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A UNIFIED APPROACH TO DIFFERENCE SETS 
WITH gcd(V, N) > 1 

JAMES A. DAVIS 
Department of Mathematics and Computer Science, 
University of Richmond, Virginia 23173, U.S.A. 
email: j davis©richmond. edu 

AND 

JONATHAN JEDWAB 
Hewlett-Packard Laboratories, 
Filton Road, Stoke Gifford, Bristol BS34 SQZ, U.K. 
email: j i j ©hpl b. hpl . hp. com 

Abstract. The five known families of difference sets whose parameters 
(v,k,>.;n) satisfy the condition gcd(v,n) > 1 are the McFarland, Spence, 
Davis-Jedwab, Hadamard and Chen families. We survey recent work which 

ursive techniques to unify these difference set families, placing par
ticular emphasis on examples. This unified approach has also proved useful 
for studying semi-regular relative difference sets and for constructing new 

etric designs. 

1. Introduction 

A k-element subset D of a finite multiplicative group G of order v is called 
a (v, k, ,\; n )-difference set in G provided that the multiset of "differences" 
{d1d21 

: d1, d2 E D, d1 f- d2} contains each nonidentity element of G 
exactly ).. times; we write n = k - ..\. Although the parameter n need not be 
listed explicitly we have chosen to do so in order to emphasise its importance 
in the classification and construction of difference sets. 

Example 1.1. D = {x,x2,x4} is a (7,3,1;2)-difference set in 'll7 = (x: 
x7 = 1). 

Example 1.2. D = {y, x, xy, xy2, x 2y, x3y3 } is a (16, 6, 2; 4)-difference set 
in z~ = (x, y : x4 = y4 = 1). 
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Difference sets arise in a wide variety of theoretical and applied contexts
'and for abelian groups correspond to sequences or arrays with favourable

periodic autocorrelation properties, see Davis and Jedwab (1997). For a re
cent survey of difference sets, see Jungnickel (1992) and its updates Jung
nickel and Schmidt (1997, 1998) or see Chapter VI of Beth, Jungnickel and
Lenz (1999). The reader may also consult Jungnickel and Pott (1999) in
this volume. 

The central problem is to determine, for each parameter set (v, k, >.; n), 
which groups of order v contain a difference set with these parameters.
By a counting argument the parameters (v, k, >-.; n) of a difference set are
related by k(k - 1) = >.(v - 1). We can assume that k :S v/2 because D 
is a (v, k, >.; n)-difference set in G if and only if the complement G \Dis a
( v, v - k, v - 2k + >.; n )-difference set in G. The trivial cases k = 0 and k = 1
are usually excluded (although trivial examples can be used as the initial
case of some recursive constructions). Besides these constraints, difference
sets are classified into families according to further relationships between
the parameters. In Jungnickel and Schmidt (1997), the known families are
grouped into three classes according to their methods of construction:

1. Singer difference sets. This class comprises the classical Singer fam
ily (known alternatively as the Projective Geometries family) and the
Gordon-Mills-Welch family. The difference sets in this class occur in
cyclic groups, and are obtained from the action of a cyclic group of lin
ear transformations on the one-dimensional subspaces of a finite field. 
Generalisations of the Gordon-Mills-Welch construction are considered
in Xiang (1999) in this volume. 

2. Cyclotomic difference sets. This class comprises the Paley family, 
the families involving residues of higher order than quadratic, and. the
Twin Prime Power family. The difference sets in this class occur in
elementary abelian groups, or the product of two such groups, and are
unions of cosets of multiplicative subgroups of a finite field. 

3. Difference sets with gcd{ v, n) > 1. This class comprises the remain
ing five known families of difference sets, namely McFarland, Spence,
Davis-Jedwab, Hadamard and Chen. The difference sets in this class
"seem to prefer to live in groups with low exponent and high rank" 
(Jungnickel and Schmidt (1998)). 

This third class, satisfying gcd( v, n) > 1, has attracted a great deal of
research interest and is the only one we consider here. We shall be concerned
with constructive rather than nonexistence results. This survey draws heav
ily on the contents of Davis and Jedwab (1997, 1999). 

The Hadamard family of difference sets is given by 

(v, k, >.; n) = (4N2
, N(2N - 1), N(N - 1); N 2

) 
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for integer N 2: 1 (see Davis and Jedwab (1996) for a survey and Jungnickel 
and Schmidt (1997, 1998) for updates). The Hadamard family derives its 
name from the fact that D is a Hadamard difference set if and only if the 
(+1, -1) incidence matrix of the design corresponding to Dis a Hadamard 
matrix with constant row sum, see Jungnickel (1992) and Turyn (1965). 

The McFarland family is given by 

(v, k, >.; n) 

= qd+ 1 + 1 ' qd ' qd -- ; q2d 
( ( 

qd+ 1 - 1 ) ( qd+ 1 - 1 ) ( qd - 1) ) 
q-1 q-1 q-1 

prime power and integer d 2: 0 (see Ma and Schmidt (1995) for 
a summary). The Hadamard and McFarland families coincide in 2-groups: 
the Hadamard family with N = 2d corresponds to the McFarland family 
with q = 2. 

The Spence family is given by 

for integer d 2: 0. 
The Davis-Jedwab family, introduced in Davis and Jedwab (1997) and 

named in Beth, Jungnickel and Lenz (1999), is given by (v, k, >.; n) = 

( 22d+4 ( 22d+~ - 1) ' 22d+l ( 22d+~ + 1) ' 22d+l ( 22d+~ + 1) ; 24d+2) 

for integer d 2: 0. 
The Chen family, introduced in Chen (1997, 1998) and named in Beth, 

Jungnickel and Lenz (1999), is given by (v, k, >.; n) = 

( 4q2d+2 ( q
2

::~ ~ 1) ' q2d+l ( 2(q
2
::; 1) + 1) ' 

(
q2d+l + 1) ) q2d+ 1 ( q - 1) q + 1 ; q 4d+ 2 

for integer d 2: 0 and q a prime power. The Chen family with d = 0 
corresponds to the Hadamard family with N = q; the Chen family with 
q = 2 corresponds to the Davis-Jedwab family; and the Chen family with 
q = 3 corresponds to the Spence family with d replaced by 2d + 1. The 
Davis-Jedwab and Chen families are the first new families of difference sets 
to be discovered since 1977. 
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For each of these parameter families, the existence question has been
solved for infinitely many values of the parameters, but not necessarily for 
all possible groups of a given order. The following two results, which give
complete solutions to the central problem for certain classes of difference
sets, are notable exceptions. (The exponent of a group G with identity la,
written exp( G), is the smallest integer a for which g°' = la for all g E G.) 

Theorem 1.3. A Hadamard difference set exists in an abelian group G of
order 22d+2 if and only if exp( G) ::; 2d+2 . 

Theorem 1.4. A McFarland difference set with q = 4 exists in an abelian
group G of order 22d+3 (22d+l + 1) /3 if and only if the Sylow 2-subgroup of
G has exponent at most 4. 

The constructive part of Theorem 1.3 is given in Kraemer (1993) and
the nonexistence part is given in Turyn (1965). The constructive part of
Theorem 1.4 is given in Davis and Jedwab (1997) and the nonexistence
part is given in Ma and Schmidt (1997). 

The present authors showed in Davis and Jedwab (1997) that the Ha
damard, McFarland, Spence and Davis-Jedwab parameter families can be
unified by means of a recursive construction which depends on the exis
tence of certain relative difference sets. The required relative difference sets
are themselves constructed by means of a second recursive construction.
The present authors showed further in Davis and Jedwab (1999) that by 
extending these two recursive constructions to use divisible difference sets
in place of relative difference sets, the subsequent constructions of Chen
difference sets as described in Chen (1997, 1998) can be brought within the
unifying framework. This approach deals with all abelian groups known to
contain difference sets from the five listed parameter families (although cer
tain initial examples required for the Hadamard family must be constructed
separately). 

A k-element subset R of a finite multiplicative group G of order m · u
containing a normal subgroup U of order u is called a (m, u, k, >.) relative
difference set (RDS) in G relative to U provided that the multiset {r1r21 :
ri, r2 E R, r 1 -:/- r2} contains each element of G \ U exactly >. times and
contains no element of U. The subgroup U is sometimes called the forbidden
subgroup. (We have avoided the conventional notation N for the normal
subgroup and n for its order so as to avoid confusion with the difference
set parameter n.) 

Example 1.5. R = {l,y,x,x3 y} is a (4,2,4,2) RDS in Z4 x Z2 = (x,y:
x4 = y2 = 1) relative to (x2) ~ Z2. 

A difference set can be considered as a RDS with u = 1. A (m, u, k, >.) 
RDS in G, relative to some normal subgroup U, is equivalent to a square
divisible (m, u, k, >.)-design whose automorphism group G acts regularly on 
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points and blocks (see Pott (1996) for a survey of RDSs and Davis and Jed
wab (1997) and Davis, Jedwab and Mowbray (1998) for new constructions). 
The central problem is to determine, for each parameter set (m, u, k, >.),the 
groups G of order m · u and the normal subgroups U of order u for which 
G contains a RDS relative to U with these parameters. 

By a counting argument the parameters (m, u, k, >.)of a RDS are related 
k(k - 1) = u>.(m - 1). If k = u,\ then the RDS is called semi-regular 

and the parameters are ( uA, u, u>., >.). Relative difference sets having semi
regular parameters are of particular interest, especially those occurring in 
p-groups (in which case the parameters have the form (pw, pr, pw, pw-r) for 
p prime). Likewise, divisible difference sets having semi-regular parameters 
have attracted special attention (see Pott (1995) for a definition and dis
cussion of divisible difference sets). And in fact both the relative difference 
sets used in the recursive constructions of Davis and Jedwab (1997) and 
the divisible difference sets used in those of Davis and Jedwab (1999) have 
semi-regular parameters. 

Difference sets are usually studied in the context of the group ring ZG 
of the group Gover the ring of integers Z. The definition of a (v, k, >.; n)
difference set D in G is equivalent to the equation DD(-l) = nlc +>.Gin 
ZG, where by an abuse of notation we have identified the sets D,D(-l),G 
with the respective group ring elements 

and le is the identity of G. Similarly, the definition of a (m, u, k, >.) RDS R 
in G relative to U is equivalent to the equation RR(-l) = klc + ,\( G- U) in 
ZG. We shall follow the practice (standard in the difference set literature) 
of abusing notation by identifying sets with group ring elements, as in the 
examples above. 

An alternative viewpoint for considering difference sets and RDSs, pre
dominant in engineering papers, is via the autocorrelation properties of 
binary arrays, see Jedwab (1992). The (1, 0) binary array A correspond
ing to a subset D of a group G is ( a9 : g E G) defined by a9 = 1 
if g E D and a 9 = 0 if g rJ. D. Then DD(-l) = LgEG RA(g)g in ZG, 
where RA(g) = LhEG ahagh· When G is abelian, RA(g) is the periodic 
autocorrelation of the binary array A at displacement g, and both A and 
(RA(g) : g E G) can be represented as matrices. The (+1, -1) binary array 
B = (b9 : g E G) corresponding to D is given by the linear transformation 
b9 = 1 - 2a9 . 

For example, using +1 for the symbol+ and -1 for-, we can represent 
the ( + 1, -1) binary array B corresponding ta the subset D of Example 1.2 
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by the matrix 

and its periodic autocorrelation function (RB(g) g E G) by the matrix

l 16 0 0 0 l 
0 0 0 0 
0 0 0 0 . 
0 0 0 0 

Similarly the ( + 1, -1) binary array B corresponding to the subset R in 
Example 1.5 is 

and its periodic autocorrelation function is 

In the remainder of this paper, all groups mentioned should be under
stood to be abelian. 

We shall require the following definitions and results. A character of a
group G is a homomorphism from G to the multiplicative group of complex
roots of unity. Under pointwise multiplication the set G of characters of G
forms a group isomorphic to G. The identity of this group is the principal
character that maps every element of G to 1. The character sum of a
character x over the group ring element C corresponding to a subset of
G is x(C) = I:cEC x(c). It is well-known (see Pott (1995), for example) 
that the character sum x( C) is 0 for all non-principal characters x of G ff
and only if C is a multiple of G (regarded as a group ring element). If a
character x is non-principal on G and principal on a subgroup U then X
induces a non-principal character 1/J on G/U defined by 1/J(gU) = x(g).

The use of character sums to study difference sets was introduced in the 
seminal paper Turyn (1965) and subsequently extended to relative differ
ence sets: 
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a} The k-element subset D of a group G of order v is a (v, k, >..; n)
difjerence set in G if and only if lx(D)I = fo for every non-principal 
character X of G. 
The k-element subset R of a group G of order m · u containing a 
subgroup U of order u is a (m, u, k, >..) RDS in G relative to U if and 
only if for every non-principal character x of G: 

I (R)I = { Vk if x is non-principal on (T, 

X Jk - u.X. if x is principal on U. 

Lemma 1.6 indicates a general strategy for constructing difference sets 
and relative difference sets, namely to choose a group subset for which 
all non-principal character sums have the correct modulus. In the case 

a relative difference set whose parameters are semi-regular, note that 
the required value of the character sum x(R), when x is principal on the 
subgroup U, is zero. In Section 2 we shall show that the determination 
of character sums can be greatly facilitated by selecting the group subset 
to be the union of cosets of "building blocks" whose character properties 
interact in a simple way. 

By way of introducticm to this technique, we use Lemma 1.6 to check the 
validity of Examples 1.2 and 1.5 via character sums. We write the subset D 
of Example 1.2 as the group ring element D = y(l + x2 ) + x(l + y2 ) + xy(l + 
x2y2). Let x be a non-principal character of Z~. Now the image space of x 
is {1, i, -1, -i} and so x(x2

) = ±1 and x(y2
) = ±1. If x(x2

) = x(y2
) = 1 

then x(D) = 2x(y+x+xy) = 2x((xy))-2 = -2. Otherwise exactly two of 
x(l + x2

), x(l + y2) and x(l + x2y2) are zero and so lx(D)I = 2. Therefore 
by Lemma 1.6 (a), D is a (16, 6, 2; 4)-difference set in Z~. 

Similarly we write the subset R of Example 1.5 as R = l+y+x(l+x2y) 
and let x be a non-principal character of Z4 x Z2. We have x(x2 ) = ±1 
and x(y) = ±1. If x(x2 ) = x(y) = 1 then x(R) = 2x(l + x) 2x((x)) = O. 
If x(x2

) = 1 and x(y) = -1 then x(R) = 0. Otherwise x(x2 ) = -1 and 
exactly one of x(l + y) and x(l - y) is 0, and so lx(R)I = 2. Therefore by 
Lemma 1.6 (b), Risa (4,2,4,2) RDS in Z4 x Z 2 relative to U = (x2 ). 

We shall return to these two examples after introducing some definitions 
which allow their essential properties to be described concisely. 

2. Building Sets and Extended Building Sets 

Definition 2.1. A building block in a group G with modulus m is a sub
set of G such that all non-principal character sums over the subset have 
modulus either 0 or m. 
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Some examples of building blocks are a coset of a subgroup of G, a
semi-regular RDS in G relative to a subgroup U, and a difference set in G. 
Definition 2.2. For integers a ~ 1 and t ~ 1, a (a, m, t) building set
(BS) on a group G relative to a subgroup U is a collection of t building
blocks in G with modulus m, each containing a elements, such that for every
non-principal character X of G: 
(a) exactly one building block has nonzero character sum if x is non

principal on U; 
(b) each building block has zero character sum if x is principal on U.

We call the BS covering in the case U = G, when exactly one building
block has nonzero character sum for every non-principal character of G. 
(The use of "covering" refers not to the intersection or union of the building
blocks but to their character properties.) 

Definition 2.3. For integers a ~ 0, m ~ 1, and h ~ 1, a (a, m, h, +) 
extended building set (EBS) on a group G with respect to a subgroup U
is a collection of h building blocks in G with modulus m, of which h - 1
contain a elements and one contains a + m elements, such that for every
non-principal character X of G: 

(a) exactly one building block has nonzero character sum if x is principal
on U; 

(b) each building block has zero character sum if x is non-principal on U. 

We define a (a, m, h, -) EBS on G with respect to U in the same way, 
with a + m replaced by a - m. We can treat both cases simultaneously
by referring to a (a, m, h, ±) EBS. Notice that the role of principal and
non-principal characters on U in Definition 2.3 is the reverse of that in
Definition 2.2! We call the EBS covering in the case U = {le}, when ex
actly one building block has nonzero character sum for every non-principal
character of G. 
Example 2.4. Let Ho = 1 +a, H 1 = 1 + b and H2 = 1 +ab be subsets of
the group Z~ = (a,b: a2 = b2 = 1). Then {¢,H0 ,H1 ,H2} is a (2,2,4,-)
covering EBS on Z~ and {H1 , H2} is a (2, 2, 2) BS on Z~ relative to H0 . 

Example 2.4 is a special case of an important construction which we 
now describe. Let P be a vector space of dimension 2 over lFpr , where p is 
prime. The additive group of P is isomorphic to z~r. There are pr + 1 =
(p2r -1)/(pr -1) subspaces Ho,H1 , ... ,Hpr of P of dimension 1, called
hyperplanes, each containing pr elements. The hyperplanes have the crucial
property that any non-principal character of G is principal on exactly one
of the hyperplanes (see Davis and Jedwab (1997), for example): 

Lemma 2.5. Let P be a vector space of dimension 2 over lFpr, where p is 
prime and r ~ 1. Any non-principal character of P is principal on exactly
one of the pr+ 1 hyperplanes of P. 
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Corollary 2.6. Let p be prime and let r ~ 1. Then there are subgroups 
Ho,H1,··· ,Hp' ofz~r such that {Hi,H2, ... ,Hpr} is a (pr,pr,pr) BS on 

z2r relative to Ho ~ z; {where Ho is contained within exactly r direct 
p 

factors of z~r ), and such that {¢,Ho, Hi, H2, ... , Hp'} is a (pr ,pr ,pr +2, - ) 
covering EBS on z~r. 

Proof. Let Ho, Hi, ... , Hp' be the subgroups of z~r of order pr correspond
ing to hyperplanes of P under an isomorphism from z~r to P. Label the 
subgroups so that Ho ~ z; is contained in exactly r direct factors of z;r. 
Then Lemma 2.5 implies the result. D 

We next relate the covering EBS and BS of Example 2.4 to the difference 
set o~ Example 1.2 and the RDS of Example 1.5 in order to illustrate the 
motivation for introducing building blocks. The subset D of Example 1.2 
can be written as l · ¢ + yHo + xH1 + xyH2 by embedding Z~ in Z~ via 
a r-+ x 2 and b H y2

. Each of the four building blocks of the (2, 2, 4, - ) 
covering EBS occurs in a different coset of Z~ in Z~. Likewise the subset R 
of Example 1.5 can be written in the form l ·Hi + xH2 by embedding Z~ 
in Z4 x Z2 via a H x 2 and b Hy, and each of the two building blocks of 
the (2, 2, 2) BS occurs in a different coset of Z~ in Z4 x Z2. We now show 
how to formalise this procedure. 

We begin by showing that a BS on a group G relative to a subgroup U 
 be used to construct a BS on larger groups containing G as a subgroup. 

In the case when the BS on G has parameters (a, VOJ,, t) this allows the 
construction of a semi-regular RDS as a single building block on a group 
containing G . • 

Lemma 2. 7. Suppose there exists a (a, m, t) BS on a group G relative to a 
subgroup U and let s be an integer dividing t. Then there exists a (as, m, t / s) 
BS on G' relative to U, where G' is any group containing G as a subgroup 
of index s. 

Proof. Let {Bi,B2, ... ,Et} be a (a,m,t) BS on G relative to U. For each 
j = 1, 2,. .. , t/ s we define the subset Rj Uf=ig~Bi+(j-l)s of G', where 
g~, g&, ... , g~ E G' are coset representatives of Gin G'. (Although the build
ing blocks Bi can have non-empty intersection, by definition no set Rj 
contains repeated elements.) Let x be a non-principal character of G' and 
consider the character sum x(R1) = I::f=1 x(gDx(Bi+(j-i)s)· We distinguish 
three cases. 

Case l: x is principal on G and non-principal on G' (so s > 1). We 
have x(Bi+(j-i)s) = IBi+(j-l)sl = a for each ordered pair (i,j) and so 
x(Rj) = a 2=i=1 x(gD = 0 for each j. The last equality uses the fact that 
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x induces a non-prin~ipal character on G' /G, and the associated character
sum over this group is O.~ 

Case 2: x is principal on U and non-principal on G. By assumption
x(Bi+(j-I)s) = 0 for each ordered pair (i,j) and so again x(Rj) = O for 
each j. 

Case 3: xis non-principal on U. By assumption lx(Bi+(j-l)s)I = m for 
exactly one ordered pair (i,j) (say (I, J)) and lx(Bi+(j-l)s)I = 0 for all 
other ordered pairs (i,j). Therefore lx(RJ)I = lx(g~)Jlx(BJ+(J-l)s)I = rn 
and lx(Rj)I = 0 for each j =f- J. 

The character sums for the three cases show that { R i, R2, ... , Rt/ 8 } is 
a (as, m, t/ s) BS on G' relative to U. D

Theorem 2.8. Suppose there exists a (a, ,/01, t) BS on a group G relative
to a subgroup U of order u, where at > 1. Then there exists a (at, u, at, at/u)
semi-regular RDS in G1 relative to U, where G' is any group containing G
as a subgroup of index t. 

Proof. Apply Lemma 2.7 with s = t to obtain a (at, ,/01, 1) BS on G' 
relative to U. For at> 1, it follows from Definition 2.2 and Lemma 1.6 (b) 
that this is equivalent to a (at, u, at, at/u) semi-regular RDS in G' relative
to U. D

By following a similar proof to that of Lemma 2. 7 and Theorem 2.8 we 
can show that a covering EBS on a group G can be used to construct a
covering EBS on larger groups containing G as a subgroup, and that this
allows the construction of a difference set as a single building block on a
group containing G. 

Lemma 2.9. Suppose there exists a (a, m, h, ±) covering EBS on a group
G and let s be an integer dividing h. Then there exists a (as, m, h/ s, ±)
covering EBS on G', where G' is any group containing G as a subgroup of
index s. 

Theorem 2.10. Suppose there exists a (a, m, h, ±) covering EBS on a
group G. Then there exists a (hlGl,ah±m,ah±m-m2 ;m2 )-difference set
in any group G' containing G as a subgroup of index h. 

By applying Theorems 2.8 and 2.10 to the BS and covering EBS of
Corollary 2.6 we obtain the following result, of which Examples 1.2 and 1.5
are special cases. For q a prime power, we write EA(q) to denote the ele
mentary abelian group of order q. 

Example 2.11. Let p be prime and let r ;::: 1. Then there exists a semi
regular RDS with parameters (p2T, pT, p2T, pT) in any group of order p3r 

containing a subgroup G ~ z;T, relative to some subgroup U ~ z; of G, 
and there exists a McFarland difference set with q = pr and d = 1 in any
group of order q2 (q + 2) containing a subgroup isomorphic to EA(q2). 
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Further examples of BSs and covering EBSs are given by: 

Example 2.12. Let G be any one of the groups Z~ x Z2, Z4 x Z~ and 
z~. Then there exists a (8, 4, 2) BS on G relative to a subgroup U ~ z§ 
contained within two of the largest direct factors of G, and there exists a 
(8, 4, 3, - ) covering EBS on G. · 

Proof. For G = Z~ x Z2 = (x,y,z: x 4 = y4 = z 2 = 1) and U = (x2,y2) ~ 
z~ we obtain the desired BS from the work described in Arasu and Seghal 
(1995) by defining B1 = 1 + x + xz + x 2 z + x 2yz + xy + xy3 z + y3 and 
s2 = 1 + x 3 + x 3 y2 z + x 2 y 2 z + yz + xy3 z + xy3 + x 2 y and using direct 
computation to verify that {B1, B2} is a (8, 4, 2) BS on G relative to U. 
For G = Z4 x Z~ or Z~ we use Corollary 2.6 to provide a (4, 4, 4) BS on Z~ 
relative to U ~ z§ and then apply Lemma 2. 7 with s = 2 to construct the 
desired (8, 4, 2) BS on G relative to U. 

For all three groups G we define a third building block B 3 = U, and 
then {Bi,B2,B3} is a (8,4,3, covering EBS on G. D 

By applying Theorems 2.8 and 2.10 to the BSs and covering EBSs of Ex
ample 2.12 we obtain further semi-regular RDSs and difference sets: 

Example 2.13. There exists a (16, 4, 16, 4) semi-regular RDS in each of 
the groups Zs x Z4 x Z2, Z~, Z~ x Z~, Zs x Z~, Z4 x Z2 x Z4 x Z2, Z4 x Z~, 
z~ x :Z,4 x z~ and z~ relative to a subgroup isomorphic to z~ contained 
within the first two direct factors of the group. There exists a (96, 20, 4, 16) 
McFarland difference set in any group of order 96 whose Sylow 2-subgroup 
has exponent at most 4. 

3. Construction Theorems 

In this section we describe two recursive constructions, the first for covering 
EBSs and the second for BSs. These constructions allow us systematically to 
generate families of covering EBSs and BSs and then, using Theorems 2.8 
and 2.10, to deduce the existence of families of difference sets and semi
regular RDSs. We use the following example to introduce the first recursive 
construction. 

Example 3.1. There exists a (32, 16, 11, - ) covering EBS on any group G 
of order 128 and exponent at most 4. 

Proof. Let U ~ Z~ be a subgroup of G contained within two of the largest 
direct factors of G (so that G/U is isomorphic to Z4 x Z~ or Z~). By Exam
ple 2.12 there exists a (8,4,3,-) covering EBS on G/U, say {BLB~ 1 B3}. 
"Lift" this covering EBS by setting Bj = {g E G : gU E Bj} for j = 1, 2, 3 
and let x be a non-principal character of G. Now each Bj is the union of jBj I 
distinct cosets of U so if xis non-principal on U then x(Bj) = 0 whereas 
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if xis principal on U then x(Bj) = 4'lj;(Bj), where 'If; is the non-principal
character induced by x on G/U. By Definition 2.3, 'lf;(Bj) is nonzero (having 
modulus 4) for exactly one value of j. Furthermore IB1I = IB2I = 32 and
IB3I = 16. Therefore by Definition 2.3, {B1, B2, B3} is a (32, 16, 3, -) EBS 
on G with respect to U. In addition we shall demonstrate in Example 3.8 
that there exists a (32, 16, 8) BS on G relative to U, say { B4, Bs, ... , Bu}. 
Therefore by Definitions 2.2 and 2.3 the mulitset union {B1, B2, ... , Bu} is 
a (32, 16, 11, - ) covering EBS on G: either exactly one of the building blocks 
B1, B2, B3 has nonzero character sum (with modulus 16) and each of the 
building blocks B4, Bs, ... , Bu has zero character sum, or vice-versa. O 

The covering EBS of Example 3.1 gives rise, under Theorem 2.10, to a 
(1408, 336, 80, 256) McFarland difference set in G x Zu having q = 4 and 
d = 2. In contrast the (8, 4, 3, - ) covering EBS used as an initial object in 
the proof of Example 3.1 gives rise, under Theorem 2.10, to a (96, 20, 4, 16) 
McFarland difference set in G /U x Z3 having q = 4 and d = 1. This indicates 
the pattern of a recursive construction for McFarland difference sets relying 
on a construction method for covering EBSs which we now prove. 

Lemma 3.2. Suppose there exists a (am, m, h, ±) covering EBS on a group 
G /U, where U is a subgroup of G of order u. Then there exists an EBS on 
G with respect to U with parameters (uam, um, h, ±). 

Proof. Let {Bi, B~, ... , B~} be a (am, m, h, ±) covering EBS on G /U. For 
each j let Bj = {g E G : gU E Bj} be the pre-image of Bj under the 
quotient mapping from G to G /U. Since Bj is the union of IBj I distinct 
cosets of U, it follows both that JBjl = u!Bjl and that for every non
principal character x of G: 

{ 
0 if x is non-principal on U, 

x(Bj) = u'lj;(Bj) if xis principal on U, 

where 'If; is the non-principal character induced by x on G /U. By the def
inition of covering EBS, 'lf;(Bj) is nonzero (having modulus m) for exactly 
one value of j. Therefore {B1 , B2, ... , Eh} is a (uam, um, h, ±) EBS on G 
with respect to U. 

Theorem 3.3. Let G be a group containing a subgroup U of order u. Sup
pose there exists a (am, m, h, ±) covering EBS on G /U and there exists a 
(uam, um, t) BS on G relative to U. Then there exists a (uam, um, h+t, ±) 
covering EBS on G. 

Proof. By Lemma 3.2 the existence of a (am, m, h, ±) covering EBS on G /U 
implies the existence of a (uam, um, h, ±) EBS, say {B1, B2, ... , Bh}, on 
G with respect to U. So by Definition 2.3, a non-principal character X of 
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G gives a nonzero character sum on exactly one of the building blocks 
Bi, B2 , ... , Bh if Xis principal on U, and gives a zero character sum on all 
these building blocks otherwise. By assumption there exists a (uam, um, t) 
BS, say {Bh+1,Bh+2 1 ••• ,Bh+t}, on G relative to U. So by Definition 2.2, 
a non-principal character x of G gives a nonzero character sum on exactly 
one of the building blocks Bh+l, Bh+2, ... , Bh+t if x is non-principal on 
U, and gives a zero character sum on all these building blocks otherwise. 
Combining the character properties, we see that the multiset union of the 
building blocks {B1, B2, ... , Bh+t} is a (uam, um, h + t, ±) covering EBS 
on G. D 

The proof of Theorem 3.3 demonstrates the power of the notion of building 
sets and extended building sets. The crucial property, that at most one of 
the building blocks has a nonzero character sum, allows us to combine their 
favourable character properties simply by taking the multiset union of the 
constituent building blocks. In contrast the binary array viewpoint would 
require a much more complicated analysis involving the crosscorrelation of 
pairs of arrays. 

Example 3.4. There exists a (16, 8, 5, +) covering EBS on each of the 
groups Z~ x Z~, Z4 x Z~ and Z~. 

Proof. Let G be any one of the listed groups and let U ~ Z~ be a subgroup 
of G such that G /U ~ Z~. Now by Corollary 2.6 with p = 2 and r = 1 
there exists a (2, 2, 4, -) covering EBS on Z~. Therefore by Theorem 2.10, 
Z~ contains a (16, 6, 2; 4)-difference set, which can be viewed as a (4, 2, 1, +) 
covering EBS on Z~. Also Section 4 of Davis and Jedwab (1997) demon
strates that there exists a (16, 8, 4) BS on G relative to U. Combining these 
under Theorem 3.3 we obtain a (16, 8, 5, +) covering EBS on G. D 

We remark that whereas the covering EBS of Example 3.1 comprises ten 
blocks of equal cardinality and an eleventh which is smaller, the covering 
EBS of Example 3.4 comprises four blocks of equal cardinality and a fifth 
which is larger. Under Theorem 2.10 the covering EBS of Example 3.4 
gives rise to a (320, 88, 24, 64) Davis-Jedwab difference set in G x Z5 having 
d = 1. This indicates the pattern of a recursive construction for Davis
Jedwab difference sets, since the initial (16, 6, 2; 4)-difference set used in 
the proof of Example 3.4 can be regarded as a Davis-Jedwab difference set 
with d = 0. 

However both Examples 3.1 and 3.4 rely on the existence of certain BSs. 
In general the recursive construction of covering EBSs using Theorem 3.3, 
and therefore of difference sets using Theorem 2.10, relies on the existence 
of families of suitable BSs. This motivates the second recursive construction 
of this section, for BSs. 
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The idea of the construction is to exploit the hyperplane structure of
Lemma 2.5 to obtain a more general result than Corollary 2.6. Begin with
a group G containing a subgroup Q isomorphic to z;r and consider those 
subgroups Hi of G which correspond to hyperplanes when viewed as sub
groups of Q. We now show that if there exists a BS on G /Hi relative to 
Q /Hi for i = 1, 2, ... , pr then each BS can be "lifted" from the quotient 
group G /Hi to G to collectively form a BS on G relative to Ho. 

Theorem 3.5. Let G be a group containing a subgroup Q ~ z;r, where p 
is prime and r 2:: 1 {the case Q = G being allowed}. Let Ho, Hi, ... , Hpr be 
the subgroups of G of order pr corresponding to hyperplanes when viewed 
as subgroups of Q. Suppose there exists a (a, m, t) BS on G /Hi relative to 
Q/ Hi for each i = 1, 2, ... ,pr. Then there exists a (pr a,prm,prt) BS on G 
relative to Ho. 

Proof. For each i 2:: 1, let {Bii,BI2 , ... ,Bft} be a (a,m,t) BS on G/Hi 
relative to Q/ Hi. Following the proof of Lemma 3.2, for each i 2:: 1 and for 
each j let Bij = {g E G : gHi E Bij}. Since Bij is the union of IBij I = a 
distinct cosets of Hi, IBij I = pr a, and for every non-principal character x
of G and for each i 2:: 1 and for each j: 

{ 
0 if x is non-principal on Hi, 

x(Bij) = pr'lj;(Bij) if xis principal on Hi, 

where 'lj;(Bij) is the non-principal character induced by x on G/ Hi· By the 
definition of BSs, for each i 2:: 1, 'lj;(Bij) is nonzero (having modulus m) for 
exactly one value of j if 'If; is non-principal on Q/ Hi, and is zero for each 
value of j if 'If; is principal on Q/Hi· 

We claim that { Bij : 1 ::; i ::; pr, 1 ::; j ::; t}, comprising pr t subsets Bij 
of G, is a (pra,prm,prt) BS on G relative to Ho. To establish this, let x be 
a non-principal character of G and distinguish three cases. 

Case 1: xis non-principal on Q and on Ho. By Lemma 2.5, xis principal 
on H1 for some I I- 0 and non-principal on Hi for each i I- I. Therefore 
x(Bij) = 0 for each i I- I and x(B1j) = pr'lj;(B~;), from (*). Since xis
non-principal on Q, 'If; is non-principal on Q/H1 and so 'lj;(BL) is nonzero 
(having modulus m) for exactly one value of j. Therefore x(Bij) is nonzero 
(having modulus pr m) for exactly one ordered pair ( i, j). 

Case 2: xis non-principal on Q and principal on Ho. By Lemma 2.5, X 
is non-principal on Hi for each i I- 0. Therefore x(Bij) = 0 for each ordered 
pair (i,j), from(*). 

Case 3: x is principal on Q (note this cannot arise if Q = G). In this 
case x is principal on Hi for each i 2:: 0. Therefore x(Bij) = pr 'lj;(Bij) for 
each i 2:: 1, from (*). Since 'If; is principal on Q/ Hi, 'lj;(Bij) = 0 for each 
ordered pair ( i, j). 
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The results for the three cases establish the claim. D 

Given a group G and a subgroup Ho ~ Z~ on which we wish to construct 
a BS using Theorem 3.5, we are free to choose Q to be any subgroup of 
G isomorphic to z~r containing Ho. This choice will determine the sub
groups Hi =/= Ho of G corresponding to hyperplanes. By suitable choice of 
generators of G we can assume that Q is contained in 2r direct factors of 
G and that any one particular hyperplane Hi is contained in r of these 
direct factors. Then the proof of Theorem 3.5 describes a procedure for 
constructing the BS explicitly. Given a (a, m, t) BS on each of the pr quo
tient groups G /Hi relative to Q /Hi, we lift each BS from G /Hi to G by 
taking Bij {g E G : gHi E Bij}· This produces the prt building blocks of 
a (pr a,prm,prt) BS on G relative to Ho. We now illustrate this procedure 
in detail. 

Example 3.6. There exists a (32, 16, 8) BS on G = Z~ x Z2 = (x, y, z, w : 
x4 = y4 = z4 = w 2 = 1) relative to Ho= {x2 ,y2 ) ~ Z~. 

Proof. We firstly choose the subgroup Q ~ Z~ of G to be (x2 , y2
, z2 , w), 

which contains Ho. We next determine the subgroups of G corresponding to 
hyperplanes, by reference to the multiplicative structure of lF4. Since x 2+x+ 
1 is an irreducible polynomial of degree 2 over JF4 we can regard lF4 as having 
multiplicative generator 8, where 62 = 8 + l. Then the hyperplanes of JFi 
are ((1, 0)), ((0, 1)), ((1, 1)), ((8, 1)) and ((8+1, 1)). Define an isomorphism 
from ~ to Q by (1, 0) i-+ x2 , (8, 0) i-+ y 2 , (0, 1) i-+ z2 and (0, 8) i-+ w. 
The subgroups of G corresponding to the hyperplanes are then respectively 
Ho (x2 ,y2 ), H 1 = (z2 ,w), H 2 = (x2z2 ,y2w), H3 (y2z2 ,x2y2w) and 
H4 (x2y2 z2 ,x2w). For each i =/= 0 we now form the quotient group G/Hi 
and its associated subgroup Q /Hi. In this case we find that G /Hi ~ Z~ x 
Z2, and QI Hi ~ z~ is contained within z~, for each i =I= o. We therefore 
require a (8,4,2) BS on (a,b,c: a4 = b4 = c2 ) relative to (a2 ,b2 ). Using 
Example 2.12, such a BS is given by the group ring elements 

B~ (a, b, c) 

B~(a, b, c) 

1 + a + ac + a2 c + a2 be + ab + ab3 e + b3
, 

1 + a3 + a3b2e + a 2 b2 e +be+ ab3e + ab3 + a2b. 

In order to construct the BS on G we write each quotient group G /Hi 
explicitly in terms of its generators. We find 

G/H1 = (xH1,yH1,zH1), G/H2 = (xH2,yH2,xzH2), 

G/H3 = (xH3,yH3,yzH3) and G/H4 = (xH4,yH4,xyzH4), 

the first two generators having order 4 and the third generator having order 
2 in each case. We also find Q /Hi ~ (x2 Hi, y2 Hi) for each i =/= 0. Therefore a 
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(8, 4, 2) BS in G /Hi relative to Q /Hi is given by the building blocks B}1 and 
Bh where for j = 1, 2 we have B~j = Bj(x, y, z)H1, B~j = Bj(x, y, xz)H2, 

B~j = Bj(x, y, yz)H3 and B~j = Bj(x, y, xyz)H4. For example, B~1 is given 
by 

Each of the expressions Bij is a group ring element in Z[ G /Hi] comprising 
8 elements of the quotient group G /Hi. We finally obtain Bij = {g E 
G : gHi E Bij} by regarding the formal expression for Bij as a group 
ring element in ZG comprising 32 elements of G. The 8 building blocks 
{ Bij 1 :::; i :::; 4, 1 :::; j :::; 2} then form a (32, 16, 8) BS on G relative to 
~· D

For the group G of Example 3.6 we see that all the quotient groups G /Hi 
having i =I 0 are isomorphic but in general this need not the case. For 
example, let r 3 and consider the group 

G Z2 x Z4 x Zs x Zs x Z4 x Z4 
(x,y,z,u,v,w : x 2 = y4 = zs =us= v4 = w4 = 1). 

Follow the procedure given in the proof of Example 3.6 to label the hy
perplanes of ~ and define an isomorphism from ~ to Q = (x = y2 = 
z4 = u4 = v2 w 2 1) ~ Z~, taking the irreducible polynomial of degree 
3 over lF2 to be x 3 + x + 1. Then the subgroups of G corresponding to 
the hyperplanes ((1,1)), ((82,1)) and ((84,1)) are H2 = (xu4,y2v2,z4w2), 
H4 = (z4u4,xy2v2,y2z4w2) and H 6 = (y2z4u4,xy2z4v2,xz4w2) respec
tively. The factor groups G / H2 and G / H5 are not isomorphic to G / H4: 
we have 

G / H2 (H2, yH2, zH2, uH2, yvH2, wz2 H2) 
~ (Z1 x )Z4 x Zs x Zs x Z2 x Z2, 

G / H4 (H4, yH4, zH4, zuH4, vH4, yz2 wH4) 

~ (Z1 x )Z4 x Zs x Z4 x Z4 x Z2, 

G/ H6 (H5, yz2u2 H5, zH5, uH5, wyvH5, wH5) 

~ (Z1 x )Z2 x Zs x Zs x Z2 x Z4. 

Furthermore, although each of the factor groups Q / H2, Q / H4 and Q / H5 
is isomorphic to Z~, the direct factors of G /Hi which contain Q /Hi are 
different in each case: we have Q / H2 = (y2 H2, z4 H2, u4 H 2 ) (contained 
within the second, third and fourth direct factors of G/H2), Q/H4 = 
(y2 H4, z4 H4, v2 H4) (contained within the second, third and fifth direct 
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factors of G/H4) and Q/H6 = (z4H5,u4H5,w2 H5) (contained within the 
third, fourth and sixth direct factors of G / H5). 

The above discussion illustrates that to apply Theorem 3.5 effectively 
we need information about the form of G /Hi and Q /Hi. In fact we have 
shown in Davis and Jedwab (1997) that by appropriate choice of generators, 
exactly r direct factors of G retain the same exponent in G /Hi (these being 
the direct factors that contain Q/ Hi) and r are reduced by a factor of p: 

Lemma 3. 7. Let G be the group TI~: 1 Zpi+"'u containing a subgroup Q ~ 
z~r I where p is prime and Ou ;:::: 0. Let Ho, Hi' ... 'Hpr be the subgroups of 
G of order pr corresponding to hyperplanes when viewed as subgroups of Q. 
Then for each Hi there exists a r-element subset S of {1, 2, ... , 2r} such 
that G /Hi ~ Tiu~S Zpi+"'u x TiuES Zp"'u. Moreover, for each Hi a suitable 
choice of generators of G ensures that Q /Hi ~ Z~ is contained in the first 
r direct factors of G /Hi as specified. 

Lemma 3.7 allows us readily to generalise Example 3.6: 

Example 3.8. There exists a (32, 16, 8) BS on any group G of order 128 
and exponent at most 4 relative to a subgroup U ~ Z~ contained within 
two of the largest direct factors of G. 

Proof. Let Q ~ Zi be a subgroup of G containing Ho = U. For each 
subgroup Hi -::/- Ho of G of order 4, corresponding to a hyperplane when 
viewed as a subgroup of Q, Lemma 3. 7 shows that G /Hi has order 32 and 
exponent at most 4 and that Q /Hi ~ Z~ is contained in two of the largest 
direct factors of G/Hi· By Example 2.12 there is a (8,4,2) BS on G/Hi 
relative to Q/ Hi and so by Theorem 3.5 we obtain the desired BS on G. D 

Just as Theorem 3.3 can be applied recursively to construct covering EBSs, 
subject to the existence of families of suitable BSs, so Theorem 3.5 can be 
applied recursively to construct BSs - but without relying on the existence 
of other objects! (When Theorem 3.5 is applied in this way it is important 
to keep track of the position of the subgroup Ho in relation to the group 
G at each stage.) The pattern of a recursive construction for a family of 
such BSs is indicated by comparing the BSs of Example 2.12 with those 
of Example 3.8. This family will be described explicitly in Section 4 and 
used in the construction of McFarland difference sets (see also the proof of 
Example 3.1 and subsequent remarks). 

Figure 1 is a schematic representation of the recursive construction of 
BSs and covering EBSs described in this section. On the right side of the 
figure Theorem 3.5 is used to obtain a BS on a group G by lifting a BS 
on each of the factor groups G /Hi for i -::/- 0. On the left side of the figure 
Theorem 3.3 is used to obtain a covering EBS on a group G by lifting a 
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covering EBS on G /Ho and combining with a BS on G relative to Ho (see 
Theorems 3.3 and 4.6 of Davis and Jedwab (1997) for details).

4. The McFarland, Spence, Davis-Jedwab, Hadamard and Chen
Families 

In this section we summarise the recursive construction of difference sets 
in the McFarland, Spence, Davis-Jedwab and Hadamard families from cov
ering EBSs using Theorems 3.3 and 3.5 (see Davis and Jedwab (1997) for 
details). We also summarise the recursive construction of difference sets in 
the Chen families, for which a modification to Theorem 3.5 is required (see 
Davis and Jedwab (1999) for details). These results deal with all (abelian) 
groups known to contain such difference sets, although certain initial ex
amples required for the Hadamard family must be constructed separately. 

Recursive application of Theorem 3.5 yields the following families of
BSs. All of the initial BSs needed to begin the recursions are given by (or 
can be derived from) Corollary 2.6, Example 2.12 and the example of a

4, 4, 1) RDS in Z~ relative to Z~ given in Jungnickel (1982). 

Theorem 4.1. For each d 2: 1, the following exist: 

A (pdr, pdr, pdr) BS on z~d+l)r relative to z;, where p is prime and
r > l. 

(b) A (22d+ 1 , 22d, 22d-l) BS on any group Gd of order 22d+3 and exponent
at most 4 relative to a subgroup ud ~ z§ contained within two of the 
largest direct factors of Gd· 

(c) A (22d+2 , 22d+l, 22d) BS on any group Gd of order 22d+4 and exponent
at most 4 relative to a subgroup Ud ~ z§ contained within two of the
largest direct factors of Gd, except possibly G1 = Z~. 

Using Theorem 3.3 and the BSs of Theorem 4.1 we can recursivel
struct the following families of covering EBSs. The only non-trivial initial
covering EBSs required, for case (d), can be derived from the covering EBS
of Corollary 2.6 (which itself is given by putting d = 1 in case (a) below). 

Theorem 4.2. For each d 2: 0, the following exist: 

(a) A (pdr pdr p(d+l)r -l + 1 -) covering EBS on z(d+l)r where p is prime
' ' pr-1 ' p ' 

and r > l. 
(b) A (22d+i, 22d, 

22d:1+1 , -) covering EBS on any group of order 22d+3

and exponent at most 4. 
(c) A (3d,3d, 3d+;-1 ,+) covering EBS on zg+1 . 

( d) A (22d+2 , 22d+l, 
22d:2-1 , +) covering EBS on any group of order 22d+4

and exponent at most 4, except possibly Z~ in the case d = 1. 

By applying Theorem 2.10 to the covering EBSs of Theorem 4.2 we
deduce the existence of the following families of difference sets. 
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Covering EBS 

( h + ( ~; ~:}) t building blocks) 

• .. 
• 

Lift covering EBSs 
using G/Ho 

• • • 

Covering EBS 
(h +(pr+ l)t building blocks) 

Covering EBS 
(h + t building blocks) 

Covering EBS 
( h building blocks) 

BS 

(p(d-l)rt building blocks) 

• • • 

Lift BSs using G /Hi 
for i = 1, 2, ... , pr 

• • • 

BS 
(pr t building blocks) 

BS 
( t building blocks) 

Figure 1. Recursive construction of covering EBSs and BSs using Theorems 3.3 and 3.5 
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Corollary 4.3. For each d ::'.'.'. 0, the following exist: 
. f d d+l(qd+1_1 (a} A McFarland difference set in any group o or er q 

9
_ 1 + 1) 

with q =pr containing a subgroup isomorphic to EA(qd+I ), where pis
prime and r ::'.'.'. 1. 

{b} A McFarland difference set in any group of order 22d+3 ( 
22d~1 + 1 ) with 

q = 4 containing a subgroup of order 22d+3 and exponent at most 4. 

(c} A Spence difference set in any group of order 3d+1 ( 3d+;- 1 ) containing

a subgroup isomorphic to z~+ 1 . 
{ d} A Davis-Jedwab difference set in any group of order 22d+4( 

22d~2 -1)
containing a subgroup of order 22d+4 and exponent at most 4, except
possibly when the subgroup is Z~ in the case d = 1. 

This completes the summary of known results for the McFarland, Spence
and Davis-Jedwab parameter families. 

We consider next the Hadamard parameter family. The key initial object
required for the recursive construction of Hadamard difference sets is a 
(m(m2l ), m, 4, +) covering EBS on a group of odd order m 2. The following 
basic examples are currently known. 

Theorem 4.4. There exists a (m(m21),m,4,+) covering EBS on the fol
lowing groups M of order m 2 : 

(a} M is the trivial group. 
{b} M Z~a, where a::'.'.'. 1. 
{c} M = z:, where p is an odd prime. 

While case (a) of Theorem 4.4 is trivial, the other two cases are definitely
not! Case (b) is given in Arasu, Davis, Jedwab and Seghal (1993). Case (c) 
is given in Chen (1997), which built on a succession of papers: Xia (1992), 
Xiang and Chen (1996), van Eupen and Tonchev (1997), and Wilson and
Xiang (1997). 

The following result, based on a construction in Turyn (1984), allows us
to compose the (m(m2l ), m, 4, +)covering EBSs of Theorem 4.4 to produce
examples in more general groups. 

Theorem 4.5. Suppose there exists a (mi(m;2-
1 ), mi, 4, +) covering EBS

on a group Mi of odd order mt for i = 1, 2. Then there exists a covering
EBS on M1 x M2 with parameters (m1m2(m1 ~r 1 ),m1m2,4,+). 

We can use the covering EBSs given by composition, as described above, 
to derive appropriate initial BSs and covering EBSs for constructing the
Hadamard family. Recursive application of Theorems 3.3 and 3.5, followed 
by Theorem 2.10, leads to the following conclusion. We write Tii Za; to
denote the direct product of finitely many groups Za1 , Za2 , ••• , Zar for some
r ::'.'.'. 0, with the convention that in the case r = 0 this represents the trivial
group. 
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Corollary 4.6. Let M be the group I1i Z§ai x Tij Z~i, where each ai ~ 1 

and where each Pj is an odd prime, and let IMI = m 2
. Then the following 

exist: 

(a} A (m(m2l ), m, 4, +) covering EBS on M. 

(b} A (22d- 1m 2
, 2dm, 2) BS on Gd x M relative to any subgroup of order 2, 

where d ~ 1 and Gd is any group of order 22d and exponent at most 2d. 
(c} A (22d-1m 2 , 2dm, 4, - ) covering EBS on Gd x M, where d ~ 1 and Gd 

is any group of order 22d and exponent at most 2d. 
(d} A Hadamard difference set with N = 2dm in Gd x M, where d ~ 0 and 

Gd is any group of order 22d+2 and exponent at most 2d+2 . 

This completes the summary of known results for the Hadamard pa
meter family. 

We turn now to the Chen parameter family. In the recursive construc
tion of the McFarland, Spence, Davis-Jedwab and Hadamard families sum
marised above, the BSs used in Theorems 3.3 and 3.5 all have parameters 
of the form (a, .JOl, t) (and so give rise under Theorem 2.8 to semi-regular 
relative difference sets). In contrast the recursive construction of the Chen 
family uses (a, m, t) BSs for which m I- .JOl (which give rise to semi-regular 
divisible difference sets with >.1 I- 0, see Davis and Jedwab (1999)). 

The key step, both in the original constructions given in Chen (1997, 
1998), and in our recursive formulation (given in full in Davis and Jedwab 
(1999)), occurs in the derivation of suitable initial BSs from the restriction 
of Corollary 4.6 to elementary abelian groups. In the case leading to Chen 
difference sets with odd q, this key step involves replacing one of four build
ing blocks by its complement. In the case leading to Chen difference sets 
with even q, the key step involves modifying Theorem 3.5 to allow lifting 
with respect to "contracted" hyperplanes. Once these initial BSs have been 
derived we can recursively construct the following families of BSs using 
Theorem 3.5 (without modification). 

Theorem 4.7. 

{a} For each d ~ 0 there exists a (q2d+l ( y ), q2d+1, 4q2d) BS on EA(q2d+2 ) 

relative to EA(q2 ), where q = 3r or q = p2r for p an odd prime, and 
r ~ 1. 

{b} For each d ~ 1 there exists a ( q2d+l (q-1 ), q2d+l, 2q2d) BS on EA(2q2d+2 ) 

relative to EA(q2 ), where q = 2r and r ~ 1. 

We next use Theorem 3.3 and the BSs of Theorem 4. 7 to construct 
recursively an infinite family of covering EBSs. The initial covering EBSs 
are again provided by the restriction of Corollary 4.6 to elementary abelian 
groups. 

Theorem 4.8. For each d ~ 0 the following exist: 
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{a} A (q2d+ 1( ~ ), q2d+l, 4( 92;:~~ 1 
), +) covering EBS on EA(q2d+2), where 

q = 3r or q = p 2r for p an odd prime, and r 2 1. 

{b} A (q2d+1 (q - 1), q2d+ 1 , 2( 92;:~~ 1 
), +) covering EBS on EA(2q2d+2), 

where q = 2r and r 2 1. 

By applying Theorem 2.10 to the covering EBSs of Theorem 4.8 we 
obtain the following families of Chen difference sets. 

Corollary 4.9. For each d 2 0 the following exist: 

(a) A Chen difference set with q = 3r or q = p2r in any group of order

4q2d+2 ( 92;:~~ 1 ) containing a subgroup isomorphic to EA(q2d+2), where 

p is an odd prime and r 2 1. 
(b} A Chen difference set with q = 2r in any group of order 4q2d+2 (9

2

;:~~ 1 ) 
containing a subgroup isomorphic to EA(2q2d+2 ), where r 2 1.

5. Recursive Construction of Building Sets 

Whereas in Section 4 we used Theorem 3.5 only as required to provide suit
able families of BSs for the recursive construction of difference sets, in this
section we shall demonstrate that Theorem 3.5 is a powerful construction
method in its own right for generating families of BSs. These BSs in turn
yield families of semi-regular relative difference sets (under Theorem 2.8, 
when the parameters have the form (a, Jat, t)) or families of semi-regular
divisible difference sets, see Davis and Jedwab (1999). 

For an extended example we consider the (pr, pr, pr) BS on z~r rela
tive to z; of Corollary 2.6. We noted in Theorem 4.1 (a) that recursive
application of Theorem 3.5 to this BS yields: 

Theorem 5.1. Let p be prime and r 2 1. For each d 2 1 there exists a
(pdr, pdr, pdr) BS on z~d+l)r relative to z;. 

We now show that we can also derive from this initial (pr,pr,pr) BS a 
family of BSs whose building blocks again have modulus pdr but which are
defined on groups of lower rank than z~d+l)r. 

Example 5.2. Let p be prime and r 2 1. There exists a (p3r,p2r,pr) BS on
any group G2 of order p4 r and exponent at most p 2 relative to any subgroup
U2 3" z;, where G2/U2 contains a subgroup of index pr and exponent p.

Proof. By Corollary 2.6 there exists a (pr, pr, pr) BS on z~r relative to z;. 
Put s = pr in Lemma 2. 7 to obtain a (p2r, pr, 1) BS on any group G of order
p3r, relative to any subgroup U 3" z;, subject to the condition: G contains
a subgroup S (containing U) of index pr and exponent p. 

We now wish to apply Theorem 3.5 to obtain a (p3r,p2r,pr) BS on G2 
relative to U2 . We can do this provided there exists a subgroup Q2 3" z~r
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of G2 whose hyperplanes Ho, H1, ... , H;, when viewed as subgroups of 
c2, satisfy the conditions: Ho = U2 and, for each i =/:- 0, G2/ Hi contains 

3 subgroup S2/ Hi (containing Q2/ Hi) of index pr and exponent p. The 
case d = 2 of the group theoretic result stated as Lemma 5.5 shows that 
this condition on each of the factor groups G2/ Hi is implied by the single 
condition that G2/U2 contains a subgroup of index pr and exponent p, 
completing the proof. D 

For example, if G2 = z~r-2 x z;t1 (where r > 1) and we write the subgroup 
u2 ~ z; as being contained within r direct factors of G2 then all choices 
of U2 are allowed, except possibly U2 being contained within the subgroup 
z2r-2. This demonstrates that the position of the subgroup U2 within G2 
i/important. In particular, in the case r 2, Example 5.2 deals with all 
groups G2 of order p8 and exponent at most p2 and all subgroups U2 ~ Z~, 
except possibly G2 ~ U2 x z;2. We now repeat the above procedure. 

Example 5.3. Let p be prime and r 2'.: 1. There exists a (p5r, p3r, pr) BS on 
any group G3 of order p6r and exponent at most p3 relative to any subgroup 
U3 ~ z;, where G3/U3 contains a subgroup of index pr and exponent at 
most p2 and contains a subgroup of index p3r and exponent p. 

Proof. Puts= pr in Lemma 2.7 to obtain from Example 5.2a(p4r,p2r,1) 
BS on any group G of order p5r, relative to any subgroup U ~ z;, subject 
to the following condition: G contains a subgroup S (containing U) of index 
pr and exponent at most p2 such that S/U contains a subgroup of index pr 
and exponent p. 

We next wish to apply Theorem 3.5 to obtain a (p5r,p3r,pr) BS on G3 
relative to U3 . This can be done provided there exists a subgroup Q3 ~ z~r 
of G3 whose hyperplanes Ho, H1, ... , H;, when viewed as subgroups of G3, 
satisfy the conditions: Ho = U3 and, for each i =/:- 0, G3/ Hi contains a 
subgroup S3/ Hi (containing Q3/ Hi) of index pr and exponent at most p 2 

such that ( S3 /Hi)/ ( Q3 /Hi) contains a subgroup of index pr and exponent 
p. The case d = 3 of Lemma 5.5 shows that this condition on each of 
the G3/ Hi is implied by the condition that G3/U3 contains a subgroup of 
index pr and exponent at most p2 and contains a subgroup of index p3r and 
exponent p, completing the proof. D 

By repeating this procedure we obtain a BS on a group Gd of order p2dr 
and exponent at most pd relative to a subgroup Ud ~ z;, with the follow
ing accumulation of conditions on the factor group Gd/Ud (see Davis and 
Jedwab (1997) for a formal proof): 

Theorem 5.4. Let p be prime and r 2'.: 1. For each d 2'.: 1 there exists a 
(p( 2d-l)r,pdr,pr) BS on any group Gd of order p2dr and exponent at most 
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pd relative to any subgroup Ud ~ z;, where, for d > 1, Gd/Ud contains a 

subgroup of index p(2d-2j-l)r and exponent at most pl for j = 1, 2, ... , d-L 

The group theoretic lemma which allows conditions on the factor groups 
Gd/ Hi to be replaced by conditions on Gd/Ud (see Theorem 7.5 of Davis 
and Jedwab (1997) for a proof) is: 

Lemma 5.5. Let p be prime and d > 1, and let G be a group of order 
p2dr and exponent at most pd containing a subgroup U ~ z;. Suppose that 

G /U contains a subgroup of index p(2d-2j-l)r and exponent at most pl for 
j = 1, 2, ... , d-1. Then G contains a subgroup Q ~ z;r whose hyperplanes 
Ho, Hi, ... , Hpr, when viewed as subgroups of G, satisfy the following: 

(a) Ho= U. 
(b) For each i I- 0, G /Hi contains a subgroup S /Hi (containing Q /Hi) of 

index pr and exponent at most pd-l such that ( S /Hi)/ ( Q /Hi) con
tains a subgroup of index p(2d-2j-J)r and exponent at most pl for 

j = 1, 2, ... 'd - 2. 

Beginning with an initial example such as the (pr,pr,pr) BS considered 
above, repeated application of Theorem 3.5 and Lemma 5.5 gives a result of 
the form of Theorem 5.4, involving multiple conditions on the factor group 
Gd/Ud. For a particular example some of the conditions may be redundant. 
In the case of Theorem 5.4 it is straightforward to see by inspection that 
the conditions for j 1, 2, ... , d - 2 are all implied by the condition for 
j = d 1. Therefore Theorem 5.4 can be rewritten as: 

Corollary 5.6. Let p be prime and r ~ 1. For each d ~ 1 there exists a 
(p( 2d-l)r,pdr,pr) BS on any group Gd of order p 2dr and exponent at most 

pd relative to any subgroup Ud ~ z;, where, for d > 1, Gd/Ud contains a 

subgroup of index pr and exponent at most pd-l. 

For example, take Gd = Z~~ in Corollary 5.6 (so that the condition 
on Gd/Ud is always satisfied) and let P(r) be the number of partitions of 
the positive integer r. Then Theorem 2.8 shows that for each d ~ 1 and for 
any prime p there exists a (p2dr ,pr ,p2dr ,p(2d-l)r) semi-regular RDS in P(r) 

nonisomorphic groups of rank 2r relative to any subgroup z;. Two such 

groups are z;d+i x z;d and Zpd+r x Z~~- 1 . This shows that the group rank 
of the underlying BS, and also of the resulting RDSs, can remain fixed at 
2r as the group order grows without bound. 

Compare Theorems 5.1 and 5.4 as two possible outcomes of applying 
Theorem 3.5 to the (pr,pr,pr) BS of Corollary 2.6. To derive Theorem 5.1 
we constrained the group exponent at each stage to be p whereas for The
orem 5.4 we allowed the group exponent to grow by a factor of p at each 
stage. One consequence is that after applying Theorem 2.8 to these BSs, 
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the minimum group rank for the semi-regular RDSs arising from Theo
rem 5.4 can be as small as 2r but for those arising from Theorem 5.1 must 
be at least ( d + 1 )r. On the other hand the group exponent for the RDSs 
.a,rising from Theorem 5.1 can be as much as pdr+l but for those arising 
from Theorem 5.4 must be at most pd+r. This illustrates a trade-off be
tween a small rank and a high maximum exponent for the resulting RDSs. 
It is possible to derive other BSs representing intermediate points between 
the extremes of Theorems 5.1 and 5.4 by constraining the exponent of the 
group on which the BS is defined to be at most pc for a fixed value of c in 
the range 1 '.Sc '.S d (see Corollary 7.7 of Davis and Jedwab (1997)). 

In general, given a single initial example of a BS (which could com
prise just one building block) we can obtain an infinite family of BSs using 
Theorem 3.5. In some cases we can also produce further families of BSs by 
"contracting" the initial BS prior to recursive application of Theorem 3.5 
(as described in Davis and Jedwab (1997) and Davis, Jedwab and Mow
bray (1998)). Apart from the (pr,pr,pr) BS of Corollary 2.6 discussed as 
an extended example in this section, we have the following initial examples 
of BSs: 
Example 5. 7. The following BSs exist: 

(a) A (pr,pr/2 , 1) BS on 2~r relative to 2~, where pis an odd prime and 
r > l. 

(b) A(2r,2r/2, 1) BS on 24 relative to 22, where r 2:: l. 
(c) A (22r-l, 2(2r-l)/2, 1) BS on 24 x G relative to the subgroup 22 of 24, 

where r 2:: 1 is odd and G is any group of order 2r-l and exponent at 
most 4. 

(d) A (8, 4, 2) BS on 2~ x 2 2 relative to the subgroup 2~ of 2~. 
(e) A (8, 4, 2) BS on 2 2 x 2~ x 22 relative to the subgroup 2~ of 22 x 2~. 
(f) A (2P(2P-1) 2 ' 2Pf2 (2P-1), 1) BS on 2~ x 2~P-1 relative to the subgroup 

2~ of 2~, where 2P - 1 is prime. 
(g) A (22r3, 2r /3, 1) BS on 2~r x 2~ relative to the subgroup 2 3 of 2~, 

where r 2:: l. 
Cases (a) and (b) are equivalent to semi-regular RDSs constructed in 

Jungnickel (1982), case (c) is equivalent to semi-regular RDSs constructed 
in Chen, Ray-Chaudhuri and Xiang (1996), and cases (f) and (g) are equiv
alent to semi-regular RDSs constructed in Davis, Jedwab and Mowbray 
(1998). Case (d) is contained in Example 2.12 and case (e) is given in Davis 
and Jedwab (1999a). Further initial examples of BSs on groups whose order 
is not a prime power are described in Davis, Jedwab and Mowbray (1998). 

The families of BSs arising from these examples under recursive ap
plication of Theorem 3.5, and the semi-regular RDSs then arising under 
Theorem 2.8, are described in Davis and Jedwab (1997) for cases (a), (b), 
(c) and (d), in Davis and Jedwab (1999a) for case (e), and in Davis, Jedwab 
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and Mowbray (1998) for cases (f) and (g). Certain extensions to Lemmas 3.7 
and 5.5 are required to handle some of these examples. In particular, cases 
(b), (c), (d), {e) and (f) involve a BS on a group G relative to a subgroup 
U ~ 'll./ such that U is contained in a subgroup of G not isomorphic to 
'l!I, anJ this must be taken into consideration when Theorem 3.5 is applied 
r:cursively. We note that for cases ( f) and (g) we can obtain additional farn
ilies of semi-regular RDSs by means of a product construction, see Davis 
Jedwab and Mowbray (1998). 

Finally we remark that when the subgroup U has order 2 the pattern 
of existence for semi-regular RDSs is very rich. We have already seen ex
amples in Corollary 4.6 (b) of BSs which give rise to such RDSs under 
Theorem 2.8 and Davis and Jedwab (1997) gives recursive constructions 
for further families originating with the covering EBSs of Corollary 4.6 (a). 

6. Open Questions 

- The construction of Hadamard difference sets described in Section 4 
relies on the existence of a ( m( m2 l), m, 4, +) covering EBS on a group 
of odd order m 2 . Can we find any examples apart from those of The
orem 4.4 and their compositions under Theorem 4.5? 

- The construction of Hadamard difference sets described in Section 
for which n = N 2 is not a prime power depends on Theorem 4.5. Is 
there an analogous composition theorem for McFarland difference sets 
or for Chen difference sets? 

- The construction of Chen difference sets with q = 2r summarised in 
Corollary 4.9 (b), when applied to the case q = 2, does not deal with 
all the groups covered by Corollary 4.3 (d) even though the parameters 
then coincide. Does this point to the construction of Chen difference 
sets in new groupt with q = 2r > 2? 

- The construction of McFarland difference sets described in Section 4 
includes results specific to the case q = 4 (which are summarised in 
Corollary 4.3 (b) and contribute the existence part of Theorem 1.4). 
Can we find comparable results for McFarland difference sets with 
q = 2r > 4? 

- Chen (1999) gives necessary conditions on the parameters of certain 
covering EBSs. Can we find difference sets in new parameter families 
by constructing covering EBSs satisfying these conditions? 

- Ionin (1998) gives a recursive construction for symmetric designs rely
ing on building sets and covering EBSs and as a consequence produces 
seven new infinite families of symmetric designs. Can we apply this 
method to find further new symmetric designs? 
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