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1. ABSTRACT 

 

The aim of this project is to develop a noninvasive serum test that predicts histologic 

forms of myocarditis (inflammatory) and dilated (non-inflammatory) cardiomyopathy using 

proteomic techniques to analyze serum proteins. Idiopathic dilated cardiomyopathy (DCM) 

and myocarditis (myocardial inflammation) represent a spectrum of heart muscle disease of 

various etiologies that usually present with progressive heart failure. Together, they 

constitute the leading cause of heart transplantation in the United States. Currently, the gold 

standard of diagnosis of myocarditis is by endomyocardial biopsy (EMB) and 

histopathological classification according to the Dallas Criteria1; however this diagnostic 

technique is severely limited by its invasiveness, a lack of sensitivity and an attendant 

sampling error, yielding diagnostic information in only 10-20% of the cases2. As such, the 

development of a non-invasive highly specific test for myocarditis is of great value and 

importance particularly in the diagnosis of giant cell myocarditis, a rare but very fulminant 

form of autoimmune myocarditis where timely institution of appropriate 

immunosuppressive therapy significantly increases transplant-free survival.3  

We proposed, using an observational case-control study, to undertake a proteomic 

analysis to compare serum proteomic profiles - determined by mass spectroscopy and 

isotope tagging- with histologic findings on endomyocardial biopsy. Our hypothesis is that 

different forms of myocarditis and dilated cardiomyopathy have distinct serum protein 

profiles and that these unique profiles which correlate with specific histologic types, will 

allow for noninvasive diagnosis of major forms of myocarditis and DCM. 
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2. SPECIFIC AIMS/HYPOTHESES 

 

Idiopathic dilated cardiomyopathy and myocarditis together constitute the leading 

cause of heart transplantation in the United States. Worldwide, approximately 45% of all 

heart transplants are performed for IDC and up to 8% for myocarditis4. The current gold 

standard of diagnosis with endomyocardial biology and classification by the Dallas criteria is 

invasive - with a significant risk for major complications - and has low sensitivity and 

specificity for diagnosis. In the patient with acute dilated cardiomyopathy, prognosis of 

DCM varies with the histopathology found on biopsy. Thus, the central question addressed 

by this project is: “are there noninvasive tests that can accurately predict histolopathology in 

patients with acute cardiomyopathy?” Such tests would be of great benefit in clinical 

management and the assessment of prognosis in patients presenting with acute 

cardiomyopathy. We proposed to address this central question by testing the following 

hypothesis: 

We hypothesized - based on the distinct clinical and histopathology characteristics of 

giant cell myocarditis (GCM), lymphocytic myocarditis (LM) and idiopathic dilated 

cardiomyopathy (DCM) - that there are specific proteome modifications induced by or 

associated with each disease state which results in differential expression of proteins in the 

serum.  

To test our hypothesis, we proposed the following specific aims: 

 

Specific Aim 1: To reproducibly characterize the quantitative and qualitative changes in 

serum protein expression in: 
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i) Acute giant cell myocarditis, 

ii) Acute lymphocytic myocarditis,  

iii) Idiopathic dilated cardiomyopathy  

As compared to normal age and weight-matched controls.  

Specifically, we used mass spectrometry based techniques for identification, isotope labeling 

for quantification and biostatistical methods for multivariate analysis of differential protein 

expression. 

Specific Aim 2: To determine the sensitivity and specificity of the protein profiles for each 

disease state and identify potential serum cardiac biomarkers, which could be applied in 

novel diagnostic modalities, using statistical and biological correlation.  

Our immediate emphasis in this part of the project, is on the characterization of the 

quantitative and qualitative differences between serum proteins in the different disease 

states. We proposed to determine the differences in the protein expression profiles in acute 

LM, acute GCM and idiopathic DCM as compared to normal subjects using broad-based 

proteomic screening techniques. Such differences would likely occur in up-regulation of 

immune proteins including the inflammatory cytokines, up-regulation of membrane proteins 

related to the formation of multinucleated giant cells in GCM, expression of viral proteins in 

LM and in DCM, the dysregulation of cytoskeletal proteins such as actin, lamin, dystrophin. 

Myosin light chain  and other proteins linked to proven genetic mutations in DCM..  
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3. BACKGROUND/SIGNIFICANCE 

 

Myocarditis is defined as an inflammatory process of the muscular walls of the myocardium 

which result in injury to the cardiac myocytes. Manifestations range from sub-clinical disease 

to sudden death. Myocarditis in association with cardiac dysfunction is classified as 

inflammatory cardiomyopathy and is usually caused by infections from viruses like 

enterovirus and adenovirus etc., autoimmune diseases, or responses to toxic substances. It is 

also thought to be a common cause of dilated cardiomyopathy and other cardiomyopathies5 

from evidence of viral persistence in the myocardium in patients with idiopathic dilated 

cardiomyopathy6.  Idiopathic dilated cardiomyopathy is a heterogenous classification 

characterized by ventricular dilatation and diminished contractile function of unknown 

etiology. It is usually a chronic and histologically is not associated with active inflammatory 

infiltrates. In the USA, the estimated prevalence of DCM is 36.5 cases per 100,0007 and in a 

review of 1230 cases of initially unexplained cardiomyopathy in the USA, 9% were thought 

to be due to myocarditis8.  There are several different histopathologic forms of myocarditis. 

These include viral or lymphocytic myocarditis, most commonly due to adenoviruses like 

coxsackie virus, enteroviruses and several other viral and bacterial agents. It is characterized 

by interstitial lymphocytic infiltrates within the myocardium with little by way of myocardial 

necrosis as shown in Figure 1 below. 
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Another distinct form of myocarditis is Giant Cell myocarditis, a form of autoimmune 

myocarditis characterized by the  presence of giant cells in the myocardium with areas of 

myocyte necrosis and no signs of viral infiltration as shown in Figure 2 below. 

 

 
 

 

Figure 1: Lymphocytic Infiltrates in viral myocarditis. WebPath 

Figure 2: Giant cells in the myocardium with areas of myocyte necrosis and 
granuloma. WebPath. 
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In idiopathic dilated cardiomyopathy, the molecular features can include myocyte  

hypertrophy with myocyte degeneration and increased interstitial fibrosis.  

Prognosis in myocarditis varies by histological type 

 

Prognosis in myocarditis is dependent on the histological type diagnosed by biopsy and 

classification according to the Dallas Criteria. For instance, the 5-year survival rate in 

patients diagnosed with GCM is approximately 10% as compared with patients diagnosed 

with lymphocytic myocarditis shown in the Kaplan-Meier survival curve below. 

 

 

Early diagnosis and appropriate treatment improves transplant-free survival especially in Giant Cell 

myocarditis (a rare but fatal autoimmune myocarditis) that requires immune suppression in addition 

to standard heart failure treatment as shown in the Kaplan-Meier curve below. This unpublished data 

from the GCM treatment trial  showed  a significant survival benefit for patients treated with a 

regimen consisting of cyclosporine, azathioprine and OK-T3. 

Figure 3,Transplant-free survival in GCM and LM. n=63 in GCM and n=111 in LM groups. P<.0001 by log-rank 
test. From Cooper, et. al., N Engl J Med 1997 336:1860-66. 
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Diagnosis of Myocarditis by Endomyocardial Biopsy and the Dallas Criteria 

The gold standard in the diagnosis of myocarditis is by endomyocardial biopsy and 

pathologic identification using the Dallas Criteria.9 However this diagnostic standard is 

plagued by a lack of an attendant sampling error, a lack of sensitivity, and considerable 

intraobserver variability in the identification of inflammatory infiltrates, yielding diagnostic 

information in only 25% of cases.10  

 

 

 

 

 

 

Figure 4. Transplant-free survival in 11 GCM patients treated prospectively with cyclosporine-based 
immunosuppression compared to 16 GCM historical registry patients treated with no immunosuppression or 
steroids alone. p=.00026. All patients were diagnosed by biopsy. 

Figure 5: Right heart endomyocardial biopsy is gold standard for diagnosis of myocarditis. www.stanford.edu/biopsy 
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The Myocarditis Treatment Trial reported poor concordance between the clinical diagnosis 

of myocarditis and histopathological diagnosis from EMB with histopathologic evidence of 

myocyte inflammation in only 214 of 2233 patients enrolled in the trial. Furthermore the 

risks of biopsy include a 1 in 1000 risk of death and 1 in 250 risk of perforation in 

experienced hands11 and also a risk of arrhythmias which preclude its routine clinical use. In 

effect, EMB is increasingly viewed “tarnished” standard for diagnosis of myocarditis, 

necessitating the development of better diagnostic standards12 

 

Cardiac Biomarkers and Markers of immune up-regulation in myocarditis 

 

There are several other biomarkers that have potential applicability in the clinical diagnosis 

of myocarditis. Standard markers of myocardial damage including Troponin – I, CK-MB 

have good specificity but limited sensitivity in the diagnosis of myocarditis. Lauer et al report 

for Troponin I, a sensitivity for detecting myocarditis of 53%, specificity of 94%, a positive 

predictive value of 93% and a negative predictive value of 56%13. Antibodies to a variety of 

cardiac autoantigens such as myosin heavy chain, the β-adrenergic receptor, mitochondrial 

antigens, and the adenosine diphosphate and triphosphate carrier proteins14 have also been 

demonstrated in the sera of patients with acute myocarditis. Recent advances in the use of 

PCR and the description of HLA typing for the diagnosis of myocarditis have furthered 

diagnostic capabilities15. However, these techniques have limited clinical applicability due to a 

lack of specificity and still require invasive testing, in most cases, to obtain the myocardial 

tissue required for the tests.   
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Change in Protein Expression in Myocarditis. 

The pathogenesis of myocarditis is thought to occur via several different 

mechanisms. These include a direct myocardial invasion by cardiotropic viruses, activation of 

CD4 cells leading to clonal expansion of B cells and production of cardiac auto-antibodies or 

the production of pro-inflammatory cytokines including IL-1, IL-2, TNF-∝and IFN-γ . In 

essence, the acute injury to the myocardium is accompanied by distinct changes in the 

protein expression profile and is more likely induce rapid post-translational modifications in 

the proteins as compared to the co-translational changes that occur with altered gene levels 

in chronic disease stated such as dilated cardiomyopathy16.  

 

 

 

 

 

 

 

 

 

 

Recent work on the gene expression in giant cell myocarditis myocardial samples, as 

compared to normal hearts show an up-regulation in genes involved in immune response, 

transcriptional regulation and metabolism17 suggesting that similar changes are likely in 

protein expression. 

 

 

 

Figure 6: Pathogenesis of experimental autoimmune myocarditis varies in the acute, subacute and chronic 

stages of myocarditis. Feldman and McNamara NEJM, 343 (19): 1388 
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Clinical Proteomics in Myocarditis 

Clinical proteomics involves the identification of protein patterns of disease in order to 

improve patient care and public health through better assessment of disease susceptibility or 

selection of therapy for the individual. The National Heart Lung and Blood Institute 

(NHLBI) Clinical Proteomics Working Group18 identified an opportunity in the use of 

modest numbers of well characterized clinical specimens for the discovery of such protein 

markers. Proteomic analysis provides a mechanism for the broad-based screening of the 

proteome to characterize the quantitative and qualitative modifications that are secondary to 

each disease process. Previous work in the analysis of myocardial tissue from animal and 

human models of cardiomyopathy have shown that the differential change in myocardial 

proteins such as the myosin light chain. This and other changes in the failing heart 

discovered through myocardial proteomics are cataloged online on the World Wide Web19. 

Although there have been some advances made in tissue proteomics in cardiovascular 

diseases, the proteomic analysis of the serum remains a novel approach in the investigation 

of diagnostic, prognostic and therapeutic markers of cardiovascular disease.  

Figure 7; The gene expression profile in GCM is significant for a marked up-regulation in the immune

 response genes in GCM as compared to normal. Kittleson, M.M et al, Int. J Cardio 102 (2005) 
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Given the ease of obtaining serum, and the widespread clinical use of other serum 

biomarkers in cardiovascular disease, it holds promise for the discovery of novel biomarkers. 

Recent advances in protein separation techniques, isotope tagging and increased sensitivity 

of mass spectrometry now allow for broad-based screening of the serum proteome20. More 

recently, classifications from the Human Proteome Organization (HUPO) have identified 

cardiovascular-related proteins found experimentally in the human serum21 based on several 

proteomics platforms. Of relevance is the grouping of these proteins putatively by functional 

class into eight broad groups: markers of inflammation and/or cardiovascular disease, 

vascular & coagulation, signaling, growth & differentiation, cytoskeletal, transcription 

factors, channels/receptors and markers of heart failure. This provides the beginnings of a 

serum proteomic blueprint for future development of new diagnostic and prognostic 

markers for cardiovascular disease. 

4. PRELIMINARY DATA  

The research was conducted under the primary supervision of Dr. Leslie Cooper22 who has 

an established interest and expertise in myocarditis research and has several current research 

protocols on the treatment of myocarditis (Giant Cell Treatment Trial, IMAC trial.)  The 

team also included individuals with expertise in current proteomic technologies and 

techniques in clinical proteomics (Dr. Sreekumar Raghavakimal, Ph.D. and Xuan-Mai 

Persson of the Mayo Proteomics Core Facility).  

State of the art proteomic research facilities and mass spectrometer were available through 

the Mayo Proteomics core laboratory and the General Clinical Research Center (GCRC). In 

addition, the team includes a biostatistician (Ann Oberg PhD) who had expertise in the 

design and analysis of proteomic data and a Research Nurse, Annette McNallan is to assist 

with the collection and coding of samples.  
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a. Proteomic comparison of plasma samples of GCM and normal control: 

As proof of concept, we performed multidimensional liquid chromatography – quadrupole 

time of flight mass spectrometry (LC/MS/MS) analysis on plasma samples of one patient 

with GCM, one patient with DCM, one patient with LM and one normal control under a 

feasibility study protocol. Briefly, the samples were separately filtered through a Microbead 

separation column; the samples were labeled with an isotopic label, combined in equal 

protein amounts after labeling and analyzed by mass spectrometry with LC/MS/MS. 

Protein and peptides were identified using two separate and independent search engines 

ProQuant (ABI) and MASCOT (Matrix Science) against the human non-redundant database. 

Protein and peptide quantifications from the labeled isotopes were obtained through the 

ProQuant software (ABI). Our results show the upregulation of inflammatory markers like 

CRP and cytokines in the GCM group, as expected. In each sample, approximately 2800 

unique proteins were identified with approximately 200 proteins differentially expressed at a 

widely accepted arbitrary ratio of 1.2 or greater or a ratio of 0.8 or less. 

Giant Cell Myocarditis vs. Normal Control Proein profiles
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Figure 8: Difference in protein expression (ratios greater or less than one) between GCM and Normal controls 
at different confidence scores (p-values) Ratio >1 is up-regulated, Ratio < 1 are down-regulated, p-value <0.05 
is considered significant 
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Table 1: Select protein expression ratios and p-values in a patient with GCM (116:114, ratio of GCM to 
Control) and a normal control, run twice (114 and 117).  Inflammatory markers like CRP and complement are 
significantly elevated in disease subjects versus control.  

 

5. STUDY DESIGN AND METHODS 

 

Study Design:  
 
This is an observational case-control study with matched cases and controls conducted in 
two phases. We studied:  
 

• 10 cases of biopsy-proven giant cell myocarditis (GCM),  

• 10 cases of biopsy-proven lymphocytic myocarditis (LM) and  

• 10 cases of biopsy-proven idiopathic dilated cardiomyopathy (IDCM),  

• 10 normal controls 

P Val 116:114 Ratio 116:114 Protein Name 

0.0001 1.2456 hemopexin precursor  
0.0001 1.3703 inter-alpha-trypsin inhibitor family heavy chain-related protein  
0.0003 0.7645 Afamin precursor (Alpha-albumin) (Alpha-Alb)  
0.0004 0.6965 gelsolin isoform b  
0.0006 0.7131 proapolipoprotein  
0.0011 0.6081 Inter-alpha-trypsin inhibitor heavy chain H2 precursor (ITI heavy chain H2) (Inter-alpha-inhibit or h) 
0.0012 1.414 similar to hypothetical protein  
0.0023 0.5505 alpha2-HS glycoprotein 
0.0027 0.5951 Serotransferrin precursor (Transferrin) (Siderophilin) (Beta-1-metal binding globulin) (PRO 1400) 
0.003 2.2001 Plasma protease C1 inhibitor precursor (C1 Inh) (C1Inh)  

0.0096 1.4609 Complement component C9 precursor  

0.0099 1.3213 Unnamed protein product 

0.0118 4.4887 alpha1-antichymotrypsin  
0.0123 1.2789 complement component 6  

0.0133 0.7846 A Chain A, Antithrombin Iii  
0.0136 0.6324 Insulin-like growth factor binding protein, acid labile subunit  
0.0143 0.6147 A Chain A, Serum Amyloid P Component (Sap)  
0.0203 0.7793 Thyroxine-binding globulin precursor (T4-binding globulin)  
0.0205 9.8728 CRP protein  

0.0267 2.3294 B Chain B, Cleaved Alpha-1-Antitrypsin Polymer  
0.0331 1.2829 complement component 5  

0.0504 0.5871 Tetranectin precursor (TN) (Plasminogen-kringle 4 binding protein) 
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PHASE I      PHASE II 

Each case was compared to a normal age and sex matched control. Given the inherent 

biological variations in serum protein profiles described with age, sex and body habitus, we  

controlled for these factors by one-to-one matching to minimize bias in our analysis. Cases 

were examined as a matched set for proteomic analysis using 4-isotope labeling. To minimize 

the effects of isotope-isotope interaction, isotope labels were randomly assigned to each 

disease or normal grouping.  

 

Power and Sample Size:  

 

Given the rarity of the conditions under study and the difficulty in ascertaining an effect size 

a priori, the calculation of sample size in this design is dependent on a back-calculation from 

the total number of cases available for study.  Thus, with a study design of 10 patients in 

each group, and an estimated effect size of 1.2 or 0.8, with a co-efficient of variation of 80, 

we can achieve 80% power at 0.05 p-value. For the multivariate analysis of protein 

expression, we will consider a lower p-value of 0. 01 to account for multiple hypothesis 

testing.  
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Figure 9: Relationship between sample size, variation and sample power. 

Study Population:  

Samples for the Proteomic analysis had already been obtained as part of previous research 

protocols and the project was approved by the IRB at the Mayo Clinic. All subjects had 

given written informed consent for their samples to be stored and used in the study of other 

disease conditions. Serum samples were available from patients with giant cell myocarditis, 

lymphocytic myocarditis and idiopathic dilated cardiomyopathy both in the acute and post-

treatment phases of disease with corollary clinical data also available on the course of 

disease. Serum samples with similar storage time frames were also available from age and 

weight-matched normal controls for comparisons. The use of age and weight matched 

controls in this case was done to reduce the biologic variations in the proteome associated 

with those factors. This study used subjects with stored serum samples from previous Mayo 

Clinic protocols. The relevant protocols include: 

2186-04 A Phase 1, Open-Label. Pilot Study to Assess the Safety of Immunoadsorption 
Using the Fresenius Immunoabsorba for Chronic Dilated Cardiomyopathy, L Cooper PI 

 

2288-03 Genetic Modulation of LV Recovery Project, L Cooper PI 

 

468-02 The Role of Autoantibodies and Cytokines in Myocarditis, L Cooper PI 
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754-00 Thromboangiitis Obliterans (Buerger’s Diseases) Registry, L Cooper PI 

 

147-99 A Multicenter Randomized Study to Evaluate the Efficacy of Monomurab-CD3, in 
Subjects with Giant Cell Myocarditis, L Cooper, PI 

  

1792-03 UNIPATH study normal controls. 

 

Inclusion Criteria:  

 

We included subjects with the following criteria in the study: 

• Biopsy proven cases of DCM, LM (by Dallas Criteria), IDCM 

• Subjects with stored serum samples obtained during the acute phase of disease 

(i.e. within 7 days of diagnosis and before the institution of immuno-modulatory 

treatment) 

• Age greater than 18 years 

• Written informed consent available for use of samples. 

 

Research Methods:  

There are 3 major sequential steps in the proteomic analysis of serum which we employed in 

this study. 

 

Step 1: Sample Preparation:  

 

Protein Depletion: Given the complexity of the proteins in the plasma and the wide dynamic 

range of concentrations -- greater than 10 orders of magnitude -- it is important to simplify 

the composition of serum through protein depletion. This allows for the detection of low-

abundance proteins after the removal of the 12 most abundant proteins that account for 
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95% of the protein content of the serum. 

The protein depletion was done using Genway Biotech’s Seppro Microbead-conjugated 

avian IgY   antibodies to specifically remove human serum albumin, IgG, IgA, IgM, 

transferrin, fibrinogen, apolipoprotein A-I, apolipoprotein A-II, haptoglobin, α-1 antitrypsin, 

α-1 acid glycoprotein and α-2 macroglobulin23. The use of this system allowed for the 

recovery of all three separate fractions of proteins in the serum as shown below. Each 

fraction was analyzed separately, starting with the least abundant protein fraction, to 

characterize the full spectrum of serum protein. 

 
 

Figure 10: Protein Separation Schema 
 
 
Isotope Labeling: Briefly, 100µg of protein post-depletion from each serum sample was 

separately reduced, denatured, cysteine blocked and tryptic digested according to the Applied 

Biosystems (ABI) iTRAQ protocol. The 4 samples were labeled with the 114, 115, 116 and 

117 isotope iTRAQ reagents according to the randomization plan as described in the study 

design section. The samples are combined after labeling for further analysis on the mass 

spectrometry. 

Protein Sample

90% most abundant 
proteins 

Non-specifically 
bound proteins 

5% least abundant 
proteins 

Labeling 
Tryptic Digest 

Microbead 
Separation Column 
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Step 2:  Liquid Chromatography/Mass Spectrometry analysis (LC/MS/MS) 

 

Following combination of the fractions, the peptides were fractionated on a strong cation 

exchange column prior to introducing to a capillary LC/MS/MS system (Ultimate, LC 

packings and QSTAR ABI.) Independent data acquisition from each fraction is obtained 

using the Analyst QS system. 

 

 

 

 

 

 

 

 

Step 3 : Protein Identification and Quantification:  

  

 
 
Figure 12: Mass Spectrometry Analysis of differential protein expression using in-vitro isotope tagging.24 
 

 

Figure 11: QStar ABI Mass Spectrometer, and graphical representation of a sample fraction after analysis on 
mass spect. 
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Protein Identification:  

Following the analysis of the samples on the mass spectrometry, the data obtained (peptide 

mass fingerprint after tandem MS/MS)  was reconstructed into its parent peptide sequence 

and queried against known protein databases – SEQUEST and MASCOT using the Applied 

Biosystems (ABI) proprietary ProQuant software25. We chose to use this software because it 

qualifies the identified protein in a non-redundant score, assigning confidence scores (p-

values) to the proteins such that species with higher scores have a higher likelihood of being 

present in the analyte and are easily identified. To validate our system, we will analyze the 

known fraction of specifically bound proteins (from the protein separation step) as an 

internal control. 

Protein Quantification:  

The quantification of various protein expression levels in our experimental set-up was 

carried out by analyzing the quantities of the isotope-tagged fragment of each protein. 

Isotope tagging was done using the proprietary iTRAQ system. This involves the use of  an 

isobaric mass tag attached to a peptide reactive group (PRG). The isobaric tag is actually 

composed of a reporter mass and a balance mass which makes it isobaric. The reporter 

masses vary from 114 to 117, producing 4 separate masses that allow for the comparison of 

up to four separate samples simultaneously.  

 

Figure 13: iTRAQ chemical tagging schema.  http://www.proteome.soton.ac.uk/iTRAQ 
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The peptide reactive group attaches to the C terminal of the amino acid, thus attaching the 

isotope tag to  all amino acids in the sample of interest. Following combination of the 

samples and mass spectrometry analysis, the unique fragmentation pattern identifies the  

peptide sequence in question, whilst the reporter or mass ions give a measure of the 

abundance of the peptide/protein species in the samples as shown in Figure 14 below. 

 

 

 

 

 

 

 

 

 

This information is contained in the ProQuant analysis and is expressed as a ratio of a given 

tag to a pre-selected baseline tag, which is usually chosen to correspond to the normal 

control. Proteins are grouped into four categories from this analysis: 

i. up-regulated (ratio >1.2) 

ii. down-regulated (ratio <0.8) 

iii. absent in patient but present in control 

iv. present in patient but absent in control. 

 

Figure 14: Principles of isotope tagging using iTRAQ. http://www.proteome.soton.ac.uk/iTRAQ.htm 
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To validate the identification and quantification of the protein data obtained from the 

ProQuant Analyst software, we will use an independent protein analysis software, the i-

Tracker26 (open source : www.i-Tracker.com) to query the non-redundant databases and 

determine the accuracy of our analysis by correlation studies.  

Statistical Analysis: 

Specific Aim 1: To characterize the qualitative and quantitative changes in the serum 

expression profiles, we used two analytical methods: 

Univariate Analysis - Average of Ratios:   One dimensional analysis of the average change 

in the expression of proteins will be done by determining the average ratios of expression of 

a given protein across all ten sets of experiments (provided that the bias or error scores are 

similar between sets.) To normalize the distribution and provide a robust analysis of the 

ratios, conversion to the log space is necessary, as shown below. 

 
Figure 15: Transformation of ratios into log space for univariate analysis 
 

Multi-dimensional analysis: The simple analysis of ratios fails to take into account the 

correlation between the expression levels of various proteins within the same disease state or 

amongst normal subjects i.e. it is likely that the changes in protein expression levels are 

correlated to a panel of proteins rather than a change in a single protein. Furthermore, the 

inherent biological variation can confound the ability to conclude that any differences are 

due to the true changes in the protein expression27. Thus to analyze this, we will use 

dimensional scaling or a dimensionality reduction procedure, primarily principal components 
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analysis (based on the pooled data on all subjects.) 

This technique, which does not require prior knowledge of the disease state (i.e. blinded 

analysis) involves calculating the distance between individual samples in n –dimensional 

space using a variety of matrices such that similar samples cluster close to each other and 

dissimilar samples cluster far away. Using this scaling, one can test whether the group means 

for the multi-dimensional scaling coordinates are different among groups, using standard 

Multivariate ANOVA measure like a Hotelling T test. 

Specific Aim 2: 

 To evaluate the sensitivity and specificity of the serum protein markers identified by 

profiling, boosted decision tree analysis and Euclidean distance vectors can be used to 

determine specific proteomic patterns. To ascertain the biological relevance of the 

differences in expression profile, we will do protein expression pathway analyses, localization 

and functional annotation to delineate the importance of the proteins within the metabolic 

pathway. These analyses can be performed on human proteins using the appropriate 

software (Pathway analysis from MetaCore, Pathway assistance from Stratagene and 

functional annotation from KEGG.) 

 

Oyere K. Onuma performed all the experiments presented below, including the sample 

preparation and data analysis. The mass spectrometer was operated in the Proteomics Core 

Laboratory, Mayo Clinic Rochester. Biostatistical support was also provided by the 

Department of Biostatistics, Mayo Clinic Rochester. 
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RESULTS: 

 

Protein separation using the Seppro column was reproducible. 

 

 

In the figure above, the depletion of the 12 most highly abundant proteins using the Seppro 

affinity column is highly consistent and reproducible. In the two end lanes in the gel shown 

above , the whole un-fractionated serum shows a heavy albumin signature. However post-

depletion (lanes 2-14) albumin is markedly depleted, allowing for the appearance of less 

abundant proteins in the serum profile. 

GCM (ACUTE VS. CONVALESCENT) 

In Phase I studies, we compared serum samples in acute Giant cell myocarditis as compared 

to convalescent myocarditis. Serum samples from eight patients with histopathologic and 

clinical diagnosis of giant cell myocarditis were included in an observational case-control 

study in self-matched pairs. Briefly, the serum samples were separately filtered through an 

antibody-affinity microbead separation column; trypsinized, isotope labeled, combined and 

Figure 16: 1-D Gel showing serum fractions pre- and post- depletion

Albumin 
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analyzed by tandem mass spectrometry. Proteins with a fold change of 20% were defined as 

differentially expressed and pathway analysis of differential proteins was performed by 

comparison with published protein groupings. Of more than 600 differentially regulated 

proteins across the eight sets, there was marked up regulation in acute GCM of immune and 

defense proteins (n=217) such as C-Reactive Protein and the Complement proteins. Proteins 

involved in lipid, fatty acid and steroid metabolism, such as the apolipoproteins show 

significant down regulation in acute GCM as shown in Figure 17. Pathway analysis of 43 

common differentially expressed proteins also highlighted activation of the immune 

response and lipid metabolism molecular pathways. 

Differential Protein Expression
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When compared to previous results on GCM gene expression from work done by Kittleson 

et al, our results show an interesting concordance with the marked up-regulation in immune 

defense proteins across platforms (gene expression versus proteomics) and also across 

Figure 17. : Number of known proteins upregulated or downregulated in serum of acute versus convalescent patients with 
giant cell myocarditis classified by molecular function. AA_METB, amino acid metabolism; APOP, apoptosis; 
CARB_METB, carbohydrate metabolism; IMNDEF, immunity and defense; LIPID/STE, lipid, fatty acid and steroid 
metabolism, NUCLEOSIDE, nucleoside, nucleotide and nucleic acid metabolism, SIGDUCT, signal transduction. 
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Differential Protein Expression
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biological samples (tissue versus serum) as shown below, thus validating the serum proteomics 

approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Select Differentially Regulated Proteins in Acute Vs. Convalescent GCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Immunity and Defense 

– Complement component 4a 

– Complement C4A precursor 

– Complement 4B proprotein 

– Complement C3 precursor 

– Complement C5 precursor 

– Beta-2-glycoprotein I precursor (Apolipoprotein H) 

– Complement factor H precursor 

– CRP protein 

 

B-cell and antibody-mediated immunity 

– anti-HBsAg immunoglobulin Fab kappa chain 

– immunoglobulin lambda light chain VLJ region 

– Ig L-chain V-region 

– Ig heavy chain, variable region 

– Ig kappa chain variable region 

– immunoglobulin kappa chain variable region 

Complement mediated immunity 

– C9 complement protein  

– complement C3d/Epstein-Barr virus receptor precursor - human  

– immunoglobulin J chain  

– complement component 1, q subcomponent, gamma polypeptide  

– Complement component C9 precursor  

– Complement component C7 precursor  

 

Lipid, Fatty Acid and Steroid Metabolism 

– proapo-A-I protein  

– proapolipoprotein  

– apolipoprotein D, apoD  

– lipoprotein Gln I  

– Apolipoprotein E precursor (Apo-E)  

– Hypothetical protein (Fragment)  

– Apolipoprotein A-IV precursor (Apo-AIV)  

– Retinoic acid receptor RXR-gamma  

 

  GCM SERUM PROTEINS              GCM TISSUE GENES 
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Pathway Analysis 

Pathway analysis was done using the MetaCore Pathway Analysis program. This is a web-based 

software for molecular pathway analysis. It allows for the analysis of proteomic software in the 

context of known molecular and metabolic pathways.  Preliminary Pathway analysis of the 

differentially regulated proteins in acute vs. convalescent GCM was significant for the highlighting 

the immune defense pathways and the lipid metabolism pathways., suggesting that these pathways 

might play a significant role in the  pathogenesis of giant cell myocarditis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
GCM Acute Vs. Convalescent : Network2 -- GRB14, CRP, 
DDR1, EDD, Ubiquitin 
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PHASE II - GCM VS.LM VS. NORMAL VS. IDCM (Preliminary Results) 

 

In our phase II experiments, we undertook a fourplex comparison of  Giant Cell Myocarditis 

(GCM), Lymphocytic Myocarditis (LM), Idiopathic Dilated Cardiomyopathy (IDCM) and 

Normal Controls. Having shown a difference between acute and convalescent GCM in the 

Phase I studies, the experimental design for this set of experiments was geared to identify a 

unique fingerprint, if present, for GCM as compared to other forms or etiologies of acute 

heart failure. Preliminary results for an N=3 are presented below (See figure annotation in 

Figure  above) 

Differential Protein Expression GCM vs. DCM
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Differential Protein Expression GCM vs. NORM
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Differential Protein Expression GCM vs. LM
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The  preliminary results are significant for a variety in the protein expression profiles in  the 

different disease profiles. For instance, the marked up-regulation in immune defense 

proteins observed in the phase one studies is muted in the comparisons between GCM and 

Normal, GCM and LM, GCM and DCM, suggesting that these conditions do indeed show 

unique protein profiles that can form the basis for discerning unique protein markers for 

DCM using the statistical tools described above. Furthermore, we expect to see a less 

pronounced difference in the protein expression profiles due to the influence of biologic 

variability. 

Pathway Analysis GCM vs. DCM vs. LM vs. Normal Controls 

Following analysis of the 6 experimental sets together, we obtained the following results: For 

each experimental set, we were able to identify  

• 107,000 m/z peaks per MS run 

•  2400 differentially expressed peptides 

o Redundant and single occurrence peptides removed 

Using the Proquant analysis program, the differentially regulated proteins identified 

from these peptides were obtained and used as Metacore input. 

Differentially Regulated Pathways - MetaCore 

GCM vs LM  36 

GCM vs DCM  12 

GCM vs Normal 14 
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In particular, we focused on the differentially regulated pathways between GCM and LM, we 

see a statistically significant change in the classic complement pathway, Slit-Robo signaling 

pathway and the Rho GTPase regulation of the actin/cytoskeleton pathways (identified as 

pathways 1, 5 and 10 above). They are significantly upregulated in GCM as compared to LM. 

The upregulation of the immune response complements GCM in this comparison suggest 

the same type of immune dysregulation seen in our Phase I GCM Acute vs. Convalescent 

pathways. These pathways as shown below are biologically relevant in the pathogenesis of 

GCM. 

Classic complement pathway 

Plasmin signaling 

Alternative complement pathway 

ZNF202 in atherosclerosis gene expression 

Slit-Robo signaling 

Lectin induced complement pathway 

Catherin mediated cell adhesion 

ECM remodeling 

TGF, WNT and cytoskeleton remodeling 

Rho GTPase regulation of actin/cytoskeleton

GCM vs DCM
GCM vs Normal
GCM vs LM

Top 10 Differentially Regulated Pathways GCM Vs. LM Vs. DCM Vs. Normal
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Classic Complement Pathway (GCM vs. LM) 

In the Actin pathway, we see an upregulation of the cytosleletal proteins in GCM as 

compared with LM as shown in the pathway below. This again suggests a measure of 

cytoskeletal dysfunction occurs in the pathogenesis of GCM. However, when we examine 

the Slit-Robo Pathway, there seems to be a potential link, mediated by the fyn pathway 

between the immune dysregulation represented in the complement cascade and the 

cytoskeletal dysfunction in the Actin pathway. Of note, the fyn pathway also appeared to be 

significant in our analysis of GCM acute vs. convalescent. 
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GCM vs Lymphocytic Myocarditis Rho GTPases and the Actin Cytoskeleton

Slit-Robo Signaling (fyn pathway) in GCM vs. LM 



Discussion: 

Analysis of the differentially regulated proteins in both the GCM Acute vs. 

Convalescent studies and the GCM/LM/DCM studies was significant for the 

highlighting of the Fyn pathway. Fyn is 59kDa protein, a member of the src-family 

of tyrosine kinases which has a structure similar to the other family members: an N-

terminal attachment site for saturated fatty acid addition, a unique region, a src-

homology 3 SH3 and SH2 domain, a tyrosine kinase SH1 domain and a C-terminal 

negative regulatory domain.  The domain structure allows for both tyrosine kinase 

function and an adapter function for larger macromolecules through the  SH2 and 

SH3 domains as shown below. 

 

 

The Fyn protein is expressed as two isoforms, one isoform Fyn T is expressed in T 

cells while the other Fyn B is expressed in brain and other tissues. This differential 

expression allows for further localization of the identified Fyn protein by its 

presumed origin. Thus the identification of Fyn-T in our sample is specific for 

augmented T cell activity in the samples from Giant Cell myocarditis. 

Fyn has a variety of biologic functions, including T cell signaling, B cell development, 
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development of brain function, mitogenic signaling and cell adhesion mediated 

signaling. Of most biological relevance in this context is the role of fyn in T cell 

receptor signaling. Animal studies and cell line studies both indicate a critical role for 

fyn in proximal T-cell antigen receptor (TCR) signal transduction. It is implicated in 

pre-TCR signaling, positive selection, peripheral maintenance of naïve T cells and 

also in lymphopenia-induced proliferation28. Overexpression of the fyn(T) transgene 

is thought to produce an enhanced responsiveness to TCR signaling which might 

account for the increases susceptibly to autoimmunity observed in mouse models. 

When the fyn knockout is introduced into MPR/lpr mice, manifestations of 

autoimmunity are reduced and the mouse live longer29. Mutations in a number of 

signaling components in mice can lead to strong autoimmune phenotypes. Fyn-

deficient mice exhibit a number of immunological abnormalities and also exhibit 

some autoimmunity30 

Thus, it is likely that fyn is important in the pathogenesis of autoimmue myocarditis 

as manifested in GCM  and might present an appropriate target for the development 

of diagnostic and treatment modalities.  

The identification of the fyn pathway in our analysis represents one mechanism 

through which proteomic analysis can aid in the  a priori identification of important 

mechanisms in disease and potential therapeutic and prognostic targets. However, 

further verification of the role of fyn in the pathogenesis of GCM needs to be 

carried out. We are currently working on this using in-situ hybridization to localize 
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the presence of fyn in GCM myocardial tissue as compared to normal myocardium 

to confirm that fyn is indeed a specific marker of possible T cell dysregulation in 

GCM.31

 

Strengths and Limitations:  
 

Strengths: 

The strengths to our approach lie in using proteomics to provide diagnostic and 

mechanistic insight into the pathophysiology of myocarditis. To our knowledge, this 

is a novel application of quantitative serum proteomics in the analysis of various 

histologic forms of myocarditis and dilated cardiomyopathy and it holds a lot of 

promise. In particular, it  helps to examine the obvious, but as yet unproven, 

hypothesis that these distinct disease entities (by histopathology and etiology) will 

produce unique protein signatures. Clinically, it also provides an important novel 

approach to the care of the patient with acute cardiomyopathy by allowing for new 

diagnostic test panels based on the unique protein profiles that identify the specific 

histologic form, without the need for an invasive heart biopsy.  

This approach also holds the potential for providing new mechanistic insights into 

the pathogenesis of myocarditis and cardiomyopathy since it allows for an unbiased 

look at the entire proteome to identify previously unknown protein changes in a 

disease or condition. 
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Limitations: 

Given the high level of biological variability inherent in the plasma samples and 

technical variability in sample preparation and analysis, the ability to reproducibly 

measure a myriad of protein expression changes across numerous multivariate 

experiments is a key challenge in many proteomics experimental designs32. 

Specifically in the study of a relatively rare condition like myocarditis, sample size is 

limited by the number of available cases such that the ability to increase study power 

is also limited. However, in this project, we have addressed this variability using 

different techniques: 

i) Biological Variability: We employed one-to-one matching of case to 

controls to reduce the confounding variables of age, sex, BMI and length 

of serum storage. Furthermore, in the GCM Acute vs. Convalescent 

studies, the use of self-matched controls in the study design minimized 

the level of biological variability in the comparison. 

ii) Technical Variability:  

a. Randomization of matched sets to different isotope tags to prevent 

isotope-effect 

b. Independent validation of the proprietary protein identification and 

quantification platform Pro Quant using the i-Tracker system to 

search against the database. 
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iii) Statistical Variability: 

a. Blinding of statistical analyst (not privy to information on diseases vs. 

non-diseased samples) during the clustering analysis reduces the risk 

of bias in the grouping of expression profiles by similarity.  

 

6. HUMAN SUBJECTS 

 

 This project conforms to the Mayo Clinic Foundation guidelines relating to research 

risks when human subjects are involved. These risks are less applicable to this study 

since it is a minimal-risk protocol that involves the use of stored samples and no 

direct patient contact. 

 

7. CONSENT 

This study met the criteria for waiver of HIPAA authorization and informed 

consent. No consent forms were required. 

 

8. CONCLUSION 

Our results suggest that the identification of  unique serum protein profiles  

associated with specific forms of acute cardiomyopathy is feasible using a strategy 

that does not require a priori identification of protein candidates. In our phase one 

studies, we have demonstrated a novel finding in possible role of altered immune 

response as well as altered lipid metabolism pathways in GCM. Furthermore, we 
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have demonstrated that GCM may be distinguished from LM by altered regulation 

of pathways involving the Fyn tyrosine kinase and actin cytoskeletal proteins and 

other immune regulatory pathways. However the further validation of protein 

candidates is required through biochemical assays, repeat proteomic assays and in the 

future, prospective in vitro studies is required in order to make any definitive 

conclusions about unique serum proteins in GCM. However, this implies that serum 

protein profiles may provide a unique protein signature for GCM. This strategy may 

ultimately allow for more selective use of EMB or for the noninvasive diagnosis of 

giant cell myocarditis. 
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9. FUTURE DIRECTIONS 

 

Figure 18: Strategies for hypothesis-driven proteomics 

Future work on this project will involve the refining of the original hypothesis using 

the information on viable protein candidates obtained from this stage of the project. 

Thus far, we have worked on creating the hypothesis, experimental design, sample 

preparation, HPLC/Mass spectrometry and the identification and validation of 

protein candidates. To complete the flow of hypothesis-driven proteomics, there is a 

need to carry out further biochemical analysis and phenotypic studies. There is also a 

need to develop more robust statistical tools, especially for the non-linear analysis of 
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quantitative proteomic data. These are the directions that we hope to work on in the 

near future 
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