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ABSTRACT 
 

Extracorporeal photochemotherapy (ECP) is a cellular therapy that is FDA 

approved for the treatment of a variety of T cell mediated diseases, including cutaneous T 

cell lymphoma, graft-versus-host disease, and solid organ transplantation rejection. Its 

ability to selectively suppress and stimulate immunity while causing minimal to no side 

effects in patients distinguishes it from other therapies including pharmacologic agents. 

Despite the clinical success of ECP, the exact mechanism by which ECP generates 

immunotolerance and immunogenicity in patients has been elusive. Since monocytes 

interact with platelets and serum proteins in the ECP chamber to undergo differentiation 

into dendritic cells (DCs), we examined whether 8-methoxypsoralen (8-MOP) and 

ultraviolet A (UVA) treatment modified the phenotypic and functional properties of these 

DCs in a laboratory model of ECP. In a dose-dependent fashion, 8-MOP/UVA treatment 

of ECP-induced antigen presenting cells induced the expression of glucocorticoid-

induced leucine zipper (GILZ), a molecule shown to be both necessary and sufficient for 

tolerogenic DC phenotype and function. These GILZ expressing cells demonstrated a 

tolerogenic phenotype and down-regulated the expression of several co-stimulatory 

molecules including CD80, CD86, and ICAM1. Since the exposure of 8-MOP/UVA on 

ECP-induced dendritic antigen presenting cells is not uniform, a spectrum of DC is 

generated from the procedure. The dose-dependent induction of GILZ by 8-MOP/UVA 

may help to provide a molecular and mechanistic explanation of how ECP is capable of 

inducing immunosuppression and immunity with GILZ high DCs and GILZ low DCs 

respectively. 
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INTRODUCTION 

Solid Organ Transplant Rejection and Graft-Versus-Host Disease 

Solid organ transplant (SOT) rejection and graft-versus-host disease (GVHD) are 

major problems in the field of transplantation that cause significant morbidity and 

mortality.  Both disease processes are results of competent immune cells recognizing the 

presence of “non-self” antigens [1].  In humans, differences in human leukocyte antigens 

(HLA), the products of histocompatibility genes, are responsible for stimulating the 

adaptive immune system to respond and subsequently cause graft-versus-host disease and 

organ transplant rejection [2]. 

In SOT rejection, the immune system recognizes the alloantigen on the graft as 

foreign and mount an adaptive immune response that lead to its rejection via targeted cell 

death [3]. While both cellular and humoral mechanisms involving multiple cell types are 

responsible, T cells are central in the acute and chronic rejection of grafts [1, 4]. For heart 

transplant recipients, acute rejection affects 30-50% of patients in first year and 80% of 

surviving patients in 10 years [5]. In lung transplant patients, 50% and 74% of patients by 

5 and 10 years post-transplant develop bronchilitis obliterans syndrome, a chronic 

rejection syndrome [5].  

GVHD occurs after allogeneic stem-cell transplantation. It is the result of mature 

donor T cells recognizing the recipient tissue as foreign, causing a severe inflammatory 

disease that leads to host tissue destruction [1]. Acute GVHD occurs in about 60% of 

HLA-compatible cases and 80% of unrelated donor cases, and chronic GVHD occurs in 

about half of the patients despite immunosuppressants [4].   
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In both GVHD and SOT rejection, stimulation and proliferation of polyclonal T 

cells that recognize foreign antigens on the target tissue are at the center of both 

destructive processes [4]. Current pharmacologic immunosuppressive agents, such as 

tacrolimus and cyclosporine, target pathways involved in T cell activation and 

proliferation. Although effective, they induce global, non-specific immunosuppression 

that predisposes patients to malignancies and opportunistic infections.  Additionally, side 

effects such as neurotoxicity, nephrotoxicity, and microangiopathy are common with 

these drugs.  

Better therapies, especially those with minimal side effects and can selectively 

suppress the pathogenic clones, are desired. Extracorporeal photochemotherapy has been 

utilized extensively to induce sustained and specific immunological responses in patients, 

including those with GVHD and SOT rejection. Its mechanism of action, however, has 

remained elusive and is incompletely understood. 

 

Extracorporeal Photochemotherapy 

Extracorporeal photochemotherapy (ECP) is a cellular therapy that is FDA 

approved for the treatment of a variety of T cell mediated diseases. In this therapy [6], the 

plasma and leukocyte-rich fractions from the patient’s peripheral blood are separated by 

centrifugation. The leukocytes are re-infused into the patient after ex vivo exposure to 

UVA light in the presence of a photo-activatable drug, 8-methoxypsoralen (8-MOP). The 

ECP procedure is demonstrated in Figure 1. When activated, 8-MOP causes apoptosis by 

cross-linking adjacent pyrimidine bases in all nucleated cells except monocytes for 

unclear reasons [7].  
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Although originally used to treat cutaneous T cell lymphoma (CTCL) [6], ECP 

has shown to be efficacious in treating GVHD and transplant rejection, which now 

accounts for over two thirds of its total use [4]. The clinical efficacy of ECP has been 

demonstrated in patients with acute and chronic GVHD after allogeneic hematopoetic 

stem cell transplantation [8-11]. Specifically, it prevents and treats graft rejection in 

renal, lung, and heart transplantations [12-20]. Additionally, it is effective in the 

treatment of other T cell mediated autoimmune disease that include type 1 diabetes 

mellitus [21], systemic sclerosis [22, 23], systemic lupus erythematosus [24], 

epidermolysis bullosa acquisita [25, 26], pemphigus foliaceous [27, 28], oral erosive 

lichen planus [29, 30], and nephrogenic systemic fibrosis [31-33]. Although many of the 

published reports noted above are not randomized control trials but rather case series or 

retrospective observations, it is clear that the use of ECP has been effective and broad 

across a spectrum of disease processes [34].  

 Maybe more important than the clinical efficacy is the lack of major side effects 

from and specificity of ECP. The most common described side effects include nausea, 

photosensitivity from psoralen, and cardiovascular effects relating to large intravascular 

fluid shifts [35, 36]. Patients who receive ECP treatments have no increased rate of 

infection or neoplasm [6, 37]. T and B cell responses to novel or recall antigen remain 

unchanged in patients after receiving the therapy [38]. In the setting of hematopoetic stem 

cell transplantation, ECP does not lead to higher relapse rates with preservation of graft 

versus leukemia effect, which is often diminished in conventional pharmacologic 

immunosuppression [37].  
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Despite ECP’s clinical efficacy, the exact mechanism of its immunomodulatory 

effects has not been fully elucidated. Work done by others [39-42] and our group [43] 

have shown that dendritic cells (DCs) are generated during the ECP procedure and play a 

central role in mediating the seemingly divergent clinical effects of stimulating the 

immune system in CTCL and suppressing the immune system in settings of 

autoimmunity and transplantation. 

 

Dendritic Cells 

Dendritic cells (DCs) are professional antigen presenting cells derived from 

CD34+ hematopoietic stem cells. They serve to link the innate and adaptive immunity and 

are regarded as critical regulators of immune reactivity [44, 45]. Thus, they are the ideal 

vehicles for inducing antigen-specific immunomodulation.  

DCs possess both immuno-stimulatory and immuno-tolerogenic properties 

depending on its maturation state [46, 47].  Mature DCs are immuno-stimulatory, have 

high levels of co-stimulatory molecules (CD80, CD86) that elicit T cell response, and 

actively present antigen to activate T cells [46]. These mature DCs have been utilized to 

generate DC vaccines against cancer such as melanoma and ovarian cancer by up-

regulating the immune response against cancer antigens [48, 49]. On the other hand, 

immature DCs are believed to be tolerogenic and can be used as “negative vaccines” to 

suppress the immune system against certain antigens.  

Immature DCs have high phagocytic activity, lack the necessary CD80 and CD86 

co-stimulatory signals to elicit T cell response, and render the antigen-specific responding 

T cells anergic and apoptotic [46]. Rapid uptake of apoptotic bodies in the absence of 
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danger signals (bacterial lipopolysaccharide, double-stranded RNA, etc) and 

inflammatory cytokines (IL-1beta, TNF-alpha, etc) have shown to induce tolerogenic 

phenotype with functional immunosuppression [47, 50]. In addition, the presence of anti-

inflammatory cytokines, especially IL-10 and TGF-β, seems to blunt the maturation of 

DCs and allow for the potential to induce tolerance [51].  

Utilization of DCs is a logical therapeutic strategy in the form of a “negative 

vaccine” to treat and prevent GVHD and SOT rejection by selectively suppressing the 

immune response to certain antigens [52-54]. Numerous studies suggest that immature 

DCs can regulate alloreactive T cell responses and promote antigen-specific tolerance in 

animal models. DCs regulate immune reactivity and promote tolerance by a variety of 

mechanisms that include induction of T cell anergy and apoptosis, promotion of 

regulatory T cells formation, and deviation of immune response toward Th2 type [44, 47, 

52].  

Because DCs comprise less than 1% of all mononuclear cells in the peripheral 

blood, isolation of monocytes and in vitro differentiation is an absolute requirement to 

utilize DCs therapeutically [52]. DCs can be derived from monocytes either by migrating 

through endothelium [55] or incubation with supra-physiologic levels of cytokine and 

growth factors such as IL-4 and GM-CSF [56]. Current efforts to induce tolerogenic DCs 

in vitro for clinical application in SOT rejection and GVHD face many limitations that 

include: 1) long time frame to generate DCs; 2) unclear form of donor alloantigen to be 

used; 3) in vivo maturation of injected immature DCs that cause sensitization; 4) issues of 

safety and ability to translate animal model studies to human subjects with clinical 

efficacy [52, 53].    



	
   6 

ECP produces immature dendritic cells [57] and circumvents many of the current 

limitations that traditional methods of obtaining DCs with cytokine cocktails face. ECP is 

distinguished from other methods by its unique ability to generate large numbers of 

maturationally synchronized monocyte-derived DCs quickly and efficiently in one day, 

especially after overnight incubation [57]. Thus, modification of ECP with an overnight 

incubation step could allow for increased production of immature DCs that can be loaded 

with alloantigens or tumor antigens and utilized to selectively reduce or stimulate 

immunity. Additionally, during the ECP procedure, DC generation is done so in a 

physiologic manner by interacting with platelets and serum proteins [43]. Given its 

proven clinical efficacy, specificity to the host, and minimal to no side effects, ECP 

access and utilizes fundamental the same immunologic mechanisms with that of DC 

therapy. ECP, therefore, provides the ideal therapeutic background to learn from 

regarding the mechanism of immunologic actions. Studying this effect in a human model 

provides an opportunity to better understand and further refine this prevalent and 

effective selective immunotherapy for the future. 

 

Mechanisms of Extracorporeal Photochemotherapy 

The mechanism of ECP in the induction of immunotolerance remains 

incompletely characterized. There is evidence that ECP mediate its antigen-specific 

immunomodulatory effects via apoptotic lymphocytes, dendritic cells, and shifts in 

cytokine production. Additionally, regulatory T cells are implicated in GVHD and SOT 

rejection whereas clone specific anti-tumor responses are believed to be important in 

cutaneous T cell lymphoma.  
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In the treatment of CTCL, it is believed that ECP is inducing specific cytotoxicity 

against the monoclonal circulating low-grade, Non-Hodgkin’s lymphoma T cells [58]. 

The report of the clinical success—sometimes, with complete response without 

remission—of ECP treatment for CTCL [6] offered support of a “vaccination” theory. 

Marks et al observed that malignant CTCL cells die via DNA damaged from the 

combination of 8-MOP and UVA [59]. These dying tumor cells may provide the 

individual’s tumor-specific antigen for generation of a tumor response that is enduring 

and precise.  

 To help solve the enigma of the mechanism of action, studies have looked toward 

predictors of clinical response to ECP for clues. In patients with leukemic CTCL, a 

normal CD4/CD8 ratio and a normal absolute count of CD8+ cells in the peripheral blood 

at the start of ECP are commonly accepted criteria that help to predict a better outcome to 

therapy [60]. The presence of circulating Sezary cells seems to be another predictor of a 

satisfactory clinical response to ECP. It is reported that patients with circulating Sezary 

cells had a significantly better response to ECP than patients without circulating Sezary 

cells [61]. In fact, it is a common finding that patients with erythroderma respond best [6, 

62, 63]. Heald et al. reported that patients with erythroderma who were heavily pretreated 

and received ECP late in the course of their disease did not respond as well as those who 

received ECP early [60]. These observations suggest that, in part, ECP works by causing 

apoptosis in the circulating malignant monoclonal CTCL cells which provide the tumor 

specific antigen that are taken up by the DCs generated on the ECP plate. These DCs then 

interact with CD8+ T cells to elicit a cytotoxic response against the malignant cells, 

causing clinical remission.  
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 Overall, studies that examined characteristics of best CTCL responders to ECP 

produced criteria that reflect the need for a competent immune system that can mount an 

anti-tumor response in the patient. These criteria include fairly normal numbers of 

cytotoxic T cells, normal or close to normal number of natural killer cells, short duration 

of disease, absence of bulky lymphadenopathy, limited leukocytosis and the presence of a 

discrete amount of circulating malignant CTCL cells [58, 64]. This helps to support the 

immunostimulatory “vaccination” theory for ECP’s response in patients with leukemic 

CTCL.  

In the treatment of GVHD, the mechanism appears to be different and many ideas 

have been theorized. One proposed theory of ECP is that endogenous DCs in the liver 

and spleen are induced to acquire immunotolerizing phenotype and functionality 

secondary to uptake and processing of apoptotic lymphocytes delivered during ECP in 

the absence of danger signal [65, 66]. However, there is convincing evidence from our 

lab and others suggesting the mechanism behind ECP is more complicated than simply 

production of apoptotic lymphocytes.  

Studies in mouse model of suppression of hapten-specific contact hypersensitivity 

that utilized 8-MOP and UVA (8-MOP/UVA)-treated cells showed that the cell-mediated 

inhibition of immunity was transferable, but was lost upon depletion of CD11c+ DCs 

from the transferred cell inocula [67]. Previous work done in our lab have shown that 

there is a six-fold increase in the number of DCs after ECP and these DCs showed gene 

expression changes, some of which were shown to be linked to regulatory T cell 

development [57]. In addition, the process is independent of disease state and occurs with 

either peripheral blood mononuclear cells of normal donors or patients [57]. 
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There is a growing body of evidence in animal and human models to suggest that 

the underlying mechanism of ECP-induced tolerance relies on antigen-specific CD4+ 

CD25+ FoxP3+ regulatory T cells (Tregs) [68]. Tregs are a subpopulation of CD4+ T 

lymphocytes, comprising 5% to 10% of the peripheral blood pool, that maintain 

immunological self-tolerance in the periphery by regulating and suppressing immune 

responses [69]. Tregs have been reported to protect against chronic cutaneous GVHD 

[70]. In ECP treated heart and lung allograft recipients, Treg blood levels are doubled 

compared to normal controls and the levels persisted for extended periods after ECP 

cessation [71]. Human studies showed the increase in circulating Tregs correlated with 

decreased organ rejection [72]. Experiments in mouse demonstrated the effect of ECP 

could be transferred to a non-ECP-treated animal via the infusion of purified Tregs [69]. 

In a murine model of immune tolerance, it was shown that Tregs were induced by ECP 

treatment [39]. Furthermore, these Tregs were able to suppress contact hypersensitivity 

reactions and that the suppression was lost when they were removed [39]. The details of 

how ECP induces Tregs remain unclear, but seem to involve immature DCs presenting 

antigens [73]. Therefore, it is very possible that tolerogenic DCs are responsible for the 

clinical efficacy of ECP by generating antigen specific Treg that suppress the alloreactive 

T cells responsible for producing the disease state.  

 Because CTCL and GVHD are distinctive diseases and ECP seems to have 

paradoxical effects in which it improves the cytotoxic function in CTCL while improves 

the regulatory function in GVHD, there is speculation whether Treg is the effectors cells 

that are effective in CTCL. Tregs are thought to be capable of inhibiting immune 

response against a variety of antigens, including those expressed by malignant cells [74]. 
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In addition, the degree of Treg infiltration in CTCL was correlated to patient survival and 

Treg cells can directly suppress the function of malignant T cells [75].  

Rao et al [76] studied and compared the in vivo effects of ECP on FoxP3 Tregs in 

patients with CTCL and GVHD. They found small but statistically significant increase in 

TGF-beta in both patient groups while a small decrease in pro-inflammatory cytokine IL-

17 in the GVHD group following ECP. Interestingly, the mean level of TGF-beta was on 

average three times higher in the GVHD than the CTCL patients, but the Treg faction in 

GVHD ptatients was a level close to healthy control while the CTCL patients had Treg 

level more than twice as high. This was in contrast to other findings of equal Treg level in 

CTCL patients and controls [77] and paucity of FoxP3 Treg in peripheral blood of Sezary 

patients [78]. The authors explained that immunologically, CTCL is a more indolent 

disease than GVHD and elevated Treg might represent a homeostatic proliferative 

reaction to curb expansion of malignant T cells whereas the elevated serum TGF-beta in 

GVHD patients could reflect the very strong immune reaction taking place. The authors 

found tremendous individual variations in cytokine profile; that the profile for IL-4, IL-6, 

IL-10, IL-17, and IFN-gamma did not change; and that the local milieu and 

concentrations of cytokines are decisive for immune regulation without necessarily being 

reflected in serum of these patients. 

While many possibilities exist as presented above, the seemingly opposite effect 

of ECP is likely dependent on the DC functional properties. The properties are affected 

by many factors including the DC’s maturational state, stimulating modalities, cytokine 

environments, co-stimulatory molecules, and other therapy used in the clinical 

conditions. Therefore, many factors must be taken into account in order to explain the 
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immune response to ECP and its paradoxical immunogenic and tolerogenic effects. In 

fact, the different clinical response times of ECP treatment resulting in CTCL after 2-3 

months and in allograft rejection after only a few days to weeks suggests that multiple 

mechanisms of action may be applicable [79]. One possible explanation would be the 

production of both immunogenic and tolerogenic DCs during the same procedure [80], 

which is the result of plasma proteins, platelets, sheer stress, and 8-MOP/UVA light 

interacting with ECP processed antigen presenting cells [43, 80].  

 

8-Methoxypsoralen (8-MOP) and Ultraviolet A (UVA) 

Given the effectiveness of 8-MOP/UVA treatments in a variety of dermatologic 

diseases [36] and its use in ECP, it is possible that 8-MOP/UVA may play an important 

role in modifying DC function. For unclear reasons, perhaps relating capacity of parent 

monocytes to quench free-radicals caused by incident ultraviolet energy, monocytes and 

DCs are relatively resistant to irradiation-induced apoptosis. This resistance to apoptosis 

is important because long-term survival would allow for significant window of 

opportunity for ECP-treated antigen presenting cells to contribute directly in vivo. In 

other words, it contributes to the idea that their survival is linked to their active role in 

mediating immunomodulatory effects.  

There exist tremendous evidence to suggest 8-MOP/UVA may play an important 

role in modulating immunologic function of antigen presenting cells. Because the IL-12 

secretion of DCs decreases in an irradiation dose-dependent manner [81], this leads to the 

question of whether there could be a direct effect of 8-MOP/UVA on DCs. Ultraviolet B 

light (UVB) is known to cause immune suppression via release of soluble factors after 
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membrane damage [82, 83] and to promote an immature DC phenotype that leads to 

decreased T cell proliferative response in mixed leukocyte reactions [81]. Because 8-

MOP/UVA exposure is an important step in ECP and results in similar apoptotic damage 

to cells as UVB, we hypothesize that 8-MOP/UVA may be critical in creating a 

tolerogenic DC phenotype and similar factors as found with UVB studies. There exist 

several lines of evidence in support of the idea that 8-MOP/UVA might be important in 

the mechanism of ECP. 

Many cytokine changes have been documented after 8-MOP/UVA treatment of 

mononuclear cells [84]. There is evidence of increased anti-inflammatory cytokines such 

as IL-10 and IL-1 receptor antagonist in untreated mononuclear cells when they are co-

incubated with 8-MOP/UVA -treated cells [85]. In addition, there is increased IL-10 and 

IL-4 with clearance of apoptotic cells by DCs in the absence of danger signals [85, 86] 

and they subsequently decrease pro-inflammatory cytokine production [65]. While the 

production of these immunosuppressive cytokines does not explain the selective action of 

ECP, they might still play an important role such as production of Tregs and immature 

DC and maintenance of peripheral tolerance [39, 87]. To better understand the complete 

mechanism, more work needs to be done to clarify their roles. 

 8-MOP/UVA has been implicated in the efficacy of ECP in not only generating 

apoptotic lymphocytes but also truncating the maturation of the DCs. Legitimo et al 

showed that combining mixed culture of 8-MOP/UVA treated and untreated monocytes 

at ratio of 1:9, similar to the fact that only 10% of circulating cells are exposed to 8-

MOP/UVA, 8-MOP/UVA did not influence monocyte to DC differentiation. However, 

the immature DCs generated in the mixed culture had significantly higher phagocytic 
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activity and lower HLA-DR with respect to untreated DC with both groups preserving the 

capability to mature in the presence of LPS [88]. In addition, mature 8-MOP/UVA-

treated DCs showed a lower ability to induce T cell proliferation [88]. The simultaneous 

increase in antigen uptake activity and MHC Class II molecule expression may induce a 

reduction in the capacity to induce T cell proliferation. The 10% of 8-MOP/UVA treated 

cells did not seem to inhibit DC generation but did induce DCs with tolerogenic 

phenotype and function.  

The findings above was consistent with finding by studies led by Spisek [40] and 

Holtick [89]. The investigators found that DCs in ECP product were in the immature state 

with respect to the phenotypic and functional characteristics. In contrast to the in vitro-

generated monocyte-derived DCs and DCs not treated by 8-methoxypsoralen and UVA, 

they produced significant amounts of interleukin-10 (IL-10). They efficiently captured 

apoptotic lymphocytes, did not induce proliferation of T lymphocytes, and preserved the 

capacity to be activated by polyriboinosinic polyribocytidylic acid and 

lipopolysaccharide [40]. Holtick et al found that DCs become apoptotic but that 

monocyte-derived DC’s phenotypic and functional properties are modulated by in vitro 

8-MOP/UVA before undergoing apoptosis with a shift in the pattern of stimulated T cells 

toward a Th2 profile [89].  

 Given the results of the above studies, there is possibly an important role of 8-

MOP/UVA on modulating DC phenotype and function, especially in a tolerogenic 

manner. Because one can control the degree and concentration of photo-activation by 8-

MOP/UVA, it is among the most finely titratable and focusable pharmacologic agents in 

clinical use. It would be important to study the effect of 8-MOP/UVA on ECP-associated 
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monocyte-to-dendritic cell activation and maturation in a human model. This is especially 

true given recent findings from our lab showing induction of GILZ by 8-MOP and UVA 

light in cytokine generated DCs [80]. Further studies with ECP-induced DCs would give 

clinical relevance to the findings by relating to the antigen presenting cells that are 

important in clinical efficacy and produced in a physiologically manner by ECP. 

 

Glucocorticoid-Induced Leucine Zipper 

Glucocorticoid-Induced Leucine Zipper, GILZ, was initially found to be a gene 

induced by dexamethasone in thymocytes that was responsible for glucocorticoid-

induced apoptosis [90]. Now, it is known be expressed by other cells of the immune 

systems and those in the peripheral tissues [91]. GILZ helps to mediate functions of 

glucocorticoids including modulation of T-cells [92-94], controlling protein trafficking 

and signaling, regulation of T-helper cell differentiation [95, 96], increase of epithelial 

sodium channel mediated sodium transport in the kidney [97, 98], and control of 

malignant transformation [94].  

Recently, GILZ has gained attention because of its immonomodulatory effects in 

the immune system. On a molecular level, in immune cells, GILZ directly binds nuclear 

factor-κB (NF-κB) subunit and prevent its nuclear translocation and dependent 

transcription [92] (Figure 2). It also inhibits other pro-inflammatory factors including 

AP-1, Raf-1, and MEK and ERK phosphorylation [99]. Not surprisingly, in terms of its 

inflammatory properties and functions, GILZ is considered to be a key mediator of 

immunosuppressive effects of glucocorticoids. In addition to glucocorticoids, IL-10 [100, 
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101] and TGF-β [101] also induces GILZ and has the capability to induce tolerogenic 

DCs.  

In human DCs, GILZ upregulation induces a tolerogenic phenotype characterized 

by decreased expression of CD80, CD83, and CD86, and MHC class II. In addition, 

molecules that are involved in the peripheral maintenance of tolerance, such as PDL1 and 

ILT-3, are increased [101]. GILZ also played a role in glucocorticoid induced IL-10 

production and decreased production of pro-inflammatory chemokines by DCs [101]. 

Functionally, DCs that express GILZ showed a reduced ability to stimulate a CD4+ T cell 

response and generation of antigen-specific Tregs. The ability of glucorticoid-induced 

DCs to function in a tolerogenic manner in fact depended on GILZ as knockdown of 

GILZ by siRNA abolished their immunosuppressive effects. Additionally, over-

expression of GILZ in DCs reproduced the effects of glucocorticoids. Together, the 

findings indicated that GILZ is both necessary and sufficient for induction of tolerogenic 

DCs and serves a key mediator of immunosuppressive stimuli [101, 102].  

 The important role of GILZ in regulating the phenotype and function of DCs has 

been verified by many studies. Lebson et al [103] observed that induction of GILZ 

limited the efficacy of DC vaccines and GILZ was highly upregulated in DCs found at 

site of tumor. The downregulation of CD86 with dexamethasone can be blockaded with 

silencing of GILZ, which enhanced T cell effector function in vivo. This was reflected by 

the observation that DCs with GILZ knockdown significantly prolonged survival of mice 

with a preexisting tolerogenic tumor [103]. Similarly, Catheline et al [104] observed that 

silencing of GILZ led to a decrease of the PD-L1 expression associated with an increase 

in their IL-12 secretion and T-cell induction capability. Ultimately, treatment with GILZ 
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siRNA induced stronger memory T-cell response in terms of the number of IFN-γ-

secreting cells and improved the immunogenicity of clinical-grade mature dendritic cells 

[104]. Additionally, GILZ has also been shown to be immunosuppressive in a Th1-

mediated model of colitis [96], hypoxia-induced inflammation and cyclooxygenase-2 

expression [105], endothelial cell adhesive function implicated in inflammatory leukocyte 

recruitment [106], human airway epithelial cells injury repair [107], mice models of 

inflammation and arthritis [108, 109], and human alveolar macrophages activation 

induced by toll-like receptor [110].   

 

8-MOP/UVA, Apoptotic Lymphocytes, and GILZ 

 Given that 8-MOP/UVA exert immunosuppressive effects and that GILZ 

induction may be a common mechanism by which DCs are committed towards a 

tolerogenic phenotype and functional state, we explored the possibility that 8-MOP and 

UVA directly upregulated the expression of GILZ in DCs. Since apoptotic cells deliver 

immunosuppressive signals [111] and 8-MOP and UVA renders lymphocytes apoptotic, 

we also hypothesized that apoptotic lymphocytes may indirectly induce the expression of 

GILZ in antigen presenting cells [80].  

 Using cytokine generated DCs, we demonstrated that the above premises to be 

true [80]. 8-MOP and UVA light directly up-regulated GILZ and induced a tolerogenic 

phenotype that is reflected by decreased co-stimulatory molecules of CD80 and CD86, 

resistance to toll-like receptor-induced maturation, and increased immunosuppressive and 

decreased pro-inflammatory production. Furthermore, knockdown of GILZ with siRNA 
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reduced IL-10 and increased IL-12p70 production, demonstrating that GILZ is critical for 

this tolerogenic profile [80].  

While these findings provided a novel link between 8-MOP/UVA and GILZ 

expression, they may not necessarily apply to ECP because the findings are in cytokine 

generated DCs. It is well known that cytokine generated DCs have failed to produce 

significant benefits in various human clinical trials while ECP has over 25 years of 

worldwide clinical experience and well-documented clinical efficacy. The difference 

likely lies within ECP’s unique ability to produce DCs in a physiologic manner that does 

not depend on supra-physiologic levels of cytokines [112]. Because of differences in the 

cytokine- and ECP-generated DCs, our findings of 8-MOP and UVA in cytokine DCs 

need to be verified and confirmed in ECP-induced DCs. Doing so will make our findings 

more clinically relevant and may help provide a molecular basis for ECP’s observed 

clinical effects. 
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STATEMENT OF PURPOSE 

Despite ECP’s worldwide clinical use, unusual safety profile, and proven clinical 

efficacy, its exact mechanism is not completely clear. DCs play crucial role in antigen 

presentation and possess tremendous functional plasticity in its unique ability to induce 

and suppress the immune system in an antigen specific manner. Due to unknown factors 

to target, ECP has not changed or advanced since its invention. The goal of the project is 

to clarify the mechanism of ECP in a human model by examining the role of GILZ in 

ECP-induced DCs. We hope to utilize the knowledge gained to provide scientific 

evidence and basis to refine the procedure, circumvent issues that exist within current 

therapies, and design novel immunotherapy utilizing the principles behind ECP.  

 

Hypotheses 

1. ECP causes DC differentiation and apoptotic cell generation, which are critical to 

inducing tolerance. 

2. Photo-activation of 8-MOP with UVA light inhibits maturation of ECP-induced 

DCs and enables antigen-specific T cell tolerization. 

3. 8-MOP and UVA induce ECP-induced DCs to become tolerogenic via 

upregulation of GILZ.  

4. DCs with GILZ upregulation show a reduced ability to stimulate a primary T cell 

response. 

 

Specific Aims 
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1. To evaluate the effect and role of 8-MOP and UVA on ECP-induced DC 

maturation by phenotype and functionality. 

2. To study the effect of 8-MOP and UVA on the induction of GILZ expression in 

ECP-induced DCs. 

3. To demonstrate in vitro transferable, antigen-specific immunosuppression with 

ECP-induced DCs.  
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MATERIALS AND METHODS 

Patient Sample 

Yale Human Investigations Committee approval was obtained prior to the 

initiation of this study. Informed consent was provided to normal blood donors according 

to the Declaration of Helsinki. Donors were compensated financially for their blood 

donation with the amount deemed appropriate by the Yale Human Investigations 

Committee. 

 

Monocyte Isolation and Enrichment 

Peripheral blood mononuclear cells (PBMC) were isolated by centrifugation of 

normal donor blood over a Ficoll-Hypaque gradient. Monocytes were subsequently 

enriched by either (1) plastic adherence or (2) CD11c+ magnetic bead positive selection. 

 

Generation of ECP-Induced DCs 

A laboratory model of ECP was set up in attempt to replicate the main features of 

the clinical apparatus (Figure 3). Normal donor blood was initially spun in centrifuge at 

1000 rpm for 15 minutes. Subsequently, the top two thirds of the plasma fraction was 

removed and used to coat the clinical ECP plate. The plasma contained serum proteins 

and platelets that are important for monocyte to DC differentiation and maturation [43]. 

After reconstituting the removed plasma volume with RPMI-1640, PBMCs were isolated 

via Ficoll-Hypaque gradient. 

After obtaining PBMCs, 100-200 ng/mL of 8-MOP was combined with PBMCs 

and circulated through an ECP UVA exposure plate. RPMI-1640 media without phenol 
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red was utilized to ensure the coloring did not affect the effect of UVA exposure. Upon 

exposure of 0.5-2 J/cm2 UVA light, 8-MOP became activated and caused apoptosis in 

lymphocytes. Monocytes differentiated into DCs through the passage of the exposure 

plate and the perturbation from interaction with platelets and plastic walls of the device 

[43, 113]. We hypothesized that 8-MOP/UVA exposure along with phagocytosis and 

processing of apoptotic lymphocytes in the absence of danger signals further induced 

DCs to acquire an immature phenotype. 

After passage through the UVA plate, the products were collected and re-

suspended in RPMI-1640 medium and 10% pooled human AB serum [114]. Following 

incubation, cells were harvested and either stained for flow-cytometry or underwent 

monocyte enrichment by positive selection using CD11c microbeads and magnetic cell 

separator (Miltenyi) for RNA expression analysis. 

 

Generation of Cytokine DCs 

DCs were also derived from monocytes using traditional cytokine cocktail for 

comparison to ECP-generated DCs and for functional studies. Monocytes was cultured in 

RPMI-1640 (Gibco, Carlsbad, CA), 2.05% mM glutamine, 15% pooled human serum 

(Gemini, Sacramento, CA), and 1% penicillin/streptomycin (complete media). 800 

IU/mL recombinant human GM-CSF and 1000 IU/mL recombinant human IL-4 (R&D 

Systems, Minneapolis, MN) were added for 20-36 h to induce monocyte to DC 

differentiation [115]. 

 

Cytokine Generated DC and Apoptotic Lymphocyte Co-cultures [80] 
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Non-adherent cells removed after plastic adherence consisted primarily of 

lymphocytes, which were rendered apoptotic with 8-MOP (100 ng/mL) and UVA light (1 

J/cm2), and co-cultured in complete media for 24 hours with either 8-MOP/UVA-treated 

or untreated cytokine generated DCs. Some cytokine DCs were treated for 24 hours with 

dexamethasone (100 nM) (Sigma, Ronkonkoma, NY) and served as the positive control. 

To ensure that RNA was not isolated in significant quantities from lymphocytes, DCs 

were re-purified using CD11c magnetic bead positive selection before any functional 

experiments.  

 

8-MOP and UVA Treatment of Cytokine DCs 

 Cells were incubated with 8-MOP (20 µg/mL) (Therakos, OH, USA) for 30 min 

in the dark, and then irradiated with a desktop UVA (320–400 nm) light box containing a 

series of 12 linear fluorescent tubes. The UVA irradiance was measured using a 

photodiode. Therapeutic doses of 8-MOP (100–200 ng/mL) and UVA light (1–2 J/cm2) 

were used for this study [35].  

 

Role of 8-MOP and UVA and Apoptotic Lymphocyte on DC Phenotype and Functionality 

To study the effects of ECP and specifically 8-MOP/UVA on DC phenotype and 

functionality, aliquots of the following cells with and without overnight incubation were 

procured: cells before ECP (PBMC), cells passed through UVA exposure plate with 8-

MOP/UVA (ECP), and cells passed through plate without 8-MOP/UVA (PP: plate 

passed). In plate passed cells exposed to 8-MOP/UVA, there would be apoptotic 

lymphocytes generated with the ability to interact with DCs. At times, a mixed group 



	
   23 

consisting of 8-MOP/UVA-treated and untreated PBMCs were combined at 1:1 ratio. DC 

phenotype and functionality was subsequently assessed by monoclonal antibody staining 

and functional stimulation of antigen-specific T cell clones.  

 

Lymphocyte Proliferation Assay 

 The technique has been well described and is utilized to ensure delivery of proper 

dosing of 8-MOP and UVA that abrogates T cell proliferation [116]. After PBMCs were 

isolated, they were either held as controls or passaged through the plate and exposed 

varying doses of UVA exposure (0.25-2 J/cm2) with constant dosage of 8-MOP at 100 

ng/mL. Control cells were incubated with the psoralen solutions, wrapped in tin foil, and 

placed in the incubator during the longest irradiation exposure period. After manipulation 

and irradiation, the cells were washed and 200,000 cells from each group were plated in 

96-well plates. Each group was done in replicates of five containing RPMI-1640 medium 

with 10% pooled human serum. 

 After plating, phytohaemagglutinin (PHA) at 5 ug/mL was added into some of the 

wells to be used as mitogen to stimulate T cell proliferation. The cultures were incubated 

at 37 °C for three days under a 5% CO2 atmosphere. The cultures were subsequently 

pulsed with 1 µCi of [3H]-thymidine, either 6 or 18 hours prior to harvesting with an 

automated sample harvestor. Incorporation of [3H]-thymidine was measured by liquid 

scintillation analysis in a beta counter. 

 

Immunophenotype 
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Multicolor flow-cytometry analysis was used to determine DC immunophenotype 

and maturation status by measuring immunofluorescence of samples incubated with 

monoclonal antibodies specific for monocytes and DC. They include CD14 (LPS 

receptor: monocytes); CD11c (marker for monocyte lineage); HLA-DR (class II MHC 

molecule: monocyte and DCs); CD83 (DC marker: immature DC-cytoplasm, mature DC-

membrane); CD80 and CD86 (B7.1 and B7.2 co-stimulatory molecules); ICAM-1 

(crucial to immune cell migration and antigen presenting function); PLAUR; and TNFR-

1 (a tumor necrosis family receptor, together with TNF play important roles in 

inflammation and autoimmunity) [57]. Immature tolerogenic DCs were identified by low 

levels of CD80 and CD86, presence of cell surface HLA-DR and CD11c [57]. Apoptosis 

was assessed using the Annexin-V Apoptosis Detection Kit (eBioscience, San Diego, 

CA), with 7-AAD substituting for PI as the cell viability dye. 

The following gating strategy was utilized to ensure uniformity and consistency 

of analyzing viable antigen presenting cells: 1) lymphocytes and monocytes are gated 

based on forward and side scatter profiles; 2) doublet cells are exclude based on width; 3) 

viable cells are selected using viability dye (7-AAD negative); 4) CD11c+ cells with high 

side scatter profile are gated (Figure 4). The last subset of cells are subsequently analyze 

with immunophenotyping using the various fluorescence-conjugated antibodies specific 

for monocytes and DCs.  

 

Gene Expression Analysis Using Quantitative Real-Time PCR 

RNA was isolated from purified CD11c+ ECP-induced DCs using the RNeasy 

Mini Kit with on-column DNase I treatment (QIAGEN, Hilden, Germany). RNA yield 
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and purity were assessed with a NanoDrop spectrophotometer. cDNA was obtained with 

the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Middletown, 

CT). Pre-designed and validated Taqman Gene Expression Assays were used to detect 

GILZ, IDO, and PDL1 transcripts, with HPRT-1 serving as reference genes (Applied 

Biosystems, Middletown, CT). Samples were run in triplicate on a 7500 Real Time PCR 

System. Fold change was calculated using the delta–delta C(t) method. 

 

Stimulation of MART-1 Antigen Specific CD8+ T-Cells [80] 

Cytokine DCs from the co-cultures were re-purified and used as antigen 

presenting cells for stimulating naïve autologous CD8+ T-cells. 0.4 × 106 DCs were co-

cultured in complete media with 4 × 106 autologous lymphocytes, enriched by CD4/CD8 

magnetic bead positive selection. A high frequency (>1 in 2500 CD8+ T-cells) of 

MART-1-specific CD8+ T-cells with a naïve phenotype are found circulating in HLA-

A2+ healthy individuals, and these cells are capable of proliferating in response to 

MART-1 peptide cross-presentation. The MART-116-40(A27L) HLA-A2-restricted peptide 

(10 µM, GHGHSYTTAEELAGIGILTVILGVL) [117] was added at the start of co-

culture, with IL-2 (12.5 IU/mL) and IL-7 (5 ng/mL) added on day 3 (R&D Systems, 

Minneapolis, MN), and fresh media added every 2–3 days. After 9 days of co-culture, 

lymphocytes were harvested and incubated with the A*0201/ELAGIGILTV-MART-126-

35(A27L)-PE dextramer, followed by an irrelevant peptide A*0201/KTWGQYWQV-gp100-

APC dextramer control (Immudex, Copenhagen, Denmark). MART-1-specific live CD8+ 

T-cells were identified as CD8+CD4−MART-1+gp100− cells. 
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Statistical analysis 

Student’s t-tests were used for inter-group comparisons, with p-values < 0.05 

considered to be statistically significant. Differential gene expression was considered 

statistically significant with a > 2.5-fold change and a p-value < 0.05. 
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RESULTS 

Plate Passage Globally Activates Monocytes 

 ECP’s physiologic induction of monocyte to dendritic cell differentiation and 

maturation is important in the clinical efficacy of ECP. In our laboratory model of ECP, 

we observed the effect of plate passage on monocytes as they interacted with serum 

proteins and platelets under sheer stress. Plate passage and overnight culture up-regulated 

several markers on the cell surface of monocytes. These included HLA-DR, PLAUR, and 

ICAM-1, three molecules that are important in antigen presentation and T cell biology. 

These markers shifted globally rather than in a subset of the monocyte population. While 

overnight incubation without plate passage induced increased expression of these 

markers, there was additional increase in expression as a result of plate passage. 

Upregulation of these markers were not necessarily consistent or stable. There was a drop 

in the expression of PLAUR on day 2 and day 3 following an increase on day 1 while the 

increase in ICAM-1 expression fell off after day 1. This can be seen Figure 5. 

 

8-MOP and UVA Light Suppressed Lymphocyte Proliferation 

 Titration was conducted to ensure delivery of appropriate dosage of 8-MOP and 

UVA to inhibit mitogen-induced lymphocyte proliferation while inducing gentle 

apoptosis rather than necrosis. This was done to best replicate the dosages utilized used in 

the original studies of ECP and the clinical ECP apparatus [6, 116]. We observed that 

with 100 ng/mL of 8-MOP, 1-2 J/cm2 of UVA light was the appropriate range to achieve 

the desired function (Figure 6), which correlated well with those used in the clinical ECP 

apparatus [35]. There was variation of the two donors tested, but both donors showed a 
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positive correlation between dosage of 8-MOP/UVA and inhibition of mitogen-induced 

lymphocyte proliferation. The trend of the results did not differ depend on the amount of 

time the cells were pulsed with [3H]-thymidine. This data is shown in Figure 6.  

 

CD11c+ Antigen Presenting Cells Are Resistant to 8-MOP/UVA-Induced Apoptosis 

 Monocytes and DCs are resistant to 8-MOP/UVA-induced apoptosis as compared 

to lymphocytes. When 100 ng/mL of 8-MOP was used, lymphocytes quickly underwent 

apoptotic cell death starting at 0.5 J/cm2 of UVA light. While both lymphocytes and 

antigen presenting cells demonstrated 8-MOP/UVA dose-dependent cell death, the rate of 

cell death was higher and at a much steeper rate in the lymphocyte group with application 

of increased UVA dosage. This is shown in Figure 7. 

 

8-MOP and UVA Light Stimulated the Expression of GILZ and Suppressed the 

Expression of IDO and PDL1 RNA Transcript in ECP-Induced Antigen Presenting Cells 

 After showing 8-MOP/UVA induced GILZ expression in cytokine generated DCs 

[80], we examined whether the same phenomenon was true in DCs induced by ECP. 

While 8-MOP or UVA alone did not upregulate GILZ expression (data not shown), the 

combination of 8-MOP and UVA induced an average of three-fold change and four-fold 

change one and two days after manipulation respectively when normalized to that 

particular day’s PBMC group (Figure 8). Furthermore, this upregulation was dose-

dependent and present for several days after experimental manipulation (Figure 11B). At 

the highest level of 2 J/cm2 of UVA, the level of GILZ expression in ECP-induced 
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antigen presenting cells was comparable to that induced by dexamethasone. Unlike 8-

MOP/UVA, plate passage alone did not significantly alter the expression of GILZ.  

The induction of GILZ by 8-MOP/UVA showed different kinetics than that by 

dexamethasone. While dexamethasone upregulated GILZ quickly within five hours after 

treatment (data not shown), 8-MOP/UVA induced GILZ much slower and required 24 

hours. 

 Given the upregulation of GILZ by 8-MOP/UVA, we proceeded to examine its 

effect on two other immunosuppressive molecules that have been described to be 

important for tolerogenic dendritic cell function. Unlike GILZ, the RNA expression of 

IDO and PDL1 decreased with 8-MOP/UVA treatment and dexamethasone (Figure 

11B). This change in expression occurred in a dose dependent fashion and the effect was 

present for three days after manipulation.  

 

8-MOP and UVA Induced Antigen Presenting Cells with Tolerogenic Phenotype and 

Suppressed the Expression of Several Cell Surface Marker  

 In addition to upregulating GILZ expression, 8-MOP/UVA deviated antigen-

presenting cells to take on an immature phenotype as defined by CD11c+ HLA-DR+ 

CD83- CD14- (Figure 9A). Similar to GILZ expression, the percentage of antigen 

presenting cells with an immature phenotype increased in an 8-MOP/UVA dose 

dependent manner (Figure 9B). Additionally, the percentage of cells with an immature 

phenotype may have increased over time. This was most apparent for those treated with 

either 1 or 2 J/cm2 of UVA light (Figure 9A, 9B). 
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Treatment of cells with 8-MOP/UVA showed decrease in the expression of 

CD11c, CD86, HLA-DR, and CD14 on the cell surface of the induced DCs. The 

suppression was persistent and the effect was magnified from day one to day two. From 

the baseline expression of unmanipulated PBMCs, the decreased expression of CD11c 

was 54% and 68%, CD86 was 66% and 68%, CD14 was 67% and 78%, and HLA-DR 

was 25% and 65% one and two days after treatment respectively (Figure 10A, 10B).  

Because of very low expression of CD80 and CD83 at baseline, the effect of plate 

passage and 8-MOP/UVA on their expression was generally harder to quantify and 

therefore unclear in these sets of experiments. There was tremendous variability in the 

expression as indicated by high standard deviation (Figure 10A, 10B).  

However, in an experiment looking specifically at the effect of varying dosages of 

8-MOP/UVA on ECP-induced antigen presenting cells, 8-MOP/UVA decreased the 

expression of CD86, CD11c, CD14, and CD80 in a dose dependent manner while HLA-

DR showed variable responses to 8-MOP/UVA  (Figure 11A). This was consistent on 

days 1, 2, and 3 after treatment and sterile culture. 

Markers upregulated by plate passage, namely ICAM1 and PLAUR, showed 

variable effect from 8-MOP/UVA. While ICAM1 was down-regulated by 8-MOP/UVA 

exposure, the expression of PLAUR seems to be magnified by 8-MOP/UVA 24 hours 

after treatment and sterile culture (Figure 5B). The effect of 8-MOP/UVA on PLAUR 

was unclear after 24 hours. While one experiment showed the change in expression of 

PLAUR approached that of plate passed but not 8-MOP/UVA-treated cells, another 

showed that PLAUR expression decreased precipitously to levels lower than plate passed 

cells. Results from the 8-MOP/UVA titration experiment correlated well with the above 
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findings showing dose-dependent reduction of ICAM1 by 8-MOP/UVA while unclear 

effect on expression of PLAUR (Figure 11A). For example, while 0.5 and 2 J/cm2 of 8-

MOP/UVA seems to decrease PLAUR when compared to plate passed cells, 1 J/cm2 of 

8-MOP/UVA increased PLAUR expression on all three days.  

 

Cytokine Generated DCs with High GILZ Expression Demonstrated Mixed Ability to 

Stimulate MART-1-Specific CD8+ T Cells [80] 

 To analyze a primary T cell functional response, we investigated the ability of 

cytokine generated DCs expressing GILZ to cross-present the MART-116-40(A27L) peptide 

and stimulate naïve autologous MART-1-specific CD8+ T-cells. It was previously shown 

that dexamethasone-treated DCs, 8-MOP/UVA-treated DCs, and DCs exposed to 

apoptotic lymphocytes expressed high levels of GILZ whereas untreated DCs had low 

GILZ expression [80].  

For one donor, dexamethasone DCs, 8-MOP/UVA-treated DCs, and DCs exposed 

to apoptotic lymphocytes all demonstrated a reduced ability to stimulate MART-1-

specific CD8+ T cells after 9 days of co-culture, as compared to untreated DCs. For two 

other donors, dexamethasone-treated DCs, 8-MOP/UVA-treated DCs, and DCs exposed 

to apoptotic lymphocytes all demonstrated an equal, or greater ability to stimulate 

MART-1-specific CD8+ T cells [80]. The data is demonstrated in Table 1.  
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DISCUSSION 

Summary of Findings 

 This study demonstrated plate passage globally activated monocytes and they 

upregulated the expression of GILZ when treated with 8-MOP/UVA. While plate passage 

did not alter the expression of GILZ, it upregulated molecules on the surface of CD11c+ 

antigen presenting cells such as ICAM1, HLA-DR, and PLAUR, especially after 24 

hours. The induction of GILZ by 8-MOP/UVA occurred in a dose dependent manner and 

was preserved to day two or three after treatment and culture. DCs with GILZ RNA 

induction displayed a tolerogenic phenotype characterized by down-regulation of several 

co-stimulatory molecules that include CD80, CD86, and ICAM1. While 8-MOP/UVA 

suppressed the cell surface expression of CD11c and CD14, its effects on HLA-DR, 

CD83, and PLAUR are variable. Although 8-MOP/UVA-treated cells displayed a 

tolerogenic phenotype both in terms of GILZ RNA and cell surface molecules, they 

showed a decreased RNA expression of IDO and PDL1 and demonstrated a mixed 

variability to stimulate a naïve primary CD8+ T cell response using the MART-1 long 

peptide.   

 

Kinetics and Molecular Basis of GILZ Induction 

Interestingly, the kinetics of GILZ induction in DCs by dexamethasone and 8-

MOP/UVA differed tremendously. Dexamethasone was able to upregulate GILZ RNA 

expression within two to five hours with lasting effects up to three days while 8-

MOP/UVA required one day for induction of GILZ. The effects by dexamethasone likely 

relates to the well-characterized mechanisms and kinetics of steroid induced responses. 
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The steroid molecule rapidly enters the cell nucleus after associating with ligand 

receptors in the cytoplasm and subsequently upregulates gene expression via steroid 

response element binding. In fact, there is a glucocorticoid-response element associated 

with the GILZ gene and that is likely the site of binding for dexamethasone. GILZ 

induction by 8-MOP/UVA has a much different kinetics and required one day instead of 

a few hours. This implies a fundamentally different mechanism of GILZ induction by 8-

MOP/UVA.  

There are likely multiple pathways to upregulate GILZ expression. The induction 

of GILZ by 8-MOP/UVA likely occurs through two distinct mechanisms of direct effect 

and indirect effect of 8-MOP/UVA-induced apoptotic leukocyte [80]. It is likely that 

GILZ upregulation is at least partially a byproduct of 8-MOP/UVA-induced cellular 

stress response, which takes time. It is known that 8-MOP/UVA cross-links DNA and 

interact with mitochondria, RNA, and proteins to cause cellular stress. GILZ may be 

induced to produce a tolerogenic environment when there is a stress-induced cell death to 

ensure peripheral tolerance and inhibition of auto-reactivity. The molecular mediator of 

GILZ upregulation by 8-MOP/UVA is unclear but there is evidence that suggest p53 may 

be one of the key facilitators.  

There are several lines of indirect evidence tying p53 to induction of GILZ. GILZ 

was initially discovered to be upregulated in lymphocytes during IL-2 deprivation and it 

was found to help lymphocytes in preventing IL-2 deprivation induced apoptosis. Using 

human antigen-specific T cell clones, a study of cytokine rescue found that IL-2 protected 

T cell clones from IL-2 deprivation apoptosis using a pathway in which p53 protein 

expression is upregulated [118].  
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In models of hypoxia, p53 is also indirectly linked to GILZ. In a study using 

macrophage cell line, it was shown that hypoxia not only significantly upregulated GILZ 

expression, but also significantly enhanced dexamethasone induced expression of GILZ 

in macrophages and the spleen of rats [119]. Given that hypoxia is known to induce p53 

[120, 121], it is possible that p53 may be involved in GILZ upregulation in the 

macrophage cell lines. Additionally, ERK activity is found to be involved in the 

upregulation of GILZ induced by hypoxia [119]. In a study of doxorubicin-induced 

apoptosis of cardiomyocytes and H9c2 cells, it was found that ERK1/2 are functionally 

linked to p53 [122].  

Maybe most convincingly, in a study published in PNAS in 2011, it was found 

that loss of p53 impaired repression of NF-kappaB target gene transcription by 

glucocorticoid [123]. Additionally, the loss of p53 also impaired transcription of 

glucocorticoid receptor target genes, whereas upstream signaling cascades remained 

intact. In fact, p53 knockout partially abolished dexamethasone-induced transcription of 

GILZ and p53 loss severely impaired glucocorticoid rescue of death in a mouse model of 

LPS shock. In summary, these findings showed that p53 has a crucial role in the 

repression of NF-kappaB and other functions by glucocorticoid and involved in GILZ 

upregulation [123]. This is important because a key action of GILZ is inhibition of NF-

kappaB nuclear translocation [91]. 

In addition to the direct effect of 8-MOP/UVA, the indirect effect likely involves 

tolerogenic signals delivered by apoptotic leukocytes. Apoptotic lymphocytes have been 

described extensively as possessing anti-inflammatory properties when taken up by 

dendritic antigen presenting cells. 8-MOP/UVA quickly and efficiently induces apoptotic 
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lymphocyte, which can interact with antigen presenting cells induced by ECP or the DCs 

present in lymphoid organs such as the spleen and liver. Transimmunization, which 

added an overnight incubation step of the ECP-processed products, have shown to 

increase the clinical efficacy of the procedure [124]. This implies that increased 

interactions of the treated lymphocyte and dendritic cell populations are important. While 

the effects of apoptotic lymphocytes have been studied extensively, it is unclear whether 

the signals delivered by different leukocytes are equivalent. Recent research on apoptotic 

DCs provides some evidence that there may be key differences between different types of 

apoptotic cells.  

The importance of maintaining peripheral tolerance through highly regulated 

apoptotic process is well known [125, 126]. DC apoptosis, however, may be different 

than that of lymphocytes. It was observed that transgenic mice with defects in DC 

apoptosis, but not T or B lymphocytes, developed systemic autoimmune disease [127-

129]. Furthermore, Kushwah and colleagues found that only apoptotic, not necrotic, DCs 

can induce viable DCs to become resistant to LPS-induced maturation and secrete TGF-

beta. [130, 131]. In particularly, TGF-beta not only helped to generate antigen-specific 

Foxp3+ Tregs, but also was the factor responsible for induction of Treg. Viable DCs 

secreted TGF-beta when engulfing apoptotic DCs but not other types of apoptotic 

leukocytes [66]. This implied that while phosphatidylserine may play a role in the 

processing of apoptotic lymphocytes by antigen processing cells [132], there might be 

other ligands exposed on apoptotic DCs that would induce viable DCs to produce TGF-

beta [131]. One of the possibilities may be αvβ8 integrins, which are important to induce 

Tregs and found in high concentrations on the surface of DCs [133]. Furthermore, the 
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molecules that induce TGF-beta production may be different depending on the type of 

antigen presenting cells as macrophages, but not DCs, have a phosphytidylserine-

dependent pathway [134]. 

Regardless of the exact pathway of GILZ induction, it is conceivable that 

induction of tolerogenic DC at sites of cellular stress and damage might serve as a means 

to protect self against the development of systemic autoimmunity. GILZ would be 

upregulated by 8-MOP/UVA exposures to play an important role in mediating the 

transformation of DCs to a tolerogenic state.  

 

Functional Studies of DCs Expressing GILZ 

 Correlating phenotype with function is important in the characterization of 

tolerogenic DCs. A hallmark feature of tolerogenic DCs is a reduced T-cell 

immunostimulatory capacity and the ability to generate antigen-specific Tregs [44]. We 

wanted to develop a functional assay that was robust, specific, and stringent. Using the 

MART-1 system to stimulate a naïve CD8+ response fulfilled those criteria.  

Advantages of the MART-116-40(A27L) long peptide include antigen-specificity and 

a functional requirement for internalization, processing, and cross presentation of the 

peptide. A high frequency (>1 in 2500 CD8+ T-cells) of MART-1-specific CD8+ T-cells 

with a naïve phenotype are found circulating in HLA-A2+ healthy individuals, and these 

cells are capable of proliferating in response to long MART-1 peptide cross-presentation 

[117]. The requirement of engulfment and cross-presentation limits the observed 

response to DCs as they have the unique ability to initiate a primary response and are the 

major cell type known for possessing the proper cellular machinery for cross-presentation 
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[44, 45, 135]. The high frequency of MART-1 specific naïve CD8+ T cells eliminates the 

need for re-stimulation by DCs and reduces the time required for the functional assay. 

The use of MART-1 specific tetramer allows for identification of the specific T cell clone 

with high specificity and sensitivity.  

In this present study, cytokine generated DCs expressing GILZ demonstrated a 

mixed ability to stimulate autologous MART-1-specific CD8+ T-cells [80]. However, 

dexamethasone treated DCs also exhibited a variable response, and the stimulatory 

capacity of dexamethasone treated DCs for all three donors mirrored that of DCs treated 

with 8-MOP/UVA or exposed to apoptotic lymphocytes. Combined with high intra-group 

standard deviation, these observations suggest that stimulation of MART-1-specific CD8+ 

T cells may be influenced by multiple factors distinct from GILZ induction. 

A possible explanation for the varied responses comes from the discovery of 

novel MART-1 HLA-DRB1-restricted epitopes recognized by CD4+ T cells [136]. It is 

feasible that DCs from HLA-A2+ donors with particular MHC-class II haplotypes would 

be unable to induce MART-1-specific CD4+ Tregs. These DCs would therefore stimulate 

CD8+ T cells even in the context of tolerogenic cell surface phenotypes and cytokine 

profiles. Adding to the complexity of CD8+ T cell responses, a recent study revealed a 

critical role for Tregs in the induction of primary CD8+ T cell responses and effective 

memory induction [137]. The authors propose that in the absence of Tregs, low-avidity T 

cells over-proliferate and impair the activation of high-avidity CD8+ T cells [137]. These 

observations could help explain why we observed a variable CD8+ T cell stimulatory 

capacity for all DCs expressing GILZ, including dexamethasone treated DCs, 8-

MOP/UVA-treated DCs, and DCs exposed to apoptotic lymphocytes. Further studies will 
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be needed to clarify the reasons. Despite the variable results, other studies have clearly 

shown that GILZ-expressing DCs function in a tolerogenic manner and its inhibition 

increase the immunogenic properties of the DCs [102-104]. 

A limitation of this particular protocol is that the CD8+ T cell response does not 

reveal which specific tolerogenic mechanisms are operating. In addition, it is unclear 

whether low CD8+ response is the result of tolerogenic or lack of immunostimulatory 

capacity on the antigen presenting cells. Therefore, future studies will be required to 

determine the production of IFN-γ by MART-1-specific CD8+ T-cells, as well as whether 

8-MOP/UVA-treated DCs expressing GILZ are capable of generating Tregs in a similar 

fashion as DCs generated by immunosuppressive pharmacologic agents like 

dexamethasone [102]. Once these issues are resolved, studies on ECP-induced DCs 

should be conducted to further characterize their functional properties and capacity to 

provide clinical relevance. 

 

Divergent Effect of 8-MOP/UVA on PDL1 and IDO Versus GILZ 

Similar to GILZ, both IDO and PDL1 have been implicated in induction of 

tolerance and suppression of immunogenicity. IDO, or indoleamine 2,3-dioxygenase, is 

an enzyme that degrades the essential amino acid tryptophan. It has been implicated in 

inhibition of T cell proliferation [138, 139], suppression of alloreactive T cells [140], 

protection of tumor lines against rejection [141], and protection of lung allograft [142]. 

PDL1 regulates peripheral tolerance by interacting with its receptor PD1 on the surface of 

T cells, which upregulate PD1 expression upon activation. PDL1 has been implicated to 
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induce co-inhibitory signal in activated T cells and promotes T cell apoptosis, anergy and 

functional exhaustion [143-145].  

 Interestingly, whereas 8-MOP/UVA and dexamethasone stimulated GILZ RNA 

expression, they suppressed the expression of PDL1 and IDO in a dose dependent 

manner. This highlights that there may exist two general classes of tolerogenic molecules. 

One class includes GILZ, where an immunosuppressive molecule is upregulated by an 

immunosuppressive signal such as glucocorticoids, IL-10, and TGF-beta. Another class, 

which includes IDO and PDL1, are suppressive counter-regulatory molecules that are 

expressed to control inflammation. This class of molecules can be upregulated by 

inflammatory signals such as IFN-gamma and TLR agonists including LPS [146, 147]. 

Thus, IDO and PDL1 may be expressed to control and limit the duration and level of 

inflammation in attempt to prevent development of autoimmune diseases. This may help 

to explain why we see the different trend of GILZ versus IDO and PDL1 RNA 

expression in our experiment. An important molecule that could potentially be involved 

is IFN-gamma, which deserves further examination in future experiments. It is also 

important to note that while RNA expression is important, post-transcription regulation, 

translation, and transportation to surface are additional factors to consider.   

 

Implication of Findings for ECP Mechanism 

One of the great mysteries behind ECP has been its divergent ability to stimulate 

the immune system to combat leukemic CTCL and to suppress the immune response in 

settings of transplantation and autoimmunity. With the discovery and recognition that 

ECP is capable of efficiently inducing monocyte-to-DC maturation in the absence of 
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suprapharmacologic concentrations of cytokines commonly used to generate DC in vitro, 

the cloud of the mystery became clearer. Because DCs are key regulators of immunity 

and are capable of promoting or suppressing T-cell responses, it became highly likely that 

DCs perform a critical role in ECP’s immunotherapeutic clinical effects. 

Overall, we suspect that during the ECP procedure, monocytes are induced to 

undergo differentiation to DCs while 8-MOP/UVA exposure modifies the properties of 

these antigen presenting cells via upregulation of GILZ. Furthermore, because the 

processed monocytes are not homogeneously exposed to 8-MOP/UVA, the procedure is 

producing both immunogenic and tolerogenic DCs. 

Our laboratory has found that ECP’s induction of DC involves discrete 

physiologic interactions between platelets that are tightly adherent to the UVA-exposure 

chamber and the processed monocytes, which flow through that chamber [43]. Utilizing a 

laboratory ECP model, this study shows that 8-MOP/UVA may truncate the DC-oriented 

maturation of the platelet-stimulated monocyte.  

We suspect that 8-MOP/UVA exposure of monocytes is critically important in 

directing a major subset of ECP-processed monocytes into the tolerogenic mode, while 

relative protection from 8-MOP/UVA may permit simultaneously processed monocytes 

to mature into immunogenic DC. As monocytes flow through the 1 mm thick ECP 

exposure plate, they are not uniformly exposed to 8-MOP/UVA. Broadly, the passaged 

monocytes fall into two categories: one which is exposed to a degree sufficient to 

compromise their survival past several days and another which is exposed to a 

sufficiently low level that their survival and function appears uncompromised. The 

heavily exposed cells upregulate GILZ expression and become tolerogenic whereas the 
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least exposed go on to become immunogenic due to low GILZ induction. Therefore, the 

ECP procedure physiologically produces a spectrum of antigen presenting cells capable 

of inducing immunomodulatory effects in patients with CTCL, GVHD, allograft 

rejection, and autoimmune disease. Observations from the clinical outcomes of ECP 

support this claim. ECP’s reversal of acute GVHD and organ transplant rejection 

commonly occurs significantly faster than its immuno-therapeutic impact on CTCL 

[112]. This observation suggests that, following the therapeutic ECP procedure, 

tolerogenic short-lived maturationally truncated DCs might dominate early, while 

immunogenic longer-lived mature DC would be expected to dominate later [112]. 

 

The Future of ECP 

Studying the mechanism of ECP has tremendous value because understanding 

may provide the scientific rationale for the development of a novel immunotherapeutic 

strategy to combat cancer, autoimmune diseases, and transplant rejection. The results 

from this study coupled with our previous observation in cytokine generated DCs [80] 

provides an initial step towards a potential molecular explanation for ECP’s 

immunomodulatory effects in vivo. The ability to replicate similar results in a laboratory 

model of ECP with ECP-induced DCs gives credence to the clinical relevance of our 

previous findings.  

GILZ may be that important factor to manipulate in order to deviate the function 

of DCs to either stimulate or suppress the immune system. After over 25 years of clinical 

use as a FDA-approved therapy, ECP has not fundamentally changed from its original 

design. The roadblock to change has been the unclear mechanism of this enigmatic 
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therapy and what factors to modify. The finding of 8-MOP/UVA induction of GILZ may 

be an important step toward improving the therapy. Given that 8-MOP/UVA is extremely 

titratable, it could potentially be utilized to finely titrate the level of induced GILZ 

expression in ECP-induced DCs or even cytokine generated DCs to skew their function. 

Future studies on DC therapy focusing on altering the level of GILZ production should 

also be explored.  

Combined with the concepts of DC therapy, ECP offers not only the possibility of 

effective treatment of GVHD and SOT rejection by regulating alloreactive T cell 

responses, but allows for prevention in the future. In one model of preventing SOT 

rejection, one could produce immature DCs via ECP with close monitoring of GILZ 

expression levels. These GILZ expressing DCs can be loaded with graft alloantigens, 

which will be derived from apoptotic 8-MOP/UVA-treated lymphocytes that we wish to 

be tolerated by the host. Because almost all nucleated cells possess the same set of HLAs, 

the immune response generated against HLAs on apoptotic lymphocytes should be 

identical to that against the graft. The antigen-loaded DCs will be incubated with 

recipient purified T cells to induce formation of Tregs that selectively suppress immunity. 

In vitro suppression assays can be conducted to evaluate for the presence and functioning 

of immunosuppressive cells. Following convincing in vitro results, clinical trials with 

periodic injection of antigen-loaded DCs and Tregs into recipients to induce in vivo 

tolerance could be conducted before transplantation. Delayed hypersensitivity reaction, as 

evaluated clinically and by biopsy, could then be used to test for immune activation as a 

monitor for in vivo antigen-specific suppression efficacy. Modifications can be made 

based on the in vitro and in vivo response by manipulating GILZ until the desired 
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outcomes has been achieved. Additionally, changes to this model could be utilized for 

GVHD and other diseases. 

Even with its high potential, ECP faces hurdles including its incomplete 

immunomodulatory effects. Despite clinical response and decreased steroid use in 

transplant patients on ECP, there may be in vivo mechanisms blocking a complete 

immune tolerance. CTLA-4, which is located on the surface of T cells, has been found to 

function in suppressing immune response and maintaining self-tolerance [148, 149]. It 

binds to the co-stimulatory molecules CD80 and CD86, and suppresses T cell activation, 

proliferation, and IL-2 gene transcription [148, 150]. Because of its critical role in 

inducing tolerance, it may be useful to simultaneously utilize a CTLA-4 agonist, 

especially in patients without a response or one with incomplete response. This strategy 

has been utilized effectively to inhibit T cell activation and autoimmune diabetes in mice 

[150]. In addition to targeting CTLA-4, multi-modality therapies should be explored to 

augment or synergize with the effects produced by ECP [151].  

  

Implication for DC Therapy 

 Given the important role of GILZ, it can be viewed as a molecular switch and 

mediator in determining the function and fate of DCs. Instead of upregulating GILZ via 

immunosuppressive therapies such as glucocorticoids that have unwanted side effects, 

selective targeting of GILZ in DCs may be the future of DC immunotherapy. Although 

no agents with selective GILZ-inducing capacities have been identified, regimens that do 

so may represent a promising option to promote tolerance in settings of autoimmunity 

and transplantation. 
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 In addition to induction of GILZ, novel therapies may also be based on simulating 

the molecular actions of GILZ [152]. For example, in vivo inhibition of pro-inflammatory 

mediators such as NF-κB nuclear translocation could produce similar effects as GILZ. In 

fact, a peptide mimic derived from the p65 binding carboxyl terminus of GILZ inhibits T 

cells and prevents autoimmune encephalomyelitis, a model of human multiple sclerosis 

[153]. Another method would be selective induction of GILZ via gene therapy, which 

may be effective in redirecting the DCs to possess the desired immunosuppressive 

functionalities [101]. DC-SIGN has recently been identified as negatively regulating the 

function of GILZ [154] and may serve as another potential target to increase GILZ 

activity. Finally, further analysis of GILZ protein structure and identification of its targets 

could reveal targets for synthetic GILZ mimetics [152].  

 

Concluding Remarks 

ECP holds enormous promise as a personalized, immunological modulating 

therapy. Precise elucidation ECP’s full mechanisms of action will allow this treatment to 

optimally harness its full potential in the treatment of a spectrum of T cell mediated 

diseases. Through physiologic induction of DCs, ECP is capable of inducing antigen-

specific tolerance without the global immunosuppression seen with pharmacologic 

immunosuppressive therapy. It has minimal to no side effects and is very well tolerated 

by patients. The results from this study may help to elucidate the mechanism of ECP to 

generate antigen-specific tolerance and immunogenicity.  

Overall, understanding the mechanism behind ECP will allow for better patient 

care by maximizing factors responsible for clinical responsiveness. Once the clarification 
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of mechanism is reached, there can be refinement in the system that provides ECP 

enormous potential to expand its treatment applications to other lymphocyte-mediated 

diseases. GILZ is a strong candidate that provides a molecular and mechanistic 

explanation of ECP’s clinical effects. This acquired knowledge will be useful in solving 

current limitations that prevent both immunogenic and tolerogenic DC vaccines from 

reaching its full potential and clinical efficacy in human subjects.  
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FIGURES 
 
Figure 1: Clinical ECP Procedure 
 

 
 
 
Figure 1. In the ECP procedure, venous access is established, usually with a 16-gauge 
needle. Whole blood is drawn from the patient and the leukocyte-rich buffy coat is 
harvested through several discontinuous pheresis cycles whereas the red blood cells and 
plasma are re-infused back to the patient. Psoralen is added to the isolated leukocytes, 
which are held in a sterile collection bag. After equilibration, the leukocytes are pumped 
through the transparent ECP plate and exposed to ultraviolet A (UVA) light at a dosage 
of between 1-2 J/cm2. After treatment, these photochemically altered leukocytes are then 
reinfused into the patient. The entire procedure takes approximately three hours to 
complete.  
 
Figure obtained from: Choi, Jaehyuk, Heald, Peter W., Girardi, Michael - Comprehensive 
Dermatologic Drug Therapy, 291-298.e2 
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Figure 2: The Role of GILZ as Mediator in Immune Signaling Pathways 
 

 
 
 
Figure 2. GILZ expression is induced by glucocorticoids (GC) binding to glucocorticoid 
response elements (GRE). GILZ mediates its anti-inflammatory effects by inhibiting a 
variety of pathway and signaling factors including Ras, Raf, MEK1/2, ERK1/2, c-JUN, c-
FOS, and nuclear translocation of NF-kB.  
 
Figure obtained from: Huapeng Fan and Eric F. Morand (2012). The Role of GILZ in 
Anti-Inflammatory and Immunosuppressive Actions of Glucocorticoids, Glucocorticoids 
- New Recognition of Our Familiar Friend, Dr. Xiaoxiao Qian (Ed.), ISBN: 978-953-51-
0872-6, InTech, DOI: 10.5772/52027. 
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Figure 3: Laboratory Model and Procedure of ECP 
 

 
 
Figure 3. A laboratory model of ECP is established to simulate the important features of 
the clinical ECP device. After whole blood was obtained from healthy donors, plasma 
was obtained via a low speed centrifugation and utilized to coat the clinical ECP plate. 
After reconstituting the volume, the peripheral blood mononuclear cells (PBMCs) are 
isolated using a Ficoll-Hypaque gradient. Some of the PBMCs are set aside while others 
are passed through the plate where they interact with serum proteins and platelets to 
undergo monocyte-to-dendritic cell differentiation and maturation. After PBMCs are 
plate passed (PBMC+PP or PP), some are treated with dexamethasone (PBMC+PP+Dex 
or Dex) or 8-MOP and UVA (PBMC+PP+PUVA or ECP) of various dosages. These 
groups of cells are subsequently collected and analyzed phenotypically via flow 
cytometry and for RNA expression by TaqMan RT-PCR. 
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Figure 4: Flow Cytometry Gating Strategy for Antigen Presenting Cells 
 

 
 
Figure 4. Gating strategy utilized in analyzing the phenotype of the antigen presenting 
cells are as follows: 

1. Gate on lymphocytes and monocytes based on forward and side scatter profiles 
2. Exclude doublets based on width 
3. Select viable cells using viability dye (7-AAD negative) 
4. Gate on CD11c+ cells with high side scatter profile 
5. Subsequently analyze with immunophenotyping with fluorescence-conjugated 

antibodies 
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Figure 5: Plate Passage Globally Activates Monocytes with Increased PLAUR and 
ICAM-1 Expression 
 

 
 

 
 
Figure 5. The expression of PLAUR and ICAM-1 on the surface of CD11c+ antigen 
presenting cells increased after plate passage and overnight culture. The increase in 
expression can be seen as the curve shifts toward the right and correspondingly with 
higher MFI, ΔMFI, and ratio of test and control MFI (A). The increase in expression of 

A 

B 
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PLAUR is not stable or consistent as there is decline in expression for PLAUR whereas 
ICAM1 expression continue to increase after day 1 (B). PUVA inhibited the expression 
of ICAM1 but increased the expression of PLAUR on day 1.  
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Figure 6: 8-MOP/UVA Inhibited Lymphocyte Proliferation  
 

 
 

 
 
Figure 6. Dose response curve comparison of the effect of varying concentrations of 
UVA light with 100 ng/mL of 8-MOP on lymphocyte PHA response. In the two 
experiments conducted (A, B), 8-MOP/UVA was able to inhibit PHA-induced 
lymphocyte proliferation in a dose dependent manner and it took approximately 1 J/cm2 
to 2 J/cm2 to completely inhibit lymphocyte proliferation of plate passed cells. There was 
excellent correlation between 6 hour and 18 hour [3H]-thymidine pulse.  
 
PHA Stimulation Index = (Mean CPM of PHA Stimulated Cells) / (Mean CPM of 
Unstimulated Cells). A PHA Stimulation Index of 1 is equivalent to complete 
suppression of proliferative ability of lymphocytes to PHA stimulation. 
 

A 

B 
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Figure 7: CD11c+ Antigen Presenting Cells are Resistant to 8-MOP/UVA-Induced 
Apoptosis 
 

 
 

 
 
Figure 7. 8-MOP/UVA induce apoptotic cell death of both antigen presenting cells 
(monocytes and DCs) and T lymphocytes. However, antigen presenting cells are resistant 
to 8-MOP/UVA-induced cell death compared to lymphocytes at 24 hours post-exposure 
(A). Early apoptotic cells are defined by being annexin-V+ 7-AAD- and late apoptotic 
cells are annexin-V+ 7-AAD+. There is a dose response of 8-MOP/UVA and leukocyte 
cell death at 24 hours post-exposure for both cell types (B). 

A 

B
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Figure 8: Relative GILZ Expression Level of CD11c+ Antigen Presenting Cells 
 

 
 
Figure 8. ECP-induced DCs upregulated GILZ when treated with dexamethasone and 8-
MOP/UVA. GILZ mRNA expression in CD11c+ ECP-derived DCs as a fold change 
relative to that particular day’s PBMCs. Data represent mean ± standard deviation for at 
least three independent experiments in each group. *p < 0.05, **p < 0.01, compared to the 
PBMC group of that day. D0: day 0; the day of experimental manipulation. D1: day 1; 
one day after experiment and sterile culture. D2: day 2; 2 days after experiment and 
sterile culture. 
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Figure 9: 8-MOP/UVA Induces DCs with Immature Phenotype 
 

 
 

 
 
Figure 9. 8-MOP/UVA, but not plate passage alone, induce DCs with an immature 
phenotype (A) in a dose dependent fashion (B). The induction of immature phenotype is 
long-last and persistent over several days after 8-MOP/UVA treatment. Immature 
phenotype is defined as CD11+ HLA- DR+ CD14-.  
 

B
A 

A 
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Figure 10: Effect of Plate Passage and 8-MOP/UVA on DC Markers 
 

 
 

 
 
Figure 10. Relative fluorescence intensities for membrane expression of HLA-DR, CD83, 
and CD14 (A) and CD11c, CD80, and CD86 (B) are presented for the different groups 
one or two days after treatment and sterile culture. All data represent mean ± standard 
deviation of at least three independent experiments. 
 

A 

B
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Figure 11: Dose Response Effect of 8-MOP/UVA 
 
 

    
 

   
 

           
 
Figure 11A. 8-MOP/UVA exposure modified the expression of several cell surface 
markers on the CD11c+ antigen presenting cells. In this experiment, 8-MOP/UVA 
decreased the expression of CD11c, CD14, CD80, and CD86 in a dose dependent fashion 
with the general trend holding true to day 3. Whereas plate passage increased the 
expression of ICAM1, 8-MOP/UVA suppressed its expression in a dose depedent 
fashion. The effect of plate passage and 8-MOP/UVA was variable and inconsistent for 
PLAUR.  
 

A 
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B 
Figure 11B. 8-MOP/UVA 
increases the RNA 
expression of GILZ and 
decreases the RNA 
expression of IDO1 and 
PDL1. The effect of 8-
MOP/UVA occurs in a 
dose dependent fashion 
and mirrors that of 
dexamethasone. The effect 
of 8-MOP/UVA is 
persistent over three days 
following treatment. 
Relative expression levels 
are normalized to the 
PBMC group of that 
particular day. RNA for 
analysis is derived from 
purified CD11c+ antigen 
presenting cells for all 
groups. 100 ng/mL of 8-
MOP was used in this set 
of experiment. 
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TABLES 
 
Table 1: DCs Expressing GILZ Showed Mixed Ability to Stimulate MART-1 
Specific CD8+ Primary Response 
 

 % CD8+CD4-MART-1+gp100- T-cells 
(mean ± intra-group SD) 

Antigen-Presenting Cells Donor A Donor B Donor C 

Freshly Isolated Monocytes 1.8 ± 0.3 3.5 ± 1.3 1.1 ± 0.2 

Untreated DCs 2.9 ± 0.4 5.1 ± 2.1 2.6 ± 0.1 

8-MOP/UVA -DCs 2.2 ± 0.7 6.3 ± 1.8 3.5 ± 0.6 

Untreated DCs + ApoL 2.3 ± 0.1 9.8 ± 2.1 2.5 ± 0.1 

8-MOP/UVA-DCs + ApoL 1.8 ± 0.2 9.1 ± 0.2 3.4 ± 0.3 

Dex-DCs 0.8 ± 0.1 7.0 ± 0.7 2.5 ± 0.5 
 
Table 1. Cytokine generated DCs expressing GILZ at high levels demonstrated a mixed 
ability to stimulate autologous MART-1-specific CD8+ T-cells. DCs were re-purified 
from cultures described in Materials and Methods and used as antigen presenting cells for 
stimulating T cells. DCs were co-cultured in a 1:10 ratio with autologous lymphocytes in 
the presence of MART-116–40(A27L) peptide, IL-2 (12.5 IU/mL) and IL-7 (5 ng/mL). After 
9 days of co-culture, the percentages of MART-1-specific CD8+ T cells were quantified 
as a percentage of live cells displaying a CD8+CD4−MART-1+gp100− phenotype. The 
percentages of live cells displaying a CD8+CD4−MART-1+gp100− phenotype are listed 
for three independent experiments with three different HLA-A2+ donors. Each 
experiment was performed in triplicate, and the intra-group SD is presented.  
 
The expression of GILZ was highest in dexamethasone treated DCs (Dex-DCs) and 8-
MOP/UVA-treated DCs fed with apoptotic lymphocytes (ApoL). The expression of 
GILZ was lowest in untreated DCs and freshly isolated monocytes. The expression of 
GILZ was for untreated DCs fed apoptotic lymphocytes and 8-MOP/UVA-treated DCs 
was in between the previously stated two groups.  
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