times for 15 weeks. 

Pneumatonometry and fluorophotometry were used to measure aqueous humor turnover 

and calculate outflow facility and uveoscleral flow. Fibrosis was analyzed and quantified 

using histology and morphometry at 15 weeks postoperatively. 

 
Figure 1. Suprachoroidal shunts in comparison: A, gold shunt (GS); B, polypropylene 
shunt (PS) on device inserter. 
 
Animals 

Shunts were implanted in 6 to 7 week-old New Zealand white rabbits (Harlan, 

Indianapolis, IN) that were acclimatized for 1 week to a 12-hour light-dark cycle, with 

lights on at 7 AM at a room temperature of 20 ± 4°C, housed in separate cages with food 

and water available ad libitum. All practices complied with the ARVO Statement for the 

Use of Animals in Ophthalmic and Vision Research and approved by the Yale University 

Institutional Animal Care and Use Committee. 

 

Suprachoroidal Shunt Implantation 

Animals were anesthetized with intramuscular ketamine (35 mg/kg; McKesson, 

San Francisco, CA) and xylazine (5 mg/kg; Lloyd, Inc., Shenandoah, IA). The surgical 

eye was cleaned with ophthalmic beta-iodine (Betadine 5%; Alcon Laboratories, Fort 
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Worth, TX), draped sterilely and a lid speculum was inserted. When macroscopic, 

microscopic and functional data in pilot animals confirmed that a clear corneal insertion 

technique from within the anterior chamber was less traumatic and more reproducible 

than the transscleral approach used in humans, 20 animals were implanted using this new 

approach. A shelved, peripheral clear corneal incision was fashioned according to shunt 

size. The anterior chamber at the incision site was filled by 30% with viscoelastic 

(Ocucoat; Bausch & Lomb, Clearwater, FL) before the tip of the cannula was turned 

toward the iris root and used to gently create a cyclodialysis, injecting viscoelastic to 

safely expand this space. Shunts were delivered to the anterior chamber via the included 

inserter and then carefully retracted into the cyclodialysis cleft using a cystotome (Figure 

2). The incision was closed with a 10-0 nylon suture. Half of each group of animals 

received 50 µL of TAC in the suprachoroidal space. This transscleral injection was aimed 

at the midsection of the shunt using a 27 gauge needle in posterior, bevel down position 

and applied after watertight closure when the eye was pressurized. These animals also 

received a subconjunctival injection of MMC. Postoperatively, all animals received 

moxifloxacin (Vigamox 0.5%; Alcon Laboratories, Fort Worth, TX) and prednisolone 

acetate 1% (Falcon Pharmaceuticals, Fort Worth, TX) every 12 hours for 7 days. 

Immediately postoperatively, a slit lamp exam was performed to assess for ocular 

inflammation (cells or flare), corneal edema, or hyphema. This exam was also repeated at 

1 week. 
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Figure 2. Suprachoroidal shunt implantation technique. (A) Following dissection of the 
suprachoroidal space with viscoelastic (blue), shunts were delivered into the anterior 
chamber and, (B) retracted with a cystotome into the pocket of viscoelastic. (C) After 
closing the eye, a small amount of triamcinolone (pink) and mitomycin C (green) were 
injected (Step 3 was included in only 10 animals). 
 

Structural Assessment  

Device placement was confirmed by ultrasound biomicroscopy (UBM) (UBM 

Plus; Accutome, Malvern, PA). Following anesthesia, a 20 mm eye cup was inserted 

between the eyelids and filled with saline solution. With a 48 MHz transducer, scanning 

was performed under standardized room lighting conditions. Cross-sectional and 

transverse images were obtained detailing the device in relation to the suprachoroidal 

space as well as other anatomical landmarks including cornea, iris, ciliary body, anterior 

chamber angle, and peripheral sclera. Central corneal thickness (CCT) was measured by 

ultrasound pachymetry (Pachmate; DGH Technology, Exton, PA) in triplicate in the 

morning and evening, corresponding with peak and trough IOP measurements.22 

 

Functional Assessment  

IOP measurements were performed in conscious rabbits gently restrained by 

hand. Rabbits received one drop of topical anesthesia with proparacaine 0.5% (Akorn, 
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Inc., Lake Forest, IL). All pressures were obtained using both pneumotonometry (Model 

30 Pneumatonometer; Reichert Technologies, Depew, NY) and tono-pen applanation 

(Tono-Pen Avia; Reichert Technologies, Depew, NY) during the same measurement 

session.  

Animals were acclimated to IOP measurements daily for 1 week before 

preoperative diurnal pressures were recorded. IOP was measured every 3 hours from 

0800 until 2300 for 48 hours to establish preoperative diurnal patterns. IOP was then 

measured weekly at peak and trough pressure through 15 weeks postoperatively. Because 

IOP measured with the pneumatonometer was considerably higher throughout the day 

and more sensitively displayed circadian IOP fluctuation than measurements with the 

tono-pen (Figure 3), statistical analysis was carried out with pneumatonometric data. 

 
Figure 3. Preoperative IOP as measured with pneumatonometry and tono-pen in the 
same session. 
 

Aqueous humor dynamics were evaluated with fluorophotometry and tonography. 

Aqueous turnover can be determined by staining the cornea with fluorescein eye drops 
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and monitoring diffusion and washout. Three hours prior to the first measurement, 5 

drops of 0.25% fluorescein (Altaire Pharmaceuticals, Inc., Aquebogue, NY) were 

topically applied to each eye of the rabbits in 5-minute intervals. One and a half hours 

after the last fluorescein drop was administered, eyes were rinsed with balanced salt 

solution to remove excess fluorescein from the preocular tear film. Forelimb paws were 

also rinsed to prevent fluorescein reintroduction to the tear film through eye rubbing. The 

fluorescence of the cornea and anterior chamber was measured in triplicate with a 

scanning ocular fluorophotometer (Fluorotron Master; OcuMetrics, Mountain View, CA). 

Measurements were taken between 1000 and 1800. Scans were repeated at one hour 

intervals for four sets of scans. These data were used to determine aqueous flow (Fa).22 

Following the fourth measurement, animals received intramuscular acetazolamide (16 

mg/kg; X-Gen Pharmaceuticals, Big Flats, NY) to suppress aqueous humor formation. 

Carbonic anhydrase inhibitors such as acetazolamide decrease IOP by reducing aqueous 

flow without affecting outflow variables.23,24 Here, acetazolamide was used to calculate 

fluorophotometric outflow facility (Cfl). Two hours after this injection, animals 

underwent two more sets of scans, one hour apart. IOP was measured at the time of 

injection and subsequent scans. Cfl was calculated as the ratio of the change in aqueous 

flow to the change in IOP, Cflx=(Fa−Fax)/(IOP−IOPx), where x indicates the interval and 

Fa indicates aqueous flow.25,26 

Tonographic outflow facility (Cton) was evaluated by 2-minute constant-pressure 

tonography and calculated as the ratio of the change in aqueous volume to the change in 

IOP during the 2-minute measurement.27 Uveoscleral outflow (Fu) was calculated using 

the modified Goldmann equation: Fu = Fa - C(IOP - Pev), where C was either 

fluorophotometric (Cfl) or tonographic (Cton) outflow facility (Fa = aqueous flow by 
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fluorophotometry; Pev = episcleral venous pressure). Given the limitations of non-

invasive measurement of Pev, Fu was calculated using 12 mm Hg, as previously reported 

for rabbits.28 When Cfl was used, IOP was measured prior to acetazolamide 

administration; when Cton was used, IOP was the pneumatonometric IOP before the start 

of tonography.  

 

Histology 

At the study endpoint of 15 weeks, eyes of euthanized animals (120 mg/kg 

phenobarbital via ear vein, Euthasol; Virbac, Fort Worth, TX) were enucleated and fixed 

in 10% formalin for 2-3 days. After fixation, the eyes were hemisected and 

stereomicroscopy was performed. The device and surrounding tissue were excised as a 

block, processed, and paraffin embedded. Sequential 5 µm sections were cut and stained 

with hematoxylin and eosin (H&E). Thirty minutes prior to sacrifice, 2 to 3 anesthetized 

rabbits in each group received a 0.2 ml intracameral cationic ferritin tracer (10 mg/mL, 

pH 5.8; Sigma-Aldrich, St. Louis, MO) to assess outflow function by histology.29 In 

addition to standard H&E staining, these slides were also stained with Prussian blue to 

highlight ferritin deposition. 

Fibrosis was measured on both scleral and choroidal sides of the shunt using 

ImageJ 1.46 (NIH, Bethesda, MD) on digital photomicrographs. Due to the difference in 

cellular architecture, fibrotic tissue developing following insertion of the device was 

easily differentiated from normal sclera and choroid. All measurements were taken in the 

middle of the device, and reported values were obtained as the average of fibrosis 

thickness across three sections from each specimen. 
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Statistics 

IOP, outflow facility, and uveoscleral flow were analyzed with repeated-measures 

analysis of variance (ANOVA). Student’s paired t-tests were used to compare diurnal 

IOP, aqueous flow, outflow facility (both fluorophotometric and tonographic), 

uveoscleral flow, and central corneal thickness intraindividually. Student’s unpaired t-

tests were used to compare these parameters and fibrosis between groups. All data are 

presented as the mean ± standard deviation (SD) and were considered statistically 

significant at P<0.05. 

 

RESULTS 

1. Establishment of a Suprachoroidal Shunt Fibrosis Model in the Rabbit 

In vitro biocompatibility studies presented here were primarily performed by coauthors 

Ze Zhang and Harry Tseng. 

 

In Vitro Biocompatibility 

All three cell types: fibroblasts (CrFK cells), trabecular meshwork cells (NTM5 

cells), and corneal endothelial cells (BCE cells) seeded on both gold (Figure 4) and 

polypropylene (Figure 5) grew readily and reached 100% confluence within 5 days of 

seeding and were visualized by expression of eGFP.  

Based on daily visual examination under a fluorescent microscope with an eGFP-

optimized filter cube, CrFK, NTM5, and BCE cells seeded on gold and polypropylene 

exhibited no signs of cytotoxicity or restricted growth compared to cells seeded on the 

control tissue culture well. Image analysis showed that there were no significant 
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differences in growth rates between cells seeded on gold, polypropylene, or control tissue 

culture plate materials (Figures 6, 7).  

 

 
Figure 4. Cell growth rate days 2-5 after cell seeding on gold shunt (GS) compared to 
control (A, CrFK; B, NTM; C, BCE). (N=3) 
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Figure 5. Cell growth rate days 2-5 after cell seeding on polypropylene shunt (PS) 
compared to control (A, CRFK; B, NTM; C, BCE). (N=3) 
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Figure 6. Progression of cell growth on gold shunt (GS) compared to control in CRFK 
cells (A), NTM5 cells (B), and BCE cells (C). 
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Figure 7. Progression of cell growth on polypropylene shunt (PS) compared to control in 
CRFK cells (A), NTM5 cells (B), and BCE cells (C). 
 
Suprachoroidal Shunt Implantation 

Two pilot animals served to develop an ab interno, intracameral, suprachoroidal 

shunt implantation technique for the rabbit when transscleral insertion was found to be 

traumatic and highly variable in this species. Implantation took approximately 20 minutes 

in each of the 20 subsequent animals. A limited intraoperative hyphema was observed in 
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5 animals, 4 of which were eyes implanted with PS. One animal experienced a retinal 

detachment secondary to PS implantation. Of 10 PS implanted, 2 progressively migrated 

towards the anterior chamber. Of the 10 animals treated with adjuvant MMC and TAC, 3 

implanted with GS had shallow, diffuse blebs during the early postoperative period, two 

of which resolved within 2 weeks postoperatively. In the third GS animal, the bleb 

persisted until postoperative week 6, at which point the IOP increased (Figure 8). One PS 

animal without MMC and TAC also had a postoperative bleb. 

 

Figure 8. Postoperative intraocular pressure of a GS animal with a persistent bleb 
through week 6, with an unexplained pressure increase following resolution of the bleb. 
 
Ultrasound Biomicroscopy (UBM) 

UBM (Figure 9) with visualization of suprachoroidal lakes (Figure 9C) and 

stereomicroscopic examination (Figure 11, 12) confirmed implantation in the 

suprachoroidal space.  



 

 

17 

 
Figure 9. Ultrasound biomicroscopy showing polypropylene shunt, PS (B) and gold 
shunt, GS (C) in the suprachoroidal space. A suprachoroidal pocket was also visualized 
in GS eyes (C; arrow).  
 

Pachymetry 

No adverse effects on corneal endothelial function as measured by CCT was 

observed. Rabbits exhibited a diurnal variation in CCT with preoperative morning CCT 

of 362 ± 15 µm, and evening CCT of 333 ± 12 µm. In all groups, physiologic diurnal 

differences with CCT larger in the morning than in the evening were maintained through 

3 months postoperatively. Device implantation had no effect on corneal thickness through 

3 months (Figure 10). Compared to control eyes, CCT in implanted eyes was not 
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significantly different at 1 month (GS, p=0.307; PS, p=0.918) or 3 months (GS, p=0.772; 

PS=0.663). Similarly, evening CCT was not significantly different at 1 month (GS, 

p=0.341; PS, p=0.982) or 3 months (GS, p=0.165; PS=0.462) (Table 1). 

 
Table 1. Central corneal thickness preoperatively and postoperatively compared between 
and within groups through postoperative month 3. 
 

 GS 
(n=10) 

PS 
(n=10) 

Control 
(n=20) 

 AM PM p p* p** AM PM p p* p** AM PM p 

Preoperative 368 338 0.002 0.285 0.160 360 334 0.012 0.924 0.607 359 331 0.000 

Postoperative  
1 month 

387 365 0.143 0.307 0.341 360 340 0.005 0.918 0.982 360 347 0.029 

Postoperative  
3 months 

368 338 0.003 0.772 0.165 360 334 0.003 0.663 0.462 378 356 0.000 

p, comparing values within groups; paired, two-tailed t-test. 
*p, comparing morning values to control; unpaired, two-tailed t-test 
**p, comparing evening values to control; unpaired, two-tailed t-test 
 
 

 
Figure 10. Morning (A) and Evening (B) central corneal thickness (CCT) showing no 
significant difference between groups through 3 months postoperatively. 

 
Stereomicroscopy 

Stereomicroscopy of dissected eyes confirmed proper device placement in all 

animals (Figure 11).  
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Figure 11. Stereomicroscopy confirming device placement of GS (B) and PS (C) 
compared to control eye (A). Duplicate images, with anatomy annotated in bottom half of 
panel. 
 

Stereomicroscopy revealed a round suprachoroidal drainage pocket in one animal 

with a GS (Figure 12A). This was not seen in any animals with PS. Other findings 

included vascularization that was evident at low power microscopy surrounding the 

posterior pole of a PS (Figure 12B) and a GS device (Figure 12C), respectively. One 

retinal detachment was seen in a PS eye (Figure 12D). 
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Figure 12. Side effects and complications of suprachoroidal shunt implantation. GS with 
suprachoroidal pocket (A; dotted circle); vascularization in PS and GS (B, C; arrow); 
retinal detachment in PS (D; dotted line - choroid, arrowheads - detached retina). 
 
The GS-implanted eye of the animal with the persistent bleb through week 6 showed 

significant glaucomatous optic nerve cupping, a hallmark of advanced glaucoma, 

extensive anterior synechiae (adhesions between the peripheral iris and structures of the 

anterior chamber angle such as trabecular meshwork, Schwalbe’s line or cornea), and 

corresponding buphthalmic changes (Figure 13). 
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Figure 13. Stereomicroscopy for GS animal with elevated intraocular pressure. Optic 
disc cupping (A, enlarged in C; solid line - disc, dotted line - cup) and peripheral anterior 
synechiae (B, enlarged in D; arrows - synechiae). 
 

Light Microscopy 

Histologically, both GS and PS were in the suprachoroidal space (Figure 14). 

One animal implanted with PS was found histologically to have the device in the 

subretinal space. Histology for this animal showed a retinal scar with retina adherent to 

the choroid in an area devoid of retinal pigment epithelium (Figure 15A, B). All eyes 

were devoid of foreign body reaction. Fibrosis was thicker on the scleral side than the 

choroidal side of the device (Figure 16C), and its presence was confirmed using a 

Masson’s trichrome stain (Figure 16A, B). Generally, fibrosis was more dense at the 

posterior tail of the device (Figure 17B), and was less compact but thicker toward the 

anterior end of the device (Figure 17C). GS eyes showed histiocytic inflammation, 
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which was not found in any GS eyes which received MMC or those implanted with PS 

(Figure 16D). 

  
 

 
Figure 14. H&E histology slide showing correct device placement of the GS (B) and PS 
(C) as compared to a control eye with anatomy annotated (A). 1X Magnification. 
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Figure 15. 1X and 4X magnification of same H&E slide - animal with PS placed in the 
subretinal space, as evidenced by disrupted retina (dotted line) as well as retinal scar 
(arrows). 
 

 
Figure 16. Fibrosis surrounding GS. A, B 4X magnification showing correlation between 
fibrosis seen on H&E (A) and Masson’s trichrome (B). C, D 10X magnification H&E 
slides showing a thicker layer of fibrosis on scleral side of device versus choroidal (C) 
and histiocytic inflammation surrounding device (asterisk, D). 
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Figure 17. 4X (A) and 10X (B, C) magnification of H&E slide of GS-implanted eye 
demonstrating the differential in density of fibrosis, more dense toward the posterior end 
of the device (B) when compared to the more anterior portion (C). 
 

In all animals implanted with GS, regardless of the addition of antimetabolites, 

fibrosis grew around the device and into the ports, filling the drainage area (Figure 18A). 

The fibrosis within the device in one animal which did not receive antifibrotics was 

extensive enough that a discrete vascular structure was observed (Figure 18B). While the 

PS does not have ports for fibrosis to grow into, one animal exhibited a downgrowth of 

fibrosis into the space where the device was (Figure 19). 
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Figure 18. 4X (A) and 10X (B) magnification of H&E slide showing dense fibrosis 
filling drainage area of GS. Fibrovascular tissues with blood-carrying vessels (arrow, B). 
 

 
Figure 19. 4X magnification of H&E slide demonstrating downgrowth of fibrosis 
surrounding PS device.  
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Histology for the GS-implanted animal with a persistent bleb through week 6 and an 

unexplained IOP increase showed a closed anterior chamber angle, with iris adherent to 

cornea in multiple places (Figure 20).  

 

 
Figure 20. 4X (A) and 10X (B) magnification of H&E slide from GS-implanted animal 
with unexplained intraocular pressure increase beginning 6 weeks postoperatively. 
Iridocorneal adhesion visible in the anterior chamber. 
 

Specimens showed a chronic lymphocytic inflammatory response to corneal 

sutures (Figure 21), which was found adjacent only to sutures, and none of the devices. 
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Figure 21. 10X magnification of H&E slide showing lymphocytic inflammation 
surrounding a suture (asterisk). 
 
Fibrosis Quantification 

In all animals implanted with GS, regardless of the addition of antimetabolites, 

fibrovascular tissue was seen growing into the pores of the device and was present within 

its lumen (Figure 18). At 15 weeks postoperatively, the thickness of the new fibrosis on 

the scleral side of the shunt was greater in GS (246 ± 47 µ) and PS (188 ± 47 µ, p=0.285) 

compared with GS+MMC (109 ± 26 µ, p=0.023 to GS) and PS+MMC (48 ± 30 µ, 

p=0.028 to PS), respectively (Figure 22). Figure 23 shows representative histologic 

sections from each group. 
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Figure 22. Thickness of scleral fibrosis in all groups 15 weeks postoperatively. Mean ± 
SEM. * P<.05, ** P<.01. 
 

Figure 23. Representative histologic sections from GS (A), PS (B), GS+MMC (C), and 
PS+MMC (D), 4x magnification. Double-headed arrows represent thickness of fibrosis 
on scleral side of device. 
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Overall, the thickness of the fibrosis on the choroidal side of the shunt was much 

less in all groups (range 17-22 microns), and there was no statistically significant 

difference between groups at 15 weeks postoperatively (Figure 24).  

 

 
Figure 24. Thickness of choroidal fibrosis 3 months postoperatively. Mean ± SEM. 
 

Ferritin Outflow Tracer 

The ferritin outflow tracer was seen surrounding both PS and GS in the 

suprachoroidal space, including at the tail end of devices filled with fibrovascular tissue 

(Figure 25B). GS specimens showed thin-walled, large vascular structures within the 

device (Figure 25, inset). 
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Figure 25. 4X magnification Prussian Blue stain of control eye (A), GS-implanted eye 
(B), and PS-implanted eye (C) showing ferritin tracer in the suprachoroidal space in 
device-implanted eyes (blue). PS dissolved in processing and the space collapsed (C). 
Inset highlighting iron surrounding GS (arrows). Thin-walled, large vascular structures 
may resemble lymphatic vessels more than blood vessels (inset). 
 
 
2. Shunt Effect on Intraocular Pressure and Aqueous Humor Dynamics  

 

Pneumatonographic Intraocular Pressure (IOP) 

Following acclimatization, rabbits displayed a preoperative diurnal IOP variation, 

with pressure highest in the evening and lowest in the morning, as has been previously 
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reported (Figure 26).30 Average morning IOP was 23.7 ± 2 mm Hg at 0800, and evening 

IOP was 26.5 ± 2 mm Hg at 2000. (p=0.000). 

 

 
Figure 26. Preoperative diurnal intraocular pressure variation. 
 

Compared to control eyes, all groups showed a consistent decrease in both 

morning and evening IOP through postoperative week 4 (p<0.05). The exception to this 

was the GS group, which was greater than control eyes at week 1 (control morning, 20.6 

± 3 mm Hg; control evening 24.9 ± 3 mm Hg; GS morning, 21.9 ± 4 mm Hg, p=0.415; 

GS evening, 25.9 ± 2 mm Hg, p=0.534) (Figure 27). At 15 weeks postoperatively, IOP 

was lowest in the PS group (morning, 13.7 ± 4 mm Hg, evening 22.7 ± 3 mm Hg) and 

highest in the GS+MMC group (morning, 21.6 ± 3 mm Hg, evening 29.9 ± 5 mm Hg), 

both values greater than control eyes. Evening IOP showed a more gradual return to 

baseline pressure through postoperative 15 weeks as compared to morning IOP (Figure 

27). 
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Figure 27. Absolute intraocular pressure (IOP) through 15 weeks postoperatively, 
morning (A) and evening (B). 
 

Morning IOP was decreased from baseline through 15 weeks postoperatively in 

all groups (Control 15%; GS 18%; GS+MMC 14%; PS 41%; PS+MMC 21%); however, 
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this was only statistically significant as compared to control eyes in the PS group through 

15 weeks, the PS+MMC group through 7 weeks, and the GS+MMC group through 3 

weeks. Evening IOP was decreased through 8 weeks postoperatively (Control 9%; GS 

19%; GS+MMC 1%; PS 27%; PS+MCC 23%). Compared to control eyes, this decrease 

was significant in both MMC groups through 4 weeks, through 15 weeks in the PS group, 

and non-significant in the GS group (Table 2, 3). 

 
 
Table 2. AM Percent IOP decrease through postoperative week 15. 

 
p* compared to control eyes; p** GS to PS; p*** GS to GS+MMC; p**** PS to 
PS+MMC; p*****GS+MMC to PS+MMC 
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Table 3. PM Percent IOP decrease from baseline through postoperative week 15. 

 
p* compared to control eyes; p** GS to PS; p*** GS to GS+MMC; p**** PS to 
PS+MMC; p*****GS+MMC to PS+MMC 
 

Aqueous Flow and Tonographic Outflow Facility 

There was no difference in aqueous flow (Fa) between groups preoperatively, with 

an average of 3.3 ± .7 µL/min. Compared to the unoperated eyes, Fa was not different in 

shunt eyes at any time point. Average preoperative tonographic outflow facility (Ct) was 

0.31 ± 0.09 µL/min/mm Hg. The only significant difference was found at 3 months, when 

both groups receiving antimetabolites exhibited greater Ct than control groups (control, 

0.34 ± 0.16 µL/min/mm Hg; GS+MMC, 0.56 ± 0.13 µL/min/mm Hg, p=0.007; 

PS+MMC, 0.48 ± 0.14 µL/min/mm Hg, p=0.049) (Figure 28). 
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Figure 28. Tonographic outflow facility (Ct) in all groups at 3 months postoperatively.  
* P < .05, ** P < .01. 
 

Tonographic Uveoscleral Flow 

Average preoperative tonographic uveoscleral flow (Fut) was 2.02 ± 1.30 µL/min. 

At 3 months postoperatively, GS+MMC and PS+MMC exhibited a small but significant 

decline compared to GS (GS+MMC, p=0.017; PS+MMC, p=0.033) and PS (GS+MMC, 

p=0.001; PS+MMC, p=0.002). 

 

Fluorophotometric Outflow Facility 

Overall average preoperative fluorophotometric outflow facility (Cf) was 0.18 ± .5 

µL/min/mm Hg. Standard deviations in the intervention groups through postoperative 3 

months were large, obscuring patterns of changes in Cf. No statistically significant 

difference could be detected. Average preoperative fluorophotometric uveoscleral flow 
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(Fuf) was 1.35 ± 5.71 µL/min. There was no statistically significant change in Fuf through 

3 months in any group, and no differences between groups at 3 months postoperatively. 

 

DISCUSSION  

This is the first study to systematically compare different suprachoroidal shunts 

and shunt materials both in vitro and in vivo. Fibrosis and foreign body reaction in the 

suprachoroidal space have not been formally examined. The idea of lowering IOP by 

creating a cyclodialysis cleft was first realized at the beginning of the 20th century,31 but 

complicated by unpredictable closure of the cleft responsible for aqueous humor 

drainage. Extended function seemed possible with cleft maintainers;32 however, materials 

available at that time were not tolerated well enough. Advances in engineering and 

material sciences have now allowed the reduction of bioreactivity and internal drainage 

device size. We chose rabbits for this study to allow the rapid wound healing and fibrosis 

in this species to display differences in biocompatibility and shunt function within only a 

few weeks, as classic glaucoma surgery in albino rabbits in the form of trabeculectomy 

tends to fail within several days.33 Also, rabbits normally have limited uveoscleral 

outflow,34 therefore, enhancing drainage into this space may be more noticeable.  

Before establishing a suprachoroidal shunt fibrosis model in vivo, we first 

assessed in vitro growth patterns of cell types that are expected to come into contact with 

suprachoroidal shunts. We then compared two different shunt materials to distinguish 

basic material effects from additional immune reactivity present in vivo. Because neither 

shunt was sufficiently translucent, we developed a reflection-based fluorescent assay with 

FIV-mediated16,35 stably eGFP-expressing cell lines of fibroblast, trabecular meshwork, 

and endothelial origin. Our assay allowed cell counts and direct observation of growth 
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patterns.  

As a chemically non-reactive precious metal, gold has been hypothesized to have 

ideal features that are strikingly different from conventional shunt materials: gold 

surfaces can be manufactured to be devoid of nano-structures which encourage cell 

migration and differentiation.36-39 However, for intraocular use, pure elemental gold has 

to be used to avoid traces of toxic copper,40 and the low hardness41 poses considerable 

engineering challenges to allow handling during surgery. The GS used here was produced 

with photolithographic etching to provide increased resistance to torque provided by 

internal pillars instead of grooves. In contrast, the polypropylene of the PS shunt is a 

thermoplastic polymer that can be melt-processed by extrusion and molding and is inert 

yet flexible and inexpensive. When observed under an electron microscope, 

polypropylene is uneven and has pico- and nano-scale grooves.42 Despite these distinct 

material differences, the cell growth patterns we observed were unchanged on GS or PS. 

Both preoperatively and postoperatively, animals exhibited the known 24 hour 

IOP pattern,30 validating our measurements. Because IOP increases slightly with age in 

young rabbits,22 right eye to left eye comparison was preferable here over same eye 

comparison. Pneumatonometry is often used in clinical research for circadian IOP 

measurements.43-45 Tonopen consistently underestimates IOP with increasing inaccuracy 

at higher pressures, but is also fast and simple.46-48 Both have been used in the rabbit 

before46,47,49 but this is the first systematic comparison in a glaucoma procedure study 

that may alter flow and displaceability of aqueous humor. The IOP difference of 

approximately 50% between these two was striking and most likely primarily the result 

of a CCT that is only about 60% of that in a human eye.50 

The length of IOP reduction with both GS and PS was considerably longer than is 
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achievable by any other glaucoma surgery in this species which is often limited to days or 

weeks.29,33,51 In our right to left eye comparison, GS lowered IOP significantly primarily 

in the PM from postoperative weeks 6 through 11. In contrast, PS resulted in significantly 

lower IOP more often in the AM than in the PM. This might well be caused by the 

difference with which these devices gain access to outflow routes and how they 

contribute to IOP during different times of the day. GS might have developed a different, 

more fibrovascular access to the pressure-independent uveoscleral outflow as compared 

to PS that has more classical bleb wall features.  

Lower IOP with the PS compared to GS cannot simply be explained by a larger 

internal diameter and less flow resistance, but may be a direct result of absorption area. 

Considering that pressure, filtration space, and transmural gradient are related, it is 

possible that flow through the larger internal space of the PS is relatively less affected by 

fibrosis than the GS.  

Our attempt to extend and enhance device function with adjuvant MMC and TAC 

caused a marked IOP decrease only during the first 4 weeks with the GS and first 7 

weeks with the PS, but was less than in non-MMC animals thereafter. The results for 

MMC and TAC with conventional glaucoma drainage devices have been similarly 

sobering52 possibly because the mechanism is not fibrosis alone but also a foreign body 

reaction.53 We did not observe foreign body reaction in our experiments, and other 

mechanisms could explain a worse long-term IOP in eyes receiving MMC and TAC: as 

seen in one animal, channels towards the subconjunctival space might have formed in the 

early postoperative period and prevented the establishment of proper suprachoroidal 

drainage. Increased tonographic outflow facility in these eyes is consistent with this 

hypothesis, indicating that aqueous humor was displaceable, possibly through needle 
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tracks in the presence of reduced wound healing. Increased IOP can then result when the 

bleb disappears. Additionally, TAC might have worsened trabecular outflow as seen in 

steroid induced glaucoma,54 while MMC might have caused avascularity in the area 

applied,55 reducing uveoscleral outflow.  

The present standard for implantation of both the GS and PS in clinical trials in 

humans is transscleral insertion, but in the rabbit, such an ab externo approach is highly 

traumatic due to a thin, friable sclera with firmly adherent uvea. We developed an ab 

interno insertion technique with well controlled visco-hydraulic expansion of the 

suprachoroidal space and proper positioning of the shunt to standardize insertion and 

achieve consistent results. The adjacent corneal thickness was unaffected and maintained 

a normal diurnal thickness cycle.22 In attempting to determine the mechanism of IOP 

reduction by GS and PS, we found that fluorophotometric outflow measurements were 

not significantly different following the perturbations and considerable standard deviation 

these surgeries induced.  

Consistent with the idea of reduced fibrosis in the suprachoroidal space, fibrosis 

on the choroidal side of these shunts measured only 20 microns, while that on the scleral 

side was 200 to 250 microns thick, similar to what occurs with external drainage devices 

or trabeculectomies in rabbits,56,57 which is overall similar to58 or slightly less than59 that 

in humans. This striking difference between the two sides may be a direct result of the 

cell types and quantities adjacent to the shunt. The internal sclera is the same fibroblast-

rich structure that external drainage devices are in contact with, while the highly 

vascularized choroid is detached from the scleral bed and might contain fewer fibroblasts. 

Similar to our in vitro experiments, no significant differences were seen between GS and 

PS, although PS was 25% thinner on average. In the absence of significant cellular 
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inflammation, capsule formation might be a direct result of aqueous humor flow,60-62 and 

the 20 times smaller surface area of the GS compared with PS might explain capsule 

differences. Several GS-implanted eyes displayed considerable ingrowth of a mixed 

fibrovascular tissue, but this did not prevent the entry of tracer into the device. Vascular 

profiles identified included some with histologic features of blood vessels (with narrow, 

normal endothelium and basement membrane, and red blood cells in the lumen) and 

others more consistent with lymphatic vessels (with thin endothelium, poorly developed 

basement membrane, and no red blood cells visible). These neo-vessels could represent 

new structures that provide access to uveoscleral drainage routes. A similar mechanism is 

deployed in a recently introduced external glaucoma drainage device that utilizes a 

porous material to encourage ingrowth while conserving other design features.63 Due to 

the sparsity of material, we were not able to differentiate between primarily vascular or 

lymphatic origin by immunohistology. 

In summary, the suprachoroidal shunts studied here lowered intraocular pressure 

up to 7 times longer than classical glaucoma surgery in this species. Fibroblast, trabecular 

meshwork, and endothelial cell growth indicated similar in vitro biocompatibility. In 

vivo, fibrosis occurred more on the scleral than on the choroidal side of the shunt and was 

observed inside the lumen of the gold shunt as well. The larger polypropylene shunt 

lowered pressure more and longer than the gold shunt, but had more severe complications 

which were also more frequent. The use of mitomycin C and triamcinolone worsened 

intraocular pressure response. Tracer experiments demonstrated shunt function up to the 

experimental endpoint of 15 weeks. In the absence of a significant decrease in aqueous 

humor production or increased trabecular flow, the main mechanism of intraocular 

pressure lowering was likely an increase in uveoscleral outflow. 
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