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A Menon difference set has the parameters (fiNz,‘.ZNQ—-N, N2 ~N). In the abelian case it is
equivalent to a perfect binary array, which is a multi-dimensional matrix with elements £1 such
that all out-of-phase periodic autocorrelation coefficients are zero. Suppose that the abelian group
I > K > Zpeo contains a Menon difference set, where p is an odd prime, |Kl=p®™, and pl = -1
(mod exp(I1)) for some j. Using the viewpoint of perfect binary arrays we prove that K must be
cyclic. A corollary is that there exists a Menon difference set in the abelian group H x K X Z3«,
where exp(IT)=2 or 4 and |K|=13%, if and only if K is cyclic.

1. Introduction

Let GG be a multiplicative group of order v and D be a k-element subset of G;
then D is called a (v, k, A)-difference set in G provided that the differences dd'~? for
d, d' € D,d+#d contain every nonidentity element of G exactly X times. We shall
consider (AN? 2N? — N N2 — N)-difference sets (known as Menon or alternatively
Hadamard difference sets) in an abelian group G.

Recently, Menon difference sets have been constructed in all groups H x K x L
for which H is of the form Zge; X ... x Zoaw, Where Y a;=2a+2>2 and max;a; <

s .. ' 79 . s 4
a+2, K is of the form J,f,,l X...%x 2%, and L is of the form ZI}I XX Zlft, where

each pj is a prime satisfying p; =3 (mod 4) {1], [5], [7], [16]. There are also many
nonexistence results, in particular [2], [4], [10], [12], [13], [14] and [15].

Let m and w be positive integers; then m is called semiprimitive mod w if
there exists an integer j such that m? =-1 (mod w). Consider an abelian group
G=I % P, where | P| =p*® and p is an odd prime semiprimitive mod exp(H).

A necessary condition for G to contain a Menon difference set is the exponent
bound exp( ) < p®, which follows casily from Theorem 4.33 of [10] based on results
of Turyn [15]. In this paper we restrict attention to the case exp(P)=p®, and show
that I? must then have the form Z,,n X Zpex.
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We shall make use of the viewpoint of perfect binary arrays; for a gencral
discussion of this topic and its applications in signal processing, sce [3] or [7]. An
integer-valued r-dimensional matrix A= (a[j1,...,7r]) with 0<j; <s; (1<i<r)is
called an sy x...xs, array. The array is called perfect if the periodic autocorrelation
coefficients

Ra(uy,...,up) =

s1—1 sr—1

Z e Z alji, .- drlal(g1 + w1) mod sy, ..., (jr + u,) mod sy

J1=0 =0
are zero for all (uy,...,u;) # (0,...,0), 0 < u; < s;. The array is binary if each
matrix element is £1. The invertible mapping from the binary array A to v(A) =
{(J1,---,4r):aljr,. -, jr) = =1} gives rise to an equivalence between an sy x... X Sy
perfect binary array and a Menon difference set in Zg, x ... x Zs,, where AN? =
[Tis: [9)-

Difference sets arc often studied in the context of a group ring Z[G}. The
definition of a difference set immediately yields the group ring equation DD(-1) =
(k=X\)+\G, where we identify the subset D of G with the group ring element D=
Ydepd, and D=1 =3 deD d-1L,

Let U be a normal subgroup of G, so that we can form the factor group G’ =
G/U. The contraction of D with respect to U is the multiset D' = D/U = {Ud:
de D}, which satisfies the equation D'D'(=1D) = (k= )+ A|U|G” in the group ring
Z[G']. We can write D'=% yeqtyy in Z[G"), where tg =lg'N D] is the number
of elements of D in the coset ¢’ of U. The elements of the multiset {ty/ g €G'}
are known as the intersection numbers of D relative to U, and satisty the equations
Ygeqrty=hkand e ts =k—=A+AUl.

We can similarly contract a binary array A =(ag:9 € G) corresponding to a
difference set v(A) in G by summing the array clements a, over values of g lying
in the same coset of U. This yields the contracted array A’ = (af], 19’ €G"), where
a’g/ =Zg:Ug:g’ ag. Since the coset ¢’ of U comprises ty elements of D and |U|~t,
elements not in D, the definition of the mapping v shows that the contracted array
values are related to the intersection numbers by the linear transformation

(1) (L:J/ =|U| -2ty forall g’ € G,

It is straightforward to show that any contraction of a perfect binary array will also
be perfect (though not necessarily binary). Defining the energy of an array to be
the sum of the squares of the array clements we also obtain the following result,
which is the central reason for using the transformation (1) in this paper:
Lemma 1.1. The energy of an sy x ... X sy perfect binary array is H:le si, and
remains constant under all contractions.

In contrast, the sum of squares of the intersection numbers depends on the
order of the subgroup U,

We will also make use of character theoretic results, Since we consider only
abelian groups, a character of the group is simply a homomorphism from the group
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to the multiplicative group of complex roots of unity. Extending this homomor-
phism to the entire group ring yields a map from the group ring to the complex
numbers. The element D of Z{G] is then a (v, k, A)-difference set in G if and only if

k if x is the principal (all 1) character
(DY = .
(D)l { k— A otherwise.

The element A of Z[G] satisfies y(A) =0 for all nonprincipal characters y of G if
and only if A is a multiple of G. These properties follow from the orthogonality
relations on characters; see [15] for similar arguments. Furthermore G/Ker(x) is a
cyclic group since it is isomorphic to a finite multiplicative subgroup of a field (the
complexes).

2. Congruences for contracted array elements

In this section we derive congruences that constrain the intersection numbers
of a contracted difference set. This gives corresponding restrictions on the elements
of a contracted array. We require two lemmas for the proof of Proposition 2.1.
Lemma 2.1. (Chan et al. [2); Turyn [15]) Let p be a prime and G=H x P be an
abelian group, where P is the Sylow p-subgroup of G and p is semiprimitive mod
exp(H). Let x be a nonprincipal character of G and let « be a positive integer.

. o TN entichoc s 20y _ o
Suppose A€ Z[G] satisfies x(A)x(A)=0 (mod p**). Then x(A)=0 (modp®). R

Lemma 2.2. (Ma [11], Lemma 3.4) Let p be a prime and G be an abelian group
with a cyclic Sylow p-subgroup. If A € Z[G) satisfies x(A)=0 (mod p%) for all
nonprincipal characters x of G, then there exist ¢, € Z[G) such that

A= ptry + Quo,

where Q is the unique subgroup of G of order p. 1

Proposition 2.1. Let D be a (v,k, N)-difference set in an abelian group G and let
U bhe a subgroup of G. Let p be a prime and suppose that G' =G /U = H X Zp,
where Zye =(z2) and p is semiprimitive mod exp(H). Let D' be the contraction of
D with respect to U, write D' = Zg’GG’ tg’gl in Z[G"], and let A= (a;,) be the

contracted array corresponding to D', If p*#|k — \ for some positive integer 3 then
for all ' € G/,

ty = tq';r"" == tg’;(l"“l)l‘(‘_l (mod pd)
ot - - s
Gy Z 0 ot B E @ e (mod 2p”).

Proof. Since D' is a contracted difference set, D'D'(=D = (k=) +A|U|G" in Z[¢").
Therefore for every nonprincipal character y of G,

N(DNX(D)=k=A=0 (mod 9.
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By Lemma 2.1 this implies x(D')=0 (mod p”) and so by Lemma 2.2, there exist

- . . . a—1
x1,20 € Z[G'] such that D’ =pPa) +(zP 1):1:1_;. Multiplying both sides by 1-2”
and substituting for D',

Z tyg (1 - z””_l) =0 (mod p?).

g'eq’

The result follows from comparison of coefficients and the transformation (1). W

3. Main Result

Henceforth, consider the abelian group G = H X K x Zp~ to contain a Menon
difference set D, where p is an odd prime, |K|=p®, |H|=h, and p is scmiprimitive
mod exp(H). In this section we will use Proposition 2.1 to prove that K is cyclic.

Let U be any subgroup of G for which G/U=G"=H x Zp~, and let Zp« =(z).

. . !

Let D'=3" ) ccr ty g’ be the contraction of D with respect to U, and let A= (u:],:
g €G") be the contracted array corresponding to D'. Application of Proposition 2.1
with N2 =k — A=nhp>¥/4 gives

[ — - ] £y, €Y
(2) Gy DA o Z D (e (mod 2p<)
for all ¢’ € G’. By definition, each intersection number ¢, satisfies 0ty < |U]| and
so from (1), each contracted array clement u:], is bounded by

(3) —p* <a, <p“.

! .
For any ¢' € G, consider the set of array elements {a!, ;' _\,...,a’ =},
9 g 27 q ;(7 )

which we call a p-tuple. This set is indexed by the coset ¢'QQ, where @ is the unique
subgroup of order p in G'. It follows from (2) and (3) that if the clements of a p-
tuple are not all equal, they must each be £p®. We now bound the number of such
p-tuples of unequal elements.

Lemma 3.1. When D is contracted with respect to U, the number w of p-tuples
consisting of uncqual elements £p® satisfies w2 h/(p+1).

) g . .
< The contribution

Proof. By Lemma 1.1, the contracted array A’ has energy hp
2@ and that from

to the energy from the w p-tuples of unequal elements is wp-p
the remaining p-tuples of equal elements is R, say:

(4) wp?tl 4 p = hpe.

Now consider a further contraction with respect to @, giving a contracted difference
set in H X Z,o-1. The corresponding contracted array still has energy hp?®. Each
of the w p-tuples of unequal elements will collapse to an odd multiple of p®, giving
a total contribution to the energy of at least wp®®. The remaining p-tuples of equal
elements will each collapse to p times their constant value, so that a previous
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contribution of ;z:';") o ~t:1:2 = p2? from a p-tuple will now be replaced by
contribution (px)~ = p“x=. Therefore the total contribution to the energy from
p-tuples of equal elements is pR, so that

() wp*® + pR < hp*©.
Elimination of R from (4) and (5) gives the desired bound w>h/(p-+1). |

We remark that this bound implies w> 1, and since R>0 we can deduce from
(4) that w < h/p, giving p<h. In fact a simple argument excludes the possibility
R =0 to give the necessary condition p<h, as obtained by Chan et al. [2] for the
case I{ cyclic using similar methods.

Now write K = (k1,...,k;), where k?"‘ =1fori=1,...,rand )i ja;=a
Consider the characters x of I x Zp« that send cach k; to a pth root of unity (or
1), and that sends = to a specific primitive p®th root of unity, say ¢. There are
p" such characters; the kernel of x will be of the form (klzc”’"_l,...,krzc"l’"—l)
where ¢; = 0,1,...p—~1. We can use these characters to define homomorphisms
iy 1 G = G/I&m( ) by ¥y (g9) = gKer(x). By the remark at the end of Section 1,
I( % Zp [Ker(x) is cyclic an(l therefore isomorphic to Zp«. Hence the map 9y will
produce a contracted difference set 1, (D)=D" in G'=H X Zp«.

Therefore from Lemma 3.1, contraction of D with respect to any of the p”
subgroups U = Ker(y) results in at least h/(p+1) p-tuples of unequal elements
£p®. The array values ag which sum to elements of these p-tuples are thereby
completely determined, and we can examine what happens when we contract D
with respect to a different subgroup of the form Ker(y). Thus, we can “pull” the
p-tuples of unequal clements up to the original group H x K x Zpe and “push”
them back down to H x Z,» using a different subgroup. This is the key to the
nonexistence result, and is described in the next lemma.

Lemmna 3.2. (push-pull) Each p-tuple of unequal elements +p® arising from con-
. . . -1 -1

traction with respect to the subgroup (kp26P""" | kpzrP” )} # K produces a

p-tuple of equal elements bp®~! under contraction szh respect to K, where b is

odd.

1

Proof. Denote the subgroup (kl::"“"“~ RO S0 y# K by Ker(y). When we
contract with respect to this subgroup, every element —p® in the p-tuple of unequal
elements £p® corresponds to a coset gller(x) of the subgroup in the difference set.
When this coset is contracted with respect to K, we get p*~! copies ofg(zp('—l) (in
H % Zp). This means that we get a contribution of —p®~Lin each of the positions
of the original p-tuple. Similarly, cach element p® in the original p-tuple will give
a contribution of p®~! in cach position under the pull-push procedure. Thus every
clement, of the final p-tuple 10('01\'("5 the same total contribution, namely the sum of
an odd number of values £p®~!. Furthermore, this accounts for all the p® values
of #1 that must contract onto each position of the final p-tuple, completing the
proof.

We are now ready to prove the main result of the paper.
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Theorem 3.1. If the abelian group H x I X Zp~ contains a Hadamard difference set,
where p is an odd prime, |K|=p®, and p is semiprimitive mod exp(H), then K is
cyclic.

Proof. Consider the contracted array corresponding to the contraction of D with
respect to K. By Lemma 3.1, this array contains at least h/(p+1) p-tuples of
(unequal) elements £p®. By Lemmas 3.1 and 3.2, it also contains at least h/(p+1)
p-tuples of (equal) elements of the form bp®~1, b odd, for each of the p"—1 subgroups
Ker(x)# K. The energy constraint of Lemma 1.1 then gives

h (p2a+1 + (pr _ 1)1)2(1—1) < hp‘.’a
p+1
This implies p" < p+1, forcing r=1 and proving that K is cyclic. |

Combining Theorem 3.1 with the existence result stated in the introduction we
can give necessary and suflicient conditions for the existence of Menon difference
sets in many classes of abelian groups, for example:

Corollary 3.1. A Menon difference set exists in the abelian group H x K X Zy«,
where exp(H)=2 or 4 and |K|=3%, if and only if K is cyclic. |

In partlculdl thls gives a thcoretlc(xl proof for the nonexistence of a Menon
difference set in FXZ 3 X Zg, where F'= J,, or Zy, pu,vmusly established in [8] using
computer search to"ethu with a preliminary version of the method presented here.
The exclusion of thcsc two  groups is interesting because Menon difference sets exist
in both F' x Jj and I x A'( This demonstrates that, in contrast to the case of a 2-
group, the exponent alone does not in general determine whether an abelian group
contains a Menon difference set.

There remain eight abelian groups in which the existence of a (4N?2,2N?
N,N?%— N)-difference set with N <20 is currently undecided [6 Proposition 3.5 .1],
namely

9 7 72 Iy I 7Y ‘ o 7, ly
2y X Zyx 2§, ZaxZgxZ¥ Z3xZ% 22 x Zig % Zy,
r; 7 r; p 7 7 7 . r;
Z4 % 21 X Zy, Z§ x Zy, Zax Z3x Z2, Zox Zyx 23 x Zy.
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