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Abstract 
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Davis, J.A., Construction of relative difference sets in p-groups, Discrete Mathematics 103 
(1992) 7-15. 

Jungnickel (1982) and Elliot and Butson (1966) have shown that (pi+ 1
, p, pi+•, pi) relative 

difference sets exist in the elementary abelian p-group case (p an odd prime) and many 
2-groups for the case p = 2. This paper provides two new constructions of relative difference 
sets with these parameters; the first handles any p-group (including non-abelian) with a special 
subgroup if j is odd, and any 2-group with that subgroup if j is even. The second construction 
shows that if j is odd, every abelian group of order pi+Z and exponent less than or equal to 
p<i+3>12 has a relative difference set. If j is even, we show that every abelian group of order '2}+ 2 

and exponent less than or equal to 2U+4>12 has a relative difference set except the elementary 
abelian group. Finally, Jungnickel (1982) found (pHi, p', pHi, pi) relative difference sets for all 
i, j in elementary abelian groups when p is an odd prime and in £'~ x ~ when p = 2. This paper 
also provides a construction for i + j even and i ,,;;,j in many group with a special subgroup. This 
is a generalization of the construction found in a submitted paper. 

1. Introduction 

A relative difference set (RDS) in a finite group G relative to a subgroup His a 
subset D so that every non-identity element of G - H can be represented A times 
as differences from elements in D (and no element of H - 1 is represented). For 
background on these, see [5]. In this paper, we will first be concerned with 
(pi+ 1

, p, pi+\ pi), where IHI= p, IDI =pi+\ and A= pi. In Sections 2 and 3, we 
will provide a construction if the rank of the group is big enough. This 
construction is relatively easy to set up, and it includes non-abelian examples. 
Sections 4 and 5 contain a second construction that shows that every abelian 
p-group meeting the exponent bound will have a RDS if j is odd, and every 
abelian 2-group meeting the exponent bound has a RDS except the elementary 
abelian when j is even. Section 6 will consider (pi+i, p;, pi+i, pi) RDS, and we 
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8 J.A. Davis 

provide a construction if the group has a normal elementary abelian subgroup of 
rank i + j. The approach of this paper will follow the patterns found in [2, 3, 6, 7]. 

A good way to view any difference set is to consider the group ring .Z[ G). If we 
write D = I:deD d and v<-l) = I:deD d- 1

, then by the definition, 

DD<- 1l = pj+i + pj(G - H). 

A character x of G (an abelian group, and always when refering to characters) is 
a homomorphism from G to the complex numbers: the principal character Xo 
maps every group element to 1. If we extend the character to a homomorphism of 
the group ring, then we have two possibilities for the character sum x(D). If xis 
nonprincipal on H, then the sum is p<j+i)12

; if x is a nonprincipal character on G 
that is principal on H, then the sum is 0. This is a very useful way to check if we 
have a difference set; the orthogonality relationships on characters imply D is a 
RDS if and only if every character satisfies this sum condition. The orthogonality 
relationships on characters apply in several arguments found in this paper, so it is 
worth mentioning that any elements in the group ring that have the same 
character sum for every character of the abelian group must be the same. 

An application of this is the exponent rule for RDS (the exponent of the group 
is the size of the largest cyclic subgroup). From character arguments similar to 
those in [7, Theorem 6), we see that (for i = 1) no group of order pj+2 with 
exponent larger than pU+3V2 has a RDS with the above parameters (j is odd). The 
j even case is more difficult; the p case is not obvious, but the p = 2 case has a 
bound of 2U+4l12• 

In [4), Elliot and Butson found RDS for odd prime and the p = 2, j odd case; 
both constructions are in elementary abelian groups. Jungnickel [5) extended the 
p = 2, j odd case to include any 2-group with exponent less than 2U+3l12 that has a 
Z 2 piece split off (note: his result also works on non-abelian groups, but what is 
stated above is his result together with [6) for abelian groups). Jungnickel also 
finds a RDS with p = 2, j even in a special group. Finally, Jungnickel [5) has 
constructed RDS having parameters (pi+j, pi, pi+j, pj) for all i, j. These were 
obtained by first building a (pi+j, pi+j, pi+j, 1) RDS, then divide out by a 
subgroup of the forbidden group of order pj. We will use this dividing out 
technique to find (pi+j, pi, pi+j, pj) for i + j even, i .;;;; j, and G containing a normal 
elementary abelian group of rank i + j. 

2. High rank case, j odd, i = 1 

We will write a subgroup generated by g, h, ... , k as (g, h, ... , k). Suppose 

H1 = (x1> x2, ... , xu+3)12 ) = .z~+ 3l12 

is a normal subgroup of G, where G has size pj+2 for j odd. Also suppose that 
H = (x 1 ) is the forbidden subgroup. Define 

D - D - (xkzx xk'x xku+3Jf2x ) (kz,k3 0 •••• k(j+3)1i) - kn - I z, I 3, · · · ' I (j+3)/2 

for 0.;;;; kn.;;;; p - 1, 2.;;;; n.;;;; (j + 3)/2. 
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Proof. (a) Let x be any nonprincipal character of H 1 • kn *-k~ implies x is 
nonprincipal on one of the Dk"' so x(Dk"Dt 1>) = 0. Thus, Dk"D~~ 1 > must be a 
multiple of H1, and a counting argument yields p<i- 1

>
12. 

(b) This is obvious because Dk" is a subgroup. 
(c) Let x be any nonprincipal character on H 1• If xis principal on H, then xis 

nonprincipal on every Dk"· Thus, the character sum on both sides of (c) is 0. If x 
is nonprincipal on H, then x is nonprincipal on every Dk" except one. Thus, the 
character sum on both sides of (c) is p<i+ 1>12. It is easy to check that the principal 
character has sum pi+t on both sides, so (c) is true. D 

The Dk" are the building blocks of the RDS: we need to assign gk" to each Dk"' 
where the gk" come from different cosets of H 1• If we choose them so that the 
map cp: Dk"~ gk"Dk"g;} is a permutation of the Dk"' then we will have a RDS. 

Theorem 2.2. Let G be a group of order pi+2 with a normal elementary abelian 
subgroup of order p<i+3V2. If we define D =Uk" gk"Dk" as above so that cp is a 
permutation of the Dk"' then Dis a (pi+1, p, pi+t, pi) RDS. 

Proof. The following group ring equation uses Lemma 2.1, cp a permutation, and 
the fact that the gk" form a trivial (p<i+ 1>12, p<i+1>12, p<i+ 1>12 ) difference set in the 
group GI H 1 to prove the theorem. 

= pu+1)12 L Dk"+ pu-1J12[pu+1)12(G - H1)] 
kn 

=pi+ I+ pi(H1 - H) + pi(G - H1) 

= pi+I + pi(G - H). 0 

Notice that this theorem applies to abelian groups since cp will always be the 
identity permutation. It also applies to any non-abelian group where H 1 is 
contained in the center of the group for the same reason. It turns out that if the 
size of the subgroup 

C(H1) = {g E G I gh 1 = h1g for every h1 E H1} 

is big enough compared to the largest conjugacy class in H 1 , then the theorem 
applies. We can see this by viewing the Dk" as H1/ (hkJ for some hk" E H1. Thus, 
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the conjugates of Dk"' say {Dk"' Dk",2, ... , Dk",pm} are exactly related to the 
conjugacy class of hk"· Take any g E G - H1, and let g = gkn· If gDk"g- 1 = Dkn,2 * 
Dkn• then let gk",2 = gh2 for h1 E C(H1) - H1 • Do this again if gh 2Dkn,2h2 1g- 1 * 
Dk"' set gk". 3 = gh3 for some h 3 E C(H1) - H1 in a different coset of H1 than h 2 • 

Repeat this again until the process returns to Dk"· Notice that we need enough 
distinct cosets of Hi from elements in C(Hi) to make this work. Then start with a 
g' in a different coset than anything before it, and repeat the process. This 
argument is the same one as in [2]. We have shown that the theorem applies to 
the following situation. 

Corollary 2.3. Let G be a group from Theorem 2.2, and suppose that H = (x 1 ) is 
in the center of G, and that (x2 , ••• , Xu+ 3 )12 ) is normal in G. If the largest 
conjugacy class in Hi has size p' and IC(H1)1 ~ pU+3V2+1

, then G has a 
(pj+I, p, pj+t, pj) RDS. 

The condition on the subgroups is to insure that <P is a map from Dk" to Dk"' 
and the t gives us enough distinct cosets of H1 in C(H1). 

In the difference set case, it is conjectured that any 2-group with a normal 
elementary abelian subgroup of the appropriate size will have a difference set. 
That would appear to be a reasonable conjecture in this case as well, with some 
added hypotheses about Hi. 

3. High rank case, j even, i = 1, p = 2 

In this section, we will always have j even. 

Lemma 3.1. Let G be a group of order '2}+ 2 with a subgroup H of order 2. If there 
is a character of order 2 that is nonprincipal on H, then G does not have a 
('2!+ 1, 2, 2j+ 1, 2j) RDS. 

Proof. Since there is a character of order 2 that is nonprincipal on H, that 
character takes on values of ±1. If D is a RDS, then the character sum is 
rational, but 2u+ 1>12 is not rational, so there is no RDS. D 

Notice that this excludes the elementary abelian 2-group since all characters are 
of order 2. This was proved in [4], but not in the above generality. 

The construction from Section 2 will carry over with some slight modifications. 
Let G be a group of order 2j+2

, and let H 1 be a normal elementary abelian 
subgroup of order '2!12. If H = (x1 ), then Lemma 3.1 implies that there must be a 
g E G so that g2 = x1 • If we choose the gk" using the same procedure as Section 2, 
then 



Construction of relative difference sets in p-groups 11 

is a RDS. Let Hz= (g, Xz, ... , Xu+z)12 ), and suppose that g is in the center of the 
group. 

The proof is the same as for Lemma 2.1, except the character for (c) comes 
from Hz. 

Theorem 3.3. Let G be a group of order 2f+z with a normal elementary abelian 
subgroup of size 2u+z)rz with Hz as above. If we define D as above so that </> is a 

permutation of the Dk"' then Dis a (2f+1, 2, 2f+1, '2!) RDS. 

Proof. Again, we will use a group ring argument with Lemma 3.2, </> a 
permutation, and the fact that the gk" form a (2!1z, 2!12

, 2i1Z) difference set in GI Hz. 

DD<-i) = L gk.(l + g)Dkp~~ 1)(1 + g3)g;l 
kn 

= 2j/Z(2 + g + g3
) L gknDkngk} + 2j/Z-l(2 + g + g3

) L gknHlgk} 
k,, kn=l=k~ 

= 2j/Z(2 + g + g3
) L Dkn + 2j/ZHz L gkngk~l 

kn k,.=l=k~ 

= 2itZ(2f1z+1 + 2Fz(Hz - H)) + 2!1z(2itz(G - Hz))= 2f+1 + '2!(G - H). 

D 

From this, we have a similar corollary. 

CoroUary 3.4. Let G be a group from Theorem 3.3, and suppose that g is in the 

center of the group. Also suppose that (xz, ... , Xu+zvz) is normal in G. If the size 
of the largest conjugacy class in H1 is 2', and IC( Hz) I~ 2itz+z+i, then G has a 
(2f+1, 2, 2f+1, 2i) RDS. 

4. Construction for j odd, i = 1 

Theorem 4.1. Any abelian p-group of order pi+Z and exponent less than or equal 
to pU+ 3)tz has a (pi+ 1, p, pi+ 1, pi) RDS. 

Proof. Suppose G = Zp"l x zp"2 x ... x zp"k = (x1, Xz, ... 'xk) for 

a1 ~ az ~ · · · ~ ak-1 < ak ~ (j + 3)/2 and H = (xf'-') 

(we will consider the case ak-I = ak at the end of the proof). Define the subgroup 

A - ( P"'-') - Xk-1• Xk-Z1 · · ·, Xr+l1 X, 
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so that I;~,:/ (a;) - t = (j + 1)/2. Next define 

for 0 :s:: ik-n :s:: pa•-· - 1, n * k - r and 0 :s:: i, :s:: pa,-t - l. This is essentially the 
analogue of the Dk. on the high rank cases. Let g(o. ;._2 , ... ,i,) be in distinct cosets of 

H1 = (xp"•-"•-1-1) X A. 

A counting argument shows that we have used all the cosets. If we define 
- - ik-tPak-ak-1-l 

gU•-i.-- .. i,) - g;. - g(o,;._2,. • .,;,)Xk , 

then D = U;. g;.D;. is the RDS. The first thing that we need to show is that there 
are no repeated elements in the union. Suppose that there is a repeated element. 
It must occur with ik-n = i~-m n = 2, 3, ... , k - r since if any of these are not 
equal, the elements will be in different cosets of H 1 • Thus, for ik-l * i~-v 

( 
ik-IPak-Ok-1-l)( ik-lPak-ak-1 y·k-l ( i p"k-a,+t a -t)j. g(O,ik-2 ..... i,)xk xk Xk-1 ... Xfc X/ J 

= ( . . Xik-tPak-ak-1-t)(xik-1pak-ak-IX y·k-t • • • (xi,pak-ar+tXa,-,j; g(o,,._,. .. .,,,) k k k-1 k r • 

Since the powers of the generators xk_1, . .. , x, must be the same on both 
sides, ik-n = i~-n for every n. After all the cancellation, we get 

xf"•-"•-1-1;•-1<Ph-1+1) = xf"•-•-1-1;k-1(Ph-1+t>. 

Thus, ik-l == i~_ 1 (mod pa•-1+ 1), which implies that ik-l = i~_ 1 . this shows that 
there are no repeated elements. 

To show that it is a RDS, let x be any nonprincipal character on G. 
Case 1: x .is nonprincipal on H. 

x will map 
xrak-"k-n 

to a primitive pa•-• root of unity. Since xk-n is mapped to a pa•-· root of unity, 
exactly one ik-n has the property that 

is mapped to 1 by X· This is true for every n, so there is only one D;. where x is 
principal; it is nonprincipal on all the others. Thus, lx(D)I = ID;.I = pU+

1
l
12

• 

Case 2: xis principal on H but is nonprincipal on (xf'-"•- 1
-

1
). 

Suppose that n is the minimum number so that x maps 

to 1. If x is principal on Duk-1 ..... i,)• then it is principal on Du._,+sp" ..... i,)• 
O:s::s :S::pa•-i-n _ l. Thus, 

pOk-t-n-1 

"' ( D ) _ (j+l)/2"' ( p"k-"k-1-l+n)s 
L.J x gU.-1+sp•,. . .,i,) (i._,+sp• •. .,i,) - p L.J x xk 
s=O 

= Pu+ 1
>
12 2: (riY = o. 
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Here, ri is a primitive pth root of unity. Thus, x(D) = 0. 
Case 3: x is principal on H and is principal on (xr-·H-1), but is nonprincipal 

on H 1 . 

Then xis nonprincipal on every Di., so x(D) = 0. 
Case 4: x is principal on H 1. 
Then it is principal on every Di. and it induces a nonprincipal character on 

G/H1 . Thus, 

X( D) =pu+1)12+a•-1"" x(g . . ) = 0 L., (O,••-z, ... ,1,) • 

This proves the theorem in the case where ak-l < ak. The case where ak-I = ak 
simply needs a modification of the gi.· We set up the A and the Di. exactly the 
same. Since ak-l = ak> the subgroup H 1 = (xk) x A has order at most pi+1: thus, 
there is a z E G - H 1 so that zH1 has order p in GI H1 . Define g(ik-1···· ,i,) = 
g(o, ... ,;,J(xkz)i•- 1

, where the g(o, ... ,i,) are chosen from distinct cosets of (z) x H 1• To 
show that there are no repeated elements, we observe that the z forces 
ik_ 1 =i~_1 (mod p) (otherwise, the elements would be in different cosets of H 1). 

Arguing as before, this implies that i~_ 1 = ik-l (mod pa•), which implies that 
ik-l = i~_ 1 . The only case where the character theory arguments is affected is 
Case 2, here that is x nonprincipal on (xk) but principal on H. We get the same 
argument for n;;;,: 1, and our final sum looks like 

Thus, the theorem holds for ak = ak-l as well. D 

Thus, the exponent bound is necessary and sufficient for existence of RDS with 
these parameters, Notice that the subgroup H had to be contained in the biggest 
exponent piece of the group. I am not sure if this is necessary, but it was required 
in this proof. 

5. Construction for j even, i = 1, p = 2 

Theorem 5.1. Every abelian group of order 2i+2 and exponent less than or equal 
to 2U+4J12 has a (2i+l, 2, 2j+l, 2i) RDS except the elementary abelian group. 

Proof. Pick H and A (of order 2F2
) and the D;. as in Section 4. We note that 

ak ;;;,:2: take the g(o ... ,i,) to be in distinct cosets of (x'//-2
) xA, and define 

D = LJ g· (D· Uxak•- 2- D· ). 
ln ln ln 

in 

The only difference in the character theory arguments comes when x is 
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nonprincipal on H: there, its character sum (in modulus) is 

lx(D)I = ID;J l(x(g;J)(x(l) + x(xkk- 2))1 = 2P2 l(l ± i)I = 2u+ 1>12
• o 

6. Big subgroup construction 

The following construction is modeled after [3]. Consider E = EA(p2n) as a 
vector space of dimension 2 over GF(pn). Let 

p2n -1 
r=---=pn+l 

pn-l 

be the hyperplanes (1-dimensional subspaces) of E. Every non-identity element 
of Eis in precisely one of these hyperplanes, so 

r 

L H; =pn +E. 
i=l 

Let G be any group of order p 3
n that has E as a normal subgroup. If 

{g1 , ... , g,_ 1} are in distinct cosets of E, then define <P: H;- g;H;g/1 for i * r. In 
this setup, H, will be the forbidden subgroup. Define 

r-1 

D=Ug;H;. 
i=l 

Theorem 6.1. If</> is a permutation of the (non-H,) hyperplanes, then Dis a RDS. 

Proof. 

= pn 2: g;H;g/1 + pn(G - E). 
i<r 

The justification for the second sum is that the elements g;E form a trivial 
(pn, pn, pn) difference set in GI E. If <P is a permutation of the hyperplanes, the 
first sum is I:i<r H;. Thus, 

The only difficulty here is to ensure that <P is a permutation. We get the 
following. 

Corollary 6.2. If E lies in the center of G, then D is a RDS for any choice of the 
g;. 
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The above corollary is true because </> is the identity permutation. Notice that 
this includes all abelian groups. 

Using the same division technique as Jungnickel, we can get the following. 

Corollary 6.3. Any group G of order p 2n+k with a central subgroup isomorphic to 
z;+k will have a (p2n, pk, p 2n, p 2n-k)-RDS. 

To prove this corollary, apply Theorem 2.1 to G x z;-k and divide down to G. 
This corollary is a generalization of Theorem 2.2 in [2]. 

This leaves several questions: 
(1) Is there an exponent bound for groups that have an RDS with these 

parameters (much like the ordinary difference set case)? 
(2) What constructions will work if i + j is odd? 
(3) What constructions will work if i > j? 

Note. Pott has observed that this construction can be generalized to non-p
groups. Consider E = EA(qd) as a vector space of dimension d over GF(q). 
There are (qd -1)/(q -1) = r hyperplanes of E (call them H;). If G is any group 
containing E as a normal subgroup of index r - 1, then D = U~:}, g;H; is a 

(
q (qd - 1 - 1)' qd-1, qd-l(qd - 1 - 1)' qd(qd-2 - 1)' qd-l(qd-1 - 1)) 

q-1 q-1 q-1 q-1 

divisible difference set with H, as the forbidden subgroup (d ~ 3). 
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