
Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

11-15-2006

Small Interfering RNA Decreases VEGF mRNA
Expression and Proliferation of Colorectal Cancer
Cells
Stephen Ward

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Ward, Stephen, "Small Interfering RNA Decreases VEGF mRNA Expression and Proliferation of Colorectal Cancer Cells" (2006). Yale
Medicine Thesis Digital Library. 303.
http://elischolar.library.yale.edu/ymtdl/303

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/303?utm_source=elischolar.library.yale.edu%2Fymtdl%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


 

 
 
 
 
 
 
 

Small Interfering RNA Decreases VEGF mRNA Expression and Proliferation of 
Colorectal Cancer Cells 

 
 
 
 
 
 
 
 
 
 
 
 

A Thesis Submitted to the 
Yale University School of Medicine 

In Partial Fulfillment of the Requirements for the 
Degree of Doctor of Medicine 

 
 
 
 
 
 
 
 
 
 
 

by 
 

Stephen M. Ward 
 

2006 



 

Abstract: 

SMALL INTERFERING RNA DECREASES VEGF mRNA EXPRESSION AND 

PROLIFERATION OF COLORECTAL CANCER CELLS.  Stephen M. Ward, Abby L. 

Mulkeen, Teresa Silva, Peter S. Yoo, John C. Schmitz, Edward Uchio, Edward Chu, Charles 

Cha.  Department of Surgery, Yale University, School of Medicine, New Haven, CT. 

 

Vascular endothelial growth factor (VEGF-A) was first described in 1989 for its angiogenic 

and mitogenic properties.  Early studies indicated that VEGF-A acts primarily in a paracrine 

pathway which is limited to vascular endothelium.  Further investigation showed that 

VEGF-A and VEGF receptor-2 (VEGFR-2) are expressed by many solid tumors and 

improve cell growth and survival.  Therefore, VEGF-A may act via an autocrine pathway 

that effects tumor cellular proliferation by binding VEGFR-2 at the cell surface.  This study 

utilizes small interfering RNA (siRNA) technology to investigate the presence of an 

autocrine loop in human RKO colorectal cancer cells.  RT-PCR demonstrated the 

expression of VEGF-A, VEGF-B, VEGF-D, placental growth factor (PlGF), VEGFR-2, 

neuropilin-1 (NP-1) and neuropilin-2 (NP-2) in vitro by RKO cells.  Transfection with 

siRNA against VEGF-A resulted in a 94% knockdown of VEGF-A expression by ELISA.  

Northern blot, quantitative real time PCR and semiquantitative RT-PCR confirmed the 

knockdown data.  In addition, transfected RKO cells showed a 67% decrease in cellular 

proliferation by WST-1 assay.  This data correlated to the ELISA results.  In summary, the 

presence of VEGF-A and VEGFR-2 argues in favor of an autocrine loop in human 

colorectal cancer cells.  siRNA targeting of VEGF-A remains a promising anti-tumor 

therapeutic strategy. 
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Introduction: 

 Cancer claims over half a million lives per year in the United States alone (1).  

Bronchogenic carcinoma remains the leading killer in both men and women.  However, 

colorectal cancers account for 9.5% and 10.5% of total cancer deaths in men and women, 

respectively (1).  The pathogenesis of colorectal cancer, therefore, warrants further 

investigation. 

 The last several decades has produced an overwhelming body of scientific 

literature regarding the pathogenesis of cancer.  There is clearly great interplay between 

cellular damage, genetics and environmental factors in tumor heterogeneity.  But 

regardless, all neoplastic cells are ultimately dependent on their stromal 

microenvironment for growth, survival and metastatic potential. 

 Neoplastic cells, like all cells, require the efficient exchange of metabolic waste 

products for oxygen and nutrients.  Host circulation provides normal physiologic 

exchange and can support the initial burden of transformed cells.  However, a neoplasm 

is essentially diffusion limited at approximately 2-3 mm in diameter.  As neoplastic cells 

undergo rapid cell division, host circulation can no longer meet tumor metabolic needs.  

Mouse mammary gland carcinoma cells, for example, divide more slowly as distance 

from vascular endothelium increases (2, 3). 

 To the dismay of cancer patients, tumors often overcome diffusion limitations.  

Tumor angiogenesis makes this possible.  Angiogenesis is a process which occurs in 

conjunction with or in addition to an underlying neoplastic transformation.  As expected, 

cells capable of initiating angiogenesis possess a distinct survival advantage over those 

which can not (4). 



6 

 The study of angiogenesis and its related mechanisms has far reaching 

implications for cancer therapy.  The “angiogenic switch” refers to the trigger, or 

pathophysiologic mechanism, by which a cell induces angiogenesis.  If it’s possible to 

understand the angiogenic switch, it may be possible to design novel anti-angiogenic 

strategies to suppress tumor growth and survival.  In fact, limiting tumor growth potential 

may directly impair metastatic spread and greatly improve host survival. 

 Although the precise molecular mechanisms are incompletely understood, the past 

two decades have been instructive.  It appears that many factors govern the initiation and 

regulation of angiogenesis.  There is consensus in the scientific community that many 

pro-angiogenic and anti-angiogenic cytokines are at work simultaneously.  In a given 

microcellular environment, whether physiologic or pathological, the balance between 

pro-angiogenic and anti-angiogenic factors determines whether the angiogenic switch 

occurs. 

 Neoplastic cells are, by definition, dysregulated.  In addition to defects in 

apoptosis, for example, tumor cells suffer from an imbalanced expression of angiogenic 

cytokines.  Several such cytokines have been identified.  Pro-angiogenic cytokines 

include platelet derived growth factor (PDGF-Β), fibroblast growth factor (FGF), 

epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF).  

Thrombospondin-1, angiostatin and others down regulate angiogenesis.  Each cytokine 

contributes uniquely towards the angiogenic switch via receptor tyrosine kinases (RTKs) 

and complex molecular pathways (4). 

 In 1989, a landmark paper established that VEGF-A increases vascular 

permeability and has strong mitogenic properties.  The mitogenic action is specific to 
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vascular endothelial cells (5).  Since then, VEGF-A mRNA has been detected by in situ 

hybridization in lung, breast, GI, kidney, bladder, pituitary, thyroid, ovary, intracranial 

cancers and hemangioblastomas (5). 

 VEGF-A abundant primary breast cancers have a worse prognosis and a higher 

postoperative recurrence rate than breast cancers with low levels of VEGF-A.  This 

suggests that tumor angiogenesis influences survival rates (6).   VEGF-A has also been 

shown to impair dendritic cell development which may block host immune surveillance 

and promote tumor cell survival (7). 

 VEGF-A was subsequently cloned and shown to exist in three major isoforms, 

VEGF189, VEGF165 and VEGF121.  These represent the amino acid lengths resulting from 

alternative splicing (2, 8).  They have unique but overlapping activities.  VEGF189, for 

example, is secreted via exocytosis and binds extracellular matrix proteins (8, 9).  

Essentially, it is inactive until released by heparinase or another proteoglycan. This 

implies a role for matrix degradation in angiogenesis (5). 

 VEGF165 is secreted but some remains bound to the cell surface and some adheres 

to the extracellular matrix.  VEGF121, in contrast, is freely soluble and readily diffuses 

into the intracellular environment.  Therefore, matrix degradation and direct secretion are 

both important as we consider how cytokines access neighboring vascular endothelium in 

the stroma (2, 9). 

 In 1992, the Max Planck Institute provided the first evidence that VEGF-A 

induces angiogenesis in vivo.  Mouse embryologic studies detected the expression of 

VEGF-A mRNA in regions of blood vessel growth and maturation (10).  The precise 

mechanism of action remained unknown until deVries described a high affinity receptor 



8 

tyrosine kinase (RTK), which he named Flt-1 (11).  The name was later changed to 

VEGFR-1.  A second high affinity RTK, VEGFR-2, is highly homologous (12). 

 VEGF-A binds both VEGFR-1 and VEGFR-2.  To determine the clinical 

significance of the receptors, researchers disrupted each gene individually and observed 

that deficiency in either resulted in mouse fatality (13).  Both receptors are expressed 

predominantly in vascular endothelium, further supporting the role of VEGF-A in 

angiogenesis (14, 15).   This discovery led to the postulation that VEGF-A may act in 

paracrine fashion.  However, VEGF-A receptors are now known to exist on the cell 

surface of many tumors, indicating a possible autocrine loop as well (16, 17). 

 VEGF-A receptor activity is highly complex.  VEGFR-2 is the predominate 

receptor which mediates VEGF-A action.  It is expressed embryologically in the yolk sac 

and vascular endothelium as well as the endocardial and mesodermal layers.  All of these 

sites undergo extensive angiogenic activity. 

 Adults do not normally experience widespread vascular proliferation.  As 

anticipated, adults express much lower levels of VEGFR-2 mRNA (18).  This implies 

that VEGFR-2 is essential during embryologic development.  In fact, VEGFR-2 deficient 

mice fail to form embryologic blood islands (19).  VEGFR-2 may be activated in adults 

under pathologic conditions or on an as needed basis. 

 Interestingly, VEGFR-2 is coupled with cell surface adhesive proteins such as 

integrin αvβ3 in the extracellular matrix.  This integrin is exclusive to angiogenic 

endothelium.  VEGF-A and VEGFR-2, therefore, appear to be associated with 

endothelial cell survival (20). 
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 A second class of receptors, the neuropilins, also potentiates VEGF-A activity.  

Neuropilins are generally known to preserve axonal function.  However, neuropilin-1 

(NP-1) serves two important roles in angiogenesis.  It’s a cell surface glycoprotein which 

acts as a cofactor, presenting VEGF165 to VEGFR-2 and thereby enhancing its effect (19).  

NP-1 also competes with VEGF165 for a binding site at VEGFR-1 (21).  Less is known 

about neuropilin-2 (NP-2), although it may be involved in lymphatic vessel development 

through VEGF165 activity (22). 

 In order to devise novel anti tumor therapies, it is important to understand how 

cells are initially stimulated to release VEGF-A.  Cellular hypoxia is a primary stimulus.  

VEGF-A, VEGFR-1 and VEGFR-2 are, in fact, upregulated in hypoxic regions of mouse 

lung vasculature in vivo (23, 24).  One study demonstrated that glial tumors, which are 

known to be extremely sensitive to hypoxia, express very high levels of VEGF-A (25).  

These findings are consistent with an angiogenic model for tumor progression, since 

vessel proliferation undoubtedly improves tissue oxygenation and cell survival. 

 VEGF-A mRNA is upregulated in the left anterior descending (LAD) artery 

distribution of pig myocardium following occlusion.  Myocardial ischemia, then, is 

another setting which may induce local angiogenesis in response to hypoxic injury (26).  

Interestingly, hypoxia seems to serve a dual function in angiogenesis.  In addition to 

enhancing VEGF-A mRNA transcription, it also stabilizes the mRNA itself (25). 

 Hypoxia is not the only stimuli effecting VEGF-A expression.  VEGF-A can be 

found ubiquitously, secreted by kidney, heart, lung and brain cells.  Secretion often 

occurs in the absence of overt hypoxia.  This suggests that VEGF-A may be involved not 

only in angiogenesis, but also in the maintenance of existing vascular endothelium as a 
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type of survival factor (15, 27).  Recently, VEGF-A has been shown to upregulate bcl-2, 

an anti-apoptotic protein, yielding further evidence for cell survival signaling (28, 29). 

 Many factors stimulate angiogenesis, but the precise mechanisms of VEGF action 

are incompletely understood.  Researchers have identified three additional proteins that 

share structural homology with VEGF-A.  They are VEGF-B, VEGF-C and VEGF-D.  A 

new receptor, VEGFR-3, has also been recently described.  A more thorough 

understanding of these proteins and their interactions is necessary in order to devise new 

therapeutic strategies. 

 Northern blot analysis shows abundant VEGF-B in the skeletal muscle and 

cardiac muscle of developing mice.  This again indicates possible angiogenic function for 

this protein (30).  VEGF-B is also present in adult mice and human muscle.  VEGF-B 

exists in two known isoforms produced by alternative splicing.  VEGF-B167 remains cell 

surface associated until released by heparinase.  VEGF-B186 is freely secreted (31). 

 A unique feature of VEGF-B167 is its ability to form heterodimers with VEGF165 

at the cell surface.  Since VEGF165 is otherwise freely secreted, this association may 

influence VEGF165 bioavailability and may also limit VEGF-B action to a paracrine 

pathway (30, 31).  Upon release, VEGF-B binds to VEGFR-1 using NP-1 as a cofactor 

(32). 

 VEGF-C was originally cloned from human prostatic carcinoma.  It is 

proteolytically cleaved in the ECM and binds to both VEGFR-2 and VEGFR-3 (32).  It is 

less potent than VEGF-A, but will successfully induce vascular permeability and 

angiogenesis in large enough concentrations.  VEGF-C stimulates the migration of 

bovine capillary endothelial cells in vitro in a collagen gel matrix model (33). 
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 Unlike VEGF-A, VEGF-C responds to inflammatory cytokines more than to 

hypoxia.  VEGF-C also induces lymphangiogenesis through VEGFR-2 and VEGFR-3 

activity (34, 35).  In situ hybridization reveals mRNA expression at day 8 in the mouse 

embryo, for example, particularly in regions of lymphatic vessel proliferation (36). 

VEGF-C overexpression in the pancreatic β cells of transgenic mice stimulates lymphatic 

proliferation around the islets of langerhans.  However, this does not appear to influence 

rate of tumor formation (35).  Lymphatic hyperplasia in dermal keratinocytes is also 

associated with VEGF-C overexpression (37). 

 VEGFR-3 is found at the lymphatic endothelial cell surface during development 

and is normally expressed exclusively there (35, 38).  It is present pathologically on 

lymphatic endothelial cells in metastatic lymph nodes, lymphangiomas and vascular skin 

tumors (33). 

 Regional lymph nodes are often the first to develop metastases.  It’s not clear 

whether lymphatics are accessed by way of new lymph vessels, or by invasion of 

preexisting lymph vessels from within the tumor.  Peritumor lymphatics are clearly 

associated with cancer metastasis (39).  However, it was less certain if the density of 

intratumor lymphatic vessels is related to metastasis until VEGF-D was described (40).   

 Like VEGF-C, VEGF-D binds to VEGFR-2 and VEGFR-3.  It is proteolytically 

cleaved and is therefore dependent on the extracellular matrix for its bioavailability (8).  

VEGF-D has mitogenic and angiogenic properties and promotes tumor metastasis via 

lymphatic spread in a mouse model.  It is also upregulated in human melanomas 

compared to baseline melanocytes (41). 
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 VEGF-D was recently investigated in the setting of papillary thyroid carcinoma.  

The study statistically correlated metastasis with VEGF-D mRNA and protein levels, 

correlating lymphatic vessel density with metastases (42).  Another study confirmed this 

finding, and determined that VEGF-D is an independent marker for overall survival in 

colorectal cancer with lymphatic involvement (43). 

 To further understand cancer pathophysiology, one study assessed VEGF-A, 

VEGF-C, VEGF-D, VEGFR2 and VEGFR-3 levels as adenomatous polyps progressed to 

colorectal carcinoma.  Interestingly, VEGF-D mRNA expression was significantly lower 

in both polyps and carcinoma cells compared with normal mucosa.  VEGF-A121 and 

VEGF-A165 levels were significantly higher in cells undergoing lymph node metastasis.  

Ironically, there was no relationship between VEGF-C or VEGF-D levels and lymphatic 

invasion.  This may indicate that lower levels of these factors make more receptor 

binding sites available for VEGF-A (44).  Another report confirms that VEGF-A levels 

are, in fact, related to advanced disease (45).  VEGFR-2 and VEGFR-3 levels were 

similar in tumor cells and normal mucosa. 

 Clearly, VEGF-C, VEGF-D and VEGFR-3 are potential therapeutic targets 

against tumor metastasis (8).  One study inhibiting VEGF-D successfully impaired 

angiogenesis, lymphangiogenesis and metastasis in a mouse tumor model (42). 

 Until recently, a lack of genetic tools hindered the study of mammalian cancer 

cells.  Today we are fortunate to have a wealth of resources that help elucidate molecular 

mechanisms.  Plasmids, for example, are used to transfect target cells with exogenous 

DNA that confer a desired phenotype.  This maneuver is fairly efficient since plasmids 

self replicate independently from the host genome and therefore do not interact with the 
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cell’s molecular machinery.  Viral vectors are also useful but transfection tends to be less 

efficient (46). 

 Plasmid or virus transfection is considered a gain of function technique.  Target 

cells transcribe exogenous DNA.  Other promising techniques are the exact opposite.  It 

may be desirable to shut down gene expression in order to deduce the downstream 

function of individual proteins.  This can be done at the level of transcription, translation, 

exocytosis or protein action at receptors. 

 Small interfering RNAs (siRNAs) are very useful in such gene silencing studies.  

siRNAs are small double stranded RNAs approximately 20 nucleotides in length.  They 

can be introduced to target cells where they bind to an RNA induced silencing complex 

(RISC).  The RISC then facilitates binding of the siRNA to a complementary mRNA 

sequence.  This results in mRNA cleavage and gene silencing. 

 Many preliminary gene knockdown studies are encouraging.  However, cancer 

mortality rates remain unacceptably high despite 20 years of remarkable advances in the 

scientific understanding of neoplastic transformation and a virtual explosion of molecular 

biology research tools. 

 Little is known about the angiogenic switch and how it is regulated.  

Angiogenesis and lymphangiogenesis are relatively recent complements to our 

understanding of cancer pathophysiology.  A more detailed understanding of angiogenic 

mechanisms is necessary.  This field presents a marvelous opportunity to contribute to the 

future of cancer therapy. 
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Statement of Purpose: 

 VEGF-A and VEGFR-2 are highly active mitogenic signals and angiogenesis 

factors.  The presence of both of these proteins implies an autocrine loop that may be 

important to colorectal cancer growth and survival. 

 This study hypothesizes the existence of an autocrine loop in the human RKO 

colorectal cancer cell line.  Evidence for this pathway requires VEGF-A and VEGFR-2 

mRNA expression, and correlation between expression level and cell proliferation.  

Preliminary data from ELISA and northern blot assays of wild type and siRNA 

knockdown cells support this hypothesis.  Data is confirmed by RT-PCR followed by 

semi-quantitative analysis. 

 This study further hypothesizes that RKO colorectal cancer cells may possess 

complex molecular pathways involving VEGF-B, VEGF-C and VEGF-D.  In addition, 

RKO cells may express VEGFR-1, VEGFR-3, NP-1 and NP-2 indicating broad 

angiogenic activity.  Greater understanding of cellular mechanisms in colorectal cancer 

may lead to novel anti-tumor strategies. 
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Methods: 

Cell Culture 

 Human RKO colorectal carcinoma cells were cultured in RPMI 1640 media 

supplemented by 9% fetal bovine serum (Invitrogen, Carlsbad, CA).  Cell were cultured 

and incubated in T-75 vented flasks at 37o C using 5% CO2 humidified air.  Every 3 days, 

cells were passed with trypsin-EDTA (Invitrogen) upon reaching 70% confluency. 

 

siRNA Design 

 Elbashir and Tuschel published helpful guidelines for selecting siRNA targets 

(47).  To maximize transfection efficiency, these guidelines suggest that sequences 

contain a total GC ratio of 40-60%, lack three successive guanine or cytosines and begin 

with two adenosines. 

 Several VEGF gene specific siRNA sequences were selected accordingly.  A 

BLAST search of the human gene database confirmed gene specificity (ID 7422).  A 

previously published siRNA sequence, VP, was chemically synthesized by Dharmacon 

(Lafayette, CO) and used in our study design (3).  VP (5’ atgtgaatgcagaccaaagaa 3’) 

targets nucleotides 1082-1102 in exon 4 of the VEGF-A coding region. 

 

siRNA Transfection 

 RKO cells were cultured in a T-75 flask until reaching 70% confluency, as 

described.  Cells were then harvested by trypsinization and plated for transfection at a 

density of 100,000 cells.  Plating occurred in T-25 flasks in RPMI 1640 media containing 

9% fetal bovine serum (FBS). 
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 The VP siRNA was diluted to 50 nM in OPTIMEM I (Invitrogen) and plated.  

After 24 hours, RKO cells were transfected with the VP siRNA using oligofectamine 

(Invitrogen).  Media was changed at 24 hours and supernatants were collected at 24, 48, 

and 72 hours post-transfection.  All supernatants were stored at -20o C and cell debris was 

centrifuged out prior to sandwich ELISA. 

 

Controls 

 A GL2 siRNA against luciferase served as control.  The sequence is given in table 

1 and it has no other known human genetic homology.  RKO wild type cells were treated 

with either oligofectamine alone (UT) or oligofectamine plus GL2 siRNA (50nM) for 

negative control. 

 

Transient Transfection with VEGFSP Hairpin siRNA 

 This study required an anti-VEGF hairpin siRNA (pVP).  It was designed, 

chemically synthesized and cloned into a psiRNA-hH1neo G2 plasmid by Invivogen.  

The hairpin sequence is shown in table 1.  500,000 cells were plated to T-25 flasks.  After 

24 hours, they were transfected with 3μg of the hairpin containing plasmid. 

 Untransfected cells received lipid only and were plated as negative controls. 

Lipofectamine 2000 (Invitrogen) served as the lipid vehicle.  24 hours post-transfection, 

media was changed and replaced with 5ml of fresh complete medium.  48 hours post-

transfection, supernatant was collected from each flask for sandwich ELISA analysis. 
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Northern Blot Analysis 

 RKO cells were plated at 100,000 cells per flask and transfected with 50 nM of 

VP or GL2 siRNA. 48 hours after transfection, cells were trypsinized and prepared for 

analysis using the NorthernMax-Gly kit (Ambion, Austin, TX).  Quiagen’s RNeasy kit 

(Valencia, CA) was used to extract total RNA from cultured cells.  20 ug of the extracted 

total RNA was then electrophoresed on a glyoxal gel and transferred to a BrightStar-Plus 

positively charged nylon membrane (Ambion). 

 A riboprobe was produced using a MEGAshortscript T7 kit and labeled using the 

BrightStar labeling reagent (Ambion).  The probe was amplified from cDNA using the 

primer sequences shown in table 1.  Membranes with the VEGF riboprobe were 

hybridized overnight at 65oC. 

 

RT-PCR Primer Design 

 The VEGF-A gene consists of 8 exons which are alternatively spliced into three 

major isoforms.  VEGF-A189 is complete.  VEGF-A165 lacks exon 6 and VEGF-A121 lacks 

exons 6 and 7 (48).  The sense stand was placed in exon 3 and the anti-sense strand in 

exon 8 to target regions common to all isoforms.  VEGF-A165 and VEGF-A121 amplify to 

different nucleotide lengths and separate upon electrophoresis. 

 VEGF-B consists of 7 exons.  Alternative splicing in exon 6 yields 2 isoforms 

(31).  The sense primer in exon 3 and the antisense primer in exon 4 capture both 

isoforms.  VEGF-C has 7 exons that undergo alternative splicing in exon 4, 6 and 7 (36).  

The sense primer is in exon 1 and the antisense primer in exon 4.  VEGF-D has 8 exons 
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and 7 introns (49).  The sense primer binds to exon 5 and the anti-sense primer binds to 

exon 6. 

 VEGFR-1 consists of 7 exons.  Interestingly, alternative splicing results in a 

soluble form lacking a transmembrane region coded by exon 6.  Primer sites span this 

transmembrane region in order to amplify the cell surface receptor (50, 51).  VEGFR-2, 

the most biologically active receptor, is a type-III receptor tyrosine kinase (52, 53).  It has 

a highly regulated promoter region (54).  Primers bind in exons 5 and 10. 

 NP-1 has 17 exons and undergoes alternative splicing.  There are several 

membrane bound and soluble isoforms (55).  The sense primer in exon 14 and antisense 

primer in exon 15 bind to conserved regions.  NP-2 also undergoes extensive alternative 

splicing resulting in cytoplasmic and transmembrane domain variations (55).  The primer 

sequences are both within exon 17, which is conserved. 

 All accession numbers are given in tables 1 and 2.  Each mRNA sequence is 

available at www.ncbi.nih.gov/entrez under the appropriate accession number.  Primer 

specificity and binding locations in the literature were confirmed with BLAST searches 

and ALIGN searches at www2.igh.cnrs.fr. 

 

Primer Resuspension 

 VEGF-R1, VEGF-R2, NP-1 and NP-2 primers were resuspended in 400 μl of 

H2O then diluted 200 times for spectrophotometry. 
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Single stranded DNA concentrations were calculated using the formula: 

   [   ] in ng/μl = (absorbance in AU) * 33 ng/AU/μl * 200 

 

      

dilution correction 

ssDNA conversion 

from spectrophotometer 

 

Concentrations in ng/μl were converted algebraically to μM: 

[   ] * (1g / 1x109 ng) * (1x106 μl / l ) * (1 mol / 330g) * (1x106 μmol / mol). 

average molecular weight of nucleotide 
 

 

VEGF-B, VEGF-C and VEGF-D primer concentrations were calculated by the same 

method.  VP, GL2 and UT mRNA concentrations were confirmed with an absorbance 

conversion of 40 ng/AU/μl and a 25 times dilution. 

 

RT-PCR 

 An RNeasy Kit (Qiagen) isolated total RNA from cultured RKO cells.  A 

Superscript III First Strand Synthesis Kit and Platinum Taq DNA Polymerase 

(Invitrogen) was used for cDNA synthesis.  RT-PCR primer sequences are given in tables 

2 and 3.  The RT-PCR program for VEGF, VEGFR-1 and VEGFR-2 consisted of an 

initial denaturation step at 95°C for 2 minutes, followed by 35 amplification cycles 

(denatured at 95°C for 1 minute, annealed at 59°C for 1 minute and extended at 68°C for 

2 minutes) with a final extension step at 68°C for 10 minutes. 

 Slightly different conditions were used to separate the VEGF-A isoforms and to 

identify VEGF-B, VEGF-C, VEGF-D and PlGF.  40 amplification cycles (denatured at 
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95°C for 30 seconds, annealed at 55°C for 30 seconds and extended at 68°C for one 

minute) optimized primer binding.  These conditions were also used to amplify VP, GL2 

and UT cDNA following Superscript III first strand synthesis. 

 

Agarose Gel Electrophoresis 

 1.5 g of Ultrapure agar (Invitrogen) was added to 100 ml tris-borate-EDTA (TBE) 

and 2 μg ethidium bromide.  The gel ran at 100V.  All lanes contained 15 μl of cDNA 

plus 15 μl of loading buffer at 1:3 dilution.  They ran against 30 μl of a 1 kb DNA ladder 

(Invitrogen). 

 

Quantitative Real Time PCR 

 Cells were transfected to a 50 nM final concentration as described above.  At 48 

hours post transfection, they were harvested and total RNA was extracted using the 

RNeasy Kit (Qiagen).  A Superscript III First Strand cDNA Synthesis Kit (Invitrogen) 

was used for cDNA synthesis.  Each cDNA was amplified using TaqMan Universal 

PCR master mix (Applied Biosystems).  The VEGF TaqMan Expression Assay was used 

with the Β-actin TaqMan Expression Assay (Applied Biosystems) as positive control.  

These kits contained predesigned sense and antisense primers and a FAM dye-labeled 

probe. 

 PCR was carried out on an ABI Prism 7900 HT sequence detection system for 40 

cycles.  The system used SDS 2.2 software for relative quantification of mRNA 

expression levels.  VEGF mRNA expression levels from siRNA knockdown cells were 

compared to levels from wild type RKO cells.  Β-actin served as control. 
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Semiquantitative Analysis 

 To add further support for RKO knockdown, mRNA from the quantitative 

analysis of VP, GL2 and UT transfected cells was used for semiquantitative analysis.  

This involved repeating the RT-PCR and optimizing the cell cycle number to avoid the 

amplification plateau.  At 30 cycles, densitometry analysis measured the relative 

concentration of cDNA present in each sample.  Gels were photographed using an Eagle 

Eye II by Stratagene and scanned using NIH Image version 1.62. 

 

Sandwich ELISA Analysis  

 RKO cells were cultured and transfected as described above.  Cells were collected 

at 24, 48, and 72 hours post transfection.  A DuoSet ELISA Kit for Human VEGF 

measured protein levels (R&D Systems, Minneapolis, MN).  Plates were read with a 

Powerwave 340 microplate spectrophotometer (Bio-Tek, Winooski, VT). 

 To calculate the effectiveness of siRNA knockdown using protein levels, 

absorbance at 450 nm was plotted against VEGF protein standards in the 0-1000 pg/ml 

concentration range.  This calibration allowed comparison of protein levels in VP siRNA 

transfected supernatant with protein levels in untransfected (UT) wild type supernatant. 

 

WST-1 Proliferation Assay 

 This assay measured cellular proliferation using WST-1 tetrazolium salt (Roche, 

Indianapolis, IN) in accordance with manufacturer’s instructions.  RKO cells were placed 

into a 24 well place at a density of 2,500 cells per well.  These cells were cultured in the 

RPMI 1640 media containing 9% FBS.  24 hours after plating, the cells were transfected 
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with VP or GL2 siRNA in 0.1 nM to 100 nM concentration ranges.  Negative controls 

were wells with media alone, and wells with media plus wild type RKO cells transfected 

with lipid only.  All cells were plated in triplicate. 

 Following transfection, plates were incubated at 37ºC with 5% CO2 for 72 hours, 

and then retransfected exactly as previous.  Cellular proliferation was determined 48 

hours post-retransfection (5 days post original transfection) using the WST proliferation 

assay.  Plates were then incubated for another 90 minutes after the addition of 45 µl of 

WST reagent. 

 A 60µl aliquot of each supernatant was transferred to a 96-well plate for 

spectrophotometry.  A Powerwave 340 microplate spectrophotometer measured 

absorbance at 460 nM.  These WST-1 proliferation experiments were performed in 

duplicate and each experimental condition was plated in triplicate.  

 To investigate whether siRNA knockdown of the VEGF gene alone results in 

decreased cell proliferation, reduced serum media (2% FBS) was used for additional 

proliferation experiments.  In these experiments, either conditioned media (taken from 

cultured wild type RKO cells) or 10 ng of recombinant human VEGF-A165 (Calbiochem) 

were added back to the wells of transfected cells in an attempt to reverse the observed 

decrease in proliferation.  This was done at 48 hours post-transfection in accordance with 

above procedures. 
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Flow Cytometry 

 VP siRNA transfected RKO cells were further assessed by flow cytometry.  Cells 

were treated with either 50 nM siRNA or lipid control and harvested at 48 hours.  They 

were washed with 1x PBS and fixed with 70% ethanol.  Then, cells were treated with 

RNase A and stained with propidium iodide (Sigma-Aldrich, St. Louis, MO).  A 

FACSCalibur cytometer (BD Biosciences) with FlowJo software (Tree Star Inc, Ashland 

OR) performed cell cycle analysis. 

 

Western Blot Analysis 

 Cultured RKO cells were assayed for VEGFR-2 and VEGFR-3 using Western 

blot analysis.  Cells were grown under WST assay conditions, transfected with 25 nM 

siRNA and lysed at 48 hours post transfection.  All cells were lysed in RIPA buffer 

consisting of 10mM tris-HCl at pH 7.4, 15mM NaCl, 0.1% SDS, 1% NP-40, 0.5% 

deoxycholic acid and protease inhibitor.  Lysates were centrifuged at 13,000 rpm for 10 

minutes. 

 PARP and caspase-3 protein levels were determined by a DC protein assay kit 

(Bio-Rad Laboratories, Hercules, CA).  Equal amounts of protein were loaded onto a 

12% SDS-PAGE gel (Bio-Rad) for evaluation.  VEGFR-2 and VEGFR-3 were evaluated 

with a 4-20% tris-HCl precast ready-gel (Bio-Rad).  Both gels were transferred to a 

polyvinylidene membrane (Millipore Corporation, Bedford, MA.).  Membranes were 

blocked for one hour with 5% non-fat dry milk, 0.05% tween and 20/1x PBS at pH 7.4.  

They were incubated for one hour with the appropriate primary antibodies. 
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 The primary antibodies were 1:1000 anti-caspase-3 (Upstate, Lake Placid, NY),  

1:1000 anti-PARP (Upstate), 1:1000 anti-VEGFR-2 (Santa Cruz Biotechnology, Santa 

Cruz, CA), and 1:1000 anti-VEGFR-3 (Zymed Laboratories, San Francisco, CA).  All 

antibodies were rabbit anti-human. 

 The secondary antibody was a 1:200 dilution of goat-anti rabbit IgG (Zymed) 

conjugated with horseradish peroxidase.  Proteins were detected by a SuperSignal West 

Pico chemiluminescent substrate (Pierce, Rockford, IL). 

 
Table 1:  Primer Sequences 
GL2 siRNA 5' cgtacgcggaatacttcga 3’ 
Hairpin 
     Sense:          
     Antisense: 

 
5’ tcccaatgtgaatgcagaccaaagaattcctgtcattctttggtctgcattcacattt 3’ 
5’ caaaaaatgtgaatgcagaccaaagaatgacaggaagttctttggtctgcattcacatt 3’ 

Riboprobe 
     Sense:          
     Antisense:    

 
5’ ctgctgtcttgggtgcatt 3’ 
5’ taatacgactcactataggtgatgttgga ctcctca 3’ 

 
Table 2:  VEGF Primer Sequences With Accession Numbers and References 
VEGF-A 
     Sense: 
     Antisense: 

 
5’ cgaagtggtgaagttcatggatg 3’ 
5’ ttctgtatcagtctttcctggtga 3’ 

 
 

M_63971 

 
 

VEGF-B 
     Sense: 
     Antisense: 

 
5’ cagaggaaagtggtgtcatgga 3’ 
5’ accggatcatgaggatctgca 3’ 

 
 

U_52819 

 
 

VEGF-C 
     Sense: 
     Antisense: 

 
5’ ctctcaaggccccaaacca 3’ 
5’ aggtcttgttcgctgcctga 3’ 

 
 

NM_005429 

 

VEGF-D 
     Sense: 
    Antisense: 

 
5’ gatcgctgttcccattcca 3’ 
5’ atcatgtgtggcccacagaga 3’ 

 
 

NM_004469 

 

PlGF 
     Sense: 
     Antisense: 

 
5’ ggcgatgagaatctgcactgt 3’ 
5’ cacctttccggcttcatcttc 3’ 

 
 

X_54936 

 

Β actin 
     Sense: 
     Antisense: 

 
5' gtggggcgccccaggcacca 3' 
5' ctccttaatgtcacgcacgatttc 3’ 

 
 

N/A 
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Table 3:  Receptor Primer Sequences With Accession Numbers and References 
VEGFR-1 
     Sense: 
     Antisense: 

 
5' gtcacagaagaggatgaaggtgtcta 3’ 
5' cacagtccggcacgtaggtgatt 3' 

 
 

X51602 

 
 

52 
VEGFR-2 
     Sense: 
     Antisense: 

 
5' ctggcatggtcttctgtgaagca 3' 
5' aataccagtggatgtgatgcgg 3' 

 
 

AF035121 

 
 

52 
NP-1 
     Sense: 
     Antisense: 

 
5’ ctggtgagccctgtggtttattcc 3’ 
5’ actaatgtcatccacagcaatccc 3’ 

 
 

NM_003873 

 
 

56 
NP-2 
     Sense: 
     Antisense: 

 
5’ ccgaagctgcaccacactgg 3’ 
5’ caaaatagaactgtgtgacccc 3’ 

 
 

AF281074 

 
 

55 
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Statement of Student Involvement: 

 In the course of this study, I conducted an extensive literature search of journals 

pertaining to vascular endothelial growth factor (VEGF).  This included review of past 

and current angiogenesis research, especially in cancer models.  I also researched articles 

describing VEGF and its various forms, receptors, and pathophysiologic pathways.  Dr. 

Cha, Dr. Mulkeen and Terry Silva of the VA Medical Center, West Haven, CT ensured 

that my background reading included the most relevant landmark studies. 

 Cell culture, siRNA design and RKO cell transfection was performed by other 

members of the lab team.  Concurrently, I performed the RT-PCR work.  The lab had 

already ordered pre-published primers for the VEGF-A isoforms, VEGF-B, VEGF-C, 

VEGF-D, PlGF, VEGFR-1, VEGFR-2, NP-1 and NP-2.  However, the binding sites and 

primer specificity were not verified.  Therefore, I underwent the process of original 

primer design to verify all primers. 

 This required a search of the NIH human gene database for the appropriate 

mRNA/cDNA sequences and confirmation of primer originality with BLAST and 

ALIGN.  I also searched the literature for articles describing the precise location of 

introns and exon boundaries, and compared all primer binding sites to those junctions.  

This ensured amplification of the cDNA of interest.  I accounted for alternative splicing 

to ensure amplification of appropriate isoforms for each protein.  I also calculated all 

primer melting temperatures and verified that CG content meets accepted PCR 

guidelines.  

 I resuspended all primers, with the exception of VEGF-A, and titrated them to the 

appropriate concentration for RT-PCR.  In addition, I conducted my own mRNA 
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extractions and first strand synthesis in order to use my own cDNA consistently 

throughout the study.  Later, I used mRNA previously extracted by other members of the 

lab team to verify my RT-PCR results. 

 I prepared all of the necessary reagents for RT-PCR and performed my own 

agarose gel electrophoresis.  I also optimized RT-PCR conditions independently and ran 

all semiquantitative densitometry studies. 

 Other team members performed the Northern blots, Westerns, ELISA and cell 

proliferation studies concomitantly.  The quantitative analysis was performed by the 

Keck lab at Yale. 
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Results: 

 RKO colon cancer cells express VEGF-A, specifically the 165 and 121 isoforms.  

They also express VEGF-B, VEGF-D and PlGF.  In addition, RKO cells express VEGFR-2, 

NP-1 and NP-2.  The duel expression of VEGF and its receptors implies that RKO cells may 

rine loop.  Cells transfected with anti-VEGF siRNA

show a 94% knockdown in VEGF expression and

67% decrease in cellular proliferation. 

 First, VEGF-A, VEGFR-1 and VEGFR-2 

Figure 1:  RT-PCR showing RKO expression of 
VEGF-A and VEGFR-2.  Note the absence of 
VEGFR-1.  B-actin is positive control. 
 

be activated exogenously or by an autoc  

 a 

ol 

expression of VEGF-A and VEGFR-2 

were assessed by RT-PCR.  Separate primers 

were used for each and Β-actin served as contr

(figure 1).  Repeat RT-PCR looked specifically 

for VEGFR-2 (figure 2).  Northern blot analysis 

also confirmed the RT-PCR results and showed 

but not VEGFR-1.  Western blot corroborated the 

presence of VEGFR-2 expression. 

 RT-PCR analysis using isoform specific primers showed RKO expression of 

VEGF-A165 and VEGF-A121 but not VEGF-A189 (figure 3).  

                                 

VEGF-A165

VEGFA-121

VEGFR-2 

Figure 2:  RT-PCR showing RKO expression of 
VEGFR-2 at 790 bp.  Lane 6 is a –cDNA water 
control.  Lane 7 is a VEGF-A positive control.  
Note the absence of VEGFR-1.  

Figure 3:  RT-PCR showing RKO expression of 
VEGF-A isoforms.  Run in triplicate.  Top bands 
correspond to VEGF-A165 at 535 bp.  Bottom bands 
correspond to VEGF-A121 at 403 bp.  Note that 
VEGF-A189 is not present (expected size 607 bp).
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 Neuropilin-1 and neuropilin-2 are both expressed by RKO cells (figure 4).  In 

addition, RKO cells strongly express VEGF-B and PlGF (figure 5). 

                        

VEGF-B 

PlGF 

NP-2 
NP-1 

Figure 5:  RT-PCR showing expression of 
VEGF-B, VEGF-C, VEGF-D and PlGF by RKO 
cells.  Amplification was not optimized for 
VEGF-C and VEGF-D (lanes 3 and 4). 

Figure 4:  RT-PCR showing RKO expression of 
NP-1 (lanes 3-5) at 275 bp and NP-2 (lanes 7,8) at 
390 bp.  Lanes 1 and 10 are 1 kb DNA ladders.  
Lanes 2 and 6 are –cDNA water controls.  
Amplified for 40 cycles and run on 1.5% agarose. 

 

 

 

siRNA Knockdown 

 RKO cells transfected with VP siRNA decrease VEGF-A protein secretion by 

94% on ELISA.  mRNA from cells transfected with VP, GL2 and untransfected controls 

show VEGF-A knockdown at the mRNA level on Northern blot (figure 6). 

 To characterize VEGF-A knockdown 

conditions, RKO cells were transfected with 

several different concentrations (1nM, 12nM, 

24nM, 36nM, 48nM, and 50nM) of VP or GL2 

siRNA.  Untransfected cells were used as 

controls.  Collection of supernatant followed by 

sandwich ELISA at 24, 48, and 72 hours showed 

Figure 6:  Northern blot of VEGF mRNA.  RKO 
cells transfected with VP siRNA express less 
VEGF mRNA than UT (left) and GL2 (middle) 
controls.  Courtesy of A. Mulkeen, MD. 
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greatest knockdown at 48 hours using 12nM VP siRNA.  Analysis of supernatant 

revealed that knockdown ranged from 67.5 to 94% and remained as high as 59% at 5 

days post transfection (figure 7). 

 

 

 

Figure 7:  This graph shows % VEGF expression against time by ELISA.  RKO cells transfected with 12 nM of VP siRNA were 
followed at various time points.  Maximum VEGF knockdown occurred at 48 hours.  Although the results were transient, cells 
remained 59% knocked down after 5 days.  Courtesy of A. Mulkeen, MD. 

 Following ELISA and Northern blot analyses, RT-PCR was used to further 

strengthen the evidence for effective siRNA interference against VEGF-A.  Using 

isoform specific primers, VP and GL2 transfected RKO cells were compared to 

untransfected controls by densitometry.  VEGF-A165 knockdown ranged between 70-81% 

and VEGF-A121 knockdown ranged between 71-74% using this method.  This experiment 

was run in triplicate.  Gels and densitometry plots are given in figures 8-13. 
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 UT 

     
       VP 

VEGF-A165

   UT 
  GL2 

                 VP 

GL2   VP 
  UT 

GL2 
VEGF-A121

Figure 10:  Repeat RT-PCR of RKO cDNA 
transfected with VP, GL2 and UT at 30 cycles.  
Lane 1 is a 1 kb DNA ladder.  Lane 2 is a –cDNA 
water control. 

 

 

Figure 8:  RT-PCR showing VEGF-A expression 
by RKO cells.  Lane 1 is a 1 kb DNA ladder.  Lane 
2 is a –cDNA negative control. 

Figure 9:  Densitometry analysis of VP, UT and GL2 
transfected RKO cells.  VEGF-A165 is knocked down 
by 81%, VEGF-A121 by 71%. 

                       

     
         VP 

   GL2
 GL2 UT 

VEGF-A165

     
       VP 

GL2 

VEGF-A121  UT 
  VP    UT 

Figure 11:  Repeat densitometry analysis of VP, GL2 
and UT transfected RKO cells.  VEGF-A165 is 
knocked down by 78%, VEGF-A121 by 74%. 

 

 

               

     
              VP 

  GL2    GL2
VEGF-A165    UT 

     
         VP 

GL2 

   UT 
VEGF-A121

  VP    UT 

 Figure 12:  Repeat RT-PCR of RKO cDNA 
transfected with VP, GL2 and UT at 30 cycles.  
Lane 1 is a 1 kb DNA ladder.  Lane 2 is a –cDNA 
water control. 

Figure 13:  Repeat densitometry analysis of VP, 
GL2 and UT transfected RKO cells.  VEGF-A165 is 
knocked down by 70%, VEGF-A121 by 73%. 
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 Quantitative real time PCR confirmed the ELISA and RT-PCR data.  Knockdown 

ranged from 61-67% in cells that were transfected with VP siRNA and harvested 48 

hours post transfection (figure 14). 

 Figure 14:  Quantitative real time PCR measuring VEGF expression by RKO cells transfected with 12 nM VP 
siRNA.  Cells were harvested at 48 hours post transfection.  Knockdown ranged from 61-67% compared to 
untransfected controls.  Courtesy of A. Mulkeen, MD.  

 RT-PCR using primers previously described showed that RKO cells express 

VEGF-B and VEGF-D (figures 15, 16).  Densitometry analysis demonstrated a 48% 

knockdown of VEGF-B in cells treated with VP siRNA.  There was no significant 

knockdown of VEGF-D (figures 17, 18). 
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VEGF-B 
  VP   GL2 

GL2 
UT 

     VP UT 
VEGF-B 

 

 

Figure 15:  RT-PCR showing VEGF-B expression 
by RKO cells.  Lane 1 is a 1 kb DNA ladder.  Lane 
2 is a –cDNA water control.  

Figure 16:  Densitometry analysis of VEGF-B 
expression by RKO cells.  VP transfection results 
in 48% knockdown compared to untransfected 
(UT) cells. 

         

  GL2  UT 
VEGF-D 

GL2 
  VP 

  VP UT 
VEGF-D

 

 

Figure 17:  RT-PCR showing VEGF-D expression 
by RKO cells.  40 amplification cycles.  Lane 1 is a 
1 kb DNA ladder.  Lane 2 is a –cDNA water 
control. 

Figure 18:  Densitometry analysis of RKO 
VEGF-D expression.  There is no significant 
knockdown between VP, GL2 and UT cells. 

 

RKO Cell Proliferation and Apoptosis 

 WST-1 reagent determined the effect of VEGF-A on RKO cell proliferation.  

RKO cells were transfected with different concentrations (0.1nM, 1nM, 10nM, and 

100nM) of either VP siRNA or scrambled control siRNA.  Untransfected wild type cells 

served as controls.  Cells were transfected twice over a 5 day period.  Proliferation 
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decreased by 67% in VP treated cells compared to control (figure 19).  ELISA correlated 

this result with decreased VEGF-A knockdown of over 90%. 

 

 

 

Figure 19:  This graph shows percent proliferation compared to baseline as RKO cells are treated with 
increasing concentrations of VP siRNA.  After transfection with 10nM, RKO cell proliferation decreased by 
approximately 67%.  Interestingly, cell proliferation increased with greater siRNA concentration beyond this 
point.  Courtesy of A. Mulkeen, MD. 

 Proliferation rates did not return to normal after adding back recombinant human 

VEGF (rhVEGF) or conditioned media to VP transfected cells.  Cells treated with 

rhVEGF and plated in complete media showed a 53% decrease in proliferation, and the 

cells plated in 2% FBS decreased by 52%.  Cells treated with conditioned media did not 

recover proliferation either. 

 Cells were assessed for apoptosis to investigate a possible basis for decreased cell 

proliferation.  In accordance with the WST assay, transfected cells and controls were 

harvested and lysed 5 days after transfection and plating.  Western blot analysis did not 

show evidence of apoptosis using antibodies against PARP and caspase-3 in either 
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transfected or control cells (figure 20).  PARP and caspase 3 are normally cleaved during 

apoptosis and yield 85 kDa and 15 kDa fragments, respectively. 

 Transfected and 

untransfected cells differ in the 

number of cells in G1.  40% of 

transfected cells were in G1 

compared to 25 % of 

untransfected.  This is a 64% 

increase (figure 21). 

 Figure 20:  Western blot assessment of RKO cell apoptosis.  No 
apoptosis is observed in VP siRNA transfected RKO cells compared to 
control.  PARP and caspase 3 are normally cleaved during apoptosis and 
yield 85 kDa and 15 kDa fragments, respectively.  Courtesy of A. 
Mulkeen, MD. 

 

 

 

 Figure 21:  Comparison of RKO cells in G1 and S phase of the cell 
cycle.  40% of VP siRNA transfected cells are in G1 compared to 
25% of untransfected controls.  Courtesy of A. Mulkeen, MD. 
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Discussion: 

 Despite recent advances, cancer continues to claim over half a million lives per 

year in the United States alone (1).  Colorectal cancers account for 9.5% and 10.5% of 

total cancer deaths in men and women, respectively (1).  With an appropriate sense of 

urgency, researchers continue to investigate angiogenic mechanisms for their great 

therapeutic potential.  Clearly, cells which trigger the “angiogenic switch” possess a 

distinct survival advantage over those which can not. 

Warren Lewis from John Hopkins University was the first to systematically 

implicate blood vessels in tumor pathogenesis.  In 1927, he observed that rat tumors 

displayed aberrant vasculature.  Further, he observed phenotypic variations in the 

vasculature of different tumor types.  He correctly concluded that tumor 

microenvironment is an important determinant in vessel density, tortuosity and 

morphology (2, 8). 

VEGF-A was first recognized in 1989 for its strong mitogenic properties and 

ability to increase vascular permeability (5).  In 1992, an in vivo mouse model 

demonstrated that VEGF-A effects survival rates in solid tumors by directly inducing 

angiogenesis (10).  The mechanism of action was unclear until high affinity binding to 

VEGFR-2 resulted in increased endothelial cell survival (4, 32).  This interaction is 

important in normal physiology.  It is also the basis for the VEGF model for tumor 

angiogenesis and cell survival. 

 Originally, VEGF-A and VEGFR-2 were thought to be expressed exclusively on 

vascular endothelial cells.  Further investigation showed that these important proteins are 

expressed by solid tumors as well (6, 57, 58, 59, 60).  Therefore, a tumor cell which 
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secretes VEGF-A may allow VEGFR-2 activation at its own cell surface.  This led to the 

hypothesis that an autocrine loop may confer a survival advantage to tumor cells by 

promoting growth and survival independent of angiogenesis (17, 23, 61). 

 This study shows that human RKO colorectal cancer cells express VEGF-A and 

VEGFR-2.  Additionally, RKO cells express the VEGF-A isoforms, VEGF-B, VEGF-D, 

PlGF, NP-1 and NP-2.  The presence of VEGF-A and VEGFR-2, with NP potentiation, 

implies that an autocrine loop may be present in colorectal cancer. 

With fresh evidence of an autocrine pathway in colorectal cancer, this study 

reemphasizes the dynamic activity of VEGF and its receptors in the pathogenesis of 

cancer.  The autocrine loop is further understood as a potential target for novel anti-tumor 

therapies which are independent of the stroma. 

VEGF-A receptor activity is highly complex.  However, it appears that VEGFR-2 

is the predominate receptor which mediates VEGF-A action.  It is expressed 

embryologically in the yolk sac and vascular endothelium as well as the endocardial and 

mesodermal layers.  All of these sites undergo extensive angiogenic activity.  However, 

VEGFR-1 is also significant.  Deficiency in either VEGFR-1 or VEGFR-2 results in 

embryonic mouse fatality (13). 

Placental growth factor (PlGF) binds VEGFR-1 and potentiates the same effects 

as VEGF-A, although more weakly (62).  PlGF may compete with VEGF-A for a binding 

site.  If this occurs, then VEGFR-1 can be thought of as a decoy receptor, which by 

competitive inhibition, makes more VEGF-A available for binding at VEGFR-2 (32).  Of 

note, VEGFR-1 is not expressed by RKO cells in this study.  Such a conspicuous absence 

warrants further investigation. 
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The autocrine pathway may not be limited to VEGF-A.  VEGF-D is known to 

bind to VEGFR-1 and VEGFR-2.  Since VEGF-D and VEGFR-2 are both present in 

RKO cells, VEGF-D may have an autocrine effect in colorectal cancer as well.  This is 

significant because VEGF-D has been previously shown to promote tumor proliferation 

and metastasis (1). 

VEGF-B also has a known angiogenic function (33).  It acts on VEGFR-1 with 

NP-1 as a cofactor.  Since VEGFR-1 is not expressed by RKO cells, VEGF-B action may 

be restricted to a paracrine pathway in colorectal cancer. 

Despite further understanding of pro-angiogenic factors, cytokine secretion alone 

does not adequately explain tumor progression.  Genetic mutations, infection and 

hormonal influences must also be considered.  Neoplastic transformation alone may lead 

to the angiogenic switch independent of any other influences.  For example, VEGF-A 

overexpression is related to ras mutations in colorectal cancers (44).  Similarly, p53 

mutations are pervasive in human cancers and result in the loss of hypoxia inducible 

factor (HIF-1α) degradation.  Loss of degradation leads to greater HIF-1α activity, which 

induces transcription at the VEGF promoter site (26).  The VEGFR-1 promoter sequence 

and the erythropoietin gene contain a HIF-1α binding site as well, linking angiogenesis to 

increased red cell mass (25). 

 Another study demonstrated that p53 mutations result in the upregulation of 

matrix metalloproteinase-9 (MMP-9) transcription.  This enzyme acts in the extracellular 

space.  Since VEGF189 and VEGF165 are at least partially bound there, MMP-9 frees these 

isoforms and facilitates their access to VEGF-A receptors (63).  Increased VEGFR-1 

activity is also linked to MMP-9 expression (64). 
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 Angiogenesis can be stimulated by infectious and hormonal influences, too.  For 

example, human herpesvirus 8 (HHV-8) partially codes for a VEGF-A receptor.  This 

may be a critical step in the pathogenesis of kaposi sarcoma (13).  Thyroid stimulating 

hormone (TSH) upregulates VEGF-A in thyroid carcinoma, and adrenocorticotrophic 

hormone (ACTH) acts similarly in human fetal adrenal cortical cells (59).  Human 

chorionic gonadotropin (hCG) and estradiol are pro-angiogenic factors, and androgens 

stimulate VEGF-A expression in prostate cancer (60, 65). 

 It is important to note that angiogenesis is a normal physiologic function often 

required for cellular survival.  Although relatively uncommon in adults, angiogenesis 

does normally occur in tissues with high metabolic demand, such as in the female 

reproductive tract, or during episodes of tissue repair.  These observations gave rise to the 

hypothesis that angiogenesis is initiated by hypoxia and also occurs in response to 

inflammatory mediators.  Evidence for this hypothesis is observed in many non-

neoplastic diseases, such as diabetic retinopathy and HSV-1 keratitis (66). 

 Although angiogenesis may result from several related and seemingly unrelated 

pathways described above, this study emphasizes the utility of gene knockdown as a 

potential therapeutic modality.  VEGF-A expression was knocked down by 94% on 

ELISA following siRNA interference.  Since siRNA transfection is often inefficient and 

yields varying results, data was confirmed by RT-PCR, quantitative real time PCR, 

Northern and Western blot analysis.  All techniques showed significant inhibition of 

VEGF-A. 

 VP siRNA is directed specifically against VEGF-A mRNA.  There is 

approximately 45% homology between VEGF-A and VEGF-B, which is located on 
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chromosome 11q13 (31).  This homology may account for the 48% partial knockdown of 

VEGF-B observed.  VEGF-D, located at chromosome Xp22.31, is less homologous and 

does not show significant siRNA interference (49).  This is expected. 

 This study determined that 12nM of siRNA optimizes VEGF-A knockdown.  

Cells transfected with this concentration of siRNA were followed over time and were 

maximally knocked down at 48 hours.  Although siRNA technology has transient effects, 

significant knockdown (59%) remained at 5 days post transfection. 

 RKO cell proliferation and apoptosis were investigated using siRNA technology.   

Transfection with 10nM of siRNA targeting VEGF-A decreased RKO cellular 

proliferation by 67%.  This data corresponds to the 94% VEGF-A knockdown at a similar 

concentration (12nM).  Apoptosis was not detected.  In fact, 40% of siRNA treated cells 

were observed in G1 compared to 25% of control cells.  This is an increase of 64%.  The 

cell proliferation and apoptosis data clearly demonstrates a role for VEGF in tumor 

growth and survival pathways. 

 VEGF-A expression and tumor cell proliferation were both significantly impaired 

as a result of siRNA interference.  However, the effects were incomplete.  The VEGF-A 

protein was still synthesized at low levels and tumor cells continued to grow slowly.  

Administration of recombinant VEGF or controlled conditioned media did not reverse 

these effects.  Therefore, alternative proliferation pathways besides the VEGF-A and 

VEGFR-2 mechanism may be active and are interesting future therapeutic targets. 

 VEGF-A inhibition impairs tumor growth (67).  However, we have seen that 

VEGF-A may act via both paracrine effects on surrounding stroma or autocrine 

pathways.  The interplay between stromal effects and autocrine effects on cellular 
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proliferation remains unclear.  By plating transfected RKO cells in vitro and following 

cellular proliferation, this study lacked stromal tissue and therefore isolated an autocrine 

pathway that likely involves VEGFR-2 ligand binding.  Another study supports this 

hypothesis, where treatment of colon cancer cells with anti-VEGFR-2 antibody in vitro 

resulted in decreased proliferation (68). 

siRNA interference is a useful technique with observable effects on VEGF 

mRNA expression and cellular proliferation.  However, siRNA targets VEGF-A 

expression at the mRNA level.  This post transcriptional effect is one approach of many.  

VEGF-A expression may also be blocked by either downregulating genetic transcription 

itself, impeding translation, protein exocytosis, or receptor action. 

 Receptors can be similarly targeted.  Neutralizing antibodies and receptor 

blockade both ultimately impair ligand binding.  Cells may upregulate VEGF and 

receptor expression as a compensatory response, negating the therapeutic effect of 

receptor blockade.  Therefore, novel combination therapies which include siRNA 

technology are particularly promising (69).   

 Although exciting, siRNA studies are not easily done.  Cell types tend to differ in 

their propensity to undergo transfection.  This is a problem for standardized technique.  

Signal sequences are also limited by sequence length.  If an siRNA is over 30 nucleotides 

long, for example, it triggers an interferon response which globally degrades mRNA 

translation via RNAse activity (70).  This effect can usually be overcome by RNAse 

cleavage of long stranded siRNAs into shorter ones in vitro prior to transfection (71). 

 siRNA interference is also transient.  Once inside the cell, siRNAs tend to be 

highly unstable (46).  Since the gene of interest is still active, continuous interference is 
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necessary to effect long-term knockdown.  Furthermore, not all siRNAs are mRNA 

specific.  This has two important consequences.  First, studies may be confounded by 

non-specific results.  Secondly, large scale siRNA libraries are not practical, requiring 

researchers to design siRNAs individually (72). 

VEGF-A expression results in numerous effects which appear to be rate limiting 

in pathologic angiogenesis.  Therefore, blocking VEGF-A activity is a natural goal for 

anti-angiogenic therapies. Several studies have investigated the potential utility of this 

type of therapy.  VEGF-A may be blocked by either downregulating genetic 

transcription, impeding translation, protein exocytosis, or action at the receptors.  Similar 

techniques can be used against the receptors.  Novel combination therapies aimed at 

multiple mechanisms are particularly exciting. 

 Linomide, for example, prevents the progression of prostate and mammary 

cancers in rats by 50% by downregulating VEGF-A and FGF mRNA expression (65).  

SU5416, which inhibits VEGFR-2, has been shown to block neovascularization in mouse 

pancreatic islet cell tumors (73).  Platelet derived growth factor receptor (PDGFR) 

inhibition by SU6668 slows tumor regression in the same model by stimulating pericyte 

detachment from tumor vessels (74). 

 One exciting study in 1993 showed that anti-VEGF-A antibody reduces the 

growth rate of mouse glioblastoma cells by 80%.  The antibody did not have any 

observable effect on the tumor cells themselves, suggesting that tumor growth is 

angiogenesis dependent (58). 

 Low dose chemotherapy with vinblastine preferentially damages endothelial cells.  

When combined with anti-VEGFR2 antibody, vinblastine reduces VEGF-A activity and 
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has an endothelial cell survival benefit (68).  Bevacizumab, an anti-VEGF-A antibody, 

decreases tumor perfusion, vascular density and the number of vascular endothelial cells 

involved in colorectal cancer (75).  Phase II clinical data shows that bevacizumab, when 

combined with 5-FU and leucovorin, increases survival time in metastatic colorectal 

cancer (64). 

 Despite progress in anti-tumor strategies, some tumor types compensate for drug 

induced VEGF-A knockdown by upregulating gene expression.  This speaks to the 

complexity of molecular interactions involved in the angiogenic switch and the need to 

overcome confounding variables in therapeutic approaches (27, 71). 

 Gene knockdown remains promising despite these obstacles.  To test gene 

silencing in vivo, researchers engineered Drosophila species to express luciferase and 

then transfected them with siRNA against luciferase.  This resulted in the loss of 

luciferase mRNA expression and subsequent loss of luminescence (76).  In a separate 

study, siRNAs were used to treat HSV-1 keratitis.  Infection normally results in 

recruitment of inflammatory cells which release VEGF into the avascular cornea (66).  

Female BALB/c mice were inoculated with HSV-1 and allowed to develop keratitis.  

siRNA against VEGF, VEGFR-1 and VEGFR-2 were administered topically or 

systemically via tail vein injection.  mRNA levels and protein secretion were measured 

by RT-PCR and ELISA.  Angiogenesis was significantly reduced in mice that received 

siRNA topically alone and also in those that received systemic injection alone (77). 

  Future studies will require siRNA delivery in vivo.  Difficulties abound but may 

be addressed by using creative transport techniques such as ligand directed nanoparticles.  

Nanoparticles containing siRNA have the potential to overcome uptake and stability 
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limitations (78).  Some animal studies show potential utility for other approaches such as 

systemic delivery of naked siRNA or plasmid and viral vectors (71).  Despite various 

limitations, siRNA technology remains an important therapeutic tool and a fruitful field 

for further investigation. 

 This study demonstrates that human RKO colorectal cancer cells do indeed 

express many pro-angiogenic cytokines, including VEGF-A and VEGFR-2.  These 

factors are particularly important in angiogenesis.  The presence of VEGFR-2 in the 

absence of stroma implies an autocrine loop at the cell surface that is important to tumor 

growth and survival. 

 The autocrine hypothesis is supported by siRNA knockdown data which 

correlates decreased VEGF-A mRNA expression with decreased cellular proliferation.  

Accordingly, it is appropriate for novel anti-tumor strategies to target both the paracrine 

and autocrine pathways involved in tumor pathogenesis.
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