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BIOLOGICAL AND CLINICAL MARKERS OF NEURONAL INJURY IN PRIMARY 
AND CHRONIC HIV-1 INFECTION. Michael J. Peluso, Dieter Meyerhoff, Julia 
Peterson, Evelyn Lee, Andrew Young, Francesca Ferretti, Antonio Boschini, Rudy 
Walter, Nancy Angoff, Kevin Robertson, Dietmar Fuchs, Bruce Brew, Paola Cinque, 
Lars Hagberg, Henrik Zetterberg, Magnus Gisslén, Richard Price, and Serena Spudich, 
Department of Neurology, Yale University School of Medicine, New Haven, CT.  
  
The use of antiretroviral therapy (ART) has shifted the neurological manifestations of 

HIV-1 infection toward mild but debilitating HIV-associated neurocognitive disorder 

(HAND). Through two studies, we sought to characterize neuronal injury during primary 

and chronic HIV infection and to describe its relationship with HAND.  

The aim of the first study was to quantify cerebrospinal fluid (CSF) and 

neuroimaging biomarkers of neuronal injury in primary HIV infection (PHI). We 

compared CSF levels of neurofilament light chain (NFL), tau, and amyloid proteins in 92 

subjects with PHI and 25 controls and examined relationships with disease progression 

and neuroinflammation, neuropsychological testing, and proton-magnetic resonance 

spectroscopy (MRS). We hypothesized that PHI is characterized by increased CSF NFL 

that correlates with neuronal inflammation, and that tau and amyloid levels are normal in 

PHI. NFL was elevated in PHI (p=0.0004) and correlated with CSF neopterin (r=0.38, 

p=0.0005), IP-10 (r=0.39, p=0.002), WBCs (r=0.32, p=0.004), and CSF:plasma albumin 

ratio (r=0.60, p<0.0001). NFL correlated with decreased N-acteylaspartate and glutamate 

in the anterior cingulate, frontal white matter, and parietal gray matter (r>0.30, p<0.05). 

Beta-amyloid was elevated in PHI (p=0.0005) and correlated with time infected (r=0.34, 

p=0.003). Neither marker correlated with neuropsychological abnormalities. T-tau and 

amyloid precursor proteins did not differ between groups.  

The aim of the second study was to characterize HIV-infected patients with 

neuro-symptomatic CSF ‘escape,’ defined as detectable CSF HIV RNA in the setting of 
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treatment-suppressed plasma levels or CSF RNA >1 log higher than plasma RNA. We 

conducted a retrospective case series of virologically controlled HIV-infected patients on 

ART with progressive neurological abnormalities who were determined to have CSF 

‘escape’ at 4 urban medical centers in the United States and Europe. We recorded levels 

of CSF HIV RNA and inflammatory markers, clinical signs and symptoms, and magnetic 

resonance imaging (MRI) findings. We hypothesized that individuals with this condition 

would have inflammation in CSF and MRI studies, that CSF virus would be resistant to 

the ART regimen, and that symptoms would improve when ART was changed based 

upon central nervous system (CNS) drug penetration and resistance genotyping. 10 

patients presented with sensory, motor, and cognitive abnormalities. Median CSF HIV 

RNA was 3900 copies/mL; median plasma HIV RNA was 62 copies/mL. Median CD4+ 

T cell count was 482 cells/mm3. All patients had been controlled <500 copies/mL for 

median 27.5 months and 5/10 had been suppressed <50 copies/mL for median 19.5 

months. Patients were on a stable ART regimen for median 21 months. All had CSF 

pleocytosis or elevated CSF protein; 7/8 had MRI abnormalities; and 6/7 harbored CSF 

resistance mutations. Following optimization of ART, 8/9 patients improved clinically.  

Although these processes occur at distinct time points in the disease, both 

neuronal injury during PHI and the development of symptomatic CSF ‘escape’ in 

chronic, well-treated infection are associated with, and possibly caused by, mechanisms 

involving immune activation and inflammation within the CNS. The inflammatory milieu 

induced by the activity of HIV in invading cells and triggering an immune response has 

important implications throughout the time course of infection, and may be particularly 

important for understanding the pathophysiology of HAND. 
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INTRODUCTION 

Thirty Years Later: HIV Beyond the Immune System 

Thirty years after the report of five unexplained cases in Los Angeles of Pneumocystis 

carinii pneumonia in men suffering from what would become recognized as the acquired 

immunodeficiency syndrome (AIDS) [1], the human immunodeficiency virus (HIV) 

remains the subject of intense biochemical, molecular, clinical, and epidemiologic 

investigation. HIV is a blood-borne and sexually transmitted infection that has significant 

implications for both individual and public health and has disproportionately affected 

vulnerable and marginalized individuals and populations, including the poor and 

underserved, injection drug users, commercial sex workers, and men who have sex with 

men [2]. But the epidemic has also changed: HIV has no regard for gender, age, or 

sexuality and what once was largely a disease of young homosexual men has expanded to 

affect populations that are older, heterosexual, and female.  

It is estimated that there are currently 34 million people living with HIV 

worldwide, that there are 2.5 million new infections annually, and that 1.7 million 

individuals die from the disease and its sequelae each year [2,3]. And while the greatest 

number of new infections and the worst outcomes occur in the lowest-resource settings in 

sub-Saharan Africa and southeast Asia, there are still nearly 50,000 individuals who are 

newly infected within the United States each year [2]. Despite the progress that has been 

made over the last three decades, the epidemic is far from over (Figure 1a-d). 

While a better understanding of the virus’ characteristics, including its 

pathogenesis and transmission patterns, has led to both prophylactic and therapeutic 

interventions, many questions about the disease’s pathogenesis remain unanswered. In
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Figure 1. The epidemiology of HIV infection in 2011. a. Estimated HIV prevalence by country, demonstrating significant prevalence worldwide 
and high prevalence in sub-Sarahan Africa and Asia. b. Total number of adults living with HIV; size of circles corresponds with absolute number of 
individuals. c. HIV prevalence among injection drug users, note the especially high prevalence in Asian countries. d. Total number of women living 
with HIV infection worldwide; this has increased significantly over the last 20 years. Adapted from AIDSinfo at unaids.org [3].   

 

a. 

c. 

b. 

d. 
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particular, the last two decades have seen an increased focus on the effects of HIV 

beyond the immune system, including its end-organ effects in the cardiovascular, renal, 

and nervous systems. By extension, the study of the virus in these new contexts outside 

of the plasma has led to the recognition of a biological compartmentalization that allows 

for infection and injury of target tissue, independent evolution of the virus from its 

counterparts in the plasma, and the protection of the virus from systemic therapy [4,5]. 

The development of these distinct biological compartments, such as those in the breast 

[6,7] and genital tract [8,9], facilitates viral replication, complicates viral eradication, and 

leads to compartment-specific effects. One compartment that has received increased 

attention over the last decade is the central nervous system (CNS) [4,10-12].   

HIV infection is associated with the establishment of a CNS reservoir of 

infection, as evidenced by the detection of HIV DNA in perivascular brain macrophages, 

microglial cells, and astrocytes [13-15], compartmentalization of HIV quasi-species in 

CNS tissues [16,17], and clinical cases of isolated CNS ‘escape’ from antiretroviral 

therapy (ART) [18,19]. This local infection leads to neurological injury and creates a 

sanctuary for ongoing HIV replication within CNS tissues. Understanding the initial 

establishment and clinical importance of this CNS compartment-specific infection has 

critical implications for strategies to optimize the lives of persons infected with HIV. 

 

“Classic” Neurological Manifestations of HIV Infection 

The neurological manifestations of HIV were first described in the early stages of the 

epidemic and were quickly recognized as some of the most dramatic sequelae of HIV 

infection. The AIDS Dementia Complex – an early-onset, progressive dementia 
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characterized by motor, psychological, and behavioral dysfunction – was the most 

dreaded of these complications and became the grim reality for many HIV-infected 

individuals once they developed AIDS [20,21]. Patients with AIDS were also at risk for 

developing CNS opportunistic infections with organisms like Toxoplasma gondii, 

Cryptococcus neoformans, and Mycobacterium tuberculosis, CNS lymphoma linked to 

Epstein-Barr virus, JC virus-associated progressive multifocal leukoencephalopathy, and 

meningitis related to bacterial, viral, and fungal pathogens. These neurological 

manifestations of the disease were dramatic and the prognosis in patients with such 

manifestations was grim.  

Clinical manifestations of the AIDS Dementia Complex in the absence of 

antiretroviral therapy were mirrored in clear CNS abnormalities on pathological 

evaluation, including profound infiltration of immune cells into the CNS, with 

subsequent inflammation and HIV virions detected most abundantly in macrophages and 

microglial cells of the deep gray matter of the brain [21-23]. In chronic, established 

infection, even in patients without dementia, HIV DNA has been recovered from 

homogenized brain tissue and specific cell types in the CNS including macrophages, 

microglia, and astrocytes [17,22,24,25]. Neurons themselves, while not productively 

infected by HIV, appear to be damaged and undergo apoptosis through “indirect” 

pathways mediated by immune activation and inflammation within the CNS [26,27]. 

The introduction of combination antiretroviral therapy (cART) in the 1990s 

fundamentally altered the landscape of both systemic and neurological HIV disease. The 

profound immunodeficiency associated with HIV/AIDS that acted as the substrate for the 

“classic” neurological manifestations of the disease itself and the opportunistic infections 
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with which it was associated could now be significantly delayed or prevented, 

transforming the diagnosis of HIV infection from a rapid death sentence to a chronic 

illness. With these changes came a marked shift in the epidemiological and clinical 

characteristics of its neurological complications. 

  

Neurological Manifestations of HIV in the Era of Antiretroviral Therapy 

In general, antiretroviral therapy suppresses both plasma and cerebrospinal fluid (CSF) 

viral levels and improves neurological outcomes in patients infected with HIV [28]. 

Typically, plasma HIV RNA suppression is paralleled by suppression in the CSF, and the 

initiation of cART also limits the extent of immune activation in the CSF, as measured by 

white blood cell counts and immunological markers [29,30]. With systemic control of the 

virus and improved immune status in these patients has come a striking decline in the 

occurrence of neurological opportunistic infections, while the attenuation of viral 

replication and immune activation in the CNS has resulted in a decline in the incidence of 

the most dramatic forms of HIV-associated neurologic disease over the last two decades 

[31]. Nevertheless, even individuals with well-controlled HIV infection continue to 

experience neurological dysfunction which, although often less pronounced than the 

dementing illnesses experienced by many patients with AIDS thirty years ago, has the 

potential to seriously impact productivity and quality of life [32-35]. 

 

HIV-Associated Neurocognitive Disorder (HAND) 

With improved outcomes and the recognition of a broad spectrum of neurological signs 

and symptoms associated with HIV have come a variety of classification systems for 
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clinicians and researchers to describe the manifestations of CNS disease experienced by 

patients with HIV and AIDS. What was previously defined in its most severe form as the 

AIDS-Dementia Complex [20,21] is now represented by a spectrum of disorders 

reflecting the variability in presentation, outcome, and impact of neurological disease.  

HIV-associated neurocognitive disorder (HAND) comprises a diverse set of 

neurocognitive diseases, ranging from clinically asymptomatic impairment to severe 

dementia. HAND is a clinical diagnosis defined by abnormalities identified through 

neuropsychological testing and is subdivided into three categories of increasing severity: 

asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND), 

and HIV-associated dementia (HAD) [36]. These diagnoses require a specific 

neuropsychological testing battery comprised of the following abilities: verbal/language, 

attention/working memory, abstraction/executive functioning, memory (learning and 

recall), speed of information processing, sensory-perceptual, and motor skills. While the 

incidence of the most severe manifestations of HAND (i.e., HAD) has decreased in the 

setting of widespread access to cART, mild-to-moderate HAND has persisted and has, in 

fact, become the most prevalent primary CNS complication of HIV infection [33]. The 

spectrum of HAND is delineated in the Table 1 and key differences between conditions 

are explained in the subsequent text. 

 

Asymptomatic Neurocognitive Impairment (ANI) 

The most benign and most common manifestation of HAND is asymptomatic 

neurocognitive impairment, which has been identified in approximately one-third of 

HIV-infected patients [33]. Decreased performance on neuropsychological testing in 
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Asymptomatic Neurocognitive Impairment (ANI) 
1. Acquired impairment in cognitive functioning, involving at least two ability domains, 
documented by performance of at least 1.0 SD below the mean for age- and education-
appropriate norms on standardized neuropsychological tests.  
2. The cognitive impairment does not interfere with everyday functioning. 
3. The cognitive impairment does not meet criteria for delirium or dementia. 
4. There is no evidence of another preexisting cause for the ANI. 

Mild Neurocognitive Disorder (MND) 
1. Acquired impairment in cognitive functioning, involving at least two ability domains, 
documented by performance of at least 1.0 SD below the mean for age- and education-
appropriate norms on standardized neuropsychological tests.  
2. The cognitive impairment produces at least mild interference in daily functioning, as 
evidenced by at least one of the following: 

a) Self-report of reduced mental acuity, inefficiency in work, homemaking, or social 
functioning. 
b) Observation by knowledgeable others that the individual has undergone at least mild 
decline in mental acuity with resultant inefficiency in work, homemaking, or social functioning. 

3. The cognitive impairment does not meet criteria for delirium or dementia. 
4. There is no evidence of another preexisting cause for the MND. 

HIV-Associated Dementia (HAD) 
1. Marked acquired impairment in cognitive functioning, involving at least two ability domains; 
typically the impairment is in multiple domains, especially in learning of new information, slowed 
information processing, and defective attention/concentration. The cognitive impairment must 
be ascertained by neuropsychological testing with performance of at least 2.0 SD less than 
than demographically corrected means.  
2. The cognitive impairment produces marked interference with day-to-day functioning such as 
work, home life, or social activities. 
3. The pattern of cognitive impairment does not meet criteria for delirium (i.e., clouding of 
consciousness is not a prominent feature); or, if delirium is present, criteria for dementia need 
to have been met on a prior examination when delirium was not present. 
4. There is no evidence of another, preexisting cause for the dementia (i.e., other CNS 
infection, CNS neoplasm, cerebrovascular disease, preexisting neurologic disease, or severe 
substance abuse compatible with CNS disorder). 

Table 1. Classification and description of HIV-associated neurocognitive disorder (HAND) 
in the era of combination antiretroviral therapy. Key distinctions between the three disorders 
are described in the text. Adapted from Antinori et al., 2007 [36]. 
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patients without obvious clinical signs and symptoms of impairment has led to the 

classification of ANI, which is characterized as a subclinical cognitive decline. The strict 

definition of ANI requires the presence of mild neuropsychological impairment, not 

attributable to comorbid conditions, involving 2 or more ability domains on 

neuropsychological testing. ANI specifically requires that criteria for a negative impact 

on everyday functioning not be met; this is how the condition is contrasted from mild 

neurocognitive disorder.  

It is unclear whether ANI is a process predictive of neurological impairment later 

in the course of the disease, whether it contributes to neuropathological vulnerability, and 

whether early intervention with cART during ANI might prevent ongoing deterioration 

[37]. Additionally, the ANI designation is not specific for active brain injury, and may be 

complicated by confounding factors related to HIV disease, such as mood disorders or 

substance abuse. The contribution of such comorbidities might be difficult to ascertain in 

patients with ANI.  

 

Mild Neurocognitive Disorder (MND) 

Mild neurocognitive impairment is being increasingly recognized in individuals treated 

with cART, who typically have a relatively reconstituted immune system characterized 

by higher CD4+ T cell counts and suppressed or undetectable viral loads. As the 

population of patients with chronic, well-controlled HIV infection continues to grow, so 

does the overall prevalence of MND, making this manifestation of HAND an important 

focus of scientific and clinical investigation. In the CHARTER study, 12% of individuals 

met the criteria for MND [33]. 
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The diagnosis of MND is contingent upon the detection of abnormalities in 

neuropsychological testing, specifically with relation to attention, information processing, 

learning and memory, psychomotor speed, and executive function [38]. It is distinguished 

from ANI because these patients typically experience a subtle, but noticeable, decline in 

cognitive ability and increased difficulty in carrying out their activities of daily living. 

MND can also manifest through both pyramidal and extrapyramidal motor systems, 

producing symptoms such as ataxia, tremor, and incoordination that may worsen over 

time [39]. It is also believed that MND can result in behavioral effects, which are 

independent from those associated with mood disorders concomitant with HIV infection 

[40,41].  

 

HIV-Associated Dementia (HAD) 

What was initially described as the AIDS Dementia Complex twenty-five years ago 

[20,21] is now known as HIV-Associated Dementia (HAD), the most dramatic 

manifestation of HAND [36]. The diagnosis of the condition remains a challenge in 

clinical practice, as there are no diagnostic studies or laboratory tests that are specific for 

HAD [27,33,36,42]. Therefore, the identification of this disorder is reliant upon the 

recognition of a clinical syndrome and the exclusion of alternative diagnoses.  

The diagnosis of HAD is based on progressive neurocognitive impairment and the 

exclusion of other conditions that can cause or exacerbate such impairment, including 

CNS opportunistic infections and tumors. It is further supported by high levels of HIV 

RNA in the CSF (typically >3 logs). HAD most typically occurs in patients with slowed 

cognitive processing in the context of long-standing HIV infection. Additionally, HAD is 



14 
 

 
 

 

still most commonly identified in patients off of antiretroviral therapy, with the 

prevalence in treated patients estimated to be as low as 2% [34,43-45]. The syndrome is 

often characterized by motor abnormalities such as slowed movement and spastic gait, as 

well as hyperactive deep tendon reflexes [20]. However, these signs and symptoms are 

not diagnostically specific for HAD, and further evaluation with computed tomography 

(CT) or magnetic resonance imaging (MRI) is often required. Neuroimaging is most 

appropriately used to first rule out more common AIDS-related neurological conditions 

including opportunistic infections and CNS lymphoma. With these diagnoses excluded, 

diffuse cerebral atrophy and subcortical or periventricular white matter changes are 

consistent with, although not specific for, HAD [46-48].  

 

Diagnostic and Management Issues in HAND 

Because HAND has no specific markers, it is necessary to rule out CNS opportunistic 

infections, neurosyphilis, delirium, toxic-metabolic disorders, psychiatric disease, 

delirium, and age-related dementia before making the diagnosis. While traditional 

neuroimaging is useful in ruling out other HIV-associated disease processes, including 

CNS lymphoma, CNS infections (opportunistic infections and abscesses), and 

inflammatory processes, there are no findings on standard neuroimaging with CT or MRI 

that are specific for HAND (although more severe disease does present with late-stage 

abnormalities on neuroimaging). Recently, an effort has been made to use more advanced 

neuroimaging techniques to identify mild HAND. These include brain mapping, 

structural imaging, functional MRI assessing brain perfusion and functional connectivity, 

and proton-magnetic resonance spectroscopy (proton-MRS), which has shown promise in 
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identifying metabolite abnormalities in patients with mild disease [49-62]. Nevertheless, 

the utility of these new modalities remains to be determined and the diagnosis of HAND 

is therefore reliant upon clinical findings. 

Neuropsychological testing results have been shown to improve in the setting of 

drug therapy. Early studies of zidovudine (AZT) monotherapy indicated improvement in 

testing scores [63,64], and more recent studies have shown that cART decreases HAD 

while increasing the prevalence of milder HAND [65,66]. While cART might improve 

cognitive performance, this improvement is frequently incomplete and residual deficits 

remain [67,68]. There has therefore been a focus on using adjunctive therapy to attenuate 

the inflammatory events that are postulated to occur in the CNS of HIV-infected patients 

in the hope that this will result in improvements for those with mild HAND.  

Efforts have been made to manage HAND with non-antiretroviral adjunctive 

therapies including memantine, selegiline, and nimodipine, but none of these have 

demonstrated efficacy [69]. Psychiatric drugs like valproic acid and lithium have been 

hypothesized to decrease HIV replication and neuroinflammation through their glycogen 

synthase-kinase 3-beta activity [70], as have serotonin reuptake inhibitors like citalopram 

and paroxitine through an unknown mechanism [70]. However, it remains to be seen 

whether these treatment adjuncts will result in improved recovery from HAND. 

Similarly, due to anti-inflammatory and antiviral effects, the antibiotic minocycline has 

been suggested as a potential therapy for HAND, but randomized studies have not 

indicated efficacy [71,72]. Methylphenidate has been successful for symptomatic 

management of fatigue [73] and slowing in patients with HAND [74], but this 

symptomatic relief does not alter the course of the disease. 
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The Etiology of HAND in the Era of Antiretroviral Therapy 

Although the biological substrate of HAND in the setting of antiretroviral therapy is 

unknown, a number of mechanisms are possible. One potential mechanism is that injury 

occurring in the earliest stages of HIV infection is compounded over time and progresses 

to clinically detectable abnormalities (i.e., ANI, MND) later in the disease course. Such 

injury would begin during the period before treatment is initiated, and would continue 

along a trajectory that may or may not be mitigated by initiation of antiretroviral therapy. 

After several years, a combination of host susceptibilities and disease factors may result 

in the development of symptomatic neurological disease. While this is a plausible 

pathogenic mechanism for HAND, data regarding objective neurological injury during 

the earliest stages of HIV infection is currently lacking. It is unclear when in the disease 

course such injury begins and what the clinical implications of this injury may be. 

Another possibility is that, due to the compartment-specific nature of CNS HIV 

infection, neurological injury occurs despite the initiation and continuation of 

systemically suppressive treatment. Even in individuals with no overt signs or symptoms 

of neurocognitive impairment, the presence of HIV in the CNS may result in constant 

low-level inflammation and immune activation that has been hypothesized to result in 

ongoing brain injury. CSF immune activation, brain inflammation detected by proton-

MRS, and microglial activation in brain tissue persist in patients on long-term 

suppressive antiretroviral therapy started during the chronic stage of infection [25,75-77]. 

However, much remains unknown regarding the manifestations, etiology, and 

implications of compartmentalized HIV infection in patients on suppressive therapy. The 

correlates of neurological disease developed in this setting are unclear. 
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Below, primary HIV infection and central nervous system compartmentalization 

are discussed as potential contributors to neurological disease in patients with HIV. This 

background will provide an introduction to the two studies included in this thesis. 

 

The Central Nervous System during Primary HIV Infection 

While the study of neurological disease in HIV infection has traditionally focused on 

chronic and late-stage neurocognitive manifestations of the virus, recent work has drawn 

attention to the effects of HIV on the CNS much earlier in the disease course. Primary 

HIV infection, defined as the first year following the transmission of the virus, has been a 

focus of this work.  

 Primary HIV infection is characterized by a rapid and dramatic rise of HIV RNA 

levels in the plasma [78-80], accompanied by an increase in HIV antibody levels that are 

detectable within 2 weeks of transmission by fourth-generation enzyme immunosorbent 

assay (EIA) tests. In at least two-thirds of individuals, the period of seroconversion is 

accompanied by the acute retroviral syndrome, characterized by vague symptoms of 

fatigue, malaise, fever, and anorexia [78,81]. Within a few months of seroconversion, a 

partially effective immune response causes HIV RNA to stabilize at a reduced, chronic, 

individual-specific level that serves as the plasma viral “set point” [82]. This is a result of 

the increased activity of CD8+ T cells in conjunction with a decreased reservoir of CD4+ 

T cells available for infection by the virus [83,84]. The standard clinical time course of 

HIV infection is reviewed in Figure 2. Note the timing and clinical events of primary 

HIV infection, which include the acute retroviral syndrome, dissemination of the virus 

and invasion of lymphoid tissues, and the CD4+ T cell nadir.  
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Figure 2. Typical time course of HIV-1 infection. Primary HIV infection refers to the first year 
following viral transmission, which includes the acute retroviral syndrome, widespread distribution 
of the virus, the seeding of lymphoid organs, and the CD4+ T cell nadir. Patients develop anti-HIV 
cytotoxic T lymphocytes (CTLs or CD8+ T cells) as the CD4+ T cell count drops, leading to an 
increase in the CD8+/CD4+ T cell ratio. After a small recovery in the CD4+ T cell count, infected 
individuals enter a long period of clinical latency in which they experience a slow decline in the 
CD4+ T cell population. If treatment is not initiated, the CD4+ T cell count falls to critically low 
levels and the patient develops AIDS. This period characterized by viral proliferation, increased 
risk of acquiring opportunistic infections, and the onset of symptoms consistent with end-organ 
damage in a variety of body systems. Ultimately, it leads to death from one or a combination of 
these causes. Adapted from Fauci and Desrosiers 1997, Cold Spring Harbor Laboratory Press 
[80]. Reproduced with permission from Cold Spring Harbor Laboratory, Retroviruses; reproduced 
with permission from Pantaleo et al 1993, NEJM, copyright Massachusetts Medical Society. 
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 In addition to the symptoms of the acute retroviral syndrome, it has long been 

recognized that a subgroup of individuals newly infected with HIV develop neurological 

symptoms and signs around the time of seroconversion [85,86]. Evidence suggests that 

this occurs in up to 10% of individuals [87]. In addition, HIV can be found in the CSF 

and brain tissue of patients during the earliest stages of infection, in the weeks to months 

following viral transmission [81,87-89]. Recently, HIV has been identified in the CSF as 

early as eight days post-transmission [90], suggesting that this compartment is occupied 

by the virus very early in the disease course.  

Studies have also shown that immune activation accompanies the presence of 

HIV virions in the CSF during primary infection [91]. The elevation in CSF white blood 

cell counts, neopterin, and inflammatory cytokines during the first months of infection 

suggest the possibility that CNS injury can also take place during this period, contrasting 

with the view that the damaging effects of HIV infection occur only after a long period of 

clinical latency. 

 The neurological manifestations associated with early HIV infection vary between 

individuals and a consistent underlying pathophysiology remains to be identified. One of 

the first syndromes to be linked with HIV infection was “aseptic” meningitis, 

characterized by a CSF lymphocytosis or clinical signs of meningitis [92]. Other 

individuals experience varying degrees of encephalopathy in the setting of 

meningoencephalitis, encephalitis, or encephalomyelitis [93,94]. Acute neuropathies, 

including facial nerve paralysis and optic neuritis, also occur frequently with 

seroconversion and are common in acute HIV infection [93,94]. 
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 These heterogeneous neurological syndromes associated with primary HIV 

infection share several common features. First, the onset is typically within three weeks 

following the symptomatic manifestations of the acute retroviral syndrome [85]. Second, 

the clinical signs and symptoms are typically self-limited and resolve without any 

specific intervention. Third, patients almost always have a seroconversion associated with 

the timing of symptoms. Taken together, this suggests that pathogenesis of these 

syndromes is likely due to a host-mediated autoimmune response in the setting of 

massive systemic immune activation that results from the rapid expansion of the virus in 

its new host once transmission has occurred [95].  

 Seroconversion characterized by a variety of non-neurological symptoms has 

been associated with more rapid disease progression [82,83]. Recently, there has been 

increased interest in determining whether early HIV infection has neurological 

consequences beyond the self-limited symptoms that are associated with the acute 

seroconversion syndrome. It remains to be seen whether these early signs of 

neuroinflammation related to objective neuronal injury, whether inflammation or injury 

predicts neurological outcomes in later stages of the disease, and whether the early 

initiation of antiretroviral therapy is able to ameliorate these processes even before 

systemic immunosuppression occurs. It is possible, therefore, that the period of primary 

HIV infection has important implications for the timing and clinical course of HAND. 

 

HIV Compartmentalization in the Central Nervous System 

By separating the CNS from the systemic circulation, the blood-brain and blood-CSF 

barriers affect the ability of antiretroviral agents to access the CNS compartment. In 
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addition, local spontaneous replication of HIV within this viral sanctuary may allow for 

the independent mutation of HIV virions such that the CNS virus “evolves away” from 

that in the periphery [4,5,10,12]. While the response of CSF HIV RNA levels to cART 

parallels that in the plasma, the rate of decay in the CSF may be more gradual in some 

patients [29,96-98], suggesting a compartmentalization characterized by slower cell 

turnover, extended macrophage release, or attenuated drug entry into the CNS.  

Because of the blood-brain barrier, HIV in the CNS can be protected from the full 

effect of antiretroviral agents, especially those that are large or hydrophilic. The CNS 

penetration-effectiveness (CPE) index represents an effort to quantitatively estimate the 

relative ability of each antiretroviral agent to penetrate the CNS and interfere with CSF 

HIV replication. Each agent is assigned a “CPE score,” and a total regimen score can be 

calculated by summing the scores for individual agents. The CPE scores for various 

agents are reviewed in Table 2 [99]. 

 Some studies have shown that antiretroviral regimens with higher CPE scores 

tend to be more successful at achieving HIV RNA suppression in the CNS [100,101]. 

But, while more potent HIV RNA suppression in this compartment might be expected to 

lead to better neurocognitive outcomes and more effective treatment of HAND, this has 

not necessarily been the case. Observational studies have suggested that the initiation of 

regimens with higher CPE scores may produce a cognitive benefit in patients with HIV-

related neurological disease [102,103], but other studies have shown that HIV-infected 

individuals treated with regimens with higher CPE scores actually exhibit poorer 

neurocognitive performance despite suppression [101] or only benefit if they are on more 

than three drugs, which is the standard for most cART regimens [104]. 
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CNS Penetration-Effectiveness Score 

 

Drug Class 
 
4 
 

3 2 1 

NRT Inhibitor Zidovudine Abacavir 
Emtricitabine 

Lamivudine 
Stavudine 

Didanosine 
Tenofovir 
Zalcitabine 

NNRT Inhibitor Nevirapine Delavirdine 
Efavirenz Etravirine - 

Protease Inhibitor Indinavir/r 

Darunavir/r 
Fosamprenavir/r 
Indinavir 
Lopinavir/r 

Atazanavir 
Atazanavir/r 
Fosamprenavir 

Nelfinavir 
Ritonavir 
Saquinavir 
Saquinavir/r 
Tipranavir/r 

Entry Inhibitor 
 
Vicriviroc 
 

Maraviroc - Enfurvirtide 

Integrase Inhibitor 
 
- 
 

Raltegravir - - 

Table 2. Proposed CNS Penetration-Effectiveness (CPE) ranks for commonly used 
antiretroviral agents, 2010. NRT = nucleoside reverse transcriptase; NNRT = non-nucleoside 
reverse transcriptase; /r = ritonavir boosted. Adapted from Clifford DB at New York, NY: March 
22, 2010, IAS-USA [99]. 
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Recently, the inability of antiretroviral therapy to control the potential reservoir of 

HIV that exists in monocytes has been proposed as a possible explanation for continued 

neurocognitive impairment in the setting of cART [105].  Along these lines, a monocyte 

efficacy (ME) score has been proposed as another means of quantifying the ability of 

antiretroviral agents to affect neurological outcomes. Preliminary work using this score 

has suggested that that the ME score is a predictor of neurocognitive performance even 

when CPE score is not [106]. More work, including prospective studies, is needed to 

determine whether ME score is an adequate predictor of neurocognitive outcomes in 

patients with HIV. 

 The effort to classify antiretroviral regimens according to CPE or ME indices 

underscores the recognition of CNS HIV compartmentalization as an issue with 

important clinical consequences. It is especially important to understand the 

heterogeneous manifestations of this compartmentalization as a first step toward 

determining whether it might be relevant to or independent of the pathogenesis of HAND 

in these patients.  

 

Structure of the Thesis 

This thesis is divided into two primary “chapters” that comprise two projects conducted 

during 18 months of research on neurological manifestations of HIV infection. Each 

chapter focuses on a different process that might be relevant to our understanding of 

HIV-associated neurocognitive disorder, as described in the introductory sessions on 

primary HIV infection and CNS HIV compartmentalization.   
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The first chapter describes a translational research project focused on evidence of 

neurological injury in individuals with primary HIV infection. This project involved the 

study of CSF and neuroimaging biomarkers of neuronal injury and inflammation in a 

cohort of 92 individuals with newly acquired HIV infection and showed for the first time 

with these markers that objective neuronal injury occurs at this early time point. This 

work has been presented at the International Society for NeuroVirology’s 11th Annual 

Symposium on NeuroVirology in May 2012 (appendix 1) and was recently accepted for 

publication in the Journal of Infectious Diseases [107].  

The second chapter describes a clinical case series investigating a rare but 

important manifestation of neurological disease in patients with chronic, well-controlled 

HIV infection. This project added a substantial amount of information on the 

cerebrospinal fluid and imaging abnormalities in these patients to the limited data that 

was already present in the literature. It was presented at the 19th Annual Conference on 

Retroviruses and Opportunistic Infections (CROI) in March 2012 (see appendix 2) and 

was published in the journal AIDS in September 2012 [19]. 

Both of these studies are included in the thesis because they represent areas of 

HIV disease that have important implications for patients and our understanding of 

HAND, but about which relatively little is known. However, because they deal with 

fundamentally different time points and pathological processes in the course of HIV 

infection, they are better introduced, described, and discussed separately. Afterwards I 

will endeavor to synthesize the material from both projects to reach some general 

conclusions and discuss future directions of this work. 
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CHAPTER 1: CEREBROSPINAL FLUID AND IMAGING BIOMARKERS OF NEURONAL 
INJURY IN ANTIRETROVIRAL NAÏVE PATIENTS DURING PRIMARY HIV INFECTION 
 

Chapter Background 

As previously discussed, the extent of neurological injury during pre-symptomatic HIV 

infection, especially early infection, is not completely understood. Limited data suggest 

that neurological injury occurs in some individuals during primary HIV infection, defined 

as the first year following viral transmission, during which up to 10% of individuals 

develop neurological signs and symptoms and the virus can be detected in CSF and brain 

tissue [87]. HIV infiltrates the CSF within days of transmission [90] and immune 

activation occurs throughout primary infection [91], suggesting the potential for CNS 

injury in the earliest stages of infection. 

This chapter describes a research study focused on identifying neuronal injury in 

individuals with primary HIV infection, in an effort to further characterize the 

neurological implications of the disease beginning at the earliest time point.   

 

Cerebrospinal Fluid Biomarkers 

Cerebrospinal fluid biomarkers have gained popularity as objective markers of neuronal 

injury in a variety of neurological and neurodegenerative disorders including Alzheimer’s 

dementia, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis [108-

113]. Perturbations in the levels of these biomarkers have allowed researchers to 

distinguish static neurological abnormalities associated with previous neurological injury 

in individuals with HIV infection from active processes associated with ongoing neuronal 

injury. Over the last 10 years, there has been an effort to describe the changes in these 
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biomarkers that occur with different manifestations of HIV infection in the central 

nervous system, including HIV-associated dementia, other manifestations of HAND, and 

CNS opportunistic infections.  

 The biomarkers of interest in the present study are most commonly involved with 

neuronal stability and axonal assembly and are described below. Table 3 summarizes the 

abnormalities in each biomarker in individuals with HIV and Alzheimer’s disease. 

 

Neurofilament Light Chain 

The light subunit of the neurofilament protein is a major structural component of 

myelinated axons and has been identified as a sensitive marker of axonal disruption. The 

neurofilament protein itself is associated with large myelinated neurons in the cerebral 

white matter, and is known for maintaining the caliber of the axon as well as its structural 

and functional integrity. In this way, the neurofilament protein is thought to play a crucial 

role in the ability of axons to conduct nerve impulses [114].  

The light chain of the neurofilament protein has been demonstrated to be a 

sensitive marker of neuronal injury in a number of conditions, both chronic and acute. 

This includes disorders involving the degeneration of white matter tracts in the brain or 

spinal cord, such as amyotrophic lateral sclerosis or multiple sclerosis, as well as cerebral 

disorders such as Alzheimer’s disease [110]. In an acute setting, there is a dramatic, dose-

specific leakage of neurofilament light chain into the CSF, in proportion to the extent of 

ischemic injury [109,115,116].  

Neurofilament light chain has been shown to be elevated in HIV-associated 

dementia and CNS opportunistic infections, with higher levels associated with worse 
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neurological disease [117] (Figure 3). Previously, neurologically asymptomatic HIV-1-

infected individuals with chronic infection and CD4+ T cell counts above 200 cells/uL 

were thought not to have elevated CSF neurofilament light chain, and this threshold was 

thought to be sufficient to prevent CNS disease [118]. However, further work in 

chronically infected subjects indicated that HIV-infected individuals with CD4+ T cell 

counts above 200 cells/uL can have elevations in neurofilament light chain upon the 

cessation of cART [119], that lower CD4+ T cell counts tend to be associated with higher 

neurofilament light chain [117], and that very low CD4+ T cell counts are associated with 

increased neurofilament light chain concentrations [120]. However, neurofilament light 

chain was not elevated in the majority of patients with primary infection [117] and its 

utility during this time period remained unknown. 

  

Tau Proteins: t-tau and p-tau 

Tau is a ubiquitously expressed microtubule-associated protein that promotes axonal 

stability and participates in the maintenance of synapses within the central nervous 

system [121]. It is largely found in non-myelinated cortical axons [122]. Its 

hyperphosphorylated component, known as p-tau, is widely known for its association 

with neuronal injury in Alzheimer’s disease, ischemic stroke, and Cruetzfeldt-Jakob 

disease [111,123]. It is notably not elevated in Parkinson’s disease [112,124]. Elevated 

levels of tau are thought to be related to neuronal loss, which is a characteristic of all of 

these conditions; it has been hypothesized that tau levels might reflect the magnitude and 

rate of neurodegeneration.  
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Figure 3. CSF neurofilament light chain concentrations in 210 HIV-1 infected individuals at 
different stages of disease, based on “less-sensitive” assay with lower limit of detection 
250 ng/L. Box plots indicate median values, 25th  and 75th percentiles, and ranges. a. Subjects 
divided into different groups, showing significant elevations in AIDS Dementia Complex (ADC) 
and CNS opportunistic infections (OI), and no elevations in neuroasymptomatic subjects (asympt) 
or subjects with primary HIV infection (PHI). b. Subjects with ADC staged according to the 
Memorial Sloan-Kettering Scale, indicating elevated neurofilament light chain in more severe 
ADC cases. c. Subjects with CNS OIs; CMV encephalitis (CMV-E), CNS lymphomas (CNSL), 
cryptococcal meningitis (Crypto), progressive multifocal leukoencephalopathy (PML) and 
toxoplasmosis (Toxo). d. Neurologically asymptomatic subjects grouped according to their CD4+ 
cell counts, showing elevated neurofilament light chain with worsening CD4+ T cell counts. From 
Abdulle, et al. [117]. Used with kind permission of Springer Science and Business Media. 
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Marker PHI NA HIV HAND/HAD CNS OI AD 

NFL =[117] =[117] [117] [117] [110] 

t-tau No data =[113] 
[139] 

[113,125] 
= [126,127] =[113,127] [113,123,133,139] 

p-tau No data =[113] 
 [139] 

[125] 
= [113] = [113] [113,123,133,139] 

sAPP-α No data =[113] [113] [113] =[113,123,128] 

sAPP-β No data =[113] [113] [113] =[113,123,128] 

β-amyloid No data =[113] = [113]  
[125,139] [113] [113,123,128,133,138] 

NAA/Cr =[129,137] 
[130,131]  [50,59] [59] No data [132,133,134,135] 

Glu/Cr =[123,137]  [130,136] [130,137] No data [134,135] 

Table 3. Summary of previously described biomarker perturbations in HIV infection and 
Alzheimer’s disease. PHI = primary HIV infection; NA HIV = neuroasymptomatic, chronic HIV 
infection; HAD = HIV-associated dementia; CNS OI = central nervous system opportunistic 
infections; AD = Alzheimer’s Disease; NFL = neurofilament light chain, sAPP = soluble amyloid 
precursor protein; NAA = n-acetylaspartate; Glu = glutamate; Cr = creatine. Reference numbers 
provided. 

 

1 = Gisslen 2009 [113]; 2 = Brew 2005 [125]; 3 = Andersson 1999 [126]; 4 = Green 2000 [127]; 5 
= Abdulle 2007 [117]; 6 = Andreasson 2007 [128]; 7 = Norgren 2003 [110]; 8 = Blennow 2010 
[123]; 9 = Meyerhoff 1993 [50]; 10 = Young 2011 [129]; 11 = Lentz 2009 [130], 12 = Lentz 2011 
[131]; 13 = Paul 2007 [59]; 14 = Risacher 2013 [132]; 15 = Chantal 2004 [133]; 16 = Fayed 2011 
[134]; 17 = Shinno 2012 [135] ; 18 = Sailasuta 2009 [136]; 19 = Sailasuta 2012 [137]; 20 = 
Mawuenyega 2010 [138]; 21 = Clifford 2009 [139] 
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 Previous studies of tau proteins in HIV infection have been inconclusive in 

demonstrating the directionality of perturbations in these metabolites. One recent study 

demonstrated t-tau elevations in individuals with HAD, who displayed levels above those 

seen in HIV-uninfected controls and neuroasymptomatic HIV-infected individuals [113]. 

P-tau was not elevated in any CNS manifestations of HIV. The authors suggested that 

this was likely due to pathology in neurological HIV infection that more commonly 

affects subcortical pathways and does not result in the neurofibrillary tangles common in 

Alzheimer’s disease [113]. Other studies have had conflicting results, with some showing 

elevated t-tau and p-tau in HAND or HAD [125,126] and others failing to show a 

consistent relationship [127,139,140]. Patterns in t-tau and p-tau proteins have not 

previously been explored in primary HIV infection. 

 

Proteins of the Amyloid Processing Pathway 

The amyloid processing pathway is a complex enzymatic pathway involving the 

proteolytic processing of transmembrane proteins that results in the generation of 

metabolites with varying pathological potential [128]. Beginning with full-length 

transmembrane amyloid precursor protein, the pathway may follow amyloidgenic or non-

amyloidgenic routes. In the non-amyloidgenic route, transmembrane amyloid precursor 

protein is cleaved by an α-secretase into soluble amyloid precursor protein–α, which is 

present in the CSF but does not lead to the formation of pathological β-amyloid. In 

contrast, transmembrane amyloid precursor protein might be cleaved by a β-secretase, 

which results in the generation of soluble amyloid precursor protein–β. The formation of 

this protein results in the production of the β-C-terminal fragment (CTF) protein, which 



31 
 

 
 

 

in turn is cleaved by a γ-secretase to form β-amyloid peptides. The 1-42 version of β-

amyloid aggregates to form the amyloid plaques seen in Alzheimer’s disease. The CSF 

amyloid profile in Alzheimer’s disease is therefore composed of normal or mildly 

elevated CSF sAPP–α  and –β proteins with decreased CSF amyloid-beta 42, which 

results from increased deposition of the protein in the brain tissue and therefore lower 

levels in the CSF [123,128,138].    

 In HIV-infected individuals, soluble amyloid precursor proteins have been shown 

to decrease with late-stage neurological disease, including HIV-associated dementia and 

CNS opportunistic infections [113]. However, inconsistencies have been reported in 

terms of amyloid-beta 42, with some studies showing no change [113] and others 

revealing a decrease consistent with what is found in Alzheimer’s disease [125,139]. 

Effects on these proteins have not been described during primary HIV infection. 

 

Proton-Magnetic Resonance Spectroscopy 

Proton-magnetic resonance spectroscopy (proton-MRS) is a non-invasive imaging 

modality that has been used to monitor neuronal injury through the analysis of cerebral 

metabolite abnormalities. N-acetylaspartate and glutamate are markers of neuronal health 

that deplete with injury [141,142] and are often expressed in terms of their ratio to 

creatine. Perturbations in metabolites measured through proton-MRS have been identified 

in a number of brain regions of subjects with Alzheimer’s disease [132-137]. 

Work in macaques suggests that the neuronal manifestations of HIV as identified 

through proton-MRS abnormalities occur rapidly but are reversible with the initiation of 

cART [143]. In human studies, the N-acetylaspartate/creatine ratio declines in chronic 
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untreated HIV infection (i.e., [50,59]), and improves, but does not normalize, with 

therapy [144,145].  

Some neuroimaging studies have suggested that neuronal injury occurs during 

primary HIV infection as evidenced by decreased N-acetylaspartate in the frontal cortex 

of newly infected individuals [130,131]. Other studies have failed to find group-level 

differences in metabolite levels between controls and patients with primary HIV infection 

at baseline [137,138]. Recent work using our cohort of participants with primary 

infection has demonstrated that, although there are no group differences at baseline 

compared with controls, abnormalities in subjects with primary infection worsen over 

time and improve with early initiation of cART [129]. Despite this progress, at the time 

of thus study no information linking CSF biomarker data with non-invasive proton-MRS 

metabolite data was available. 
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Statement of Purpose, Specific Aims, and Hypotheses 

In this study, we sought to quantify CSF and neuroimaging biomarkers as a proxy for 

neuronal injury in individuals with primary HIV infection and to compare them with 

those in HIV-uninfected controls. The specific aims of the study were as follows: 

1. To determine whether neurofilament light chain, a sensitive marker of neuronal 
injury, is elevated in subjects with primary HIV infection compared with HIV-
uninfected control subjects. 

 
2. To investigate potential mechanisms of neuronal injury by correlating 

abnormalities in neurofilament light chain in primary HIV infection with markers 
of CNS inflammation and viral load.  

 
3. To determine whether tau and amyloid proteins are perturbed in primary HIV 

infection and to identify relevant correlates of these perturbations. 
 

4. To identify cerebral metabolite abnormalities as measured using proton-magnetic 
resonance spectroscopy and to determine whether there is a relationship between 
non-invasive imaging and CSF biomarkers of neuronal injury during primary HIV 
infection. 

 
5. To examine the relationship between CSF biomarkers of neuronal injury and 

neuropsychological testing performance during primary HIV infection. 
  

We hypothesized that primary HIV infection is characterized by increased concentrations 

of CSF neurofilament light chain, and that this increase correlates with elevated 

concentrations of CSF markers of neuroinflammation and decreased concentrations of N-

acetylaspartate and glutamate measured by proton-MRS. We expected tau and amyloid 

levels in primary HIV infection to not differ from controls, as has been previously 

reported [113] in chronically HIV-infected, neuroasymptomatic individuals. 
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Methods 

Study Design and Participants 

This was a cross-sectional study utilizing clinical signs and symptoms, biological 

samples, and laboratory test results from 92 antiretroviral naïve individuals with primary 

HIV infection enrolled between 1987 and 2011 at study sites in San Francisco, USA, 

Gothenburg, Sweden, and Sydney, Australia.  

 Participants were referred from physicians or counseling and testing centers based 

upon known or suspected recent HIV infection. Participants were eligible if they met 

criteria for primary infection based upon nucleic acid testing and less-sensitive ELISA 

studies according to the standard serologic testing algorithm for recent HIV 

seroconversion, commonly known as the STARHS algorithm [95]. Estimated number of 

days post-transmission was calculated assuming exposure occurred 14 days prior to the 

acute retroviral syndrome [81], or in the absence of symptoms, as halfway between the 

last negative and the first positive test result.  

A neurologist screened the participants with a history and physical exam to detect 

exclusion criteria including active unrelated neurological disorders such as known prior 

stroke, seizure disorder, brain tumor, or CNS opportunistic infections. Subjects were 

screened with standardized inventories for comorbid mental illness and substance abuse, 

and the presence of these was recorded. Data was excluded from the analysis if 

participants demonstrated signs of intoxication and/or reported substance use on the day 

of the study visit. 

Data regarding CSF HIV RNA and neurological symptoms have been previously 

reported in a subset of participants from this study [42,146], as have neurofilament light 
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chain results in 16 subjects using a different, less-sensitive assay [117] than the one that 

was used in this study.  

Twenty-five HIV-uninfected volunteers provided comparison samples. All 

participants provided written informed consent in studies approved by the institutional 

review board or equivalent entity at each institution. 

 

Specimen Sampling, Processing, and Laboratory Analysis 

Participants underwent detailed neurological history and physical examination, as well as 

collection of blood and CSF specimens between 7:30am and 12:00pm at study visits. The 

timing of specimen collection controlled for potential diurnal variations in amyloid-beta 

42 [147]. HIV RNA levels in cell-free CSF and plasma were measured by the 

ultrasensitive Roche Amplicor HIV-1 Monitor PCR (version 1.5; Roche Molecular 

Diagnostic Systems, Branchburg, NJ), Cobas TaqMan RealTime HIV-1 (version 1 or 2; 

Hoffmann-La Roche, Basel, Switzerland), or the Abbott RealTime HIV-1 (Abbot 

Laboratories, Abbot Park, IL, USA) assays at local sites. CSF total white blood cells 

(WBCs) and protein, and CD4+ and CD8+ T lymphocyte counts were measured on fresh 

samples by flow cytometry.  

Cell-free CSF and blood plasma were aliquoted and stored within 6 hours of 

collection in -70°C or -80°C freezers monitored by National Institutes of Standards and 

Technology-certified thermometers. Neurofilament light chain concentration was 

measured using a new, highly sensitive, two-site enzymatic quantitative immunoassay 

with a lower limit of detection 50 ng/L (UMAN Diagnostics, Umea, Sweden). The upper-

normal CSF neurofilament light chain levels at the laboratory were <380 (in subjects <30 
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years), <560 (30-39 years), <890 (40-59 years) and <1850 ng/L (>59 years)  [148]. 

Reference values were obtained in the Zetterberg laboratory based on the analysis of 108 

neurologically healthy HIV-uninfected individuals. Detection of t-tau, amyloid-beta 42, 

and soluble amyloid precursor proteins–α  and –β used standard ELISAs. Blood and CSF 

neopterin measurements were performed in the laboratory of Dr. Fuchs employing 

commercially available immunoassays (BRAHMS Aktiengesellschaft, Hennigsdorf, 

Germany); interferon gamma-induced protein 10 (IP-10) and monocyte chemotactic 

protein 1 (MCP-1) measurements were performed locally using commercially available 

assays (R&D Systems, Minneapolis, USA).  

 

Proton-Magnetic Resonance Spectroscopy 

After standard clinical magnetic resonance imaging, proton-MRS was performed on a 4-

Tesla Siemens/Bruker scanner (Siemens, Erlangen, Germany) in 53 primary HIV 

infection participants at baseline in the neuroimaging laboratory of Dr. Meyerhoff. 

Water-suppressed short echo-time (TE) single-volume STEAM spectra 

(TR/TE/TM=2000/12/10 ms, spectral width=2000 Hz, spectral data size=2048 points, 

128 scans, total acquisition time=4:16 min) were acquired from four volumes selected on 

sagittal T1-weighted and axial T2-weighted images. Four different tissue types were 

targeted: anterior cingulate (20×20×20mm3), frontal white matter (15×25×20mm3), basal 

ganglia (17×35×15mm3), and parietal grey matter (25×20×20mm3). Figure 4 shows the 

proton-MRS voxel locations of these tissues. We chose these areas based on acute SIV 

studies in macaques that had shown changes in these regions [143,149,150]. 
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Figure 4. Overview of proton-magnetic resonance spectroscopy acquisition locations and 
characteristic spectral peaks for metabolites included in this study. Acquired using 4-Tesla 
Siemens/Bruker MR system. MI = myo-inositol, Cho = choline-containing metabolites, Cr = 
creatine, Glu = glutamate, NAA = N-acetylaspartate. From Young AC at Seattle, WA: March 3, 
2012, CROI [129]. Used with permission. 
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Meyerhoff and others have previously described most of the proton-MRS 

processing methods [151]. Briefly, all MRI and single-volume proton-MRS data were 

stored in an SQL database, and were processed and analyzed with updated software tools 

developed in-house [152] or in routine use for many years. The spectral fitting software, 

SITOOLS, used a parametric model of known metabolite resonances and modeled 

spectral components, including those of macromolecules, to fit all spectral resonances 

and nonparametric parameters to the baseline. A priori spectral information used the 

frequencies, phases, and approximate relative amplitudes of all major metabolites at 4-

Tesla and also included resonances for macromolecules. The obtained raw metabolite 

signal integrals were corrected for MRI-derived tissue and CSF contributions to the 

proton-MRS volumes, corrected for different receiver and transmitter settings when 

necessary, and then normalized to the cerebral water signal obtained from the 

corresponding volumes. For each metabolite, these adjusted signal integrals (“peak 

areas”) were converted to metabolite ratios: glutamate/creatine, myo-inositol/creatine, N-

acetylaspartate/creatine, and choline-containing metabolites/creatine. We excluded 

spectra if they exhibited poor signal-to-noise ratios, excessive water signal, or other 

significant artifacts. High-field proton-MRS at 4-Tesla has highly sensitive signal-to-

noise detection and allowed us to determine individual peaks of glutamate and glutamine 

instead of Glx; this level of resolution is not possible with less powerful magnets. 

 

Neuropsychological Testing 

Neuropsychological testing was performed only at the San Francisco site and all 

participants were fluent in English. At baseline, a trained psychometrist administered a 
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neuropsychological testing battery composed of motor (timed gait, finger tap non-

dominant hand, grooved pegboard), processing speed (trail making A, digit symbol), 

executive function (trail making B, verbal fluency), learning (RAVLT, figural memory), 

and memory (RAVLT delay, figural memory delay) domains. To control for the social 

and demographic variability in the group, z-scores for neuropsychological testing were 

used for all analyses, and were derived from comparing raw scores to age-, gender-, 

ethnicity-, and level-of-education-matched norms. We calculated a z-domain score by 

averaging all z-scores within that domain, and calculated an NPZ-4 score by summing 

grooved pegboard, digit symbol, finger tapping, and timed gait. A total z-score was 

calculated as a composite of all tests and a global deficit score was calculated in the 

standard manner [153].  

 

Statistical Analyses 

Non-parametric descriptive statistics used the Mann Whitney U-test and the Kruskal-

Wallis test with post-hoc testing corrected with Dunn’s multiple comparison, all 

performed with SPSS (version 19.0, SPSS Inc, Chicago, IL) and GraphPad Prism 

(version 5.0d, GraphPad Software, San Diego, USA). Correlations between measured 

parameters employed Spearman’s rank correlation coefficient; parametric correlations 

and linear regression were also conducted for illustrative purposes. A multivariate 

regression model to investigate independent predictors of CSF neurofilament light chain 

included age, CSF neopterin, WBC, protein, IP-10, and CSF:plasma albumin ratio; these 

parameters had been identified as significant predictors in both the parametric and non-

parametric univariate models. 
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Results 

Study Participant and HIV Disease Characteristics 

Table 4 shows background clinical and demographic information for primary HIV 

infection participants (n=92) and HIV-uninfected controls (n=25) included in the 

analysis. HIV-infected participants were an estimated median of 3.1 months post-

transmission and were younger and more likely to be male than the controls. They 

displayed the decline in CD4+ T cell count (p<0.0001) and the increased CD8+/CD4+ T 

cell ratio characteristic of early HIV infection (p<0.0001) and also demonstrated a CSF 

pleocytosis compared with HIV-uninfected controls (p<0.0001). 8/92 (8.7%) participants 

in the primary HIV infection group had previously experienced one or more neurological 

symptoms during seroconversion, and the majority of participants harbored infection with 

HIV-1 subtype B, as described in previous work [42].  

 

CSF Markers of Neuronal Injury during Primary HIV Infection 

In a subset of 32 participants, the new CSF neurofilament light chain assay demonstrated 

a high degree of correlation with the older, less sensitive assay that was used in previous 

studies (r=0.8, p<0.0001). Figure 5 shows comparisons of the six CSF biomarkers in this 

study between the primary HIV infection and HIV-uninfected control groups. Median 

neurofilament light chain in 82 primary HIV infection participants was elevated 

compared with 20 controls (p=0.0004; Figure 5a).  

P-tau was elevated in 66 primary HIV infection participants compared with 23 

controls (p=0.016, Figure 5b). There were no significant differences between groups in t-

tau or soluble amyloid precursor proteins–α and –β (Figure 5c-e). Amyloid-beta 42 was 
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PHI 

n=92 
HIV-uninfected 

n=25 p-value 
% Male 95.2% 80% 0.03 

Age, years 36 (28-46) 43 (40-49) 0.001 

Estimated Days of Infection 92 (52-152) - - 

CD4+ Count, cells/uL 536 (392-682) 836 (703-1056) < 0.0001 

CD8+ Count, cells/uL 985 (161-9063) 550 (157-1031) < 0.0001 

Log10 Plasma VL 4.6 (4.0-5.2) - - 

Log10 CSF VL 2.9 (2.0-3.6) - - 

CSF Protein, mg/dL 41 (32-53) 47 (33-56) 0.71 

CSF WBC, cells/uL 6 (2-11) 1 (0-2.5) < 0.0001 

% ARS Neuro Symptoms 8.7% - - 
Table 4. Demographic and descriptive characteristics of primary HIV infection participants 
and HIV-uninfected controls. Values are shown as median (IQR) except where noted. PHI = 
primary HIV infection; VL = viral load; CSF = cerebrospinal fluid, WBC = white blood cells, ARS = 
antiretroviral syndrome. Used with permission [107]. 
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Figure 5. CSF biomarkers of neuronal injury in the primary HIV infection group and HIV-uninfected control group. Note the statistically 
significant elevations in NFL, p-tau, and amyloid-beta 42. PHI = primary HIV infection group, HIV- = HIV-uninfected control group, NFL = 
neurofilament light chain, p-tau = hyperphosphorylated tau, t-tau = total tau, sAPP = soluble amyloid precursor protein. Used with permission 
[107].
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elevated in 73 primary HIV infection participants compared with 23 controls (p=0.0005; 

Figure 5f).  

Figure 6a indicates that, when stratified by age, 36/82 (44%) participants had 

neurofilament light chain elevations above the upper limit of normal for their age group: 

13/24 (54%) <30 years, 12/24 (50%) 30-39 years, 10/31 (32%) 40-59 years, and 1/3 

(33%) >59 years. Figure 6b-c shows that participants who had experienced neurologically 

symptomatic seroconversion (n=8) did not have higher neurofilament light chain, 

amyloid-beta 42, or p-tau (not shown) than those who had been neurologically 

asymptomatic during seroconversion. Even when previously symptomatic participants 

were excluded, these biomarkers remained elevated in the primary infection group 

compared with controls. 

 

Determinants of Elevated Neurofilament Light Chain during Primary HIV Infection 

 Figure 7 displays the correlations between neurofilament light chain and markers of viral 

and immune system activity in the CSF. CSF neurofilament light chain correlated with 

concentrations of inflammatory markers including CSF neopterin (r=0.38; p=0.0005) and 

IP-10 (r=0.39; p =0.002), WBC count (r=0.32; p=0.004), protein (p=0.59; p<0.0001) and 

CSF:plasma albumin ratio (r=0.60; p<0.0001). Significant correlations were not found 

between neurofilament light chain and CD4+ T cell count, estimated days post-infection 

at sampling, plasma and CSF HIV RNA levels, or CSF MCP-1 (p=0.33; graph not 

shown).  

Figure 8 shows the relationship between neurofilament light chain concentrations 

and metabolite analyses conducted with proton-MRS. Elevated levels of neurofilament 
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Figure 6. Biomarker measurements stratified by age and history of symptomatic 
seroconversion. a. CSF neurofilament light chain measurements stratified by age, with relation 
to the age-specific upper limit of normal. 44% of subjects have elevations above the upper limit of 
normal for their age group. b. CSF neurofilament light chain values stratified by history of 
symptomatic seroconversion, showing significant elevations regardless of presence or absence of 
previous neurological symptoms. c. CSF beta-amyloid values stratified by history of symptomatic 
seroconversion, showing significant elevation even when previously symptomatic patients are 
removed. NFL= neurofilament light chain, PHI = primary HIV infection.
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Figure 7. Selected correlates of neurofilament light chain levels in primary HIV infection. r 
represents the Spearman correlation coefficient and the corresponding p-value is displayed. Solid 
lines represent best-fit regression line and dashed lines represent 95% confidence intervals. 
Used with permission [107]. 
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light chain correlated with low N-acetylaspartate/creatine and glutamate/creatine ratios in 

the anterior cingulate (r=-0.35, p=0.02; r=-0.40, p=0.009, respectively), frontal white 

matter (r=-0.43, p=0.003; r=-0.30, p=0.048, respectively), and parietal gray matter (r=-

0.43, p=0.003; r=-0.47, p=0.001, respectively). Figure 9 demonstrates that N-

acetylaspartate/creatine and glutamate/creatine ratios were correlated across these three 

brain regions (r>0.50, p<0.001). No significant correlations were present between 

neurofilament light chain and glutamate/creatine or N-acetylaspartate/creatine in the 

basal ganglia (Figure 8g-h) or with myo-inositol/creatine or choline/creatine from any 

region (data not shown).   

 Multivariate linear regression modeling was used to identify independent 

predictors of CSF neurofilament light chain in primary infection participants and revealed 

independent correlations with age, CSF WBCs, and CSF:plasma albumin ratio (adjusted 

r-square=0.624).   

 

Determinants of Elevated Amyloid-beta 42 during Primary HIV Infection 

Figure 10 shows correlations between amyloid-beta 42 and CSF markers of HIV disease 

and neuroinflammation. Amyloid-beta 42 did not correlate with age in the primary HIV 

infection group, but did correlate with levels of soluble amyloid precursor proteins–α and 

–β (r=0.27, p=0.03; r=0.30, p=0.015, respectively) and with estimated days post-infection 

(r=0.34, p=0.003). There were no significant correlations between amyloid-beta 42 and 

plasma or CSF viral load, CSF:plasma albumin ratio or CSF protein, neopterin, MCP-1, 

or IP-10. Notably, neurofilament light chain and amyloid-beta 42 did show a modest 

correlation (r=0.29, p=0.018; Figure 10g).
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Figure 8. Correlations of neurofilament light chain levels with regional proton-magnetic 
resonance spectroscopy-derived metabolite ratios. r represents the Spearman correlation 
coefficient and corresponding p-value. Solid lines represent best-fit regression line and dashed 
lines represent 95% confidence intervals. Used with permission [107]. 



48 
 

 
 

 

 

Figure 9. Correlations between N-acetylaspartate/creatine and glutamate/creatine 
measured by proton-magnetic resonance spectroscopy in selected brain regions. Note the 
high level of correlation across the three regions. r represents the Spearman correlation 
coefficient and the corresponding p-value is displayed. 
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Figure 10. Selected correlates of amyloid-beta 42 in primary HIV infection. r represents the 
Spearman correlation coefficient and the corresponding p-value is displayed. Solid lines 
represent best-fit regression line and dashed lines represent 95% confidence intervals. Used with 
permission [107].
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Neuropsychological Testing in Primary HIV Infection Participants 

Figure 11 shows the results of neuropsychological testing in the primary HIV infection 

cohort at baseline and compares the mean for the HIV-infected group to a theoretical 

mean of 0 (normal neuropsychological performance). Overall, the primary HIV infection 

subjects did not differ from the theoretical mean in motor performance (mean -0.16; 

p=0.10) but performed worse than would be expected on tests of executive function 

(mean -0.44, p<0.0001), processing (mean -0.53, p<0.0001), memory (mean -0.39, 

p=0.0001), and learning (mean -0.61, p<0.0001). 

Figure 12 shows the relationship between neuropsychological testing performance 

and neurofilament light chain measurements. There were no significant correlations 

between CSF neurofilament light chain and composite z-scores for motor function, 

processing speed, memory, or learning. Neurofilament light chain and the composite z-

score for executive function tended to be correlated (r=0.27; p=0.049). There was no 

evidence of correlation between neurofilament light chain and the global deficit score. 

There were no significant correlations between amyloid-beta 42 or p-tau and any 

composite z-scores on neuropsychological testing (data not shown).  

 

Discussion 

The findings in this study demonstrate that several biomarkers of neuronal injury, 

including neurofilament light chain and amyloid-beta 42, are abnormal in the CSF of a 

subset of individuals with primary HIV infection and that neurofilament light chain 

concentration correlates with established proton-MRS markers of neuronal injury. This 

suggests that neuronal injury, in addition to viral replication [87], immune activation 
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Figure 11. Neuropsychological testing performance at baseline (median of 3.1 months) in 
participants with primary HIV infection. “0” line indicates control z-domain score. Z-domain 
scores calculated as average of z-scores for each component of the domain (see text for domain 
components), with each z-score increment representing 1 standard deviation above or below 0. 
Bars represent mean and standard deviation for each component. P-values calculated using a 
one-sample t-test with theoretical mean of 0.  
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Figure 12. Correlations between composite domain-based neuropsychological testing performance and neurofilament light chain 
concentration in subjects with primary HIV infection. r represents the Spearman correlation coefficient and the corresponding p-value is 
displayed. 
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[29,154], and blood-brain barrier breakdown [87] occurs early in the course of HIV 

infection in some individuals.  

The association of neurofilament light chain with markers of inflammation 

suggests a relationship between injury and immune activation in this setting. The finding 

that proton-MRS measures of cortical and white matter N-acetylaspartate/creatine and 

glutamate/creatine demonstrate associations with CSF neurofilament light chain 

concentrations is the first data to relate non-invasive neuroimaging markers of neuronal 

injury (i.e., proton-MRS) with CSF neural marker abnormalities in HIV infection.  

Neuronal health and stability appears compromised in some brain regions, 

including the frontal white matter and parietal gray matter, in the earliest stages of HIV 

infection. The lack of a convincing correlation between neurofilament light chain levels 

and performance on common neuropsychological tests may suggest that neurofilament 

light chain elevation reflects subclinical injury during this stage of infection, but may also 

reflect shortcomings with regard to the sensitivity and/or specificity of 

neuropsychological testing during this time period.   

 

Neurofilament Light Chain 

Neurofilament light chain concentration serves as a sensitive indicator of CNS axonal 

injury in a number of neurodegenerative disorders including Alzheimer’s disease, 

atypical Parkinsonian syndromes, and amyotrophic lateral sclerosis [110,123], as well as 

in multiple sclerosis [108] and traumatic brain injury [155]. CSF neurofilament light chain 

concentrations increase in untreated individuals with HIV-associated dementia and 

neurological opportunistic infections [117]. Moreover, neurofilament light chain may 
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predict who goes on to develop neurological disease [156], has been shown to decrease 

with the initiation of antiretroviral therapy [118], and increases with cART 

discontinuation [119]. This previous data suggests that neuronal damage occurs in the 

setting of the pathogenic activity of HIV in the central nervous system and the immune 

response of the host during other stages of HIV infection. 

Previous work including a subset of patients from this cohort identified elevated 

neurofilament light chain in 4/16 (25%) subjects with primary HIV infection, but showed 

no significant difference compared with controls [117]. However, that work utilized a 

less-sensitive assay, with a lower limit of detection of 250 ng/L compared with the assay 

used in this study, which had a lower limit of detection of 50 ng/L. The two assays had a 

strong correlation when results were compared in a subset of subjects, but the newer, 

more-sensitive assay allowed for greater resolution of the lower end of the concentration 

scale and resolved points that were previously clustered together at the lower limit of 

detection using the earlier assay.  

Our findings using this more-sensitive assay demonstrate increased neurofilament 

light chain in the group comparison, which has not previously been demonstrated in 

primary HIV infection [117]. The results also demonstrate that 44% of participants in this 

study had elevations in neurofilament light chain above the age-appropriate upper limit of 

normal for this marker. This finding suggests that, in at least a subset of participants, 

neurological injury occurs during primary HIV infection even in subjects who had not 

previously experienced neurological symptoms during seroconversion. Along with CSF 

HIV RNA and inflammatory markers, elevated neurofilament light chain levels may help 

to identify individuals with an active disease process and distinguish them from those 
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with static neurological abnormalities. Since it has been suggested that neurofilament 

light chain can predict neurologic disease progression [156], it is possible that this marker 

may identify individuals that could benefit from early pharmacologic intervention aimed 

at protecting the brain from neuronal injury.  

It is also worth noting that a significant proportion of these participants (56%) did 

not demonstrate elevated neurofilament light chain, suggesting the possibility that an 

unknown viral or host factor increases the susceptibility of certain individuals to 

neurological injury during this period. 

 

Correlates of Elevated Neurofilament Light Chain during Primary HIV Infection 

Overall, the results of this analysis suggest an association between neurofilament light 

chain and inflammatory processes in the central nervous system, reflected in significant 

correlations with CSF neopterin and IP-10, as well as markers of CSF pleocytosis and 

blood-brain barrier breakdown. It is notable that such associations did not exist with 

amyloid-beta 42, implying that neurofilament light chain might be a more specific marker 

for inflammatory injury in the central nervous system.  

During primary infection, neurofilament light chain was not associated with CD4+ 

T lymphocyte count, which may reflect the fact that CD4+ count during this period is a 

correlate of the acute systemic immune response to HIV acquisition rather than the 

duration and progression of infection. Neurofilament light chain also did not strongly 

associate with markers of infection, including plasma and CSF HIV RNA.  

Because the N-acetylaspartate/creatine ratio is a putative marker of neuronal 

health, our results suggest that declining neuronal health is associated with increased 
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neuronal injury as identified through elevated CSF neurofilament light chain. This is 

particularly true in the parietal gray matter and frontal white matter, consistent with 

studies in animal models [149,150]. We also found a negative association between the 

glutamate/creatine ratio and neurofilament light chain. Elevated glutamate/creatine is a 

putative marker for excitotoxicity, but it is also considered a marker of neuronal integrity 

(i.e., [142]). Previous studies have shown that HIV-infected individuals with cognitive 

deficits have lower glutamate/creatine levels, particularly in the parietal gray matter but 

not the frontal white matter [142]. Here, we found a similar regional specificity in that 

high neurofilament light chain levels correlated strongly with low glutamate/creatine in 

the parietal gray matter, but not in the frontal white matter. The strong correlations 

between glutamate/creatine and N-acetylaspartate/creatine ratios across all brain regions 

emphasize the value of these metabolites in the assessment of neuronal health and 

suggest that the consistent regional metabolite correlations with neurofilament light chain 

are meaningful. 

 It is difficult to draw clear conclusions from the generally below-average 

performance on the tests for many neuropsychological domains, because performance on 

these tests may be confounded by a variety of factors related to HIV infection but 

unrelated to the pathogenesis of the disease. In addition, we found no convincing 

correlation between CSF neurofilament light chain and performance on most cognitive 

domains assessed by this circumscribed battery of tests. However, a modest association 

between higher NFL and poorer performance in tests of executive function may reflect a 

relationship between neural injury and impairment of this cognitive domain during early 

infection. 
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Tau Proteins 

Tau and amyloid proteins are valuable in the identification of neurodegenerative 

disorders [138,157,158], but their utility in HIV infection is less clear. T-tau and p-tau 

patterns in HAND and HAD are inconsistent [113,125,140].  

In this study, elevated p-tau occurred in the context of unchanged t-tau, a pattern 

different from that which is seen in chronic AIDS [125], Alzheimer’s disease [158], and 

Creutzfeldt-Jakob disease [159]. The difference is weaker than that identified for 

neurofilament light chain or amyloid-beta 42, and we are therefore unable to conclude 

from this study whether t-tau and p-tau could be useful measures of neuronal injury in 

primary HIV infection. 

 

Amyloid Proteins 

Amyloid precursor proteins are cleaved by secretases into soluble amyloid precursor 

proteins–α and –β; cleavage to –β form generates a molecule leading to amyloid-beta 42 

[113,128]. Amyloid-beta 42 decreases in Alzheimer’s disease [138] and in HAND [139], 

HAD [125], and CNS Opportunistic Infections [113]. Pathological studies show amyloid 

deposition in brain tissue of HIV-infected individuals [160], but this marker has not been 

explored in primary HIV infection.  

The elevation in amyloid-beta 42 discovered here could be accounted for by a 

number of mechanisms. It is unlikely to be due to the age of the participants in each 

group, as median levels for controls is concordant with those for young controls in other 

studies [113], and the median value in primary HIV infection participants is higher than 

in neuroasymptomatic HIV-infected individuals [113]. 
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Elevated CSF amyloid-beta 42 has recently been associated with cerebral 

inflammation [161] and this elevation is associated with increases in markers of 

inflammation in the CSF, including TNF-α, IL-6, and IL-8. This suggests that acute 

cerebral inflammation results in the production of amyloid-beta 42. While our primary 

infection subjects presented with a neuroinflammatory picture (with elevated CSF WBCs, 

IP-10, and protein), amyloid-beta 42 did not correlate with markers of neuroinflammation 

in this group. However, the markers we measured differed from those for which 

correlations have been identified (TNF-α, IL-6, or IL-8) in other studies [161].  

There are a number of other mechanisms that may cause or be associated with this 

unexpected elevation of amyloid-beta 42. In the plasma, a large fraction of this protein is 

bound to and transported by albumin [162]. The disruption of the blood-brain barrier in 

primary HIV infection may cause a translocation of amyloid-β-albumin complexes into 

the CSF [91], but we found no correlation between amyloid-beta 42 and CSF:plasma 

albumin ratio, which is a marker of blood-brain barrier breakdown. Low-density 

lipoprotein receptor-related protein (LRP) clears soluble amyloid-beta 42 by mediating 

endocytosis in macrophages [163], which go on to catabolize this protein. HIV tat protein 

inhibits LRP uptake and degradation of amyloid-beta 42 [164] and increases its 

intracellular, soluble component [165]. It is possible that viral replication in primary HIV 

infection results in tat-mediated inhibition of amyloid-beta 42 uptake and degradation 

within macrophages, which are known to be infected early by the virus [166]. While there 

was no correlation between amyloid-beta 42 and viral load, tat protein may be produced 

in such quantities during primary infection that the viral load itself is not the determinant 

of inhibited amyloid degradation. 
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Limitations 

This cross-sectional study captured participants at a single time point; future work with 

longitudinal data from this group will help to determine how these biomarkers change 

with time. Our study participants were almost exclusively men, which poses a problem 

for generalizing these results to the increasing number of HIV-infected women. Because 

the median duration of infection was 3.1 months, it is unclear when during primary HIV 

infection these biomarker abnormalities begin to occur.  

We defined our hypotheses before conducting our analyses, but still made many 

statistical comparisons; because of this, we attempted to exercise restraint in statistical 

interpretation and to correct for multiple comparisons. Nevertheless, we find the data, 

particularly in the contrasts in correlated variables between neurofilament light chain and 

amyloid-beta 42, to be a convincing starting point for further exploration of the 

mechanisms of neurologic injury during primary HIV infection.
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CHAPTER 2: CEREBROSPINAL FLUID HIV “ESCAPE” ASSOCIATED WITH PROGRESSIVE 
NEUROLOGICAL INJURY IN PATIENTS ON ANTIRETROVIRAL THERAPY WITH WELL-
CONTROLLED PLASMA VIRAL LOAD 
 

Chapter Background 

As discussed in the Introduction, the mechanisms and clinical implications of 

compartmentalization of HIV within the central nervous system is an area of growing 

scientific interest. This chapter focuses on a newly identified manifestation of this 

compartmentalization, which has recently been recognized as having important 

implications for patients with well-controlled, chronic HIV infection and may be help us 

understand the mechanisms behind HAND in the antiretroviral era. 

 

CSF ‘Escape’ 

Recently, Canestri et al. demonstrated the phenomenon of CSF/plasma HIV RNA 

discordance involving the development of new neurological symptoms in eleven patients 

with well-controlled plasma HIV [18]. These patients, in general, had chronic HIV 

infection managed long-term with antiretroviral therapy and went on to develop 

symptoms despite having a relatively well-controlled plasma viral load. In all cases, it 

was noted that although the virus was controlled or suppressed in the plasma, these 

patients had virus present at a concentration of 1 log greater in the CSF. Further 

investigation revealed that, in some cases, significant resistance mutations in the CSF 

viral subpopulation were present on genotyping. This suggested that the current treatment 

regimen had failed in the CNS despite its success in the plasma compartment. Some 

patients improved when their antiretroviral therapy regimen was optimized based upon 
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the results of genotyping and the analysis of presumed CNS drug exposure as measured 

through the CPE score.  

 This work has suggested that even in the setting of long-term plasma viral control, 

a subset of patients may go on to develop neurological symptoms because of a failure of 

control in the CSF compartment. Laboratory studies in these patients have revealed low-

level viremia in the CSF in the setting of suppressed plasma HIV RNA and relatively 

preserved immune function. This phenomenon of CSF ‘escape’ was initially reported in 

individual cases [167-170] and culminated with the Canestri report. However, despite 

these publications, CSF ‘escape’ remains a poorly understood phenomenon. This is 

largely due to some of the criticisms of previous reports, in which some patients have 

been on monotherapy [18] or salvage therapy [167,168], or have had low CD4+ T cell 

counts [18,169]. Imaging data has been generally sparse and information on follow-up 

has been limited. 
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Statement of Purpose, Specific Aims, and Hypotheses 

In this project, we sought to add to the contributions of Canestri et al. [18] and previous 

reports [167-170] by further investigating the condition of CSF ‘escape’ in patients with 

well-controlled plasma HIV and preserved immune function. We also sought to provide 

more detailed background information regarding HIV disease course in these patients and 

to emphasize key portions of the clinical picture, including neuroimaging, that have not 

yet been described in detail. The specific aims of this project were as follows: 

1. To identify cases of CSF ‘escape’ according to a strict case definition that 
excludes patients who have been generally non-compliant with mediations, have 
been on unusual or incomplete regimens, or have an unknown disease history.  
 

2. To characterize these cases in terms of patient demographics and disease history, 
including nadir CD4+ T cell count, HIV plasma viral load, neurological signs and 
symptoms, and antiretroviral regimen. 
 

3. To characterize the cerebrospinal fluid and imaging findings in these patients. 
 

4. To investigate antiretroviral resistance patterns and CNS penetration efficacy of 
regimens before and after CSF escape was identified. 

 
5. To hypothesize host and disease mechanisms contributing to the development of 

CSF HIV ‘escape.’ 
 

In this chapter, we report a group of patients from four institutions in the United States 

and Europe. Each patient presented with new-onset neurological symptoms in the context 

of low or undetectable plasma HIV levels, underwent neurological studies including 

lumbar puncture and CSF analysis, and was noted to have CSF ‘escape.’ Antiretroviral 

therapy regimens were optimized based upon drug susceptibility and penetration as 

measured through resistance genotyping and CPE. This study adds to a growing body of 

evidence regarding the rare condition of CSF ‘escape’ associated with progressive 

neurological disease in otherwise well-controlled HIV infection. 
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Methods 

Study Initiation 

In July 2011, a patient (patient 1000) was referred by his primary care HIV provider 

(N.A.) and was seen in HIV neurology clinic by two of the authors (M.J.P. and S.S.). The 

patient had been diagnosed with HIV in 1990 and had been compliant with medications, 

as evidenced by low (<50 copies/mL) or undetectable viral loads throughout most of the 

time since diagnosis. He presented with a complaint of worsening headaches and 

intractable vertigo. A complete workup, including lumbar puncture, revealed that the only 

laboratory abnormality was slightly elevated CSF HIV RNA level (460 copies/mL) in the 

setting of <50 copies/mL in the plasma. An exhaustive investigation for other 

contributing comorbidities, including opportunistic infections, did not reveal any 

additional contributing factors. The patient was diagnosed with CSF/plasma discordance. 

 A literature review of the case presentation revealed few publications on this 

topic. Upon further discussion with the patient’s primary clinician, she recalled one other 

case from the Nathan Smith Clinic. We conducted a review of the previous case and 

identified it as another example of CSF/plasma discordance or CSF ‘escape.’ It was 

decided to assemble a case report and to identify similar cases among our research 

collaborators. Consent was obtained from patients to have their data included in a report. 

 We drafted a screening protocol for distribution to collaborators in the United 

States and Europe. This protocol defined a case as “generally well-controlled HIV-

infected patients on antiretroviral therapy presenting with neurological symptoms in the 

setting of previous viral suppression who are determined to have detectable CSF viral 

load on lumbar puncture.” We requested information on disease factors, medication 
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regimen, CSF studies, brain imaging, EEG, and initial consult and follow-up notes (see 

appendix 3). These materials were requested electronically and in person at trips to 

collaborating institutions, where additional visits were scheduled with patients if they 

were still being followed. All material was compiled in a central repository at Yale.  

 

Study Design and Patient Characteristics 

In this study, we retrospectively compiled cases of HIV-infected patients on antiretroviral 

therapy who presented with neurological signs and/or symptoms in the context of plasma 

HIV RNA suppression and underwent evaluation, including CSF studies. Subjects were 

identified by clinicians in our research collaboration at four urban academic centers in 

San Francisco, USA, Milan, Italy, New Haven, USA, and Gothenburg, Sweden.  

All patients were on stable combination antiretroviral therapy regimens with 

either suppressed (<500 copies/mL) or undetectable (<50 copies/mL) plasma HIV RNA. 

Patients with symptoms attributable to other neurologic or psychiatric causes were 

excluded. CSF and concurrent plasma samples were obtained either by the primary 

clinical team for diagnostic purposes or in the context of research studies in separate local 

protocols that were approved by the institutional review board or local equivalent at each 

institution. Clinical brain MRIs were obtained prior to lumbar puncture on varied local 

1.5-Tesla scanners in the majority of subjects. We included patients found to have CSF 

‘escape,’ defined as detectable CSF HIV RNA in the setting of plasma levels <50 

copies/mL or CSF RNA >1 log higher than plasma RNA level as previously defined by 

Canestri and colleagues [18].  
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Laboratory and Statistical Methods 

HIV RNA levels were measured in cell-free CSF and plasma using the ultrasensitive 

Amplicor HIV Monitor (version 1.5; Roche Molecular Diagnostic Systems, Branchburg, 

NJ), Cobas TaqMan RealTime HIV-1 (version 1 or 2; Hoffmann-La Roche, Basel, 

Switzerland), or the Abbott RealTime HIV-1 (Abbot Laboratories, Abbot Park, IL, USA) 

assays at local sites. For uniformity, 50 copies/mL was used as the lower limit of 

quantitative detection in this analysis. Paired blood and CSF measurements used the same 

assay. CSF total WBCs and protein, and CD4+ and CD8+ T lymphocyte counts by flow 

cytometry were measured at each local laboratory on fresh samples. Blood and CSF 

neopterin measurements employed commercially available immunoassays (BRAHMS 

Aktiengesellschaft, Hennigsdorf, Germany) and were performed in one laboratory. HIV 

resistance genotyping was performed where available in CSF samples harboring adequate 

HIV RNA levels for amplification. Genotyping was interpreted according to the 

International Antiviral Society-USA guidelines [171]. 

As a means to approximate expected effectiveness of ART in the CNS, we used 

proposed CNS penetration-effectiveness (CPE) scores using the 2010 version developed 

by Letendre and colleagues [33] to calculate a “raw” CPE score for each regimen at the 

time when discordance was identified. These are reviewed in Table 2. In an effort to take 

into account effective resistance in a consistent, quantitative way, we calculated an 

“adjusted” CPE score based upon the genotyping results of CSF viral isolates. When a 

mutation to a particular drug in the regimen was identified, the individual CPE score for 

that drug was arbitrarily designated “0” so that its contribution to the regimen would 

effectively be removed from the calculation.   



66 
 

 
 

 

 Descriptive analyses were undertaken to characterize these patients and are 

reported as percentages or median value (range) for continuous variables. 

 

Results 

Between February 2000 and August 2011, 10 patients with chronic but well-controlled 

HIV infection and preserved immune status presented with new neurological symptoms 

and were recognized as meeting the criteria for CSF ‘escape.’ The clinical and 

demographic characteristics of these patients are described in Table 5. 

The patients consisted of 8 men and 2 women with a median age of 47.5 years 

(range, 26-55 years). The median time since HIV diagnosis was 16.2 years (range, 9.4-

21.7 years). At the time of the neurologic episode, the patients had been on a stable 

regimen for a median of 21 months (range, 9-60 months). These regimens consisted of at 

least 2 NRTIs plus a PI in 9/10 cases; the PI was boosted with ritonavir in 8/9 cases. 

Individual patients had additional components to their regimen, including integrase or 

fusion inhibitors. None were on mono- or dual-therapy.  

The median duration of HIV RNA suppression below 500 copies was 27.5 

months (range, 2-96 months). The median duration of HIV RNA suppression below 50 

copies was 19.5 months (range, 2-96 months). The median CD4+ T cell count at 

presentation was 482 cells/mm3 (range, 290-660 cells/mm3). The median nadir CD4+ T 

cell count was 35 cells/mm3 (range, 4-222 cells/mm3).  

Three patients had a previous neurological abnormality. These included a 

presumed cerebellar meningioma that had been stable for many years (patient 1000), 

labyrinthitis and right sensorineural deafness (patient 8000), and CNS lymphoma that had 
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Table 5. Demographic information and HIV history of patients with CSF/plasma discordance. SF = San Francisco; MI = 
Milan, Italy; NH = New Haven; GS = Gothenburg, Sweden; n/a = not applicable; * = site-specific research protocol identifiers are 
provided where available; † = where <500 copies/mL is considered “good control” and <50 copies/mL is considered 
“undetectable,” length of time <500 copies/mL includes times when patient was <50 copies/mL. See table 7 for drug abbreviations. 
Used with permission [107].

  Historical Data Time of Presentation 

Site* 
Patient  

Date of 
Presentation 
(month/year) 

Age/Sex 
(years) 

Nadir CD4+ 
T cell count 
(cells/mm3) 

Documented time 
stable plasma HIV† 

(copies/mL: months) 

CD4+ 
T cell count 
(cells/mm3) 

Plasma  
HIV RNA 

(copies/mL) 
Drug 

regimen  
Neurologic 

Signs/Symptoms 
SF 

7066 02/2000 45/M 55 <50: n/a 
<500: 23 318 380 

DDI 
SGC 
RTV 

Cognitive impairment 
Gait ataxia 

MI 
9000 05/2003 46/F 15 <50: 28 

<500: 28 305 372 
3TC 
d4T 

LPV/r 

Coma 
Tremor 
Vertigo 

SF 
1034 03/2004 51/M 80 <50: 2 

<500: 2 588 <50 
3TC 
ZDV 
LPV/r 

Cognitive impairment 
Gait ataxia 

Tremor 
Weakness 

SF 
7071 07/2004 49/M 8 <50: 30 

<500: 30 444 <50 

3TC 
ZDV 
EFV 

LPV/r 
T-20 

Cognitive impairment 
Gait ataxia 

Sensory impairment 

SF 
4065 02/2007 49/M 4 <50: 2 

<500: 7 520 184 
DDI 
TDF 

ATV/r 

Cognitive Impairment 
Diplopia 

Dysphagia 
Gait ataxia 

NH 
2000 03/2007 55/M 60 <50: 96 

<500: 96 308 <50 
3TC 
ABC 
LPV/r 

Aphasia 
Gait ataxia 

Sensory impairment 
Tremor 

GS 
5168 05/2008 45/F 55 <50: 47 

<500: 60 660 118 
3TC 
TDF 

ATV/r 
Cognitive impairment 

MI 
8000 08/2010 45/M 222 <50: 27 

<500: 27 545 <50 
3TC 
ABC 
FPV/r 

Cognitive impairment 
Dysarthria 

Sensory impairment 
Vertigo 

MI 
7000 01/2011 26/M 9 <50: 4 

<500: 12 290 98 
FTC 
TDF 
ATV 

Diplopia 
Dysarthria 
Gait ataxia 
Headache 

Tremor 

NH 
1000 08/2011 49/M 180 <50: 12 

<500: 43 627 <50 

FTC 
TDF 

ATV/r 
RAL 

 

Aphasia 
Cognitive impairment 

Gait ataxia 
Headache 

Vertigo 
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resolved completely with initiation of ART, without radiotherapy, several years before 

(patient 5168).  

 

Clinical and MRI Manifestations 

The neurological abnormalities present in this patient group (Table 5) occurred sub-

acutely (>2 weeks) in 9/10 patients and were acute (<2 weeks) in 1 patient (patient 9000). 

They comprise a variety of sensory (in 3 patients), motor (in 9 patients), and cognitive (in 

8 patients) manifestations. Imaging in 7/8 patients at the time of presentation showed 

MRI abnormalities consisting of white matter hyperintensities on T2-weighted and 

FLAIR sequences (Table 6). Figure 13a-d shows representative imaging examples from 

patients 2000 and 7000 during the initial studies for neurologic symptoms.  

 

CSF and Brain Pathology 

CSF pleocytosis and biochemical abnormalities were found in all 10 patients (Table 6). 

8/9 patients had elevated CSF protein levels ≥ 60 mg/dL. The median protein level was 

105 mg/dL (range, 46-170  mg/dL). CSF pleocytosis was observed in 9/10 patients, with 

median 14.5 cells/mm3 (range 0-200 cells/mm3). All samples were negative for bacteria, 

fungi, and other viruses by standard microbiological tests at each institution, including JC 

virus DNA studies for progressive multifocal leukoencephalopathy (PML). Two samples 

(patients 1000 and 7000) had low-level (<5000 copies/mL) EBV DNA [172]. CSF from 

patient 5168 had previously been positive for EBV in the past when she suffered from 

CNS lymphoma, but CSF EBV titers were negative during and throughout the time of 

CSF HIV escape in this patient. 
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  Cerebrospinal Fluid Analysis   

Site 
Patient 

Plasma HIV 
RNA 

(copies/mL) 
HIV RNA 

(copies/mL) 
Protein 
(mg/dL) 

WBC 
(cells/mm3) 

CSF 
Neopterin 
(nmol/L) MRI Findings 

SF 
7066 380 9056 162 50 76.3 Not done 

MI 
9000 372 8000 170 0 - Diffuse white matter abnormalities 

SF 
1034 <50 378 89 6 - Patchy periventricular white matter abnormalities 

SF 
7071 <50 8320 60 33 - Not done 

SF 
4065 184 4570 74 14 - Patchy subcortical/ periventricular white matter abnormalities with 

involvement of corpus collosum and cerebellum 
NH 

2000 <50 613 77 28 - Symmetric subcortical/ periventricular white matter abnormalities 
extending into cerebellum 

GS 
5168 118 3230 n/a 9 37.6 Slight deformity of frontal ventricular horns, stable compared to 

previous examinations. Otherwise normal. 
MI 

8000 <50 134 121 15 - Diffuse white matter abnormalities 

MI 
7000 98 5200 137 200 - 

Lenticular/posterior internal capsule/cingular cortex white matter 
abnormalities extending into cerebellum; diffuse pial contrast 
enhancement 

NH 
1000 <50 460 46 11 - Cortical/subcortical/periventricular white matter abnormalities 

 
Table 6. Neurological studies in patients with CSF/plasma discordance. WBC = white blood cells; SF = San Francisco; MI = Milan, Italy; NH = 
New Haven; GS = Gothenburg, Sweden; n/a = not available. Used with permission [107].
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Figure 13a-j. Selected MRI images for Patients 2000 and 7000. Panels a-d show imaging at 
the time of neurologic workup when CSF ‘escape’ was initially detected for patients 2000 (a,b) 
and 7000 (c,d), demonstrating diffuse T2-prolongation (a,b) and suggesting focal lesions (d) at 
the time of CSF ‘escape.’ Panels e-h show follow-up imaging for patient 2000 at 111 days and 
patient 7000 at 60 days. Even though neurological symptoms had resolved in both cases, 
imaging still shows diffuse leukoencephalopathy (e,f) and hyperintense, diffuse signal alteration of 
bilateral white matter (h), despite improvement of previous focal lesions (h). Panels i and j show 
imaging for patient 2000 at 567 days follow-up, demonstrating significant interval decrease in T2-
prolongation. Used with permission [107].
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CSF neopterin was measured in two patients at the time of CSF ‘escape.’ Patient 

7066 had a CSF neopterin level of 76.3 nmol/L with a plasma level of 12 nmol/L; patient 

5168 had a CSF neopterin of 37.6 nmol/L with a plasma level of 8 nmol/L. Reference 

ranges for HIV-uninfected subjects are <5.8 nmol/L in CSF and <8.8 nmol/L in plasma 

[173]; for successfully ART-treated HIV-infected subjects, mean 10.8 nmol/L in CSF 

[174]. 

Two patients (1034 and 4065) underwent brain biopsy at the time of CSF 

‘escape,’ revealing dense, perivascular lymphocytic infiltrates in the white matter with 

extension into the surrounding parenchyma. Immunoperoxidase staining showed a 

mixture of mature and immature B- and T-lymphocytes, with CD8+ predominance. 

 

HIV RNA in CSF and Plasma  

By definition, all patients had CSF HIV replication at initial evaluation, with a median of 

3900 copies/mL (range, 134-9056 copies/mL). All had a plasma HIV RNA <500 

copies/mL and 5/10 had a plasma HIV RNA <50 copies/mL at the time CSF ‘escape’ was 

discovered. The median plasma viral load was 62 copies/mL (range, <50-380 copies/mL). 

For the 5 patients with controlled but detectable plasma HIV RNA (>50 but <500 

copies/mL), the CSF HIV RNA was at least 1 log higher than the plasma HIV RNA. 

Figure 14 shows longitudinal plasma data for these patients, indicating plasma 

control <500 copies/mL in 7/10 patients over the previous 1000 days. Of these, 5/7 had 

HIV RNA below the limit of detection (<50 copies/mL) for the previous 1000 days. One 

patient had a transient increase in plasma viral load during this period (patient 4065), but 

had been well-controlled previously and following this increase. Two had viral loads that 
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Figure 14. Longitudinal plasma HIV RNA levels for patients with CSF ‘escape’. HIV RNA is 
calculated in days prior to time CSF/plasma discordance was detected (time “0”). Reference 
dotted horizontal line indicates log10 500 copies/mL. Corresponding CSF HIV RNA levels are 
indicated on the right axis of the graph at the time when CSF escape was identified (“CSF 
Escape”) and at a standardized follow-up time point, where repeat CSF was available (“Follow-
up”). Used with permission [107]. 
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had more recently declined to <500 copies/mL (patients 1034 and 7000). These patients 

were included because they presented with new neurologic symptoms in the absence of 

alternate pathogens or focal lesions as determined through imaging or brain biopsy, with 

CSF ‘escape’ in the setting of preserved immune status and declining plasma HIV RNA.  

 

Viral Resistance and CNS Penetration 

Table 7 indicates the results of CNS genotyping and CNS penetration calculations. 6/7 

patients on whom resistance gentoyping was conducted in the CSF had NRTI mutations, 

5/7 patients had PI mutations, and 2/7 patients had NNRTI mutations. One patient had no 

mutations detected on CSF genotyping.   

The original antiretroviral regimens for these patients had a median CPE score of 

6.5 (range, 3-13). When adjusted for resistance, the median adjusted CPE score was 1 

(range, 0-9). Regimens were revised in 9/10 subjects based on CSF findings.  The revised 

regimens (see Table 7) had a median raw CPE score of 11 (range, 7-16) and median 

adjusted CPE score of 4 (range, 4-10). 

 

Changes after Treatment Intervention 

Eight out of nine patients demonstrated clinical improvement following neurologic 

evaluation and ART regimen optimization. One patient did not improve (patient 5168) 

and one patient died from septic shock secondary to presumed bowel ischemia before 

treatment was modified (patient 1034).  

Follow-up CSF was available in 4/9 patients and demonstrated reduced CSF HIV 

RNA levels (from median 5775 copies/mL to median 66 copies/mL) at a median of 70 
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  Initial Regimen New Regimen 

Site 
Patient 

Resistance Mutations  
Detected in CSF 

Drugs in 
Regimen  

Raw 
CPE 

Adjusted 
CPE 

Drugs in 
Regimen 

Raw 
CPE 

 
Adjusted 

CPE 

SF 
7066 Not done 

DDI 
SGC 
RTV 

3 n/a 
ABC 
NVP 
IDV/r 

11 n/a 

MI 
9000 

NRTI: K65R, K70R, V75I, F77L, 
F116Y, Q151M, R211K 
NNRTI: none 
PI: I54V, A71V, V77I, V82F, 
L90M 

3TC* 
d4T** 

LPV/r**** 
7 0 

TDF* 
NVP 

APV/r 
T-20 

9 8 

SF 
1034 Not done 

3TC 
ZDV 
LPV/r 

9 n/a Not done n/a n/a 

SF 
7071 

NRTI: D67N, T69D, K70R, 
L74V, T215F, K219Q 
NNRTI: V108I, Y181C, G190A, 
F227L 
PI: L10I, K20I, M36I, M46I, 
I50V, Q58E, L63P, A71V, L90M 

3TC 
ZDV**** 
EFV*** 

LPV/r****
** 

T-20 

13 2 

3TC  
TDF 

ZDV**** 
LPV/r****

** 
T-20 

11 4 

SF 
4065 

NRTI: L74V, M184V, Y115F 
NNRTI: Y181C, F227L 
PI: L63P, A71T, V77I, I85V 

DDI* 
TDF 

ATV/r** 
3 1 

3TC* 
ABC*** 

ZDV 
LPV/r* 

12 4 

NH 
2000 

NRTI: M41L, E44D, D67N, 
V118I, M184V, L210W, T215Y 
NNRTI: none 
PI: I13V, K20R, M36I, I54V, 
L63P, V82A 

3TC* 
ABC* 

LPV/r**** 
5 0 

3TC* 
ABC* 
ZDV* 
NVP 

DRV/r* 

16 4 

GS 
5168 

NRTI: M41L, V75A, M184I 
NNRTI: none 
PI: M36I, L63P 

3TC* 
TDF 

ATV/r* 
6 1 

FTC* 
TDF 

DRV/r 
7 4 

MI 
8000 Not done 

3TC 
ABC 
FPV/r 

8 n/a 

3TC 
ABC 
ZDV 

FPV/r 

12 n/a 

MI 
7000 

NRTI: none 
NNRTI: none 
PI: none 

FTC 
TDF 
ATV 

9 9 
3TC 
ZDV 

DRV/r 
9 9 

NH 
1000 

NRTI: M184I 
NNRTI: none 
PI: none 

FTC* 
TDF 

ATV/r 
RAL 

9 6 

FTC*  
TDF 
ZDV 

ATV/r 
RAL 

13 10 

Table 7. HIV drug regimens and resistance profiles in patients with CSF/plasma discordance 
CPE = central nervous system penetration effectiveness; SF = San Francisco; MI = Milan, Italy; NH = 
New Haven; GS = Gothenburg, Sweden; * denotes number of resistance mutations to each drug in 
regimen; n/a= not applicable; drug abbreviations: DDI = didanosine, SGC = saquinavir, RTV = 
ritonavir, 3TC = lamivudine , d4T = stavudine, LPV = lopinavir, ZDV = zidovudine, EFV = efavirenz, T-
20 = enfuvirtide, TDF = tenofovir, ATV = atazanavir, ABC = abacavir, FPV = fosamprenavir, FTC = 
emtricitabine, RAL = raltegravir, NVP = nevirapine, IDV = indinavir, APV = amprenavir, DRV = 
darunavir, /r = boosted with ritonavir. Used with permission [107]. 
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days following change in drug regimen (range, 11-189 days). In 3/4 cases, discordance 

between CSF and plasma resolved at this follow-up point; in 1 case, discordance 

persisted at a lower level (patient 5168 with 340 copies/mL in the CSF); this patient’s 

abnormalities did not improve after 189 days on the new regimen.  

Figure 13e-h shows short-term follow-up imaging for patients 2000 and 7000. At 

60 days, MRI for patient 7000 showed resolution of most focal lesions, but the 

development of a diffuse leukoencephalopathy despite resolution of symptoms. Similarly, 

patient 2000 had persistent diffuse white matter hyperintensities on MRI at 111 days, 

with subsequent significant decrease at 346 and 567 days follow-up. 

 

Discussion 

We report 10 cases of elevated CSF HIV RNA in the setting of plasma suppression in 

patients with well-controlled HIV infection, with long-term plasma control and CD4+ T 

cell counts indicating preserved immune status at the time when neurologic symptoms 

developed. These cases demonstrate an unusual but clinically important phenomenon of 

CSF ‘escape’ associated with incident neurologic signs and symptoms in patients with 

chronic treated HIV infection.  

 

Patient Characteristics and Clinical Presentation 

The patients we report comprise a representative sample of those living with ART-treated 

HIV. This includes individuals with persistently suppressed plasma HIV RNA over many 

years (patient 2000), those who have been under control for a number of years (patients 

1000, 7066, 7071, 9000, and 5168), those with a recent ‘blip’ (patient 4065), and those 

with an unclear history who are coming under control (patients 1034 and 7000). The 
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common clinical picture of neurologic abnormalities across this spectrum of patients 

suggests that CSF ‘escape’ is a relevant consideration in a variety of clinical contexts.  

Patients experienced a variety of neurologic symptoms including cognitive, 

sensory, and motor impairment. Onset was most often subacute, impairment varied in 

severity, and abnormalities progressed over time. Overall, the neurologic symptoms 

reflect a level of debilitation that was significant and involved a range of functional 

domains. They reported a loss of function consistent with the significant impact that 

neurological symptoms are known to have on quality of life [32].  

 

Immune Status 

Despite relatively reconstituted immune status at the time of evaluation, all patients had 

CD4+ T cell nadirs <250 cells/mm3, with many below 100 cells/mm3, consistent with a 

previous report of a median nadir CD4+ count of 55 cells/mm3 in similar patients [18]. A 

history of advanced immunosuppression may confer increased risk for prior local CNS 

infection and compartmentalization [175], which, despite peripheral CD4+ improvement, 

fails to be entirely suppressed by ART. Clinically, the CD4+ nadir might be an important 

consideration in the assessment of patients with new neurological abnormalities.  

 

Imaging Results  

MRI findings were consistent among patients and with those reported in previous cases 

[18,167,169]. Furthermore, they are similar but not identical to those classically 

identified in typical HIV-associated dementia in patients off of ART. White matter 

hyperintensities on T2-weighted and FLAIR imaging suggest a generalized inflammatory 

process consistent with diffuse encephalitis, and similar to findings reported in patients 
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failing antiretroviral therapy [176]. Comparison of MRI results at the time of presentation 

(Figure 13a-d) and short and long-term follow-up (Figure 13e-h, 13i-j, respectively) 

suggests that this process is associated with findings on imaging that may persist after the 

resolution of symptoms, and may take months to years to resolve completely. Still, the 

nature of these imaging findings remains incompletely understood. 

 

Antiretroviral Regimens and Patient Adherence 

One concern with previously reported cases of CSF ‘escape’ has been that some patients 

have been on atypical, incomplete, outdated, or “last-resort” salvage regimens [18]. All 

patients in our study were on appropriate multi-drug combination ART regimens before 

they developed symptoms, although some older regimens may be outdated by current 

standards. No patients in our study were on mono- or dual-therapy. 

Preserved immune status and suppression of plasma viremia suggest adherence 

with ART, though the contribution of suboptimal adherence cannot be ruled out. 

Theoretically, partially reduced adherence may lead to insufficient drug concentrations in 

the CSF while maintaining satisfactory concentrations in plasma. CSF drug levels may 

therefore be an important consideration in this subset of patients, as has been suggested 

elsewhere [18].  CSF ‘escape’ may arise secondary to differences in susceptibility 

between HIV subpopulations in blood and CSF [177-180] due to the selection of resistant 

virus in the context of sub-therapeutic drug levels in the CNS compartment [181].  

 

CNS Drug Penetration and Viral Resistance 

While it has been argued that CNS drug penetration may be an important factor in the 

pathogenesis of CSF ‘escape’ [104], these cases indicate that viral resistance should also 
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be considered. Resistance to at least one drug in the regimen was common. The 

“adjusted” CPE score represents a first attempt to incorporate resistance into a numerical 

calculation of drug effectiveness, and conservatively assumes that a single mutation will 

confer complete resistance to a drug, though, in fact, the drugs may remain partially 

effective despite the mutations. While it is unclear to what extent clinical improvement 

resulted from treatment interventions in the cases included here, most patients improved 

when their regimens were adjusted with regard to both penetration and resistance. This 

suggests that regimen modifications should be based on more than penetration alone.  

 

CNS Inflammation 

Taken together, the range and quality of neurological dysfunction and the MRI findings 

in these patients have substantial overlap with typical findings in HIV-associated 

dementia. However, despite this overlap, these are not identical to those in HAD and we 

believe that the etiology of these findings is different than that of HAD in the absence of 

treatment. In accordance with previous reports [18,167,169], markedly elevated CSF total 

protein levels and WBC counts in our subjects compared to healthy HIV-uninfected 

controls and neuro-asymptomatic HIV-infected subjects on “successful” ART [30] 

indicate that a CNS inflammatory response is occurring in these patients. The pronounced 

inflammation and CD8+ T cell infiltration noted on brain biopsy suggests that CSF 

‘escape’ in the setting of an immune system reconstituted by systemically successful 

ART is associated with a degree of local inflammation distinct from typical HAD or HIV 

encephalitis. CSF neopterin, which is elevated in HAD and reduced by ART 

[174,182,183], was markedly increased in comparison to plasma neopterin and typical 

values of CSF neopterin in HIV-infected, ART-suppressed subjects. This provides 
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evidence that in CSF ‘escape,’ inflammation may be relatively compartmentalized in the 

CNS. The role of inflammation in this disorder may determine the distinct neurotropism 

for these lesions, as reflected in MRI and clinical symptoms.   

Given the observation that symptomatic CSF ‘escape’ is accompanied by CNS 

inflammation, a moderately reconstituted immune system may play an important role in 

both eliciting a symptomatic inflammatory response and in providing a substrate for 

ongoing discordant HIV replication within the CNS. Since all of the subjects had 

preserved immune function and none had recently initiated ART, typical immune 

reconstitution inflammatory syndrome (IRIS) was not considered the primary cause of 

these abnormalities. Nevertheless, the combination of persistent CNS infection and 

relatively preserved immune response, including an HIV-specific response, may generate 

immunopathology in cases of CSF ‘escape.’ This is analogous to IRIS [184], but may 

differ in that it represents not the effects of immune reconstitution, but rather a “stable 

state” of antigen and immune response within the CNS.   

 

Limitations 

This analysis is limited by its retrospective approach, which utilized chart reviews and 

was constrained to studies previously performed during clinical evaluation and research 

protocols. It is unclear what the prevalence of CSF ‘escape’ may be in the general HIV-

infected population, as patients with minor neurologic complaints are relatively unlikely 

to undergo detailed CNS evaluations. Our follow-up data are limited in many cases 

because further studies were not pursued once symptoms resolved.   

 

  



80 
 

 
 

 

IMPLICATIONS OF THE THESIS RESEARCH 

Each of these projects adds to what is known regarding neurological manifestations of 

HIV in the era of combined antriretroviral therapy and contribute to the understanding of 

HAND. The first study answers important questions about the implications of the very 

first stages of HIV infection in the central nervous system and reveals that neuronal 

injury occurs earlier than previously thought. This provides a foundation for the 

development of further evidence that injury occurring before antiretroviral therapy is 

initiated contributes to the etiology of HAND. The second study contributes to the 

understanding of the activity of HIV within the central nervous system compartment and 

shows how its very presence can have a profound clinical significance for individuals 

who are otherwise living with HIV as a chronic disease. A better understanding of the 

phenomenon of CSF ‘escape’ will help clinicians to more specifically tailor therapy 

toward the CNS and will help scientists to understand how the independent evolution of 

virus within the CNS could contribute to the development of HAND. 

 

Implications for Primary HIV Infection  

Our finding of neuronal injury during primary HIV infection has important implications 

for the understanding of HIV pathogenesis and management. Previously, neuronal injury 

was thought to be a product of prolonged infection. The presence of elevated CSF NFL 

compared to the upper limit of normal for age in 44% of our subjects adds to a growing 

body of evidence suggesting that neurological injury is present beginning in primary HIV 

infection.  

It is particularly notable that the elevations in neurofilament light chain and 

amyloid-beta 42 appear to occur through different pathways, with the former correlating 
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with multiple CSF and metabolic markers of neuroinflammation and the latter related to 

some other process, such as disruption of the blood-brain barrier or decreased breakdown 

secondary to viral inhibition. This suggests that we may need to invoke more than just 

infection or inflammation alone in characterizing the CNS perturbations present during 

primary HIV infection.  

It has long been known that primary HIV infection may be complicated by central 

and peripheral nervous system involvement. In this study, evidence of neuronal injury 

was found in patients even without clinical evidence of neurological symptoms. 

Furthermore, evidence of neuronal injury did not correlate with clinical signs of 

abnormalities in neuropsychological testing. Further study is required to determine 

whether this injury is sub-clinical, if the lack of correlation is due to the relative 

insensitivity of this type of testing, whether the injury resolves with or without treatment, 

and if it has long-term neurological implications. 

Although treatment with cART is able to suppress viral levels in both the plasma 

and CSF, a proportion of patients have ongoing brain atrophy and neurological 

impairment for unclear reasons [185]. One possible explanation for this phenomenon is 

that neurological injury begins accruing early in the disease course, including during 

primary HIV infection. Thus, while initiation of cART typically occurs once an 

immunological threshold is crossed after several years of infection, CNS injury might 

begin soon after seroconversion, in the setting of early neuroinvasion and immune 

activation. If this were the case, it would provide additional evidence for early 

pharmacological intervention in HIV infection aimed at mitigating CNS injury. 
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Implications for Central Nervous System Compartmentalization 

Our description of CSF ‘escape’ in the patients we describe here contributes to the 

literature on this rare but clinically significant process. It is crucial that all physicians 

who care for patients with HIV, not just neurologists, be aware of this unusual 

manifestation of HIV disease. These cases reflect that new neurological symptoms in the 

context of standard cART regimens and well-controlled plasma HIV infection should not 

be dismissed and instead warrant an evaluation of the CSF to determine whether viral 

replication is occurring and, if so, whether the virus in the CSF compartment possesses 

resistance to the regimen being used to control the virus in the plasma compartment.  

While the investigation of CSF HIV is standard practice in the guidelines for HIV 

management in many European countries, this is not the case in the United States. CSF 

HIV viral load and genotyping are difficult tests to order at many U.S. medical centers, 

and are generally not a standard offering by most hospital laboratories. This descriptive 

analysis of 10 cases of CSF HIV ‘escape’ demonstrates that CSF HIV analysis can be an 

important diagnostic tool and should be available to clinicians for the purpose of 

measuring HIV RNA concentration and identifying resistance, especially in patients who 

develop new neurological symptoms that cannot otherwise be explained.  These cases 

underscore the need for further investigation into the mechanism and consequences of 

HIV replication and persistence in the CNS.  

 

General Implications for HIV-Associated Neurocognitive Disorder 

Both of these studies reflect what is becoming an increasingly accepted fact about the 

pathogenic mechanisms of HIV infection – that the body’s reaction to HIV can be as 

damaging as the activity of the virus itself. Although the two processes described here, 
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primary HIV infection and CSF HIV ‘escape,’ take place at distinct time points in the 

course of the disease, both appear to be associated with, and possibly caused by, 

mechanisms of immune activation and inflammation within the central nervous system. 

The inflammatory milieu that is induced by the activity of HIV in invading cells and 

triggering an immune response has important implications throughout the time course of 

infection, and may be particularly important for our understanding of HAND.  

In the earliest stages of primary infection, the virus crosses the blood-brain barrier 

for the first time and initiates a cascade of cytokines that contribute to breakdown of that 

barrier, as well as CSF pleocytosis, macrophage and lymphocyte activation, interference 

with neuronal synthesis and maintenance pathways, and ultimately neuronal injury that 

can be detected by biomarker and neuroimaging perturbations. Whether these patients 

become symptomatic at the time of these perturbations or later in the disease course 

remains to be seen. And while control of the virus through the initiation of antiretroviral 

therapy can decrease the viral load and quiet the immune response, the CNS compartment 

remains particularly vulnerable to further insult. In some patients, this means the 

development of some degree of mild HAND, or worse, HIV-associated dementia late in 

the course of unsuccessfully or sub-optimally treated infection. In others, the initiation of 

therapy might lead to a profound immune reconstitution that precipitates the perivascular 

inflammation and leukoencephaloathy consistent with IRIS [186-188]. And in others still, 

minimal non-adherence, reduced drug activity, or some yet-unknown factor may result in 

the development of a low-level CSF viral proliferation in the setting of suppressed or 

well-controlled plasma virus. This can initiate an immune cascade that, although meant to 

respond to the replicating virus, may ultimately end up feeding its proliferation by 

providing a substrate to infect. 
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FUTURE DIRECTIONS 

While we have identified cross-sectional changes in biomarkers indicating neuronal 

damage during primary HIV infection, it would be useful to characterize the onset of 

abnormal CSF neurofilament light chain and its longitudinal changes over the time course 

of primary infection and early HIV disease. We have access to a cohort of HIV-infected 

individuals from Thailand from whom we have collected CSF at the time of 

seroconversion. Analysis of these samples will provide insight into the timing of neuronal 

injury and help to determine whether this is present before the median 3.1 month time 

point in the current study. It will also be instructive to study subjects with neuro-

asymptomatic advanced (CD4 <200) and non-advanced (CD4 >200) chronic HIV 

infection to determine whether the latter group continues to show evidence of neuronal 

damage later in the course of infection. These studies will fill an important gap in the 

understanding of the pathophysiological consequences of HIV infection between primary 

HIV infection and late-stage AIDS. Whether biomarker abnormalities during primary 

infection predict later HAND and HAD is unknown. The subjects in the primary infection 

study were all antiretroviral naïve at baseline, but many began treatment at subsequent 

visits. The analysis of longitudinal trends in NFL in untreated subjects and the 

comparison of NFL trends during periods with and without therapy in subjects who 

initiate cART will indicate whether neurological damage continues throughout the course 

of infection and whether initiation of therapy can attenuate this damage. Data using 

proton-MRS metabolites suggest that worsening neuronal injury may be mitigated by the 

initiation of therapy [129].     

 With regard to CSF ‘escape,’ a greater understanding of this condition will come 

from the publication of more detailed cases of the disease process and its clinical 
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manifestations. In addition, more in-depth neuroimaging and tissue analysis will help to 

distinguish the pathophysiological mechanisms of this condition from those seen in IRIS. 

Finally, a better assessment of medication adherence in these patients will help to 

determine whether this is a determining factor in the pathogenesis of the disease, as will 

further research into issues related to HIV compartmentalization in the CNS.  

 Progress in both of these areas of research will help to better describe and 

understand the pathophysiological mechanisms responsible for HAND.   

 

CONCLUSIONS 

Thirty years after the identification of the very first cases of HIV and AIDS, the scientific 

community has made great strides toward understanding the pathogenesis, clinical 

manifestations, and public health implications of the disease. But three decades of 

scientific research have generated as many questions as they have answered, and millions 

of individuals are still acquiring the virus each year. The central nervous system is 

becoming increasingly recognized as a crucial frontier in the battle against HIV disease, 

both because of the dramatic neurological sequelae of HIV infection and the difficulty in 

accessing and controlling the virus within this compartment. The content of this thesis 

makes a modest contribution to the growing understanding of the impact of both acute 

and chronic HIV infection on the central nervous system, and underscores that a great 

deal of work is yet to be done in this area of investigation. As HIV/AIDS continues its 

shift toward becoming a chronically managed disease, it is the responsibility of 

physicians and scientists to more fully understand how infection with this virus affects a 

patient from the moment of transmission, through years of chronic infection, until the 

moment of death or, hopefully within this generation, cure.  
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Introduction 
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Plasma/CSF Viral Discordance Case Series 
Patient Information Checklist 

 
Cases: Generally well-controlled HIV+ patients on HAART presenting with 
neurological symptoms in the setting of previous viral suppression who are 
determined to have detectable CSF viral load on lumbar puncture.  
 
General Information 
 Year of HIV diagnosis 
 Nadir CD4 (if known) 
 Known co-infections or opportunistic infections 
 Note containing H&P for neurological symptoms 
 HIV regimen at time of visit for neurological symptoms 
 # of months on this regimen 
 list of previous HIV regimens, with dates (if available) 
 # of months of VL suppression (either < detection threshold or undetectable) 
 Complete longitudinal information on plasma VL and CD4 count from diagnosis 
until present (usually available as a flowsheet in medical records) 
 
Lumbar Puncture Information 
 Date of LP 
 Plasma CD4 at time of LP 
 Plasma VL at time of LP 
 CSF chemistries and cytology (including protein, glucose, RBC, WBC, nucleated 
cells, %lymphs, %monos) 
 CSF VL 
 CSF HIV genotype (if done) 
 
Additional Information 
 Brain imaging results 
 EEG results 
 New HIV regimen 
 Follow-up note indicating improvement 
 
 
 
 
 
 



Primary HIV-1 infection is characterized by elevation of  
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Background 
• Neurologic impairment is detected in up to 50% of patients 
with HIV, even in the setting of antiretroviral therapy1 

• Cerebrospinal fluid (CSF) biomarkers of neuronal injury, such as 
neurofilament light chain (NFL), are elevated in subjects with 
advanced HIV-infection and HIV-associated dementia2 

• We hypothesized that evidence of neuronal injury might be 
detected in subjects recruited during primary HIV infection (PHI), 
within the first year after HIV transmission 
 

Methods 
• In antiretroviral naïve subjects with PHI, CSF NFL was analyzed 
using a new, highly-sensitive, two-site enzymatic quantitative 
immunoassay with a lower limit of detection of 50 ng/L 
• Detection of t-tau, β-amyloid, and soluble amyloid precursor 
protein-alpha and -beta (sAPP-α; sAPP-β) used standard ELISAs 
• To investigate mechanisms, we examined levels of biomarkers 
with respect to other laboratory parameters of CNS HIV infection 
• Analyses employed Mann-Whitney test, Spearman correlations  
 

 
 
 

 
 
 
Results 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusions 
• Biomarkers of neuronal damage are elevated in subjects with 
PHI compared to HIV-uninfected controls  
• NFL, a sensitive marker of neuronal injury, correlates with 
markers of CSF inflammation during PHI 
• These findings suggest that HIV-related neuronal damage starts 
during early HIV-infection and is mediated by neuroimmune 
activation during this period 
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PHI 
n=84 

HIV- 
n =  25 

p-value 

% Male 95.2% 80% 0.03 

Age 36 (18-61) 43 (26-66) 0.002 

Days Infected 96.5 (15-376) - - 

CD4 Count 546 (111-1608) 836 (488-1627) < 0.001 

CD8 Count 985 (161-9063) 550 (157-1031) < 0.001 

Log Plasma VL 4.6 (1.7-7.1)  - - 

Log CSF VL 2.9 (1.3-6.1) - - 

CSF Protein 41 (21-343) 47 (21-65) 0.416 

CSF WBC 6 (0-86) 1 (0-6) < 0.001 

% Neuro Sx 10.7% - - 

Variable Spearman r p-value 

Log Plasma VL 0.23 0.040 

Log CSF VL 0.23 0.040 

Days of Infection -0.01 0.903 

NPZ-4 0.18 0.154 

CSF WBC 0.33 0.003 

CSF Protein 0.61 <0.0001 

CSF:plasma albumin 0.59 <0.0001 

T-tau 0.51 0.004 

P-tau 0.42 0.058 

Amyloid-β 42 0.51 0.018 

sAPP-a 0.28 0.232 

sAPP-β 0.07 0.758 

Blood Neopterin 0.23 0.053 

CSF Neopterin 0.40 0.002 

IP-10 0.42 0.001 

MCP-1 0.16 0.235 

Table 1. Descriptive and demographic characteristics of PHI 
subjects and HIV-uninfected controls. Data reported as 
percentages or median (range). VL= viral load. 

Figure 1. CSF biomarker comparisons between PHI subjects and 
HIV-uninfected controls. Lines represent median; range. HIV- = 
HIV uninfected; PHI = primary HIV infection; NFL = neurofilament 
light chain; sAPP = soluble amyloid precursor protein. 

Table 2. Correlates of NFL in PHI subjects. VL = viral load; NPZ-4 
= composite neuropsychologic Z-score; WBC = white blood cells; 
sAPP = soluble amyloid precursor protein. 

Figure 2. Correlates of NFL in PHI subjects. Bold line indicates 
linear approximation of relationship; dotted lines represent 95% 
confidence intervals.   

NFL Structural component of myelinated axons 

T-tau Associated with microtubules in cortical axons 

β-Amyloid Abnormal amyloid protein in Alzheimer’s disease 

sAPP-α,β Amyloid synthesis and processing 

Neopterin Marker of macrophage activation 

IP-10 Cytokine recruiting lymphocytes 

MCP-1 Cytokine recruiting monocytes 
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Introduction 
 Elevated HIV RNA levels in the cerebrospinal fluid (CSF) can be associated with 

HIV encephalitis (HIVE) and HIV-associated dementia (HAD)   

 Antiretroviral therapy (ART) suppresses plasma and CSF HIV RNA and improves 

neurologic outcomes in patients with HIV 

 A subset of patients may develop neurologic symptoms in the setting of long-term 

plasma viral control1 

Methods 
Study Design Retrospective case series of virologically controlled HIV-infected 

patients on ART with incident neurologic abnormalities, determined to have CSF 

„escape,‟ defined as detectable CSF HIV RNA in the setting of suppressed plasma 

levels or CSF HIV RNA >1 log higher than plasma RNA1 

Measurements Clinical signs and symptoms, historical virologic parameters, 

magnetic resonance imaging (MRI), CSF parameters, viral resistance and drug 

penetration in the CNS, and treatment intervention  

Results 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

Summary & Conclusions 
 New neurologic symptoms in the context of well-controlled plasma HIV warrant 

an evaluation of the CSF to determine whether viral replication is occurring 

 CSF HIV analysis can be an important diagnostic tool and should be available to 

clinicians for the purpose of measuring HIV RNA and identifying resistance 

 A moderately reconstituted immune system may play an important role in both 

eliciting a symptomatic inflammatory response and in providing a substrate for 

ongoing discordant HIV replication within the CNS 

 Further investigation is needed into the mechanism and consequences of HIV 

replication and persistence in the CNS 
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Figure 1. Longitudinal plasma HIV RNA levels prior to CSF ‘escape.’ HIV RNA 

calculated in days prior to CSF „escape‟ (time “0”). Corresponding CSF HIV RNA levels 

are indicated on the right axis of the graph (“CSF Escape”). 

Poster  
489 
E-131 

Figure 2a-j. MRI images.  Initial MRI shows diffuse T2-prolongation (a,b) and focal 

lesions (c,d). Follow-up shows diffuse leukoencephalopathy despite symptom 

resolution (e-h) in the short-term and significant improvement at 567 days (i,j). 

Historical Data Time of Presentation 

Site, 

ID 

Age/ 

Sex 

(years) 

Nadir CD4+ 

T cell count 

(cells/mm3) 

Stable 

plasma HIV† 

(copies/mL: 

months) 

CD4+ 

T cell 

count 

(cells/mm3) 

Plasma  

HIV RNA 

(copies/mL) 

Drug 

regimen  

Neurologic 

signs/symptoms 

SF 

7066 
45/M 55 

<50: n/a 

<500: 23 
318 380 

DDI 

SGC 

RTV 

Cognitive impairment 

Gait ataxia 

MI 

9000 
46/F 15 

<50: 28 

<500: 28 
305 372 

3TC 

d4T 

LPV/r 

Coma 

Tremor 

Vertigo 

SF 

1034 
51/M 80 

<50: 2 

<500: 2 
588 <50 

3TC 

ZDV 

LPV/r 

Cognitive impairment 

Gait ataxia 

Tremor 

SF 

7071 
49/M 8 

<50: 30 

<500: 30 
444 <50 

3TC 

ZDV 

EFV 

LPV/r 

T-20 

Cognitive impairment 

Gait ataxia 

Sensory impairment 

SF 

4065 
49/M 4 

<50: 2 

<500: 7 
520 184 

DDI 

TDF 

ATV/r 

Diplopia 

Dysarthria 

Dysphagia 

Gait ataxia 

NH 

2000 
55/M 60 

<50: 96 

<500: 96 
308 <50 

3TC 

ABC 

LPV/r 

Aphasia 

Gait ataxia 

Sensory impairment 

Tremor 

GS 

5168 
45/F 55 

<50: 47 

<500: 60 
660 118 

3TC 

TDF 

ATV/r 

Cognitive impairment 

MI 

8000 
45/M 222 

<50: 27 

<500: 27 
545 <50 

3TC 

ABC 

FPV/r 

Cognitive impairment 

Dysarthria 

Sensory impairment 

Vertigo 

MI 

7000 
26/M 9 

<50: 4 

<500: 12 
290 98 

FTC 

TDF 

ATV 

Diplopia 

Dysarthria 

Gait ataxia 

Tremor 

NH 

1000 
49/M 180 

<50: 12 

<500: 43 
627 <50 

FTC 

TDF 

ATV/r 

RAL 

Aphasia 

Cognitive impairment 

Gait ataxia 

Tremor 

Vertigo 

SF = San Francisco; MI = Milan, Italy; NH = New Haven; GS = Gothenburg, Sweden; n/a = not applicable; † = length 

of time <500 copies/mL includes times when patient was <50 copies/mL   

Cerebrospinal Fluid Analysis 

Site, 

ID 

Plasma HIV 

RNA 

(copies/mL) 

HIV RNA 

(copies/mL) 

Protein 

(mg/dL) 

WBC 

(cells/mm3) MRI Findings 

SF 

7066 
380 9056 162 50 Not done 

MI 

9000 
372 8000 170 0 Diffuse white matter abnormalities 

SF 

1034 
<50 378 89 6 Patchy periventricular white matter abnormalities 

SF 

7071 
<50 8320 60 33 Not done 

SF 

4065 
184 4570 74 14 

Patchy subcortical/ periventricular white matter 

abnormalities with involvement of corpus collosum and 

cerebellum 

NH 

2000 
<50 613 77 28 

Symmetric subcortical/ periventricular white matter 

abnormalities extending into cerebellum 

GS 

5168 
118 3230 n/a 9 

Slight deformity of frontal ventricular horns, stable 

compared to previous examinations. Otherwise 

normal. 

MI 

8000 
<50 134 121 15 Diffuse white matter abnormalities 

MI 

7000 
98 5200 137 200 

Periventricular/lenticular/posterior internal capsule/ 

cingular cortex white matter abnormalities extending 

into cerebellum; diffuse pial contrast enhancement 

NH 

1000 
<50 460 46 11 

Cortical/subcortical/periventricular white matter 

abnormalities 

WBC = white blood cells; n/a = not available 

Site, 

ID 

Initial 

Regimen  

Raw 

CPE 

Resistance Mutations  

Detected in CSF 

Initial Regimen 

Adjusted CPE 

New 

Regimen 

 

 

New Regimen 

Adjusted CPE 

SF 

7066 

DDI 

SGC 

RTV 

3 Not done n/a 

ABC 

NVP 

IDV/r 

11† 

MI 

9000 

3TC* 

d4T** 

LPV/r**** 

7 

NRTI: K65R, K70R, V75I, F77L, 

F116Y, Q151M, R211K 

NNRTI: none 

PI: I54V, A71V, V77I, V82F, L90M 

0 

TDF* 

NVP 

APV/r 

T-20 

8 

SF 

1034 

3TC 

ZDV 

LPV/r 

9 Not done n/a Not done n/a 

SF 

7071 

3TC 

ZDV**** 

EFV*** 

LPV/r****** 

T-20 

13 

NRTI: D67N, T69D, K70R, L74V, 

T215F, K219Q 

NNRTI: V108I, Y181C, G190A, 

F227L 

PI: L10I, K20I, M36I, M46I, I50V, 

Q58E, L63P, A71V, L90M 

2 

3TC  

TDF 

ZDV**** 

LPV/r****** 

T-20 

4 

SF 

4065 

DDI* 

TDF 

ATV/r** 

3 

NRTI: L74V, M184V, Y115F 

NNRTI: Y181C, F227L 

PI: L63P, A71T, V77I, I85V 

1 

3TC* 

ABC*** 

ZDV 

LPV/r* 

4 

NH 

2000 

3TC* 

ABC* 

LPV/r**** 

5 

NRTI: M41L, E44D, D67N, V118I, 

M184V, L210W, T215Y 

NNRTI: none 

PI: I13V, K20R, M36I, I54V, L63P, 

V82A 

0 

3TC* 

ABC* 

ZDV* 

NVP 

DRV/r* 

4 

GS 

5168 

3TC* 

TDF 

ATV/r* 

6 

NRTI: M41L, V75A, M184I 

NNRTI: none 

PI: M36I, L63P 

1 

FTC* 

TDF 

DRV/r 

4 

MI 

8000 

3TC 

ABC 

FPV/r 

8 Not done n/a 

3TC 

ABC 

ZDV 

FPV/r 

11† 

MI 

7000 

FTC 

TDF 

ATV 

9 

NRTI: none 

NNRTI: none 

PI: none 

9 

3TC 

ZDV 

DRV/r 

9 

NH 

1000 

FTC* 

TDF 

ATV/r 

RAL 

9 

NRTI: M184I 

NNRTI: none 

PI: none 

6 

FTC*  

TDF 

ZDV 

ATV/r 

RAL 

10 

Table 1. Demographics and HIV history of patients with CSF ‘escape’ 

Table 2. Neurologic studies in patients with CSF ‘escape’ Table 3. Drug regimens and resistance profiles in patients with CSF ‘escape’ 

Raw CPE = central nervous system penetration effectiveness score2; “adjusted” CPE calculated by assigning drugs 

with known resistance mutation as “0” and re-calculating CPE; * denotes number of resistance mutations to each drug 

in regimen according to International Antiviral Society-USA Guidelines; n/a= not available; † = raw score, adjusted 

score not available because genotyping not done 

 

 

 

 

• Duration HIV Infection   16.2 years 

• Time < 500 copies/mL   27.5 months 

• Time < 50 copies/mL   19.5 months 

• Duration on Regimen   21 months 

 

 

 

 

 

 

• CSF HIV  3900 copies/mL 

• Plasma HIV   62 copies/mL 

• CD4+ T cells   482 cells/uL 

• CD4+ Nadir   35 cells/uL 

 

Summary of Key Findings:  

Virologic History and Time of Presentation 

Data reported as medians 

a b c d 

e f g h 

i j 

Patient 2000 Baseline CSF ‘Escape’ 

111 Day Follow-up 

567 Day Follow-up 

66 Day Follow-up 

Patient 7000 Baseline CSF ‘Escape’ 

Additional Findings 

 

• Plasma neopterin normal or slightly elevated in 2 patients 

•  12 nmol/L, 8 nmol/L (reference 8.8 nmol/L in HIV-uninfected subjects) 

• CSF neopterin elevated in 2 patients 

• 76.3 nmol/L, 37.6 nmol/L (reference 10.8 nmol/L in ART-treated subjects) 

• Brain biopsies in 2 patients 

• dense, perivascular lymphocytic infiltrates in white matter with extension into 

surrounding parenchyma.  

• mixture of mature and immature B- and T-lymphocytes, CD8+ predominance 

 

Changes after Treatment Intervention 

 

• 8/9 patients demonstrated clinical improvement 

• Follow-up CSF available in 4 patients; 3/4 had discordance resolve 

•  Median pre-intervention CSF HIV 5775 copies/mL at time of CSF “escape” 

•  Median post- intervention CSF HIV 66 copies/mL at median 70 days on new 

regimen 
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