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Partial difference sets in p-groups 

By 

JAMES A. DAVIS*) 

1. Introduction. Let G be a group of order v and D a subset of cardinality k. If every 
(nonidentity) element of D is represented exactly l times as dd' 1 for d, d' ED, and 
every (nonidentity) element of G D exactly µ times as dd' - 1

, then D is called a 
(v, k, J,, µ) partial difference set (PDS). Another useful parameter for PDS is 
Ll (A. - µ) 2 + 4(k - µ). See [7] for a survey of PDS , including their connections to 
strongly regular graphs. Most of the examples of PDS have come in p-groups, and 
most of these examples are in elementary abelian p-groups. In this paper, we will 
show an exponent bound for PDS with the same parameters as the elementary abelian 
case. 

There are several important observations about PDS that we will need later, and 
we include them in the following theorem. 

Theorem 1.1 ([6J). If D is a (v, k,Jc, µ) partial difference set and A =F µ, then D(-lJ = D. 
If 1 E D, then D - { 1} is also a PDS. 

In general, when any type of difference set has the property that v<- 1
> = D, that 

difference set is called reversible. If D does not contain the identity, then D is called a 
regular PDS. We will only consider regular PDS in this paper. 

A useful context to study PDS is in the group ring Z[G]. If Sis a subset of G, we 
write S = L: s and s<- 1> = I: s- 1

• The definition of the PDS implies the following 
seS seS 

group ring equation. 

nn<- 1l = µG +(.A - µ)D + yl, 

where y = k - µ when 1 $ D. Since n<-lJ = D, we can rewrite this equation into the 
quadratic equation in D listed below. 

i52 
= µG + (}. - µ)D + y1. 

Another useful technique is to consider contracted difference sets. If we map 
4): Z [G]-> Z [G/H] in the natural way, the difference set will be mapped to </>(D), where 
</> (D) may have coefficients that are not either 0 or 1. The coefficients will be integers 
between 0 and h = IHI; they are called the intersection numbers of the contraction, and 

*) This work is partially supported by NSA grant * MDA 904-92-H-3067 
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are labeled a;. If we apply ef> to the equation above, we get 

ef>(D) 2 = (:L a;gH) 2 = hµG/H + (}. - µ) cjJ(D) + y1. 
i 

ARCH. MATH. 

One of the main examples of PDS is due to Paley [9], who showed the following 
theorem (he did not phrase his result in the language of PDS). 

Theorem 1.2. Let G be the additive group of the finite field FP'' where p is a prime, and 

( 
p' - 1 p' - 5 p' - 1) 

p' = 1 (mod4). The nonzero squares in }<~,form a p',-
2
-, -

4
-, -

4
-- PDS in G. 

The additive group of the finite field is an elementary abelian p-group; this paper 
examines other abelian p-groups to see if any have a PDS with these parameters. Note 
that this theorem is true for any power of an odd prime p that is 1 mod 4, and any even 
power of an odd prime that is 3 mod 4. Also note that A - µ = - 1 for these parameters. 
The following theorem due to Arasu, Jungnickel, Ma, and Pott [3] shows that PDS 
with A - µ = - 1 must be of this form (with one exception). 

Theorem 1.3. The following are all possible parameters for the existence of a nontrivial 
abelian regular PDS with }, - µ = - 1 : 

(a) (v,kJ,µ) = (v, v; 
1

, v ~ 5 , v ~ 1) where v = 1(mod4). 

(b) (v, k, A,µ) = (243, 22, 1, 2) or (243, 220, 199, 200). 

PDS with ). - µ = - 1 have applications to reversible divisible difference sets. An 
(m, n, k, JL 1 , JL2 ) divisible difference set (DDS) in a group G with respect to a normal 
subgroup N of order n is a k-element subset D so that every (nonidentity) element of N 
is represented exactly ). 1 times as dd' -i and every element of G - N exactly JL2 times 
as dd' - 1 . A DDS is called reversible if D(-i) = D. The following theorem due to 
Arasu, Jungnickel, and Pott [1] establishes the connection between PDS with 
}, - µ = - 1 and reversible DDS with k - ). 1 = 1. 

Theorem 1.4 ([1]). If there is a (m, k, A, A+ 1) PDS in an abelian group H, then there 
is a reversible (m,2,2k + 1,2k,2(JL + 1)) DDS in an abelian group G of order 2m that 
contains a subgroup isomorphic to H. Moreover, every proper reversible DDS with 
k - JL 1 = 1 arises in this way. 

( 
p' -1) We can combine Theorems 1.3 and 1.4 to show that there is a p', 2, p', p' - 1, --

reversible DDS in z; x Z 2 when p'""' 1 (mod4). 2 

One other important feature about these parameters involves a theorem by Ma [6]. 

Theorem 1.5. Suppose that there is an abelian regular (v, k, ),, µ) PDS so that .d is not 
a square. Then (v, k, }., µ) = (p 2 s+ 1 , (p 2 s+ 1 - 1)/2, (p 2 s+ 1 - 5)/4, (p 2 s+ 1 - 1)/4) where p 
is a prime 1 (mod 4). Note that LI = p 2s + 1. 

Note that Paley's construction in the elementary abelian group fits these parameters. 
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In [10], Turyn initiated the use of character theory for studying difference sets in 
abelian groups. A character of an abelian group is a homomorphism from the group to 
the complex numbers. This technique has been generalized to aid in the study of other 
types of difference sets, including PDS and DDS. One way to see how character theory 
gets involved is to extend the homomorphism to the group ring, and apply the extended 
homomorphism to the group ring equation developed in the introduction. Thus, if x 
is a character of G, then the PDS equation becomes 

(x(D)) 2 = (Jl - µ) x(D) + y. 

By using the quadratic formula and the Fourier mvers10n formula (see [10] for 
similar arguments), we get the following theorem. 

Theorem 1.6. The subset D of the abelian group G is a (v,k,Jl,µ) PDS iff x(D) = 
}, - µ + J(il - µ)2 + 4y Jl - µ + fl 

- = - for every nonprincipal character X· 
2 2 

One important thing to note here is that the character sum equation does not re
quire that we take the absolute value of x(D) as we do for other types of difference sets 
because the PDS is reversible. 

To each character x we have the associated contraction of the group ¢x: G--+ 
G/Ker(x). If xis a character of order r, then the intersection number a; under the contrac
tion by ¢x is the number of elements of the PDS that are sent to (;, ( a primitive rth 
root of unity. Thus, we have changed a question of PDS into a question of sums of 
roots of unity in a cyclotomic field. We need to consider the cyclotomic field <Q [(], 
where (is a primitive ps+ 1 root of unity. By basic number theory (see [8] for example), 
a basis for <Q [(] is w+ps j I i = 0, 1, 2, ... ' PS - 1; j = 1, 2, ... ' p - 1}. Notice that there 

pS-1 

are ps(p - 1) elements in this basis. If A E <Q [(], and if A = L a;(;, then when we 
ps-1 p-1 i=O 

write A in terms of the basis, we get A= L L (a;+jp' - a;)(i+jvs. 
;~o j=l 

( 

p2s+l _ 1 p2s+l _ 5 
2. Nonexistence result. We consider the parameters p 2

s+
1

, , , 

p2s+1_1) 2 4 

4 
. Suppose that there is a character x nonprincipal on the group G. The 

following corollary describes how to get the correct character sum (this follows from 
Theorem 1.6). 

( 

p2s+l -1 p2s+l _ 5 p2s+l _ 1) 
Corollary 2.1. There is a p 2 

s + 1 , 
2 

, 
4 

, 
4 

PDS in an 

- 1 + J1 + p2s+l - 1 - 1 + ps Jp 
abelian group G if! x (D) = - = - for every non-
principal character x of G. 2 2 

Leung, Ma, and Tan [5] have shown the following exponent bound on the group 
for these parameters. 
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( 

p2s+l _ 1 p2s+l _ 5 p2s+l __ 1) 
Theorem 2.1. If there exists a p2s+ 1 , 

2 
, 

4 
, 

4 
-PDS D in 

an abelian group G (p = 1 mod 4 a prime), then the exponent of G is less than or equal 
to Ps+1. 

We consider the case on the boundary, namely groups G with exponent equal to 
ps+ 1 . We are working with the cyclotomic fields generated by (, where ( is a primitive 
ps+ 1 root of unity. In this cyclotomic field, we need to know how we can get a sum of 
-1 ±PS JP . - . 

2 
. The followmg lemma tells us how to do that. 

- 1 + PS JP PS - 1 p- 1 
Lemma 2.1. Let p be a prime; - = - -' -- r (kP' + p' L ( P'n, where 

2 2 k~ 1 n 

n is summed over the quadratic residues mod p for the positive sum and the quadratic 
nonresidues for the negative sum. 

Pro of. The sum uses the basic number theory fact [8] which shows that 

L (P'• =JP - 1 
where n ranges over the quadratic residues mod p, and the sum over 

:::ul~~n~id:a; mod p is - ;; -
1 

. The lemma is a simple calculation from this 

Notice that the sums only use powers of (that are actually powers of (P'. Since all 
of the coefficients on this sum must be positive when we look at x (D} (they are the 
intersection numbers), we have that the coefficients on the powers ( P'", n a residue (or 
nonresidue) must be p8

• Also, the intersection number for the nonresidues (or residues) 
will be 0. The intersection number of ps implies that a coset of the kernel of x will be 
contained in the PDS, while the intersection number of 0 implies that the coset will 
not intersect the PDS. We can use that to prove the following theorem. 

( p2s+l -1 p2s+1 _ 5 p2s+l -1) 
Theorem 2.2. If there exists a \Pzs+ 1 , 

2 
, 

4 
, 

4 
. PDS D in 

an abelian group G (p = 1 mod 4 a prime), then the exponent of G is less than or equal 
tops. 

Proof. Suppose that the group is G = (x) x H, where x has order ps+ 
1 (we 

know the exponent cannot be any bigger than this by Theorem 2.1), and the character 
x maps x to a primitive p"+ 1 root of unity ( and H to 1. By the remarks before the 
theorem, the cosets xP'• H are contained in the difference set when n is a quadratic 
residue mod p, and those cosets are disjoint with the difference set when n is a non
quadratic residue (or vice versa). Now consider the character Xi that maps x to ' and 

has order p on H: there will be p; 
1 

ps-l elements mapped to each root of unity 'p'i 

for i = 0, 1, ... , p - 1. This means that Xi will not have an intersection number aps; of 
0 for either the residues or nonresidues. This is a contradiction, so there is not a PDS 
with these parameters. D 
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( 
p3 - 1 p3 - 5 p3 - 1) 

Corollary2.2. Let p == 1(mod4), pa prime: there is a p 3
,-

2
-,-

4
-,-

4
-

PDS in an abelian group if and only if the group is elementary abelian. 

3. Construction. In [4], Leung and Ma provided a construction of a PDS in an abelian 
p-group that is not elementary abelian. We state one special case of that theorem in 
the following. 

Theorem 3.1. The group G = z;2 has a (p 4
, ep(p 2 

- 1), (e 2 + 1) p 2 
- 3ep, (ep) 2 - ep) 

PDS for 1 ~ e ~ p - 1. 

P r o o f. The construction is phrased in terms of finite local rings: I would like to 
view the PDS in a different way, similar to PDS of the PCP type. In the PCP con
struction, we need r mutually disjoint (with the exception of the identity) subgroups. 
One way to view the Leung-Ma construction is that it uses e(p + 1) cyclic subgroups 
of order p 2 in the group z;2, and only takes the elements of order p 2 from those 
subgroups to form the PDS. Define the set C to be the elements of order p 2 from the 
subgroups <(1, 1)), ((1,2)), ... , <(1, ep)), ((p, 1)), ... , <(ep, 1)). 

We want to consider the character sums over the set C. There are three possible 
sums over the elements of order p 2 of a cyclic subgroup H of G of order p 2 • If Xo is 
a character that is principal on a generator h EH (and nonprincipal on G), then the 
sum is the number of elements of order p 2 in the subgroup, which is p 2 

- p. If Xi is 
a character that sends h to a primitive pth root of unity, then the sum over the whole 
subgroup H will be 0. Since we only want the sum over the elements of order p 2 , and 
Xi is principal on the elements of order p, we get :L Xi (x) = L Xi (h') -

p elts of order p2 h' Eli 

L X1 (hPj) = 0 - p = - p. Finally, if Xz is a character that sends h to a primitive p 2 

j= 1 

root of unity, then :L Xz (g) = 0. If x is a character of order p 2 , then x is prin-
eits of order p2 

cipal on at most 1 of the subgroups that is used to build C. If x is nonprincipal on 
all of those subgroups, then it will send e of the generators of the subgroups to a primi
tive pth root of unity, and the other generators (there are e p of these) will be sent to 
a primitive p 2 root of unity. Thus, the character sum for this type of character is 
- e p. If x is principal on one of these subgroups, then it will send e - 1 of the 
generators to a primitive pth root of unity and the rest to a primitive p 2 root of 
unity. The character sum will be p 2 

- p + (e - 1) (- p) = p 2 
- ep. If xis a character 

of order p, then it will be principal on e of the subgroups, and will send the 
generators of the remaining subgroups to a primitive pth root of unity. Thus, the 
character sum there will be e(p 2 

- p) + ep(- p) = - ep. By Theorem 1.6, C is a 
(p 4

, ep(p 2 
- 1), (e 2 + 1) p 2 

- 3ep, (ep) 2 
- ep) PDS for 1 ~ e ~ p - 1. D 

We will now construct a different PDS in the same group G = z;2 (see [7] for the 
general construction). A partial congruence partition of G of degree t (a (p 2 , t )-PCP) is 
a set of t subgroups of G of order p 2 so that Un V = { 1} for every choice of sub
groups U, V. There are many ways to construct these: we will choose the subgroups 
<(1, 0)), <(O, 1)), <(1, ep + 1)), ... , <(1, ep + t - 2)). 
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Theorem 3.2. The set E = ((1, 0)) u ((0, 1)) u ((1, ep + 1)) u ... u ((1, ep + t - 2)) 
- {(0,0)} is a (p 4 ,t(p 2 

- 1), p2 + t 2 
- 3t, t 2 

- t) PDS for 3 ~ t ~ p + 1, 
1~e~p-1. 

We have chosen the subgroups in this way so that they will not intersect with the 
PDS that we defined in the first theorem. We now want to calculate the character 
theory for E. If x is a character of order p 2 that is nonprincipal on all of the sub
groups in the definition of E, then x(E) = - t. If xis principal on one of the subgroups, 
then x(E) = p 2 

- 1 - (t - 1) = p 2 
- t. If x is a character of order p, then x(E) will be 

principal on at most one of the subgroups (this is where the restrictions on t are 
used), and x(E) could be either - t or p2 

- t. Since C and E are disjoint, consider 
D = CuE. 

Theorem 3.3. The set D =Cu E is a (p 4
, (t + ep)(p 2 

- 1), p 2 + (t + ep) 2 
-

3(t + ep), (t + ep) 2 
- (t + ep)) PDS in Zizfor 3 ~ t ~ p + 1, 1 ~ e ~ p - 1. 

Proof. Suppose that x is a character of order p2
• x will be principal on a cyclic 

subgroup of order p 2
: that subgroup is either in C or E or neither. If the kernel is in C, 

then the character sum is x(D) = x(C) + x(E) = p2 
- ep + - t. If the kernel is in E, 

then the character sum is x(D) = x(C) + x(E) = - ep + p2 
- t. Finally, if the kernel 

is not in either, then x(D) = x(C) + x(E) = - ep + - t. All of these are the correct 
value. If the character has order p, then x(C) = - ep, and x(E) can be either of its 
possible values to get the correct sum. Thus, Theorem 1.6 implies that D is a PDS. D 

Notice that all of these have the Latin square type as defined in [7]. This gives a new 
p+1 

family of PDS of this type in a nonelementary abelian group. If we set t = -
2
-, 

e = p ; 
1 

, we get the following important corollary. 

( 

4 p4 - 1 p4 - 5 p4 - 1) 
Corollary 3.1. T(he group ZP2 x ZP~ ha~)a p , -

2
-, -

4
-, - 4-- Paley PDS. 

This implies that p4
, 2, p4

, p
4 

- 1, p ; is a reversible DDS. 

Most examples of reversible DDS are constructed by using elementary abelian 
p-groups, so this construction is different than the usual way to get reversible DDS. 

We can further extend the groups that contain PDS with the Paley parameters with 
the following product theorem. 

( 
p'-1 p'-5 p'"-1) 

Theorem 3.4. Suppose that G and G' have p', --, --, -- PDS, 
2 4 4 ; 

respectively D and D'. Then the set E = (1 + D)D' + (G - D) (G' - D' -1) is a 

( 

p2r _ 1 p2Y _ 5 p2r -1) 
p 2',--

2
-,--

4
-, 

4 
PDS in G x G'. 

Pro of. Consider the following characters on G x G': x nonprincipal on G but 
principal on G', Xi principal on G but nonprincipal on G', and Xz nonprincipal on 
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both G and G' 
r 1 

x(E) = (1 + x(D)) ID'I + (- x(D)) IG' - D' -11 = P ~ 

X1(E) =(!DI+ 1) X1(D') + IG-DI (-1- x1(D')) = - p~ - l. 

In the Xz calculations, there are 4 cases, depending on the values of Xz (D) and 
x2 (D'). We will only do 1 of the cases here 

Xz (E) = ( 1 + -
1 

: fa) (- l ~ fa) 
+ ( - - 1 : fa) ( - 1 - - 1 ~ fa) 
-1-2fa-p'-1+2fa-p' -1-p' 

4 2 

Since all of the character sums are correct, this is a PDS in the direct product of G 
and G'. D 

If we apply this product construction inductively to the two constructions in this 
paper (the one due to Paley and the one in Corollary 3.1), we get the following family 
of groups that support a Paley PDS. 

( 

p4a+4b _ 1 
Corollary 3.2. Any group of the form z;2a x z:b will have a p40 +4b, 

2 
, 

p4a+4b _ 5 p4a+4b _ 1) 
--

4
--, 

4 
Paley PDS when(ever a + b is a power of 2. This i::;~z!~s tht)t 

the group z 2 a x z 4 b x z will have a p4a+ 4 b 2 p4a+ 4b p4a+ 4b - 1 p -
p2 p 2 ' , ' ' 2 

reversible DDS. 

Finally, we note that we can generalize the idea of combining the Leung-Ma con
struction together with PCP-type PDS for higher powers of the prime, but it is much 
more difficult to keep track of the character theory. We did not see any applications 
to the Paley parameters, so those results are not included in this paper. 

A c k n o w I e d g em e n t . The author would like to thank the referee for the very 
careful reading that was done. 
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