
University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

1-2008

G-Perfect Nonlinear Functions
James A. Davis
University of Richmond, jdavis@richmond.edu

Laurent Poinsot

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Discrete Mathematics and Combinatorics Commons
This is a pre-publication author manuscript of the final, published article.

This Post-print Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more
information, please contact scholarshiprepository@richmond.edu.

Recommended Citation
Davis, James A. and Poinsot, Laurent, "G-Perfect Nonlinear Functions" (2008). Math and Computer Science Faculty Publications. 141.
http://scholarship.richmond.edu/mathcs-faculty-publications/141

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Richmond

https://core.ac.uk/display/232769485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications/141?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


G-PERFECT NONLINEAR FUNCTIONS

JAMES A. DAVIS, LAURENT POINSOT

Abstract. Perfect nonlinear functions are used to construct DES-like cryptosys-
tems that are resistant to differential attacks. We present generalized DES-like
cryptosystems where the XOR operation is replaced by a general group action.
The new cryptosystems, when combined with G-perfect nonlinear functions (sim-
ilar to classical perfect nonlinear functions with one XOR replaced by a general
group action), allow us to construct systems resistant to modified differential at-
tacks. The more general setting enables robust cryptosystems with parameters
that would not be possible in the classical setting. We construct several exam-
ples of G-perfect nonlinear functions, both Z2-valued and Za

2-valued. Our final
constructions demonstrate G-perfect nonlinear planar permutations (from Za

2 to
itself), thus providing an alternative implementation to current uses of almost
perfect nonlinear functions.

1. Background on cryptosystems and group action modifications

In an r-round iterative block cipher such as the Data Encryption Standard (DES)
[17] or the Advanced Encryption Standard (AES) [9, 18] the ciphertext xr is obtained
from a plaintext x0 by r iterations of the round function f

xi = f(xi−1, ki) 1 ≤ i ≤ r

where ki is the ith round key. The function f usually contains some particular
components called S-boxes. These (vectorial) Boolean functions B mapm-bit vectors
to n-bit vectors and are often used just after an XOR (i.e. a component-wise modulo-
two sum) combination of the block xi−1 and the key ki i.e.

y = B(ki + xi−1) .

The S-boxes are designed to be resistant against last-round attacks that intend to
recover the last-round key. In particular the XOR differences of the output values for
input values with a fixed XOR difference must be close to the uniform distribution;
otherwise a statistical bias could be exploited by the differential attack of Biham
and Shamir [4]. Nyberg [25] introduced perfect nonlinear S-boxes for this purpose.

The differential cryptanalysis takes advantage of the XOR combinations with the
round keys. Nevertheless there are many ways to operate on bit-strings other than
XOR: for instance Lai and Massey’s IDEA [22] uses the classical XOR but also the
addition in a cyclic group and the multiplication in the group of units of a finite field.
Additionally, the Russian analogue of DES has S-boxes that use addition in a cyclic
group [34]. Pott [32] says the following: “. . . It seems that in most applications (in
particular in cryptography) people use nonlinear functions on finite fields. However,
there is no technical reason why you should restrict yourselves to this case.” This

Key words and phrases. G-perfect nonlinear functions, difference sets.
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2 JAMES A. DAVIS, LAURENT POINSOT

paper proposes constructing cryptosystems with operations other than XOR. The
new cryptosystems will be r-round iterative block ciphers as in the classical case,
and our task will be to provide S-boxes that are robust against a modified differential
attack.

Suppose that the round keys are chosen in a finite groupG that acts on a nonempty
finite set X via a group homomorphism φ from G to the symmetric group S(X) and
let H be a finite group. Then in this case the S-boxes are used as follows

y = B(φ(ki)(xi−1)) (1.1)

where xi−1 ∈ X, y ∈ H, ki ∈ G and φ(ki)(xi−1) denotes the action of the ith round
key ki on the message xi−1. Note that in many cryptosystems the output of one
S-box is used as input for another S-box and so we may require y ∈ X rather than
y ∈ H. But an operation of output difference is necessary to lead to differential
cryptanalysis, so we need to consider an algebraic structure that provides such an
operation and then the output values must belong to a group. An alternative way,
not followed in this contribution, would be to consider that X is equipped with a
group structure and G acts on its carrier set. We do not choose this possibility
because it is an important constraint and we want to present a more general theory.
The differential attack can be adapted to this context: let f be a round function
(then for each round key k, fk : x 7→ f(x, k) is a permutation) that makes use of
S-boxes exactly as in equation (1.1). Then the algorithm of a group action version
of the differential attack can be easily derived from the classical one.

(1) Find a pair (g, β) ∈ G×H so that the probability

Pr(R(φ(g)(x))−R(x) = β)

is far from the uniform distribution, where R is the reduced cipher defined
as R = fkr−1 ◦ . . . ◦ fk1 ;

(2) Choose at random a plaintext x0 and encrypt both x0 and φ(g)(x0). Two
pairs of plaintexts/ciphertexts are obtained: (x0, xr) and (φ(g)(x0), x′r);

(3) Find all the rth round keys k̂r such that

f−1

k̂r
(xr)− f−1

k̂r
(x′r) = β .

(4) Iterate steps (2) and (3) until a value k̂r occurs more than the others. It will
be considered as a candidate for the last round key.

The purpose of this paper is the construction of S-boxes that ensure the best resis-
tance of the generalized DES-like cryptosystem to this G-differential cryptanalysis.
We observe that some of the new systems presented in this paper will have robust
S-boxes in cases where the traditional theory of Boolean perfect nonlinear functions
concludes that these classical objects can not exist.

2. Perfect nonlinear functions: the classical approach

In this paper, the groups we consider are always finite. Note that if a group G
is written additively (resp. multiplicatively) then 0 (resp. 1) denotes its identity
element and G∗ stands for the set of nonidentity elements of G.
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Definition 2.1. Let G and H be (abelian or nonabelian) groups (written additively),
and let f : G→ H be a function from G to H. Then f is called perfect nonlinear

if for every (g, h) ∈ G∗ ×H, |{x ∈ G|f(g + x)− f(x) = h}| = |G|
|H| .

Let X and Y be two finite nonempty sets. A function g : X → Y is called

balanced if for each y ∈ Y , |{x ∈ X|g(x) = y}| = |X|
|Y | therefore f : G → H is

perfect nonlinear if and only if for each g ∈ G∗ the map, usually called derivative,
x 7→ f(g + x) − f(x) is balanced. Perfect nonlinear functions only exist if |H|
divides |G|. In particular, if H = Z2, then we need |G| to be an even number.
Perfect nonlinear functions from Za

2 to Zb
2 are equivalent to bent functions [24, 25].

We will not define bent functions in this paper (see [33]), but we have the following
important result [25] coming from bent functions that restricts the possibilities for
perfect nonlinear functions.

Theorem 2.2. If f : Za
2 → Zb

2 is perfect nonlinear, then a is even and a ≥ 2b.

Note also that such (Boolean) bent functions can not be balanced (Proposition
14 of [7]). We will see in section 4 that we can construct a function f from Za

2 to
Z2 so that f is both balanced and a modified version of perfect nonlinear (known as
“G-perfect nonlinear”; see next section).

Bent functions (and hence perfect nonlinear functions) are equivalent to a special
type of difference set, so another approach to understanding perfect nonlinear func-
tions is to use the known results from difference sets. We include the definitions of
difference sets and relative difference sets below.

Definition 2.3. 1. A subset D of cardinality k of a group G (in a multiplicative
representation) of order v is a (v, k, λ) difference set if for every g ∈ G∗
there are exactly λ elements (x, y) ∈ D2 satisfying y = gx.

2. A subset R of cardinality k of a group G (in a multiplicative representation)
of order mn is an (m,n, k, λ) relative difference set of G relative to a
normal subgroup H of order n if there are exactly λ elements (x, y) of R2

satisfying y = gx for every g ∈ G\H and there are no elements (x, y) ∈ R2

satisfying y = gx for every g ∈ H∗.
The most important family of difference sets for this paper, called Hadamard dif-

ference sets, have parameters (4N2, 2N2−N,N2−N) or its complement (4N2, 2N2+
N,N2 + N), where N is an integer. The following theorem describes all known
abelian groups containing a Hadamard difference set (see [3] for details).

Theorem 2.4. Let G = H ×K × (
r∏
i=1

(Zpi)
4) be an abelian group so that:

i: |H| = 22a+2, expH ≤ 2a+2;

ii: K =
s∏
j=1

(Z3bj )
2;

iii: pi prime;

then G contains a (4N2, 2N2±N,N2±N) difference set where N = 2a3Σbj

r∏
j=1

(pj)
2.
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Define the indicator function iD of a subset D ⊂ G to satisfy iD(g) = 1 if g ∈ D
and iD(g) = 0 otherwise. The following theorem due to Dillon [11] demonstrates
the connection between Hadamard difference sets and perfect nonlinear functions.

Theorem 2.5. The subset D of the finite group G is a (4N2, 2N2 ± N,N2 ± N)
Hadamard difference set if and only if iD is a perfect nonlinear function from G to
Z2.

A similar connection can be made between relative difference sets and general
perfect nonlinear functions. A relative difference set is called semiregular if k = m.
Pott [32] showed the following result which is a minor variation of theorem 14 of
Arasu et al [1].

Theorem 2.6. Let G and H be arbitrary finite groups and f : G → H. The set
Rf := {(g, f(g))|g ∈ G} ⊂ G × H is a semiregular (|G|, |H|, |G|, |G|/|H|) relative
difference set in G×H relative to {1G} ×H if and only if f is perfect nonlinear.

We comment that there are other applications of perfect nonlinear functions in
difference sets not studied in this paper; indeed Ding and Yuan [12] recently pre-
sented a family of new perfect nonlinear functions and constructed a family of skew
Hadamard difference sets using these functions which are shown to be inequiva-
lent to the so-called Paley-Hadamard difference sets [28], refuting a longstanding
conjecture on the subject.

We will generalize some connections between difference sets and perfect nonlinear
functions in the following sections.

3. Group action approach

A group G is said to act on a nonempty set X if there is a group homomorphism
φ : G → S(X), where S(X) is the set of permutations of X. Let p ∈ X. The orbit
of p under the action of G on X is the set Op = {x ∈ X|x = φ(g)(p) for g ∈ G}.
The action is called faithful if the homomorphism is one-to-one; the action is called
transitive if there is only one orbit; and the action is called regular if for each x ∈ X
the function that maps g ∈ G to φ(g)(x) ∈ X is bijective. Such a regular action is
faithful and transitive (the reciprocal assertion is also true when G is abelian).

One example of an action, the so-called left regular action of G on itself, is de-
fined by the homomorphism φ(g)(x) = gx, g, x ∈ G. This action is also called left
translation, and it is the action that is used in the classical definition of the DES
cryptosystem in the form of the XOR operation. As indicated in section 1, we will
consider a different group action on the bits than XOR. The generalized differential
attack motivates our need to balance the outputs based on the group action, leading
to the following definition ([29, 30, 31]).

Definition 3.1. Let G and H be groups, let X be a finite nonempty set with G acting
faithfully on X via the homomorphism φ, and let f : X → H be a function from X
to H. Then f is called G-perfect nonlinear if for every (g, h) ∈ G∗ × H, |{x ∈
X|f(φ(g)(x))− f(x) = h}| = |X|

|H| .

We need the action to be faithful in order to avoid the existence of g ∈ G∗ such
that φ(g)(x) = x for all x ∈ X. If such a g exists, then |{x ∈ X|f(φ(g)(x))−f(x) =
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h}| =

{
0 if h 6= 0,
|X| if h = 0

. The existence of G-perfect nonlinear functions is then

impossible. We implicitly assume that all group actions are faithful for the remainder
of the paper. Moreover, note that |H| must divide |X| in order to have a G-perfect
nonlinear function.

We now consider the connection between G-perfect nonlinear functions and differ-
ence sets. The key part of the definition of a difference set is the statement that for
every nonidentity g ∈ G there are exactly λ solutions (x, y) ∈ D2 satisfying y = gx
(similar for relative difference set). We are implicitly using the left regular action of
G on itself, so once again we generalize this by allowing other group actions. This
amounts to finding exactly λ solutions (x, y) ∈ D2 ⊂ X2 satisfying y = φ(g)(x). We
extend the (faithful) group action φ of G on X to an (faithful) action Φ of G ×H
on X × H defined by Φ(g, h)(x, h′) = (φ(g)(x), hh′). We call it the extension of
φ. The following definitions generalize difference sets and relative difference sets.

Definition 3.2. Let φ : G → S(X) define a group action of the group G on the
nonempty set X of cardinality v, and let Φ be the extension of φ for the group H of
cardinality n described above.

1. A subset D of cardinality k of X is a G− (v, k, λ) difference set of X if for
every g ∈ G∗ there are exactly λ elements (x, y) of D2 satisfying y = φ(g)(x).

2. A subset R of cardinality k of X × H is a G × H − (v, n, k, λ)-relative
difference set of X × H relative to {1G} × H if (i) for every (g, h) 6=
(1G, h) ∈ G×H there are exactly λ elements ((x1, h1), (x2, h2)) ∈ R2 so that
Φ((g, h))((x1, h1)) = (x2, h2) and (ii) if (x, h), (x, h′) ∈ R, then h = h′.
Such a G × H − (v, n, k, λ)-relative difference set is called semiregular if
v = k.

We remark that each G × H-semiregular relative difference set R gives rise to a
function f : X → H such that R = {(x, f(x))|x ∈ X}.

Although the definition of G-(relative) difference sets and its traditional counter-
part are quite similar, we note that group actions can be much more general than
action via translation. This suggests that we can expect results which are impos-
sible in the classical framework; for example, the construction of a function that is
simultaneously G-perfect nonlinear and balanced (see theorem 4.4).

We also note the similarity between G-difference sets and (v,K, λ)-difference fam-
ilies in G as defined in Beth, Jungnickel, and Lenz [3]. A (v,K, λ) difference family is
a collection of s sets Bi ⊂ G, 1 ≤ i ≤ s, |G| = v,Σ|Bi| = K so that every nonidentity
element of the group G can be represented exactly λ times as differences b−b′ where
b, b′ ∈ Bi for some i. If our action is regular on all of its orbits (not a requirement),
then the G-difference set counts the number of solutions φ(g) ◦ φ(g1)(p) = φ(g2)(p),
which implies that g = g2g

−1
1 . Our new context, where the group is acting on a

set X, is motivated by the connection to G-perfect nonlinear functions and their
application to DES-like cryptosystems.
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In this paper, we will be exclusively interested in G− (v, k, λ)-difference sets with
k − λ = v

4
. In that case, we get the following theorem linking G-difference sets and

Z2-valued G-perfect nonlinear functions.

Theorem 3.3. Let φ : G → S(X) define a group action of the group G on a
nonempty set X of cardinality v, and let D ⊂ X. The function iD is G-perfect
nonlinear if and only if D is a G− (v, k, λ)-difference set of X so that k − λ = v

4
.

Proof: Suppose that D is a G− (v, k, λ)-difference set of X so that k−λ = v
4
. By

the definition of G-difference sets, we see that λ = |φ(g)(D) ∩D| for all g ∈ G∗. A
counting argument demonstrates that |{x ∈ X|iD(φ(g)(x)) + iD(x) = 1}| = 2(|D| −
|φ(g)(D) ∩ D|) (where “+” is the modulo-two sum) since iD(φ(g)(x)) + iD(x) = 1
if exactly one of φ(g)(x) and x is in D. This implies that iD(φ(g)(x)) + iD(x) takes
the value 1 exactly 2(k− λ) = v

2
times, implying that iD(φ(g)(x)) + iD(x) takes the

value 0 exactly v
2

times as well. This implies that iD is G-perfect nonlinear.
Conversely, suppose that iD isG-perfect nonlinear. By applying the same counting

argument as before, we see that 2(|D| − |φ(g)(D) ∩D|) = v
2

for all g ∈ G∗. Solving
this, we get |φ(g)(D) ∩ D| = k − v

4
, which implies that λ = |φ(g)(D) ∩ D| is the

same for all nonidentity g. Thus, D is a G− (v, k, λ)-difference set as claimed.

Extending Theorem 2.6 to the group action setting, it is also possible to charac-
terize G-perfect nonlinear functions by G×H-relative difference sets.

Theorem 3.4. Let φ : G→ S(X) define a group action of the group G on the finite
nonempty set X, H be a group written additively, and Φ : G ×H → S(X ×H) be
the extension of φ. If f : X → H, then f is G-perfect nonlinear if and only if the

set Rf = {(x, f(x)) ∈ X ×H|x ∈ X} is a G ×H − (|X|, |H|, |X|, |X||H|)-semiregular

relative difference set of X ×H relative to {1G} ×H.

Proof: Since f is a mapping, |Rf | = |G| and therefore we need to prove that f is
G-perfect nonlinear if and only if Rf satisfies axiom (ii) of G×H-relative difference

sets with λ = |X|
|H| . This last assertion is equivalent to the following ones for each

(g, h) ∈ G∗ ×H.

|{((x1, h1), (x2, h2)) ∈ R2
f |Φ((g, h))((x1, h1)) = (x2, h2)}| = |X|

|H|

⇔ |{((x1, h1), (x2, h2)) ∈ R2
f |(φ(g)(x1), h+ f(x1)) = (x2, f(x2))}| = |X|

|H|
(by the definition of the action Φ and the definition of Rf .)

⇔ |{x ∈ X|f(φ(g)(x))− f(x) = h}| = |X|
|H|

⇔ f is G-perfect nonlinear .

In this paper many of our results concern Z2-valued functions rather than the
S-boxes themselves. This is a good place to start our understanding of G-perfect
nonlinear functions due to the following relationship between nonbinary perfect non-
linear functions and their binary components.
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Theorem 3.5. Let Vn be a n-dimensional Hilbert space over the finite field with two
elements Z2 and let 〈., .〉n be its dot-product. Suppose that the group G acts faithfully
on a finite nonempty set X (via φ). A function f : X → Vn is G-perfect nonlinear
if and only if for each β ∈ V ∗n , 〈β, f〉n : X → Z2 is G-perfect nonlinear.

Proof. We can show that g : X → Vn being balanced is equivalent to

∀β ∈ V ∗n ,
∑
x∈X

(−1)〈β,g(x)〉n = 0 . (3.1)

(This is a simple adaptation of proposition 14 of [7].) Moreover it is obvious to see
that f is G-perfect nonlinear if and only if for each g ∈ G∗, the map

dgf : X → Vn
x 7→ f(φ(g)(x)) + f(x)

is balanced. Using equation (3.1), this is equivalent to the fact that for each g ∈ G∗

and for each β ∈ V ∗n ,
∑
x∈X

(−1)〈β,dgf(x)〉n = 0. By bilinearity, f is G-perfect nonlinear

if and only if for each g ∈ G∗ and for each β ∈ V ∗n ,
∑
x∈X

(−1)dg(lβ◦f)(x) = 0 where

lβ : y 7→ 〈β, y〉n. By applying equation (3.1) with n = 1, the last fact is equivalent to
the balancedness of dg(lβ ◦ f) for every g ∈ G∗ and therefore lβ ◦ f is also G-perfect
nonlinear.

�

Our approach in the next section is to construct G-difference sets with |X| =
4(k − λ), which by Theorem 3.3 will provide relevant cryptographic examples of
G-perfect nonlinear Z2-valued functions.

4. G-Difference Set Constructions

We begin this section with a general theorem that will allow us to build G-
difference sets from smaller G-difference sets.

Theorem 4.1. Let φ : G → S(X) define a group action of the group G on the
nonempty set X of cardinality v, and suppose Di is a G − (v, ki, λi)-difference set
of X for 1 ≤ i ≤ t. Suppose Y = {y1, y2, . . . , yt} is a set of cardinality t, and define
the group action Φ of G on X×Y by Φ(g)((x, y)) = (φ(g)(x), y) for (x, y) ∈ X×Y .

Then D =
t⋃
i=1

(Di × {yi}) is a G− (vt,
t∑
i=1

ki,

t∑
i=1

λi)-difference set of X × Y .

Proof: Suppose that all of the Di are G − (v, ki, λi)-difference sets of X, and
form D ⊂ X × Y as described. For every g ∈ G∗, the number of solutions of
Φ(g)((x, y)) = (x′, y′), where (x, y), (x′, y′) ∈ D, must satisfy (φ(g)(x), y) = (x′, y′).
Thus, y = y′, and we are simply counting the number of solutions to φ(g)(x) = x′

in each Di. This yields a total number of solutions of
t∑
i=1

λi as claimed. The other

parameters are obvious.
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We note that if all of the Di in Theorem 4.1 satisfy v = 4(ki − λi), then vt =

4(
t∑
i=1

ki −
t∑
i=1

λi). The combined G-difference set D can be used to construct G-

perfect nonlinear functions as described in Theorem 3.3.
As one application of this direct product construction, we combine Theorem 2.4

with Theorem 4.1 to yield the following G-difference sets all of which satisfy v =
4(k − λ).

Corollary 4.2. Let G = H ×K × (
r∏
i=1

(Zpi)
4) be an abelian group so that:

i: |H| = 22a+2, expH ≤ 2a+2;

ii: K =
s∏
j=1

(Z3bj )
2;

iii: pi prime.

Let φ : G → S(G) be the left regular action on G, and let Φ be the action on
G×Y defined by Φ(g)((g′, y)) = (gg′, y) for Y a set of cardinality t. Then there is a
G− (4N2t, j(2N2−N) + (t− j)(2N2 +N), j(N2−N) + (t− j)(N2 +N))-difference

set in G× Y for all 0 ≤ j ≤ t where N = 2a3
∑
bj

r∏
i=1

(pi)
2.

Proof: Theorem 2.4 provides G− (4N2, 2N2 ±N,N2 ±N)-difference sets based
on the left regular action of G on itself, and Theorem 4.1 allows us to combine them
into a G-difference set on G×Y . The different j values come from how many of the
Di used in the construction have the parameters (4N2, 2N2 −N,N2 −N).

As an example of the power of this corollary, we can construct G-difference
sets with parameters (512, 192, 64), (512, 196, 68), (512, 200, 72), . . . , (512, 320, 192)
by using 32 copies of the (16, 6, 2) difference set or its complement in the group
G, where G is a group of order 16 that acts regularly on the 32 orbits of a set X
of order 512. Since 512 is an odd power of 2, Theorem 2.2 implies that there are
no perfect nonlinear functions with these parameters. Thus, this theorem provides
great flexibility in producing G-perfect nonlinear functions for parameters that are
impossible for traditional perfect nonlinear functions.

We remark here that there are G-difference sets with the same parameters as the
previous corollary that are not necessarily on a set that is a direct product of G and
Y . If we have a group action of G on a set X with the property that the action is
faithful and regular on each of its orbits (sometimes called a free action), then we
can use a Hadamard difference set in each orbit Oi to choose the elements of X from
that orbit. We do this by identifying a point pi ∈ Oi, write all other points q ∈ Oi as
q = φ(g)(pi) for some g ∈ G, and let Di = {x ∈ Oi|x = φ(d)(pi) for some d ∈ Di}.
The union of the Di is the G-difference set. These may or may not be equivalent
to the G-difference sets listed in the corollary, and this brings up the question of
equivalent G-difference sets. For a related discussion of equivalent difference sets,
see Kantor [21]. We leave this question open for now.
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The second general theorem below provides a way to modify existing G-difference
sets to get new ones. The technique in the theorem is based on the trivial result in
difference sets that the complement of a (v, k, λ) difference set is a (v, v−k, v−2k+λ)
difference set.

Theorem 4.3. Let G be a group that acts on a nonempty set X, and suppose D is a
G−(v, k, λ)-difference set of X. If Op is the orbit containing p ∈ X and Cp = D∩Op,
then D′ = (D\Cp)∪ (Op\Cp) is a G− (v, k+ |Op|−2|Cp|, λ+ |Op|−2|Cp|)-difference
set of X.

Proof: Suppose D meets the conditions of the statement of the theorem. For a
given g ∈ G∗, there are ` solutions to the equation y = φ(g)(x), where (x, y) ∈ Cp.
By a counting argument, there are 2(|Cp| − `) pairs (x, y) with exactly one of the
components in Cp. This implies that there are |Op|−(2(|Cp|−`))−` = |Op|−2|Cp|+`
elements x ∈ (Op\Cp) for which y = φ(g)(x) ∈ (Op\Cp). Thus, the number of
solutions to y = φ(g)(x) is changed by |Op|−2|Cp|, independent of the group element
g. Similarly, the size of the G-difference set is changed by adding |Op| − |Cp| and
subtracting |Cp|, yielding the result.

Any G-difference set constructed by the method suggested in Theorem 4.3 will
preserve the equation k − λ = v

4
. Thus, once we get a G-difference set with the

appropriate property, we can construct a whole family with differing parameters
that still satisfy the conditions needed to build G-perfect nonlinear functions.

A permutation π of a set X (that contains at least two distinct elements) is a
fixed-point free involution if

i: π ◦ π is the identity map of X (or equivalently π = π−1);
ii: ∀x ∈ X, π(x) 6= x.

Theorem 4.4. Let m be a nonzero positive integer. Let X and Y be two sets of same
cardinality 2m and such that X ∩ Y = ∅. Let π ∈ S(X ∪ Y ) such that π(x) = x for
all x ∈ X, π(y) 6= y, π(π(y)) = y and π(y) ∈ Y for all y ∈ Y (i.e. the permutation
π is the identity on X and a fixed-point free involution on Y ). There is a function
f : X ∪ Y → Z2 such that f is 〈π〉-perfect nonlinear and balanced. Moreover the
〈π〉-difference set of X ∪ Y corresponding to f has parameters (4m, 2m,m).

Proof: Let {X1, X2} be a partition of X such that |Xi| = m for i = 1, 2. Since π is
a fixed-point free involution on Y we can choose Y1 as a subset of Y of cardinality
m such that for each y ∈ Y1, π(y) ∈ Y2 := Y \Y1. Then {Y1, Y2} is a partition of Y
such that |Yi| = m for i = 1, 2. Let define f : X ∪ Y → Z2 as follows

f(x) =

{
1 x ∈ X1 ∪ Y1 ,
0 x ∈ X2 ∪ Y2 .

Thus f is obviously balanced. Moreover if x ∈ X then π(x) = x and therefore
f(π(x)) + f(x) = 0 and if y ∈ Y1 (resp. y ∈ Y2) then π(y) ∈ Y2 (resp. π(y) ∈ Y1), so
f(π(y)) + f(y) = 1. We conclude that f is 〈π〉-perfect nonlinear since |X| = |Y | =
2m and |X∪Y |

2
= 2m. Since f is the indicator function of D := {x ∈ X ∪ Y |f(x) =

1} = X1∪Y1, by Theorem 3.3, D is a 〈π〉− (4m, 2m,λ) difference set of X ∪Y such
that 2m− λ = m. Hence λ = m.
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If we choose in the previous theorem {X, Y } as a partition of Zk+2
2 (with k ≥ 0)

such that both X and Y have the same cardinality 2k+1 (here m = 2k) and we
define π as the identity on X and a fixed-point free involution on Y then we can
construct a balanced 〈π〉-perfect nonlinear Boolean function f : Zk+2

2 → Z2 which is
impossible in the traditional setting. Finally if m = 1 then the minimal G-difference
set corresponding to a G-perfect nonlinear function built as in the previous theorem
has parameters (4, 2, 1) which are different from the trivial classical difference sets
(4, 1, 0) or (4, 3, 2).

A group G is called a group of fixed-point free involutions of a nonempty
set X if the homomorphism for the group action maps each nonidentity element of
G to a fixed-point free involution. Note that the action of such a group is always
faithful. As an example, let a and b be two integers such that a ≥ b. For each
x = (x1, x2, . . . , xb) ∈ Zb

2 and each y = (y1, y2, . . . , ya) ∈ Za
2 , define φ(x)(y) =

(x1 + y1, x2 + y2, . . . , xb + yb, yb+1, . . . , ya). The group G = Zb
2 and all its conjugate

group are (isomorphic) groups of fixed-point free involutions of the set X = Za
2.

Such involutional groups are rather interesting in cryptography since their action on
Za

2 is similar to the classical XOR combination and therefore constitute a natural
extension to the traditional addition of the round-key in block ciphers. The following
theorem uses groups of fixed-point free involutions to demonstrate that not all G-
difference sets with k − λ = v

4
will be constructed as in Corollary 4.2.

Theorem 4.5 (Hyperplane construction). Let G be a group of order 2a of fixed-point
free involutions acting on Z2a

2 . There is a G − (22a, (2a−1 − 1)(2a − 1) + 1, (2a−1 −
1)(2a−1 − 2)) difference set of Z2a

2 .

Proof:
Since all of the nonidentity elements of G have order 2, G must be isomorphic to

Za
2. There are 2a − 1 subgroups of G of order 2a−1, denoted Hi, 1 ≤ i ≤ 2a − 1. We

observe that each G-orbit has 2a elements since all of the involutions are fixed-point
free, so there are 2a distinct orbits. We identify a special element of each orbit,
pi ∈ Oi. We associate the subgroup Hi to the ith orbit Oi, and we construct the

set Di = {φ(h)(pi)|h ∈ Hi, h 6= 1} ⊂ Oi. We claim that D = (
2a−1⋃
i=1

Di) ∪ {p2a}

is a G-difference set with the parameters listed in the theorem. We can easily see
that v and k have the correct sizes, so we are left with verifying that there are λ
solutions (x, y) ∈ D×D to the equation y = φ(g)(x) for a given nonidentity g ∈ G.
We need only consider ordered pairs (x, y) where x and y are in the same orbit (if
not, then there won’t be any solutions to our equation). Suppose (x, y) ∈ (Di)

2

satisfies y = φ(g)(x) for g 6∈ Hi. Then y = φ(h)(pi) and x = φ(h′)(pi) for some
h, h′ ∈ Hi implies that φ(h)(pi) = y = φ(g)(x) = φ(g)(φ(h′)(pi)) = φ(gh′)(pi). Since
the group action on the orbit is regular, we get that h = gh′, or g = h(h′)−1 ∈ Hi.
This contradiction shows that there are no solutions (x, y) ∈ (Di)

2 when g 6∈ Hi. A
similar argument shows that we will have solutions when (x, y) ∈ (Di)

2 and g ∈ Hi,
and we will have a solution whenever g = h(h′)−1 for h, h′ ∈ Hi. There are 2a−1 − 2
solutions h, h′ ∈ Hi (there are |Hi| = 2a−1 solutions in elements of Hi, but we lose
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two of those solutions since we excluded the identity element in the construction of
the Di). Since g is contained in 2a−1− 1 subgroups, we get λ = (2a−1− 1)(2a−1− 2).

We note that G-difference sets in Theorem 4.5 satisfy k − λ = v
4

and hence
can be used to construct G-perfect nonlinear functions. We could construct G-
difference sets in similar sets by using subspaces other than the hyperplanes, but
those constructions fall outside the scope of this paper.

Using the hyperplane construction and Theorem 4.1 we can establish the following
corollary that leads to relevant cryptographic examples.

Corollary 4.6. Let φ be a homomorphism from G = Za
2 to the symmetries of the

set X = Z2a+b
2 defined by φ((g1, g2, . . . , ga)((x1, x2, . . . , x2a+b)) = (g1 + x1, . . . , ga +

xa, xa+1, . . . , x2a+b). There is a G − (22a+b, 2b((2a−1 − 1)(2a − 1) + 1), 2b(2a−1 −
1)(2a−1 − 2)) difference set of Z2a+b

2 .

Proof: By Theorem 4.5, there exists a G − (22a, (2a−1 − 1)(2a − 1) + 1, (2a−1 −
1)(2a−1 − 2)) difference set D of Z2a

2 . By Theorem 4.1,
⋃
y∈Zb2

(D × {y}) is a G −

(22a+b, 2b((2a−1 − 1)(2a − 1) + 1), 2b(2a−1 − 1)(2a−1 − 2)) difference set of Z2a+b
2 .

If we choose a and b to be odd integers and G is Za
2 so that there is no perfect

nonlinear (or bent) functions f : Za
2 → Z2 or f : Z2a+b

2 → Z2, then Corollary 4.6
demonstrates that we are able to construct Za

2 -perfect nonlinear functions from Z2a+b
2

to Z2. The group action based approach for perfect nonlinearity (and difference set)
ensures the existence of G-perfect nonlinear functions in cases impossible for the
traditional theory.

Finally we can combine all of the constructions in this section by applying Theo-
rems 4.1 and 4.3 to Corollary 4.2 and Theorem 4.5, yielding the following corollary.

Corollary 4.7. Let G be a group of order 22a of fixed-point free involutions acting
on a set X with 24at elements. There is a G − (24at, (22a−1 − 1)(s(22a − 1) − i) +
(22a−1 + 1)i+ (s− j) + (22a − 1)j + (22a−1 − 2a)(t− s− `) + (22a−1 + 2a)`, (22a−1 −
1)(22a−1− 2)s+ (22a−2− 2a)(t− s) + 2i+ (22a− 2)j + 2a+1`)-difference set of X for
0 ≤ s ≤ t, 0 ≤ i ≤ (22a − 1)s, 0 ≤ j ≤ s, and 0 ≤ ` ≤ t− s.

Proof: We will use Hadamard difference sets in 22as of the orbits of this group
action; we can choose to use the Hadamard difference set or its complement in these
orbits. In the remaining 22a(t− s) orbits, we will have (t− s) complete hyperplane
constructions each of which uses 22a orbits. We can complement any of the orbits:
the parameter i in the corollary refers to the orbits associated to the hyperplanes; the
parameter j refers to the orbit with a single element in the hyperplane construction;
the parameter ` refers to the orbits with Hadamard difference sets. Simple counting
gives the result.

The number of G-difference sets with different orbit-intersection sizes in Corol-

lary 4.7 is
t∑

s=0

[{(t − s)22a + 1}(s + 1)(s(22a − 1) + 1)]. As an example, there are
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12,790 different G-difference sets, where G is a group of order 16 acting on a set X
with 1024 elements. Not all of these G-difference sets will have distinct values for
k = |D|, but they will have distinct patterns of orbit-intersection sizes. Compare
this with the classical difference set case, where all of the difference sets in a group
of order 1024 have either 496 or 528 elements (only two choices). All of these G-
difference sets coming from Corollary 4.7 satisfy k − λ = v

4
and hence can be used

to construct G-perfect nonlinear functions.

5. G-Relative Difference Set Constructions and vector-valued
G-perfect nonlinear functions

By Theorem 3.4, H-valued G-perfect nonlinear functions are equivalent to G×H
semiregular relative difference sets (RDSs) in X × H relative to {1G} × H. This
motivates our search for G×H-RDSs with H = Za

2 for a > 1: any constructions will
yield G-perfect nonlinear functions whose range is larger than Z2 and hence can be
used to construct generalized S-boxes. The next theorem involves G × H-relative
difference set constructions modelled on the G-difference set constructions presented
in Theorem 4.1 (the proof is similar and is omitted).

Theorem 5.1. Let φ : G → S(X) define a group action of the group G on the
nonempty set X of cardinality m, let H be a group of order n, and suppose Di is a
G ×H − (m,n, ki, λi)-relative difference set of X ×H for 1 ≤ i ≤ t. Suppose Y =
{y1, y2, . . . , yt} is a set of cardinality t, and define the group action Φ of G×H on
X×H×Y by Φ((g, h))((x, h′, y)) = (φ(g)(x), hh′, y) for (x, h′, y) ∈ X×H×Y . Then

D =
t⋃
i=1

(Di×{yi}) is a G×H − (mt, n,
t∑
i=1

ki,
t∑
i=1

λi)-difference set of X ×H × Y .

If G is any abelian group of order 22a with a subgroup isomorphic to Za
2 and if

H = Za
2, then [10] demonstrates that there is a (22a, 2a, 22a, 2a)-relative difference

set in G × H relative to {1G} × H. If we allow X = G and φ(g)(x) = gx (left
translation as the group action), then we get the following G×H-RDSs.

Corollary 5.2. Suppose G is a group of order 22a with a subgroup isomorphic to
Za

2, H = Za
2, and Y is a set of cardinality t. If G acts on itself by left translation,

then there is a G×H − (22a+t, 2a, 22a+t, 2a+t)−relative difference set in G×H × Y
relative to {1G} ×H.

As indicated in Theorem 3.4, this implies G-perfect nonlinear vector-valued func-
tions from X × Y to H where G and H are as in the Corollary.

The following construction yields a very nice application indicating the potential
applications of the generalized approach. In the classical case, many cryptographic
applications, namely substitution-permutation networks [16] such as the AES,
require functions f : Za

2 → Za
2. In this case, it is clearly impossible to have a perfect

nonlinear function: if x is a solution of f(α+x) + f(x) = β, then α+x is a distinct
second solution of the derivative equation, and only one solution is allowed. The
optimal resistance against the classical differential attack is represented by Almost
Perfect Nonlinear (APN) functions that come as close to perfect nonlinear as
possible. An APN function f : Za

2 → Za
2 requires that for each nonzero α ∈ Za

2 and
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each β ∈ Za
2, the equation f(α+x)+f(x) = β has either 0 or 2 solutions. Since their

introduction by Nyberg [26] and their initial study by Chabaud and Vaudenay [8] a
large literature has arisen around constructions of APN functions. The substitution-
permutation networks use invertible S-boxes and therefore need APN permutations.
Unfortunately it is conjectured that such permutations exist only when a is an odd
integer [6, 20]; for instance the AES uses as a S-box the inverse involution in a
finite field GF (2a) which is an APN permutation when a is odd and differentially
4-uniform when a is even [27]. However, the following theorem demonstrates that we
can construct G-perfect nonlinear permutations f : Za

2 → Za
2 for a very large group

G even if a is an even integer. An associative division ring (also called skew field)
satisfies all the properties as a field except possibly commutativity of multiplication.

Theorem 5.3 (Planar construction). Let K be any associative division ring, let M
be a left K-module, and let f be any automorphism of the additive group of M . If
K∗ is the multiplicative group of K that acts on M by left multiplication (which is a
faithful action), then f is a K∗-perfect nonlinear function from M to itself.

Proof: First note that the notion ofG-perfect nonlinearity for functions fromM to
itself is here implicitly and rather naturally extended to an eventual infinite setting.
We need to show that f(αx) − f(x) = β has a unique solution for α ∈ K∗, α 6= 1
and β ∈ M . Since f is an additive automorphism, f(αx) − f(x) = f(αx − x) =
f((α− 1)x). Now since f is a bijection, f−1 exists and (α− 1)x = f−1(β). Finally,
since α 6= 1, (α − 1) is invertible in the division ring, and x = (α− 1)−1f−1(β) is
the unique solution to the derivative equation as required.

As indicated above, if we choose in the previous theorem the finite field with 2a

elements GF (2a) as K and M , we obtain GF (2a)∗-perfect nonlinear permutations
of GF (2a) whether a is an even or an odd integer.

We comment that this result works for all associative division rings, even infinite
and/or nonabelian (for instance the quaternions). Thus, if there were ever an appli-
cation for an infinite-dimensional (abelian or nonabelian) S-box, this construction
could be adapted for that situation. The proof also works for any semifield S (a
kind of nonassociative skew field; for instance the octonions) and module M over
the semifield. Since the nonzero elements of a semifield S∗ form a loop (a kind of
nonassociative group), they do not operate as a permutation group on the module.
Therefore in this case we do not formally obtain an S∗-perfect nonlinear function
f : M →M . However for each α ∈ S∗, x 7→ αx is a permutation of M and if α 6= 1,
then αx 6= x for every x 6= 0M ; so the left multiplication is close to a faithful group
action and f seems like a S∗-perfect nonlinear function.

Until recently [5, 15] the only known examples of APN functions were some power
function x 7→ xd in a (characteristic 2) finite field [2, 13, 14, 19, 27]. Our last
construction gives similar result in the group action setting.

Theorem 5.4 (Monomial construction). Let p be a prime number, let GF (pa)∗ act
faithfully on GF (pa) by multiplication and let d ∈ N such that 1 ≤ d ≤ pa− 1 which
is invertible modulo pa − 1. Then the monomial mapping f : x 7→ xd of GF (pa) is
a GF (pa)∗-perfect nonlinear permutation.



14 JAMES A. DAVIS, LAURENT POINSOT

Proof: Since d is invertible modulo pa − 1, f is a permutation. To see that f is
also GF (pa)∗-perfect nonlinear, we need to compute the number of solutions to the
equation

(αx)d − xd = β (5.1)

for each (α, β) ∈ (GF (pa)∗\{1}) × GF (pa). The above equation is equivalent to
xd = β

αd−1
(α 6= 1). If we raise both sides to the power e corresponding to the

inverse of d modulo pa−1 we get x = ( β
αd−1

)e as the unique solution to the equation
(5.1).

Obviously not all power permutations are additive automorphisms of a finite field
(for instance the APN power permutations), therefore the monomial and planar
constructions can lead to possibly different G-perfect nonlinear permutations.
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