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INTRAPERITONEAL CHEMOTHERAPY FOR THE TREATMENT OF MALIGNANT PERITONEAL 

MESOTHELIOMA. Joshua Leinwand, Binsheng Zhao, Sharyn Lewin, John Allendorf, John Chabot, 

Lawrence Schwartz and Robert Taub. Department of Medicine, Columbia University College of Physicians 

and Surgeons, New York, NY. (Sponsored by Elena Ratner, Department of Obstetrics, Gynecology & 

Reproductive Sciences, Yale University School of Medicine, New Haven, CT.)  

Our treatment protocol for malignant peritoneal mesothelioma (MPM) includes initial 

cytoreductive surgery with heated intraperitoneal chemotherapy (HIPEC), outpatient catheter-administered 

intraperitoneal chemotherapy (CAIPEC), and a second cytoreductive surgery with HIPEC. We 

hypothesized that even distribution of CAIPEC would correlate with better overall survival and fewer side 

effects; that the pharmacokinetics of HIPEC would be influenced by body surface area (BSA); and that 

tissue penetration of CAIPEC would exceed that of HIPEC due to the longer dwell time. 

We analyzed CT peritoneograms from 38 MPM patients undergoing cisplatin CAIPEC for volume 

and surface area, and modeled overall survival and post-treatment glomerular filtration rate (GFR) with 

these as predictors. We collected intraoperative blood and peritoneal fluid samples from 10 patients 

undergoing oxaliplatin HIPEC, used mass spectrometry to determine fluid platinum levels and modeled 

these outcomes with BSA as a predictor. We collected intraoperative peritoneal tissue samples from 6 

patients undergoing HIPEC and used x-ray fluorescence microscopy to characterize tissue platinum levels. 

Decreased mortality was associated with larger surface areas (p=0.02) and smaller volumes of 

CAIPEC (p=0.03), controlling for age, sex, histologic subtype, and residual disease >0.5cm. Larger 

volumes were associated with higher post-treatment GFR, controlling for pre-treatment GFR, BSA, surface 

area and BSA-volume interaction (p=0.02). Higher BSA was associated with lower plasma oxaliplatin 

(p=0.01), and greater pharmacokinetic advantage (p=0.02). Tissue platinum was highest at second surgery 

post-HIPEC, lowest at first surgery post-HIPEC, and intermediate at second surgery pre-HIPEC.  

CT peritoneography provides parameters associated with overall survival and post-treatment GFR 

in MPM patients undergoing CAIPEC. In HIPEC patients who receive a BSA-based oxaliplatin dose and 

carrier fluid volume titrated to achieve a desired flow rate, BSA is a predictor of systemic drug exposure. 

The direct tissue penetration depth of platinum attributable to multiple courses of CAIPEC is greater, and 

the tissue distribution of platinum more homogeneous, than that attributable to a single dose of HIPEC. 
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I. Introduction 

Biodistribution of Intraperitoneal Chemotherapy 

Intraperitoneal (IP) administration of chemotherapy has been used to treat peritoneal 

surface-spreading malignancies in order to maximize local concentrations while 

minimizing systemic toxicities. This rationale is supported by pharmacokinetic studies 

describing the “pharmacokinetic advantage” of IP administration of various drugs: the 

ratio of intraperitoneal to intravascular drug distribution, expressed either in peak 

concentration or area under the concentration-time curve (AUC).(1-13) The peak and 

AUC pharmacokinetic advantages of several commonly-used agents are listed in Table 1.  

Intraperitoneal chemotherapy is instilled in a carrier fluid, which in most cases is normal 

saline or lactated Ringer’s solution. The major exception is oxaliplatin, which, due to its 

instability in chloride-containing solutions, is frequently diluted in 5% dextrose. (14) As 

in intravenous chemotherapy, the dose of chemotherapy during IP chemotherapy is 

usually calculated based on body surface area (BSA).(15) Some institutions dilute the 

drug in a standard volume of carrier fluid, some calculate carrier fluid volume based on 

BSA, and some titrate carrier fluid volume to achieve a desired flow rate during 

hyperthermic intraoperative intraperitoneal chemotherapy (HIPEC).(15-17) As a result, 

there is variability between patients in the concentration of oxaliplatin in the perfusate. 

Likewise, the duration of chemoperfusion has not been standardized; perfusion times 

range from 30 minutes to 2 hours.(15, 18)
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Table 1. Pharmacokinetic advantage associated with intraperitoneal delivery of selected 

antineoplastic agents. 

Drug Peak intraperitoneal to 

intravascular drug ratio  

AUC intraperitoneal to 

intravascular drug ratio 

Carboplatin --- 18 

Cisplatin 20 12 

Cytarabine 664 474 

Doxorubicin 474 --- 

5-fluorouracil 298 367 

Floxuridin --- 1000 

Melphalan 93 65 

Methotrexate 92 --- 

Mitoxantrone --- 1400 

Paclitaxel 1000 1000 

AUC, Area under the concentration-time curve. Adapted from Markman 2007.(19) 
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Experimental measurements of tissue concentrations of locally-administered 

chemotherapy drugs compared to distance from tissue surface have been reported in 

tumor spheroids in vitro, and in IP-administration in mice and rats.(20-25) These have 

found the greatest drug accumulation at the tissue surface, with concentrations decreasing 

dramatically with distance from the tissue surface after drug dwell times ranging from 1 

to 168 hours. A study of HIPEC, administered over 90 minutes to ovarian carcinoma 

patients, comparing antibody-based detection of DNA-cisplatin adducts in ovarian 

carcinoma tumor nodules versus buccal cells (as a control for systemic exposure), 

likewise found greater adduct formation in the tumor nodules only to a distance of 5mm 

from the peritoneal surface.(26)  

A mathematical model estimated a direct tissue penetration distance on the order of 

0.5mm for a one-time, limited-dwell IP administration of normothermic cisplatin; this 

distance increased to approximately 3-5mm with hyperthermic (43˚C) administration.(27) 

These values were based on an exponential decay of drug concentration within peritoneal 

tissues as a function of distance from the peritoneal surface, which is modeled to 

asymptotically approach the circulation drug concentration.  

However, the previous studies and models concern IP administration with drug removal 

at a set end point, and may not be applicable to longer dwell-times, in which there is 

experimental evidence of greater tissue penetration and tumor drug concentration. The 

advantage in tumor cisplatin concentration of IP over IV administration in rats was only 

realized after 24 hours of dwell-time.(21) Tumor platinum concentration does not peak 

until at least 24 hours after IP instillation, and its ratio to plasma concentration increases 
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over at least the first 7 days, as drug remains in the peritoneal fluid for at least that long 

while it is cleared from the circulation.(22) Furthermore, for IP cisplatin and oxaliplatin 

after 24 hour dwell-times, platinum concentration does not appear to decay exponentially 

as a function of distance from the peritoneal surface, but to decrease linearly – suggesting 

that over longer dwell-times, the diffusion of drug from peritoneal fluid through 

peritoneal tissues to the systemic circulation may reach steady state.(28) Theoretically, at 

steady state, the concentration of drug may remain higher throughout the peritoneal tissue 

than the circulation, as the major obstacle to drug diffusion is the endothelial barrier.(29) 

For these reasons, it is important to distinguish between the biodistribution of limited-

dwell versus indefinite-dwell IP chemotherapy. 

Modalities of Intraperitoneal Chemotherapy Administration 

Hyperthermic Intraoperative Intraperitoneal Chemotherapy (HIPEC) 

Various protocols have been described for the administration of HIPEC. In general, 

chemotherapy is instilled intraoperatively after tumor debulking. The drug is heated to 

40-43˚C and administered over 60-120 minutes, after which time it is removed from the 

peritoneal cavity.(30) Open, closed, and partially-closed techniques have been described, 

with different methods to maintain flow in order to preserve hyperthermia and to ensure 

even fluid distribution and maximal contact of the instilled drug with the peritoneal 

surfaces.(31-33) One study found dye distribution and temperature were most 

homogeneous using the open technique.(34) However, there is no evidence that different 

HIPEC techniques result in differences in survival.(35-37) 
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Intraoperative IP chemotherapy administration is thought to provide better fluid 

distribution than postoperative IP chemotherapy by avoiding postoperative adhesions and 

the development of preferential intraperitoneal pathways for perfusion fluid.(38) 

However, inflammation and vascular injury accompanying surgery may contribute to 

altered pharmacokinetics, and potentially decreased pharmacokinetic advantage, by 

increasing direct communication between the systemic circulation and the peritoneal 

fluid.(39, 40) 

Several rationales have been advanced for hyperthermic drug administration. 

Hyperthermia has been shown in vitro to have direct cytotoxic effects, as well as to work 

synergistically with some chemotherapy drugs.(41-43) It has been suggested that 

hyperthermia contributes to greater tissue penetration of chemotherapy from the 

peritoneal surface.(44, 45) However, this claim appears to be based on two rat studies that 

are not entirely convincing. One study demonstrated higher diaphragm and tumor nodule 

drug concentrations with hyperthermic compared to normothermic cisplatin.(46) The 

other showed higher drug concentrations in some intra-abdominal organs, but not in 

diaphragm or abdominal wall with hyperthermic compared to normothermic 

doxorubicin.(47) Neither reported tissue drug concentrations compared to distance from 

the peritoneal surface.  

It is plausible that hyperthermia causes increased tissue drug concentrations by increasing 

drug exposure via the circulation, rather than by increased direct tissue penetration. This 

mechanism is supported by preclinical and clinical data. Platinum concentrations in rat 

peritoneal tumors after carboplatin treatment at elevated temperatures were similar for the 



 

 
 

6

IP and IV routes.(48) Patients who received IV 5-fluorouracil (5-FU) during 

intraoperative HIPEC with doxorubicin and mitomycin C had increased 5-FU 

concentrations in peritoneal fluid and tumor nodules compared to plasma, suggesting 

augmented communication with the circulation.(49) Inflammation and vascular injury 

accompanying surgery may also contribute to increased communication with the 

circulation as compared to non-intraoperative outpatient IP chemotherapy.(39, 40) 

Catheter-Administered Intraperitoneal Chemotherapy (CAIPEC) 

Outpatient administration of IP chemotherapy is accomplished through surgically-placed 

IP catheters. Catheter placement is usually done at the time of laparotomy for disease 

resection.(50) Interventional radiology and laparoscopic IP catheter placement techniques 

have also been described.(51, 52) 

Following the placement of IP catheters, in the early post-operative and/or late post-

operative period, room-temperature chemotherapy is infused through the IP catheters and 

allowed to dwell indefinitely in the peritoneal space. A comparison of the 

pharmacokinetics of HIPEC vs. CAIPEC in a small cohort of patients receiving both 

suggested that the total intraperitoneal drug exposure and the pharmacokinetic advantage 

over the course of perfusion was greater for CAIPEC than for HIPEC.(53) Furthermore, 

the indefinite dwell time, as compared to the removal of drug at the end of HIPEC, allows 

for even greater total intraperitoneal drug exposure. This may help explain why survival 

in a rat colon cancer model was increased with early post-operative CAIPEC compared to 

HIPEC.(54) To date, no human or animal studies have reported the peritoneal tissue 
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distribution of IP drug following multiple cycles of CAIPEC, such as is recommended for 

peritoneal carcinomatosis of ovarian origin.(55)  

X-ray computed tomography (CT) peritoneography has previously been used in patients 

receiving catheter-administered IP chemotherapy to assess for catheter failure and 

infusate maldistribution.(56-60) However, no standard system has been established to 

assess infusate distribution, and outcomes data from patients assessed with CT 

peritoneography has not been reported. Radiologic response to IP chemotherapy was 

reported in a series of 11 ovarian carcinoma patients stratified into 3 categories by 

distribution of intraperitoneal Tc-99m, and was suggestive of better response in patients 

with free-flowing infusate than in those with loculation, but overall survival was not 

reported.(61) 

Indications for Intraperitoneal Chemotherapy 

Pseudomyxoma Peritonei 

Pseudomyxoma Peritonei (PMP) is a rare disease characterized by mucinous ascites with 

peritoneal surface spread, most often of appendiceal mucinous neoplasms.(62) 

Historically, patients would often undergo repeated interval debulking surgeries and 

sometimes chemotherapy for symptomatic relief, as the disease and symptomatic ascites 

would invariable recur with transition to more aggressive histologic characterisitcs at 

repeat surgeries.(63, 64)  

The current standard of care for PMP is cytoreductive surgery with HIPEC.(65) No 

randomized controlled trials or comparative studies have been performed to date to assess 
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the efficacy of cytoreductive surgery with HIPEC for PMP. However, a multicenter 

retrospective analysis showed marked improvement in survival and recurrence compared 

to historical controls.(66) 

Peritoneal Carcinomatosis of Gastrointestinal Origin 

Approximately 10% of colorectal cancer (CRC) patients present with peritoneal 

carcinomatosis (PC) at the time of diagnosis, and 25% of patients develop PC at 

recurrence; after liver recurrence, peritoneal surface spread is the most common site for 

tumor recurrence in CRC.(67, 68) Likewise, PC may be present in 5% to 20% of patients 

undergoing potentially curative resection of gastric cancer.(69) The prognosis in these 

cases is generally dismal, as median survival with 5-fluorouracil-based systemic 

chemotherapy is between 6 and 16 months.(67, 70, 71) 

Several experienced groups now recommend HIPEC for PC of gastrointestinal 

origin.(72-75) These recommendations are supported by one randomized controlled study 

in CRC, one randomized controlled study in gastric cancer, and a number of case-control 

and single-arm studies.(76-79) 

Advanced Ovarian Carcinoma 

Ovarian carcinoma is the leading cause of death from gynecologic malignancies in the 

U.S.(80) The high rate of mortality is in part attributable to the large proportion of 

ovarian carcinomas, up to 89%, that are advanced (Stage III or Stage IV) at the time of 

diagnosis, including those that have spread over peritoneal surfaces.(81) 
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The strongest support for the use of CAIPEC is in the treatment of advanced ovarian 

carcinoma; meta-analysis in a recent Cochrane review showed increased overall and 

disease-free survival for patients treated with IP chemotherapy.(82) Despite this evidence, 

many advanced ovarian carcinoma patients who might benefit from IP chemotherapy are 

not offered it, largely depending on physician experience and preferences. Physician 

perceptions of IP chemotherapy are shaped in part by beliefs about biodistribution of IP 

chemotherapy, some of which are based on incomplete evidence. One article criticized IP 

chemotherapy for advanced ovarian cancer, stating, “It is well known that the higher 

tumor concentration observed with the i.p. administration of cisplatin only reaches to a 

depth of 1–2 mm.”(83) This conjecture (which was unsupported in that manuscript by 

any references), may have been based on a study of HIPEC in humans, a study of IP 

cisplatin dwelling for 7 days in rats, and theoretical calculations.(21, 26, 27) None of 

these studies directly address the recommended regimen for advanced ovarian carcinoma, 

six 3-week cycles of platinum-based intraperitoneal chemotherapy.(55) 

Less data is available to support the use of HIPEC in advanced ovarian carcinoma, 

although results from some non-randomized studies support its use, and it is a subject of 

ongoing investigation.(84-88) 

Malignant Peritoneal Mesothelioma 

Malignant mesothelioma is a rare, seldom-curable tumor of the pleura or the peritoneum 

whose origin has generally been linked to asbestos exposure.(89) Several experienced 

groups recommend HIPEC as part of the standard of care for malignant peritoneal 

mesothelioma (MPM).(30, 90-93) While no head-to-head trials have been performed, 
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overall and progression-free survival in reported HIPEC series compares favorably with 

those of systemic chemotherapy for MPM.(94-96) 

Clinical Results of Intraperitoneal Chemotherapy for Malignant Peritoneal Mesothelioma 

Three large series of MPM patients (two single-institution series and one multi-institution 

report, including patient series from 8 institutions, some of which had been previously 

reported) have been identified (Table 2). Several factors were noted to predict better 

progression-free and overall survival in these patients; these prognostic factors are 

summarized in Table 3. 

Table 2. Intraperitoneal chemotherapy series for malignant peritoneal mesothelioma. 

Investigator, 

year 

Institution Chemotherapy 

Modality, drug, n 

Median  

Survival 

1-year 

survival 

3-year 

survival 

5-year 

survival 

Alexander , 

2003 (94) 

NIH Intraoperative 

HIPEC, Cisplatin, 49 

    

  Postoperative  

5-FU and Paclitaxel, 

35 

    

  Total, 49 

 

92 months 86% 59% 59% 
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Sugarbaker, 

2009 (96) 

Multiple Intraoperative 

HIPEC, Cisplatin and 

Doxorubicin, 311 

    

  Intraoperative 

HIPEC, Cisplatin and 

Mitomycin C, 14 

    

  Intraoperative 

HIPEC, Cisplatin, 19 

    

  Intraoperative 

HIPEC, Mitomycin 

C, 26 

    

  Intraoperative 

HIPEC, Other, 2 

    

  Postoperative, 

Cisplatin and 

Doxorubicin, 16 

    

  Postoperative, 

Paclitaxel, 77 

    

  Postoperative, Other, 

1 

    

  Total, 405 53 months 81% 60% 47% 



 

 
 

12

 

Chabot (95) Columbia 

University 

Outpatient 

Gemcitabine, 

Cisplatin, 

Doxorubicin, 

Interferon 

    

  Outpatient Cisplatin, 

Doxorubicin, 

Interferon 

    

  Intraoperative 

HIPEC, Cisplatin and 

Mitomycin, 39 

    

  Total, 39 55 months 80.9% 61.7% 48.9% 
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Table 3. Statistically-significant prognostic factors. 

Investigator Prognostic Factor Analysis P-value 

Alexander (94) Age < 60 Cox: Overall survival 0.034 

 

Sugarbaker (96) Age < 50 Univariate: Overall survival 0.003 

Sugarbaker (96) Female sex Univariate: Overall survival <0.001 

Alexander (94) No deep invasion Cox: Overall survival 

Cox: Progression-free survival 

0.041 

0.003 

Alexander (94) Residual disease <1 

cm 

Cox: Overall survival 0.032 

Sugarbaker (96) Cytoreduction score Univariate: Overall survival <0.001 

Sugarbaker (96) Epithelioid histology Univariate: Overall survival 0.003 

Chabot (95) Epithelioid histology Univariate: Overall survival <0.001 

Sugarbaker (96) No lymph node 

metastasis 

Univariate: Overall survival 0.008 

 

Sugarbaker (96) No extra-abdominal 

metastasis 

Univariate: Overall survival 0.013 
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Our protocol for the treatment of MPM includes initial debulking surgery with HIPEC 

(41°C over 1 hour, after which drug is removed), then 6 cycles of CAIPEC (room 

temperature, indefinite dwell-time), and a second debulking surgery with HIPEC (Dr. 

Robert Taub, personal communication). This allowed us to obtain tissue samples from 

patients during the initial surgery immediately after their first HIPEC, and during the 

second surgery before HIPEC (but after 6 cycles of CAIPEC) and immediately after 

HIPEC.  

Initial debulking surgery prior to IP chemotherapy is performed with a goal of removing 

all tumor nodules greater than 0.5 cm in depth or plaques greater than 0.5 cm in diameter, 

as residual disease greater than 0.5 cm has been associated with adverse outcomes, in 

peritoneal carcinomatosis in general and MPM in particular.(94, 96, 97) As a standard 

assessment of catheter function and infusate distribution, many of these patients 

underwent CT peritoneography.(98) 
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II. Hypothesis and Aims 

Our overall goals were to better characterize the sequence of events that are theorized to 

lead from the pharmacokinetic advantage associated with intraperitoneal chemotherapy 

(i.e. high local drug concentrations with lower systemic concentrations), to improved 

local cytotoxicity with decreased systemic side effects, to better disease control and 

therefore better survival. We used pharmacokinetic, radiologic and clinical parameters to 

measure these purported effects. 

In a previous study, the absorption of oxaliplatin during HIPEC was associated with body 

mass index (BMI).(16) We sought to confirm or disconfirm and extend these results in 

order to determine whether the dosing of intraperitoneal chemotherapy on the basis of 

BSA, as is standard in most institutions, resulted in equivalent or predictably disparate 

pharmacokinetic parameters for patients of various sizes, as measured by BMI or BSA. 

We investigated this question in patients undergoing HIPEC with oxaliplatin for MPM 

and other diseases. 

The direct tissue penetration of platinum-based chemotherapy drugs has previously been 

reported in in vitro and animal models, with treatment durations up to 1 week.(20-23, 25, 

81) A study of tissue penetration of cisplatin in patients undergoing HIPEC used 

antibody-detection of cisplatin-DNA adducts rather than direct imaging of the drug.(26) 

None of these adequately address the tissue penetration of multiple cycles of CAIPEC 

over the course of several months, as is used clinically. We sought to compare the depth 

of direct tissue penetration of platinum-based chemotherapy drugs in HIPEC versus 

CAIPEC in patients treated with both for MPM using direct imaging of tissue platinum. 
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Finally, we sought to determine whether distribution of CAIPEC, as measured by 

quantitative CT peritoneograms, were associated with overall survival and/or 

complications as manifested by post-treatment GFR in patients treated with cisplatin-

based IP chemotherapy, a regimen known for its side effect profile including 

nephrotoxicity. 
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III. Methods 

Patients 

Retrospective chart review identified 38 patients who underwent CT peritoneography 

while receiving IP chemotherapy between February 2000 and August 2011. Baseline 

characteristics of the 38 patients are reported in Table 4. 

Table 4. Baseline characteristics of peritoneogram cohort. 

Characteristic Patients 

(N=38) 

Female sex – number [%] 19 [50%] 

Age in years – median [range] 61 [21-83] 

Body Surface Area in m2 – mean [SD] 1.92 [0.25] 

Histologic subtype – number [%] 

Epithelioid 

Biphasic 

 

34 [89%] 

4 [11%] 

Residual disease >0.5 cm – number [%] 10 [26%] 

 

On an IRB approved protocol and with informed consent, peritoneal fluid and blood 

samples were collected during closed-technique HIPEC in 10 patients receiving 

oxaliplatin for pseudomyxoma peritonei (n=5), malignant peritoneal mesothelioma (n=4), 

or peritoneal carcinomatosis from colon cancer (n=1), and 7 patients receiving cisplatin 
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for malignant peritoneal mesothelioma. Patients received a BSA-based oxaliplatin dose 

of 250 mg/m2 in 5% dextrose carrier fluid or cisplatin dose of 100 mg/m2 in 0.9% saline, 

titrated to achieve a flow rate of 1 L/min over a 60-minute chemoperfusion. Blood 

glucose was recorded for 24 hours following HIPEC for patients receiving oxaliplatin. 

Peritoneal cancer index (PCI) and completeness of cytoreduction (CC) scores were 

determined for all patients.(99, 100) 

On an IRB-approved protocol, we collected peritoneal tissue and contemporaneous blood 

samples from 6 MPM patients receiving cisplatin or oxaliplatin HIPEC at first (n=2; both 

cisplatin) or second surgery (n=4; 2 cisplatin and 2 oxaliplatin). All second surgery 

patients had received intraperitoneal cisplatin as outpatients. The median age of the 

patients was 63 years (range 39-79). Four were male and 2 were female. Five patients had 

epithelioid disease and one had biphasic disease. 

Plasma and Peritoneal Perfusate Platinum Content 

Blood samples were collected and centrifuged, and blood plasma isolated by Joshua 

Leinwand and delivered to the Graziano lab for spectrophotometric analysis. Peritoneal 

perfusate samples were collected and centrifuged, and the supernatant isolated by Joshua 

Leinwand and delivered to the Graziano lab for spectrophotometric analysis. In the 

Graziano lab, diluted plasma and peritoneal perfusate samples (in 2% HNO3, 1% 

Methanol, 0.2% Triton 100-X) were analyzed for Pt concentrations using a Perkin-Elmer 

Elan DRC II (Perkin Elmer, Shelton, CT) Inductively Coupled Plasma 

Spectrophotometer (ICP-MS) equipped with an AS 93+ autosampler.  The platinum 

concentration of calibration standards was chosen to cover the expected range of 
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platinum concentrations in the diluted plasma samples:  1, 5, and 10ug/L.  Matrix-

induced interferences were corrected using an iridium internal standard to match the mass 

and ionization properties of the platinum.  Stock internal standard spiking solution was 

prepared and added to all calibrators and samples in the same concentration, 50 ng Ir per 

tube.  After the initial instrument calibration, quality control samples (QC-plasma spiked 

in our laboratory and serum samples of known Pt concentration provided by Institut de 

Sante Publique du Quebec) were run. To control instrument drift over the period of 

running hours, we ran QC samples every 10-15 samples, and recalibrated if  QCs didn’t 

meet quality control criteria (+ 10% of target values). 

Peritoneal Tissue Platinum Content 

Peritoneal tissue samples were collected intraoperatively and stored at -70˚C in frozen 

tissue matrix by Joshua Leinwand, and then delivered to the Borczuk lab for sectioning. 

In the Borczuk lab, 20-micron-thick sections of each peritoneal tissue sample were 

cryosectioned and deposited on Ultralene windows for x-ray fluorescence microscopy. 

These sections were delivered to the Miller lab. In the Miller lab, the platinum contents of 

the samples were imaged using x-ray fluorescence microscopy at beamline X27A at the 

National Synchrotron Light Source. X-ray fluorescence spectra were collected using an 

x-ray excitation energy of 12 keV using a Si(111) channel-cut monochromotor. The 

monochromatic beam was then collimated to 350 µm × 350 µm and then focused to 

approximately 6 µm × 10 µm using Rh-coated silicon mirrors in a Kirkpatrick-Baez (KB) 

geometry. The sample was placed at a 45° angle to the incident x-ray beam and x-ray 

fluorescence was detected with an energy dispersive, 9 element germanium array detector 
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(Canberra, Meriden, CT) oriented at 90° to the incident beam. The sample was 

approximately 6 cm from the detector. A light microscope objective (Mitutoyo, M Plan 

Apo 5X) was coupled to a digital CCD camera for sample viewing. Energy dispersive 

spectra were collected by raster scanning the sample through the x-ray beam using a 

dwell time of 30 s/pixel and a step size of 4 µm to provide oversampling. The intensity 

for platinum was quantified by integrating the area under the curve for the peak in the x-

ray fluorescence spectrum (Kα = 66832.9 eV). 

A semi-automated computer program developed at the National Synchrotron Light 

Source identified regions-of-interest (ROIs) at the area of highest x-ray fluorescence 

intensity at the peritoneal surface. The average platinum concentrations in these ROIs 

were compared to the average platinum concentrations in the entire samples. Plots of x-

ray fluorescence intensity versus distance from the peritoneal surface were produced by 

drawing a region-of-interest polygon around each tissue sample and then summing 

fluorescence counts for each horizontal section as a function of vertical distance. We 

defined the depth of tissue penetration as the distance from the peritoneal surface at 

which the average tissue platinum concentration fell below the contemporaneous plasma 

platinum concentration. 

Peritoneogram Imaging and Computer-Aided Volume and Surface Area Quantification 

After injection of between 100cc and 500cc of diluted iohexol contrast into IP catheters 

with patients in supine or semi-Fowler position, patients underwent standard 

abdominopelvic CT scans. Smaller volumes of contrast were used in patients who 

experienced pain or pressure with injection. CT scans were performed with patients in the 
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supine position. Contrast-filled compartments are identifiable based on higher density 

than surrounding structures on CT images. An in-house segmentation algorithm was 

developed by the Schwartz lab in the Matlab programming language and applied to assist 

in calculating volumes and surface areas of the compartments in this work (Dr. Lawrence 

Schwartz, personal communication). 

Joshua Leinwand manually selected a region-of-interest (ROI) enclosing all contrast-

filled compartments on a single image. Localization followed by segmentation of each of 

the compartments inside the ROI were then carried out automatically by the developed 

algorithm.  Once the segmentation was completed on an image, the result was propagated 

to neighboring images, with automatic segmentation of the contrast-filled compartments.  

This process continued iteratively until all compartments were segmented. To ensure 

correct results, computer-generated compartment contours were superimposed on the 

original images for inspection and modification as needed by Joshua Leinwand. These 

images were reviewed by radiologists Dr. Lawrence Schwartz and/or Dr. Saravanan 

Krishnamoorthy.  

Once the segmentation was finalized, volumes and surface areas of the compartments 

were automatically calculated. The compartment volume was calculated by multiplying 

the total number of all compartments’ voxels and the image resolutions along x- (in-

plane), y- (in-plane) and z- (axial) directions. The compartment surface area was defined 

as the sum of the interface areas of all compartment voxel sides facing non-compartment 

voxels, where the area of a voxel side is calculated by multiplying the image resolutions 

along the two directions spanning the plane at which the voxel side resides. 
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The computer algorithms and a number of manual interaction functions such as selection 

of ROI and modification of suboptimal computer results were integrated into a user-

friendly image viewing system developed with the Matlab computer language by the 

research group. 

Statistical Analysis 

For the 60 minute duration of HIPEC (samples at 10, 30 and 60 minutes) and 24 hour 

blood glucose levels, area under concentration-time curve (AUC) was calculated by 

Trapezoidal Rule, BSA determined by DuBois & Dubois formula, and pharmacokinetic 

advantage by (AUC[peritoneal fluid]/AUC[plasma]).(101) 

All statistical analysis was performed by Joshua Leinwand using SAS Version 9.2. The 

LIFETEST procedure was used to produce the Kaplan-Meier survival estimates for all 

patients and to compare survival by volume of residual disease (>0.5cm vs. <0.5cm). In 

order to determine whether the presence of bulky disease was independent of 

peritoneogram parameters and GFR, the TTEST procedure was used to test for 

differences in mean surface area and volume of the contrast-filled compartment as well as 

pre- and post-treatment GFR between patients with residual disease >0.5cm vs. those 

with residual disease <0.5cm after initial tumor debulking surgery. Univariate Cox 

models were conducted using the PHREG procedure for survival.  In addition to the 

surface area and volume of the contrast-filled compartment, any covariate with a P-value 

< 0.1 in the univariate analysis was selected for multivariate analysis. Overall survival 

was measured from IP catheter placement. 
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Linear regression analyses with post-treatment GFR as the outcome measure were 

conducted using the REG procedure. The regression models included pre-treatment GFR, 

BSA (since cisplatin is dosed based on BSA), the surface area and volume of the 

contrast-filled compartment, and two-way interactions between BSA, surface area or 

volume, with only statistically significant (p<0.05) two-way interaction terms retained in 

the final model. Pre- and post-treatment GFR were calculated from, respectively, the last 

serum creatinine measured before IP catheter placement and the first serum creatinine 

measured after IP catheter removal, by Cockgroft-Gault formula.(102)  BSA was 

calculated from the height and weight at the time of IP catheter placement by Mosteller 

formula.(103) 

Three patients underwent CT peritoneography twice. For these patients, we used the 

mean surface area and volume of the contrast-filled compartment from the two CT 

peritoneograms. 

For HIPEC pharmacokinetic data, linear regression with cisplatin plasma AUC as the 

outcome measure and BSA as the independent variable was conducted using the REG 

procedure. 
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IV. Results 

Quantitative CT Peritoneography 

Examples of computer-aided peritoneogram analysis images are presented in Figure 1. 

Median overall survival by Kaplan-Meier analysis, pre-treatment and post-treatment GFR 

and computer-aided peritoneogram volume and surface area data are presented in Table 

5. There were no statistically-significant differences in volume or surface area parameters 

between patients with residual disease >0.5cm versus those with residual disease <0.5cm 

after initial debulking. We therefore considered the peritoneogram parameters 

independent of the volume of residual disease. 

We used univariate Cox models to determine which covariates to include with volume 

and surface area in the multivariate Cox model of overall survival. Four variables (age, 

sex, histologic subtype and residual disease >0.5cm) had p<0.1 and were included in the 

multivariate model. We found that, controlling for age, sex, histologic subtype and 

residual disease, the surface area of the contrast-filled compartment had a positive 

relationship with overall survival (p=0.0201) and the volume of the contrast-filled 

compartment had a negative relationship with overall survival (p=0.0341, Table 6). In 

terms of proportional hazards, controlling for the above covariates, a 1-standard-deviation 

increase in surface area is predicted to result in a hazard ratio of 0.222 (95% CI: 0.063 – 

0.790) and a 1-standard-deviation increase in volume is predicted to result in a hazard 

ratio of 3.165 (95% CI: 1.090 – 9.193). 
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We used linear regression with post-treatment GFR as the outcome, and included pre-

treatment GFR and BSA, along with volume and surface area as covariates, as well as the 

two-way interaction between volume and BSA (the only two-way interaction to reach 

statistical significance). We found that, controlling for pre-treatment GFR, BSA, surface 

area and the interaction between volume and BSA, the volume of the contrast-filled 

compartment had a statistically-significant positive relationship with post-treatment GFR 

(p=0.0167, Table 7). The interaction between volume and BSA is illustrated in Figure 2. 
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Table 5. Overall survival, GFR and CT peritoneography parameters. 

Parameter 

 

Overall Residual 

Disease <0.5 

cm 

Residual 

Disease >0.5 

cm 

P-value 

Overall survival (months) 

– median [95% CI] 

48 [11-76] 62 [47-94] 5 [1-22] <0.0001 

Pre-treatment GFR 

(cc/min) – mean [SD] 

96.0 [35.5] 101.9 [38.5] 79.5 [17.9] 0.0872 

Post-treatment GFR 

(cc/min) – mean [SD] 

90.1 [42.6] 96.2 [46.4] 73.1 [24.1] 0.1444 

Contrast-filled 

compartment volume 

(cm3) – mean [SD] 

558.4 

[532.0] 

582.5 [458.4] 491.0 [725.6] 0.6468 

Contrast-filled 

compartment surface area 

(cm2) – mean [SD] 

1261.7 

[1158.5] 

1405.0 

[1216.8] 

860.4 [912.7] 0.2062 

Patient outcomes following intraperitoneal chemotherapy and algorithm-derived 

peritoneogram values. GFR, glomerular filtration rate; CT, computed tomography; CI, 

confidence interval; SD, standard deviation. 
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Table 6. Univariate and Cox models with overall survival as outcome. 

Covariate (Univariate model) Hazard 

Ratio 

95% CI P-value 

Age (years) 1.038 0.998 – 1.079 0.0628 

Sex (female vs. male) 0.319 0.119 – 0.858 0.0235 

Body surface area (m2) 

 

1.160 0.179 – 7.539 0.8764 

Histologic subtype (biphasic vs. epithelioid) 20.798 4.419 – 

97.890 

0.0001 

Residual disease (>0.5cm vs. <0.5cm) 11.685 

 

3.785 – 

36.074 

<0.0001

Contrast-filled compartment volume (cm3) 1.000 0.999 – 1.001 0.3551 

Contrast-filled compartment surface area 

(cm2) 

 

1.000 0.999 – 1.000 0.0907 
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Covariate (Multivariate model) Hazard 

Ratio 

95% CI P-value 

Age (years) 1.060 1.002 – 1.120 0.0424 

Sex (female vs. male) 1.188 0.347 – 4.066 0.7835 

Histologic subtype (biphasic vs. epithelioid) 

 

4.502 0.810 – 

25.026 

0.0856 

Residual disease (>0.5cm vs. <0.5cm) 

 

7.657 1.991 – 

29.456 

0.0031 

Contrast-filled compartment volume (cm3) 

 

1.002 1.000 – 1.004 0.0341 

Contrast-filled compartment surface area 

(cm2) 

 

0.999 0.998 – 1.000 0.0201 

Overall model 

 

--- --- <0.0001

All variables with p<0.1 in the univariate analysis were included in the multivariate 

model. Overall survival was measured from the time of intraperitoneal catheter 

placement. CI, confidence interval. 
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Table 7. Multiple linear regression with post-treatment GFR as outcome measure. 

Covariate (Linear Regression Model) Estimated 

Regression 

Coefficient 

P-value 

Pre-treatment GFR (cc/min) 0.802 <0.0001 

Body Surface Area (m2) 

 

69.969 0.0182 

Contrast-filled compartment volume (cm3) 0.154 0.0167 

Contrast-filled compartment surface area (cm2) -0.003 0.5893 

Interaction between volume and body surface area -0.070 0.0260 

Overall model 

 

--- <0.0001 

Multivariate linear regression model, including only those 2-way interactions with 

p<0.05. GFR, glomerular filtration rate. 
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Figure 1. Computer-aided quantitative peritoneogram images. 

(a) 

 

(b) 

 

The contrast-filled compartments are outlined in red for (a) well-distributed and (b) 

loculated intraperitoneal contrast. 
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Figure 2. Predicted post-treatment glomerular filtration rate. 

 

For a patient with a pre-treatment GFR of 100cc/min and a contrast-filled compartment 

surface area set at the sample mean (1262 cm2), comparing body surface area set at the 

sample mean + one standard deviation (Low, Average and High BSA) and contrast-filled 

compartment volume set at the sample mean + one standard deviation (Low, Average and 

High Volume). 
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HIPEC Pharmacokinetics 

Cisplatin 

To validate whether the effect of BSA on post-treatment GFR was related to systemic 

cisplatin levels, we analyzed the relationship between BSA and cisplatin plasma AUC in 

7 patients undergoing HIPEC using linear regression. We found that higher BSA was 

associated with lower plasma AUC during HIPEC (estimated regression coefficient = -

89.7 mg•min/L/m2, p=0.0381). 

Oxaliplatin 

Baseline characteristics of all patients, peritoneal cancer index and completeness of 

cytoreduction scores are listed in Table 8. One patient had a PCI score of 0, as he had 

previously undergone cytoreduction without any gross disease recurrence, and HIPEC 

only was performed, without any resection.  

We examined perfusate volume, BSA and BMI as independent variables; of these, only 

perfusate volume and BSA were significantly correlated. Overall pharmacokinetic 

parameters and Pearson correlation coefficients with perfusate volume, BSA and BMI 

and as independent variables are listed in Table 9. Higher perfusate volume was 

associated with lower plasma oxaliplatin AUC (β = -30.7 mg•min/L2, p=0.0170). Higher 

BSA was associated with lower plasma oxaliplatin AUC (β = -153.2 mg/m2•min/L, 

p=0.0075), and with a greater pharmacokinetic advantage (β = 28.7 m-2, p=0.0198) over 

the 60-minute duration of HIPEC. There were no statistically significant relationships 

between perfusate volume and peritoneal fluid oxaliplatin AUC or pharmacokinetic 
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advantage; or between BSA and peritoneal fluid oxaliplatin AUC; or between BMI and 

any of the pharmacokinetic parameters. The relationships between BSA and oxaliplatin 

pharmacokinetic parameters are depicted in Figure 3. There did not appear to be 

differences in pharmacokinetics based on diagnosis, extent of peritonectomy or between 

patients with greater or lesser burdens of disease, as measured by PCI with a cut-off of 7. 

There were no statistically significant relationships between perfusate volume, BSA or 

BMI and 24-hour glycemia or peak intra-operative blood glucose. 

Table 8. Baseline characteristics, extent of disease and surgical treatment. 

ID Diagnosis Age 

(years) 

Sex PCI CC Extent of 

Peritonectomy

Resections Prior 

Resections 

1 Peritoneal 

Mesothelioma 

79 M 3 0 Right 

diaphragm 

None Omentectomy 

2 Pseudomyxoma 

Peritonei 

65 F 5 0 Pelvis Omentectomy, 

TAH-BSO 

None 

3 Pseudomyxoma 

Peritonei 

57 F 4 0 Bilateral 

paracolic 

gutters 

Omentectomy, 

TAH-BSO 

None 

4 Pseudomyxoma 

Peritonei 

48 F 2 0 None Right 

hemicolectomy 

TAH-BSO 

5 Colon Cancer 61 F 12 0 None Right 

hemicolectomy, 

TAH-BSO 

None 
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6 Peritoneal 

Mesothelioma 

63 F 2 0 None Omentectomy None 

7 Peritoneal 

Mesothelioma 

65 M 15 0 Right paracolic 

gutter, Left 

diaphragm 

Omentectomy, 

splenectomy 

None 

8 Pseudomyxoma 

Peritonei 

25 F 6 0 Bilateral 

diaphragms, 

Bilateral 

paracolic 

gutters 

None Omentectomy, 

Appendectomy, 

Right salpingo-

oophorectomy 

9 Pseudomyxoma 

Peritonei 

63 F 15 0 Bilateral 

diaphragms 

Omentectomy, 

splenectomy, 

appendectomy, 

TAH-BSO 

None 

10 Peritoneal 

Mesothelioma 

68 M 0 0 None None Omentectomy 

F, Female; M, Male; PCI, Peritoneal Cancer Index score; CC, Completeness of 

Cytoreduction score; TAH-BSO, total abdominal hysterectomy – bilateral salpingo-

oophorectomy. 
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Table 9. Pharmacokinetic parameters and Pearson correlation coefficents. 

 Mean [SD] 

 

Correlation 

with Perfusate 

Volume  

[P-value] 

Correlation 

with BSA  

[P-value] 

Correlation 

with BMI  

[P-value] 

Perfusate Volume (L) 

 

2.7 [0.8] --- 0.788 [0.0068] 0.130 [0.7205] 

BSA (m2) 

 

1.70 [0.17] --- --- 0.095 [0.7935] 

BMI (kg/m2) 

 

25.8 [4.6] --- --- --- 

Plasma AUC 

(mg•min/L) 

138.1 [33.1] -0.728 [0.0170] -0.782 [0.0075] -0.054 [0.8820] 

Peritoneal fluid AUC 

(mg•min/L) 

2412.9 [711.4] 0.112 [0.7590] 0.227 [0.5273] -0.402 [0.2496] 

Pharmacokinetic 

Advantage 

18.6 [6.8] 0.587 [0.0744] 0.716 [0.0198] -0.334 [0.3453] 

BSA, body surface area; BMI, body mass index; AUC, area under the concentration-time 

curve; β, estimated correlation coefficient. 
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Figure 3. Linear regression plots of body surface area vs. oxaliplatin pharmacokinetic 
parameters. 

(a) 
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(b) 
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(c) 

 

BSA (m2) vs. (a) peritoneal fluid AUC (mg•min/L) [p=0.5273], (b) plasma AUC 

(mg•min/L) [p=0.0075], and (c) pharmacokinetic advantage [p=0.0198].  
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Tissue Penetration of Intraperitoneal Platinum Drugs 

Peritoneal tissue without macroscopic evidence of tumor involvement was collected from 

6 patients.  One patient had remaining macroscopic disease during HIPEC at first 

surgery; we collected post-HIPEC tissue samples of both macroscopically normal and 

tumor tissue from that patient. The depths of platinum penetration in those samples were 

similar: 1.056 mm in normal tissue versus 1.060 mm in tumor tissue. The parameters 

from that patient’s normal tissue were used in the following analysis. 

Examples of the x-ray fluorescence microscopy images obtained from one patient’s 

samples at second surgery, both pre-HIPEC and post-HIPEC, are shown in Figure 4. 

Examples of the tissue and contemporaneous plasma platinum plots from that patient’s 

second surgery, both pre-HIPEC and post-HIPEC, are shown in Figure 5. Measured 

overall and peritoneal surface ROI tissue platinum concentrations are shown in Table 10. 

Measured tissue sampling depths and platinum penetration depths are shown in Table 11. 

Tissue platinum was highest from second surgeries post-HIPEC, lowest from first 

surgeries post-HIPEC, and intermediate from second surgeries pre-HIPEC. Every sample 

had higher platinum at the peritoneal surface; these were also highest from second 

surgeries post-HIPEC, lowest from initial surgeries post-HIPEC, and intermediate from 

second surgeries pre-HIPEC. The ratio of platinum concentrations in the peritoneal 

surface ROI versus the overall sample was lowest from second surgeries pre-HIPEC, and 

was similar from first surgery post-HIPEC and second surgery post-HIPEC. 
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The median sampling depth of peritoneal tissue was 1.55 mm (range 1.04 – 2.36). The 

platinum penetration depths were not reached in 7 of 10 samples, including all 4 of the 

second surgery pre-HIPEC samples. Both of the first surgery cisplatin post-HIPEC 

samples had measurable platinum penetration depths (of 0.26 mm and 1.06 mm), as did 

one second surgery oxaliplatin post-HIPEC sample (1.63 mm). 

 

Table 10. Overall and peritoneal surface platinum concentrations from all enrolled 

patients (n=6). 

Sample Time Point Median Pt (ppm) 

[range] – Entire 

Sample 

Median Pt (ppm) 

[range] – 

Peritoneal Surface 

Median Ratio [range] – 

Peritoneal Surface: 

Entire Sample 

First surgery, post-

HIPEC (n=2) 

5.2 [4.7 – 5.8] 11.3 [8.4 – 14.2] 2.1 [1.8 – 2.5] 

Second surgery, pre-

HIPEC (n=4) 

16.0 [5.6 – 21.8] 25.9 [8.4 – 29.9] 1.6 [1.1 – 2.0] 

Second surgery, post-

HIPEC (n=4) 

26.1 [2.2 – 113.4] 40.4 [4.4 – 219.7] 2.0 [1.1 – 2.5] 

Pt, platinum; HIPEC, hyperthermic intraoperative intraperitoneal chemotherapy; ppm, 

parts per million. 
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Table 11. Peritoneal tissue sampling depth and depth of platinum penetration. 

 Pre-HIPEC Post-HIPEC 

Drug, Surgery Sample 

Depth (mm) 

Pt Penetration 

(mm) 

Sample Depth (mm) Pt Penetration 

(mm) 

Cisplatin, 1st --- --- 1.170 0.258 

Cisplatin, 1st --- --- 1.520 1.060 

Cisplatin, 2nd 1.368 Not Reached 1.038 Not Reached 

Cisplatin, 2nd 1.668 Not Reached 1.572 Not Reached 

Oxaliplatin, 2nd 1.818 Not Reached 1.224 Not Reached 

Oxaliplatin, 2nd 2.214 Not Reached 2.358 1.632 

Pt, platinum; HIPEC, hyperthermic intraoperative intraperitoneal chemotherapy 
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Figure 4. X-ray fluorescence microscopy images. 
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(b) 

 

 

 

 

 

 

Obtained from one patient at second surgery, both pre-HIPEC (a) and post-HIPEC (b). 

Panel 1, visible light microscopy; Panel 2, Pt imaging in green; Panel 3, Pt imaging in 

green with visible light subtracted; Panel 4, Pt imaging in green, Zn imaging in red, Ca 

imaging in blue with visible light subtracted.

1 2 

3 4 
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Figure 5. Oxaliplatin concentration plots.  

(a) 
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(b) 

 

Tissue and contemporaneous plasma platinum concentration plots obtained from one 

patient at second surgery, both pre-HIPEC (a) and post-HIPEC (b). 
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V. Discussion 

Quantitative CT Peritoneography 

Our data suggest that larger surface areas of the compartment available to chemotherapy 

administered by IP catheters are associated with improved overall survival in MPM 

patients. This is consistent with the rationale for IP treatment of peritoneal surface-

spreading malignancies – direct drug contact with a larger peritoneal surface area means 

that more drug is directly delivered to potential areas of tumor spread.(104) Controlling 

for surface area, larger volumes were associated with decreased survival, suggesting that 

a high surface area-to-volume ratio of the contrast-filled compartment is optimal. This is 

consistent with the observation that loculated intraperitoneal compartments are more 

spherical, while free-flowing intraperitoneal compartments have irregular edges 

corresponding to the peritoneal organs, notably the small bowel. In addition, a higher 

surface area-to-volume ratio ensures that a larger proportion of the infused chemotherapy 

is in close proximity to peritoneal surfaces. 

In the final multivariate Cox model, in addition to larger surface area and smaller volume, 

younger age and residual disease <0.5cm were associated with improved overall survival, 

consistent with previous studies.(94-96, 105, 106) In this analysis, histology and sex were 

not statistically-significant predictors of overall survival, which may be attributable to the 

fact that in our cohort all of the females had epithelioid disease and 18 of 19 females had 

no residual disease >0.5cm, while all 4 patients with biphasic disease also had residual 

disease >0.5cm. 
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Statistical analysis showed no differences in measured peritoneogram volume or surface 

area between patients with residual disease >0.5cm vs. <0.5cm, making it likely that the 

peritoneogram parameters were independent of observed tumor volume.  We therefore 

included both groups of patients in the survival analysis. Indeed, the final multivariate 

Cox model showed that the volume and surface area of the contrast-filled compartments, 

and the presence of residual disease >0.5cm were all statistically-significant independent 

predictors of overall survival. However, the relatively small number of patients with 

residual disease >0.5cm limits our ability to draw conclusions about this subgroup.  

Our data suggest that larger volumes of the compartment available to IP catheter-

administered chemotherapy are associated with higher post-treatment GFR in MPM 

patients, which is consistent with the physiology of the peritoneal diffusion barrier. 

Elevated intra-abdominal pressure is associated with increased fluid transfer from the 

peritoneal space; the major diffusion barrier is the blood vessel wall and surrounding 

interstitium, rather than the anatomic peritoneum.(29) Although we have not directly 

measured intra-abdominal pressures, it is possible that increased compartment volume are 

associated with lower compartmental pressures, resulting in lower intravascular drug 

levels and less cisplatin nephrotoxicity. 

In the final multiple linear regression model, larger BSA was associated with higher post-

treatment GFR, possibly because of lower systemic drug exposure. This is consistent with 

our HIPEC pharmacokinetic data (in which free flow is assured, as chemoperfusion 

occurs during surgery, before adhesions can form), which showed that higher BSA was 

associated with lower cisplatin plasma AUC. 
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The strongest clinical evidence for improved survival with cathether-administered IP 

chemotherapy is in advanced ovarian carcinoma, including a large meta-analysis 

suggesting improved overall and disease-free survival for patients who receive IP 

chemotherapy.(82) The landmark GOG-172 trial for ovarian carcinoma reported a 

significant difference in overall survival for patients receiving intraperitoneal 

chemotherapy vs. intravenous chemotherapy (median overall survival 65.6 vs. 49.7 

months, p=0.03 by intention to treat analysis); however, only 42% of those assigned to 

intraperitoneal chemotherapy completed all 6 cycles, due chiefly to catheter-related 

complications, as well as renal/metabolic toxicities, neuropathy and 

nausea/vomiting/dehydration.(107, 108) Prognostic factors, not only of overall survival 

but of potential chemotherapy-related toxicities, are needed to optimally plan IP 

chemotherapy, given the high rate of discontinuation due to adverse events. For example, 

patients at risk for cisplatin nephrotoxicity may be treated with less nephrotoxic drugs. 

Our retrospective data suggest that quantitative CT peritoneography provides parameters 

associated with overall survival (compartment surface area and volume) and post-

treatment GFR (compartment volume) in MPM patients undergoing IP chemotherapy. It 

is possible that these data reflect a selection bias in which patients might have been 

chosen to undergo CT peritoneography because of clinical suspicion of catheter-related 

complications. In addition, patients who experienced pain or pressure with injection 

received lower volumes of contrast. It is likely that these symptoms indicated that the 

volume available to intraperitoneal contrast was filled, but use of a standardized volume 

for all patients would provide added validity.  Finally, standard prone-position CT scans 

were used; however, they may not have reflected the physiologic distribution of 
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intraperitoneal chemotherapy for different body positions. Prospective studies should be 

undertaken, using a standardized contrast volume with patients in multiple positions, 

possibly undergoing low-dose CT, to confirm the prognostic value of CT 

peritoneography, and to extend our findings to other diseases including advanced ovarian 

carcinoma. 

HIPEC Pharmacokinetics  

BSA is an imperfect but useful proxy to calculate drug doses, because of its association 

with circulating blood volume.(109) Likewise, BSA has been used to estimate peritoneal 

volumes for peritoneal dialysis.(110) BSA has been shown to be a predictor of outcomes 

following cardio-pulmonary bypass, likely because of the association between low BSA 

and hemodilutional anemia in that setting.(111) We hypothesized that the 

pharmacokinetics of HIPEC with oxaliplatin would be associated with BSA, due to its 

known association with circulating blood volume and peritoneal volume. 

Our results suggest that in patients who receive a BSA-based oxaliplatin dose and carrier 

fluid volume titrated to achieve a desired flow rate, BSA is a predictor of systemic drug 

exposure and pharmacokinetic advantage. This is partially explained by the inverse 

relationship observed between perfusate volumes and systemic oxaliplatin levels, as 

perfusate volume was found to correlate with BSA. Patients with higher BSA had lower 

plasma oxaliplatin AUC over the 60-minute duration of HIPEC, and thus greater 

pharmacokinetic advantage, possibly because they also had larger circulating blood 

volumes with inadequate time for equilibration between the peritoneal and circulating 

blood compartments. Further studies should examine whether these relationships hold for 
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patients who receive a set volume of carrier fluid, or a BSA-based volume of carrier 

fluid. We did not find that BMI was a significant predictor of pharmacokinetic 

parameters. The present study differed from a previous study showing such a relationship 

in terms of the patients’ diagnoses, the duration and technique of HIPEC, and surgical 

procedures and technique.(16) We did not find obvious differences in pharmacokinetics 

on the basis of diagnosis, disease burden, or extent of peritonectomy, consistent with 

previous reports.(112) 

We did not find statistically significant relationships between BSA or BMI and glycemia 

in our 10 patients, but hyperglycemia was observed in all patients. Given the relatively 

small amount of oxaliplatin degradation in sodium chloride solution over the usual 

duration of HIPEC, use of normal saline in the perfusion circuit (after oxaliplatin 

reconstitution in 5% dextrose), as has previously been described, may be considered.(14, 

18) 

The present study shows that BSA can be used to predict the pharmacokinetics of HIPEC 

with oxaliplatin, likely due to the effects of circulating blood volume with inadequate 

time for drug equilibration. With the exception of metabolic derangements due to 

hyperglycemia, oxaliplatin HIPEC was well-tolerated by all patients, suggesting that the 

range of systemic drug levels they experienced is safe. Patients with larger BSA, who had 

lower systemic drug levels, should therefore be able to tolerate higher total doses of 

oxaliplatin. This was a small cohort, however, and we did not prospectively analyze 

toxicity or efficacy, making it difficult to make clinical recommendations on the basis of 

our data alone. We therefore recommend further study of HIPEC dosing modified to 
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achieve a desired intraperitoneal drug concentration for all patients, rather than a BSA-

based total dose. For example, a system like ours, which titrates carrier fluid to achieve a 

minimum flow rate (which results in an variability in intraperitoneal drug concentrations) 

could be modified to use oxaliplatin at a set concentration, with the volume (and 

therefore the total dose) titrated to achieve the desired flow rate (which would result in 

equal intraperitoneal drug concentrations for all patients). Patients with larger BSA would 

then receive a higher total dose of drug, but, based on our data, the greater 

pharmacokinetic advantage in these patients would ensure that their systemic drug levels 

would remain tolerable. This method of dosing is more consistent with the observation 

that intraperitoneal oxaliplatin concentration, rather than total dose, is the chief 

determinant of HIPEC pharmacokinetics.(113, 114) 

These data do not address the most important biodistribution endpoint, namely 

intratumoral drug concentrations, but instead uses peritoneal fluid concentration as a 

proxy. Few tissue analysis studies have been undertaken, and more are needed to 

optimize HIPEC administration and dosing in order to achieve the highest possible drug 

levels in tumor cells.(115) Our measurements of tissue drug concentrations are discussed 

below. 

Tissue Penetration of Intraperitoneal Platinum Drugs 

Our protocol for the treatment of MPM, with sampling of peritoneal tissues at first 

surgery post-HIPEC and at second surgery pre-HIPEC and post-HIPEC, allowed us to 

investigate the roles of HIPEC versus CAIPEC in peritoneal tissue platinum distribution. 

In particular, the second surgery pre-HIPEC time point can be considered to primarily 
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represent the contribution of CAIPEC to tissue platinum distribution, while the post-

HIPEC time point at first surgery represents the contribution of HIPEC alone, with the 

post-HIPEC time point at second surgery representing the contributions of both to some 

extent. This inference is supported by our findings, that the ratio of peritoneal surface 

platinum to whole sample platinum was similar in both post-HIPEC time points while 

lower in the second surgery pre-HIPEC samples, and that the depth of direct tissue 

platinum penetration was reached only in post-HIPEC samples (both of those from first 

surgery, and one of four from second surgery). 

On the basis of these findings, we conclude that the direct tissue penetration depth of 

platinum attributable to multiple courses of CAIPEC is greater, and the tissue distribution 

of platinum more homogeneous, than that attributable to a single dose of HIPEC. Among 

the factors that likely contribute to these differences are the differences in dwell time 

(indefinitely for CAIPEC versus 60 minutes for HIPEC), which allows for more 

equilibration of drug between the peritoneal fluid, peritoneal tissue and systemic 

compartments in CAIPEC; and the vascular injury and inflammation that accompany 

surgery in HIPEC but not CAIPEC, resulting in greater direct communication between 

the peritoneal fluid and systemic circulation (potentially bypassing absorption in 

peritoneal tissues). 

The samples obtained from all patients were from macroscopically normal tissue, because 

the removal of macroscopic disease before HIPEC has been shown to improve survival in 

PC patients.(97) In one patient who could not be debulked of all macroscopic disease at 

first surgery, depth of platinum penetration was nearly identical in tumor tissue and 
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normal tissue, suggesting that our findings may be applicable to tumor tissue as well. 

However, aberrant tumor tissue architecture and vasculature may in fact contribute to 

different tissue drug distributions in some patients.(116, 117) 

Our findings demonstrate more homogeneous peritoneal tissue distribution and greater 

depth of tissue penetration of platinum-containing chemotherapy drugs in multiple 

courses of CAIPEC (such as is recommended for the treatment of advanced ovarian 

carcinoma) compared to single-dose HIPEC (such as is becoming more common for the 

treatment of PC of GI origin). Therefore, the use of biodistribution data from HIPEC 

studies should not be assumed to apply to CAIPEC, or vice versa. 

Furthermore our results suggest that in patients who may benefit from HIPEC (such as 

patients with MPM or PC of colorectal or gastric origin), a pharmacokinetic rationale 

exists for even greater benefit from CAIPEC, since many failures of IP chemotherapy are 

due to insufficient tissue penetration.(118) For MPM, which is not routinely cured by 

HIPEC alone, and which is unlikely to be subject to a successful clinical trial due to its 

rarity, CAIPEC should therefore be offered following debulking surgery with HIPEC. 

For PC of colorectal or gastric origin, clinical trials should include a CAIPEC arm to 

determine if there is a survival benefit of CAIPEC compared to systemic chemotherapy 

following HIPEC. 
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