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AN EXPLICIT BIJECTION BETWEEN SEMISTANDARD TABLEAUX AND

NON-ELLIPTIC sl3 WEBS

HEATHER M. RUSSELL

Abstract. The sl3 spider is a diagrammatic category used to study the representation theory of the quan-

tum group Uq(sl3). The morphisms in this category are generated by a basis of non-elliptic webs. Khovanov-

Kuperberg observed that non-elliptic webs are indexed by semistandard Young tableaux. They establish

this bijection via a recursive growth algorithm. Recently, Tymoczko gave a simple version of this bijection

in the case that the tableaux are standard and used it to study rotation and joins of webs. We build on

Tymoczko’s bijection to give a simple and explicit algorithm for constructing all non-elliptic sl3 webs.

1. Introduction

The sl3 spider, introduced by Kuperberg [10] and subsequently studied by many others [8, 9, 11, 12], is

a diagrammatic, braided monoidal category encoding the representation theory of Uq(sl3). The objects in

this category, called sign strings, are finite words in the alphabet {+,−} including the empty word. The

morphisms are Z[q, q−1] - linear combinations of certain graphs called webs. See Figure 1 for an example of

a web.

The objects in the spider can be thought of as tensor products of the two dual 3-dimensional irreducible

representations V + and V − of Uq(sl3), and the morphisms can be thought of as intertwining maps between

tensor products of these representations [10]. Spider categories for other Lie types have been defined. See

for instance [2, 11, 12].

Figure 1. A web in Hom(+ +++,+).

Webs in the sl3 spider are oriented trivalent graphs drawn in a rectangular region with boundary points

lying on the top and bottom edges of that region. Edges incident on the boundary points have orientations

compatible with the source and target sign strings. We read webs from bottom to top. All vertices are either

sources or sinks. Webs are also subject to Relations 1, 2, and 3 below which are often referred to as the circle,

bigon, and square relations respectively. A web with no bigons, squares, or circles is called non-elliptic or

irreducible. Every web is a linear combination of non-elliptic webs. We follow the normalization conventions

found in Khovanov’s work on sl3 link homology [7].

(1) = [3]q = q2 + 1 + q−2
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(2) = [2]q = (q + q−1)

(3) = +

Given a sign string s, construct the dual string s∗ of s by reversing the order of s and then replacing

each + with a − and each − with a +. This is really just a diagrammatic version of the statement that, for

quantum group representations, (V ⊗W )∗ ∼= W ∗ ⊗ V ∗. Let Inv(V ) be the space of invariant tensors of V

where V is a tensor product of irreducible representations of Uq(sl3). Since Hom(V,W ) ∼= Inv(V ∗,W ), it is

enough to study sl3 webs of the form Hom(s, ∅).

Let s = s1 . . . sn be a sign string. The dimension of Inv(V s1 ⊗ · · · ⊗ V sn) is the number of lattice paths

in the dominant Weyl chamber from the origin to itself satisfying some additional condition coming from

the string [8]. These dominant lattice paths for s correspond to certain words in the alphabet {−1, 0,+1}.

Khovanov-Kuperberg give a recursive growth algorithm which produces a non-elliptic web from a given

lattice path word. This growth algorithm establishes a bijection between dominant lattice paths and webs

with inverse coming from a depth map on webs [8].

Recall that a semistandard Young tableau is a filling of a Young diagram which strictly increases in

columns and weakly increases in rows. The dimension of the invariant tensor space is reformulated by

Petersen-Pylyavskyy-Rhoades using the language of semistandard tableaux [13].

Proposition 1. Let s be a sign string of length 3n with k minuses and 3n − k pluses. The number of

non-elliptic webs in Hom(s, ∅) is equal to the number of semistandard tableaux of shape (3, 3, . . . , 3, 3) ⊢ 3n

filled with {12, . . . , k2, k + 1, . . . , 3n− k}.

Tymoczko recently gave an explicit bijection between webs in Hom(+ + + . . . + ++, ∅) and standard

tableaux [20]. This is accomplished by constructing an intermediate object called an m-diagram which can

then be modified slightly to produce a non-elliptic web. Tymoczko shows that this straightforward procedure

provides a concrete realization of the growth algorithm bijection of Khovanov-Kuperberg.

Building on the m-diagram algorithm, this paper provides a simple bijection between all non-elliptic webs

and a certain subset of semistandard Young tableaux. We begin by recalling Tymoczko’s m-diagram algo-

rithm and then describe the generalized bijection providing many examples. We conclude with two theorems

about rotation and join of webs that generalize results of Petersen-Pylyavskyy-Rhoades and Tymoczko to

all sl3 webs [13, 20].

An interesting potential application of this bijection is in the study of Spaltenstein varieties. Combinatorial

data from sl2 webs has been used to describe the representation theory and topological structure of Springer

varieties, certain flag varietyies used to construct irreducible representations of the symmetric group [3, 4,

6, 15, 14, 16, 19]. Spaltenstein varieties are a generalization of Springer varieties using partial flags.

Just as the components of Springer varieties are indexed by standard tableaux, the components of Spal-

tenstein varieties are indexed by semistandard tableaux. Recent work of Brundan-Ostrik and Schäfer show

strong evidence that the combinatorics of the more general class of webs studied here should aid in the study

of three-row Spaltenstein varieties [1, 18].
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2. Tymoczko’s m-diagram algorithm

Let n ∈ N and consider the partition (n, n, n) ⊢ 3n. Let T be a standard tableau of shape (n, n, n). The

bijection in this section is between tableaux T and webs with 3n source vertices. Note that the number of

standard fillings of shape (n, n, n) is the same as the number of standard fillings of the shape (3, 3, . . . , 3, 3),

so this can also be thought of as a bijection with tableaux of that shape.

Given a tableau T , the Tymoczko m-diagram algorithm constructs the m-diagram mT as follows [20].

• Draw a horizontal line with 3n equally spaced dots labeled from left to right with the numbers

1, . . . , 3n. This line forms the lower boundary for the diagram, and all arcs will lie above this line.

• Starting with the smallest number j on the second row, draw a semi-circular arc connecting j to its

nearest unoccupied neighbor i to the left. The arcs (i, j) are the left arcs in the m-diagram.

• Starting with the smallest number k on the bottom row, draw a semi-circular arc connecting k to

its nearest neighbor j to the left that does not already have an arc coming to it from the left. The

arcs (j, k) are the right arcs of the m-diagram.

The collection of left arcs is nonintersecting as is the collection of right arcs, but left arcs can intersect right

arcs. Figure 2 has an example of an m-diagram.

1 3

2 5

4 6
1 2 3 4 5 6

Figure 2. The m-diagram for a tableau.

From an m-diagram mT for T there is a straightforward procedure for transforming mT into a non-elliptic

web wT [20].

• At each boundary vertex where two semi-circular arcs meet, replace the portion of the diagram in a

small neighborhood of the vertex with a ‘Y‘ shape as shown in Figure 3.

• Orient all arcs away from the boundary so that the branching point of each ‘Y‘ becomes a source.

• Finally replace any 4-valent intersection point of a left arc and a right arc with a pair of trivalent

vertices as shown in Figure 4. There is a unique way to do this preserving orientation of incoming

arcs.

Figure 3. Modifying the middle vertex of an m.

For each face of a web w, define its depth to be the minimal number of times a path from the given face

to the unbounded region must intersect w. An example is shown in Figure 5. Depths of adjacent faces differ

by at most one.
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Figure 4. Replacing a 4-valent vertex with trivalent vertices.

0 1 1 2 1 1 0

Figure 5. The depth map for a web

Let Fi,L be the face immediately to the left of the edge incident on boundary vertex i, and let Fi,R be

the face immediately to the right of the edge incident on i. The following algorithm constructs a standard

tableaux Tw from a non-elliptic web w with boundary 3n sources. In fact this process is inverse to Tymoczko’s

web bijection in the sense that TwT
= T [20].

• If the depth of Fi,L is less than the depth of Fi,R, put i in the top row of Tw.

• If the depths of Fi,L and Fi,R are the same, put i in the middle row of Tw.

• If the depth of Fi,L is greater than the depth of Fi,R, put i in the bottom row of Tw.

Let τ(T ) be the set of all pairs (i, i+1) such that i occurs in a row above i+1 in T . The terminology of τ

comes from the work of Vogan on primitive spectra of semi simple Lie algebras [21]. The τ set is also often

called the descent set of a tableau. Lemma 1 appears in an upcoming paper of the author with Housley and

Tymoczko where we study the symmetric group action on sl3 webs with 3n sources [5]. It is the key idea in

establishing a bijection between semistandard tableaux and webs.

Lemma 1. Given a standard tableau T and its associated web wT , if (i, i+1) ∈ τ(T ) then boundary vertices

i and i+ 1 are connected to the same internal vertex in wT .

Proof. Say (i, i+ 1) ∈ τ(T ). Since T has three rows, there are three possibilities:

(1) i is in the top row, and i+ 1 is in the middle row.

(2) i is in the middle row, and i+ 1 is in the bottom row.

(3) i is in the top row, and i+ 1 is in the bottom row.

In the first case, the boundary vertices i and i+1 must be connected by the left arc of an m. If this were

not the case, then the m-diagram for wT would have two left arcs crossing, which cannot happen. Since i

and i+1 are adjacent and connected by the arc of an m, they will be connected to the same internal vertex

in wT .

The second case is completely analogous to the first except that i and i + 1 are connected by the right

arc of an m. This once again means that they connect to the same internal vertex in wT .

In the third case i is at the far left of an m, and i + 1 is at the far right of an m. Since there are no

external vertices between them, they must cross exactly in the manner shown in Figure 6. This means that

in wT , vertices i and i+ 1 will connect to the same internal vertex.

�

3. A bijection between semistandard tableaux and webs

Given a semistandard tableau T , the content λ of T is the composition where λi is the number of

occurrences of i in T . Given a sign string s = s1 · · · sn with k minuses define the content of s to be the
4



i i+ 1 i i+ 1

Figure 6. Case 3: Vertices i and i+ 1 in the m-diagram and web.

composition λs = (λs,1, . . . , λs,3n−k) where

λs,i =

{
1 if si = +,

2 if si = −.

This section studies semistandard fillings of (3, . . . , 3) ⊢ 3n of content λs which we will refer to as fillings of

content s. For example, the first tableau in Figure 7 has content s = −−+++++. Note that the number

of fillings of content s depends only on the number of pluses and minuses and not on the order in which

these symbols appear.

The bijection described in this section works for all sign strings. For ease of notation, we provide explicit

instructions for the case that s = − · · · − + · · ·+. The general case is similar. An example is given at the

end of Section 4.

Let s = − · · · − + · · ·+ be a sign string consisting of k minuses followed by 3n − k pluses. Let Ts be a

filling of (3, . . . , 3) ⊢ 3n of content s. From Ts, construct a standard tableau T̃s by replacing each repeated

pair i, i with the numbers 2i− 1, 2i such that 2i− 1 is to the left of 2i; for i > k, replace i with i+ k. Figure

7 has an example. For any tableau T , write T ′ for its conjugate.

Ts =
1 1 2
2 3 5
4 6 7

−→ T̃s =
1 2 4
3 5 7
6 8 9

−→ T̃s

′

=
1 3 6
2 5 8
4 7 9

Figure 7. Obtaining a standard from a semistandard and taking its conjugate.

Lemma 2. Let Ts be a tableau of content s. Then (2i− 1, 2i) ∈ τ(T̃s

′

) for all 1 ≤ i ≤ k.

Proof. Since Ts is semistandard, the repeated pairs i, i can never be in the same column of Ts. To construct

T̃s the leftmost instance of i is replaced with 2i − 1, and the rightmost instance is replaced with 2i. This

means that 2i− 1 will always lie in a row above 2i in the conjugate tableau T̃s

′

. �

Let w
T̃s

′ be the non-elliptic web constructed from T̃s

′

using the m-diagram algorithm in Section 2. Let

wTs
be the web formed by contracting the first 2k boundary edges of w

T̃s

′ as shown in Figure 8.

2i− 1 2i i

Figure 8. Contracting boundary edges to produce a sink vertex.

Lemma 3. The sign string associated to the boundary of wTs
is s.

Proof. Since the construction of wTs
leaves the last 3n − k boundary vertices undisturbed, it is clear that

they will be sources since they were sources in w
T̃s

′ . Since (2i − 1, 2i) ∈ τ(T̃s

′

) for all 1 ≤ i ≤ k, vertices

2i− 1 and 2i are connected to the same internal vertex. When we contract the boundary edges incident on
5



vertices 2i− 1 and 2i, the internal vertex they share becomes a new boundary vertex. This vertex is a sink.

Thus, each pair of vertices 2i− 1, 2i is replaced with a single sink vertex, and the boundary of wTs
consists

of k sinks followed by 3n− k sources as desired. �

Lemma 4. The web wTs
is non-elliptic.

Proof. Any closed face of wTs
is also a closed face of w

T̃s

′ . Since w
T̃s

′ is non-elliptic, it follows that wTs
is

also non-elliptic. �

Lemma 5. Given two different fillings Ts,1 and Ts,2 of content s, the webs wTs,1
and wTs,2

are distinct.

Proof. If Ts,1 and Ts,2 differ on some repeated number i where 1 ≤ i ≤ k then the standard tableaux T̃s,1

and T̃s,2 will have at least one of the pair 2i − 1, 2i in different positions. If Ts,1 and Ts,2 differ on some

unrepeated number i where k < i ≤ 3n− k then the number i + k will be in different positions in T̃s,1 and

T̃s,2. In either case T̃s,1 and T̃s,2 are distinct.

Since T̃s,1 and T̃s,2 must be distinct, it follows that w
T̃s,1

′ and w
T̃s,2

′ are distinct webs with 3n sources.

The portions of w
T̃s,1

′ and w
T̃s,2

′ that are contracted to form wTs,1
and wTs,2

are identical according to

Lemma 1. Therefore w
T̃s,1

′ and w
T̃s,2

′ must differ away from the first 2k boundary edges which means that

wTs,1
and wTs,2

must be distinct as well. �

Theorem 1. The map sending fillings Ts of content s to webs wTs
with boundary s is a bijection.

Proof. The previous lemmas show that this map sends distinct semistandard tableaux of content s to distinct

webs with boundary s. Since these two sets are in bijection, it follows that this map gives a bijective

correspondence. �

Given a web w with boundary s, construct a tableau Tsw of content s as follows.

• If the depth of Fi,L is less than the depth of Fi,R put the pair i, i in the first and second column if

vertex i of w is a sink and i in the first column if it is a source.

• If Fi,L has the same depth as Fi,R then put the pair i, i in the first and third column if i is a sink

and i in the second column if it is a source.

• If the depth of Fi,L is greater than Fi,R then put the pair i, i in the second and third column if i is

a sink and i in the third column if it is a source.

By construction this process is inverse to the algorithm given above for building a web from a semistandard

tableau.

4. Examples

Consider the sign string s = + + − + + − +. The composition λs in this case is λs = (1, 1, 2, 1, 1, 2, 1).

Then the following tableau Ts which is a filling using the numbers {1, 2, 32, 4, 5, 62, 7} is said to have content

s. We construct the two standard tableaux T̃s and T̃s

′

using the natural generalization of the algorithm

from the previous section. In particular, we replace the ordered set {1, 2, 3, 3, 4, 5, 6, 6, 7} with the ordered

set {1, 2, 3, 4, 5, 6, 7, 8, 9} always placing the smaller number farthest left when replacing a repeated pair.

Ts =
1 3 4
2 5 6
3 6 7

−→ T̃s =
1 4 5
2 6 8
3 7 9

−→ T̃s

′

=
1 2 3
4 6 7
5 8 9
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m
T̃s

′ =

1 2 3 4 5 6 7 8 9

w
T̃s

′ =

1 2 3 4 5 6 7 8 9

Figure 9. The m-diagram and web corresponding to T̃s

′

.

wTs
=

+ + − + + − +

Figure 10. The web of content s corresponding to Ts.

From the tableau T̃s

′

we get the m-diagram and the web shown in Figure 9. After contracting the edges

incident on vertices 3, 4, 7, and 8 we get the web with boundary s shown in Figure 10.

We conclude this section with some additional examples. Figures 11,12, and 13 construct all webs corre-

sponding to the sign strings −−−,−−++, and −+++ + respectively.

Ts T̃s T̃s

′

m-diagram w
T̃s

′ wTs

1 1 2
2 3 3

1 2 4
3 5 6

1 3
2 5
4 6

1 2 3 4 5 6 − − −

Figure 11. Constructing the bijection for sign string s = −−−.

5. Applications: Rotation and join of webs

When the sign string of a web is all pluses and the corresponding tableau is standard, Petersen-Pylyavskyy-

Rhoades prove that rotation of webs corresponds to jeu-de-taquin promotion [13]. Tymoczko uses the m-

diagram algorithm to give a simplified proof of this fact [20]. There is also a notion of the join of two webs.

Tymoczko proves that join can be understood as another move on standard tableaux called a shuffle [20].

In this section, we prove that jeu-de-taquin promotion and shuffle of semistandard tableaux correspond to

rotation and join of all non-elliptic sl3 webs.

5.1. Rotation and jeu-de-taquin promotion. Jeu-de-taquin promotion is a process on semistandard

Young tableaux whereby a box (or subset of boxes) is removed, and the tableau is rearranged to form a new

filling of the same shape. Figure 14 has an example. Say that T is a semistandard tableaux filled with at

least one of each of the numbers 1, . . . , ℓ. Jeu-de-taquin promotion on T produces a new tableau jdt(T ) as

follows.
7



Ts T̃s T̃s

′

m-diagram w
T̃s

′ wTs

1 1 2
2 3 4

1 2 4
3 5 6

1 3
2 5
4 6

1 2 3 4 5 6 − − + +

1 1 3
2 2 4

1 2 5
3 4 6

1 3
2 4
5 6

1 2 3 4 5 6 − − + +

Figure 12. Constructing the bijection for sign string s = −−++.

Ts T̃s T̃s

′

m-diagram w
T̃s

′ wTs

1 1 2
3 4 5

1 2 3
4 5 6

1 4
2 5
3 6

1 2 3 4 5 6 − + + + +

1 1 4
2 3 5

1 2 5
3 4 6

1 3
2 4
5 6

1 2 3 4 5 6 − + + + +

1 1 3
2 4 5

1 2 4
3 5 6

1 3
2 5
4 6

1 2 3 4 5 6 − + + + +

Figure 13. Constructing the bijection for sign string s = −++++.

(1) Begin by removing the entry 1 from the top left corner of T .

(2) Say that a is below and b is to the right of the removed box. If a ≤ b, slide a upwards into the empty

position. Otherwise, slide b left into the empty position.

(3) Continue this process until the empty box has no entries to its right or below.

(4) If 1 appears multiple times in T , repeat the first three steps until all 1’s have been erased.

(5) Decrement all entries by 1, and replace each empty box with ℓ.

A proof of the following Lemma can be found in Sagan’s book [17].
8



Lemma 6. The jeu-de-taquin process described above is well-defined on semistandard tableaux.

1 1 2
3 4 5
6 7 8

→
1 2 5
3 4 8
6 7

→
2 4 5
3 7 8
6

→
1 3 4
2 6 7
5 8 8

Figure 14. Promotion on a semistandard tableau.

Lemma 7. Let Ts be a semistandard tableau of content s = s1 · · · sn. Then ˜jdt(Ts)
′

= jdt(T̃s

′

) if s1 is a

plus, and ˜jdt(Ts)
′

= jdt
(
jdt

(
T̃s

′
))

if s1 is a minus.

Proof. When the numbers below and to the right of an empty box are equal, jeu-de-taquin promotion chooses

to move the box below into the empty position. Since we construct the standard tableau T̃s from Ts by

replacing the leftmost instance of a repeated entry with a smaller number than the rightmost instance,

it follows that ˜jdt(Ts) = jdt(T̃s) when s1 is a plus. If s1 is a minus, then the numbers 1 and 2 must be

promoted in the standard tableau to correspond to the promotion of a repeated entry of 1 in the semistandard

tableau. Thus ˜jdt(Ts) = jdt
(
jdt

(
T̃s

))
in the case that s2 is a minus. The lemma follows from the fact

that jeu-de-taquin promotion commutes with the process of conjugation in standard tableaux. �

We have been considering webs with boundary lying on a horizontal line, but webs are often also viewed

in a disk with univalent vertices on the boundary circle [10, 13]. Boundary vertices are enumerated counter-

clockwise with respect to some base point. To obtain a web with linear boundary, the circle bounding the

disk is split open at the base point. The notion of web rotation is more natural when viewed from the disk

perspective. Figure 15 has an example of rotation on a web with linear boundary.

Theorem 2. Jeu-de-taquin promotion of semistandard tableaux corresponds to rotation of webs.

Proof. Jeu-de-taquin promotion in standard tableaux corresponds to rotation of webs with boundary 3n

sources. Since T̃s

′

is a standard tableau, the web w
jdt(T̃s

′

)
is a rotation of the web w

T̃s

′ . It follows from

Lemma 7 that the web w ˜jdt(Ts)
′ is also a rotation of w

T̃s

′ . Therefore the web obtained by rotation of wTs
is

the same as the web wjdt(Ts). �

T =
1 1 3
2 4 5

−→

1 2 3 4 5

rotation
−→

1 2 3 4 5

depth map
−→

1 2 4
3 5 5

= jdt(T )

Figure 15. Rotation of a web.

5.2. Join and shuffling. Tymoczko defines the notion of a shuffle of two standard tableaux and proves

that the web associated to the shuffle is the join of the webs corresponding to those tableaux [20]. The join

of two webs is the insertion of one into the other between some designated pair of vertices. The definition of

shuffle has a natural extension to semistandard tableaux.

Let T be a semistandard tableau filled with at least one of each of the numbers 1, . . . , ℓ1 and T ′ be a

semistandard tableau filled with at least one of each of the numbers 1, . . . , ℓ2. Let i ≤ ℓ1. The shuffle of T ′

into T at i is denoted by T ′
i
7→ T and defined by the following process.

9



• For each instance of j = 1, . . . , i in T , put j in the same column of T ′
i
7→ T as in T .

• For each instance of j = 1, . . . , ℓ2 in T ′, put j + i in the same column of T ′
i
7→ T as in T ′.

• For each instance of j = i+ 1, . . . , ℓ1 in T , put j + ℓ2 in the same column of T ′
i
7→ T as in T .

Figure 16 compares the shuffling of tableaux to the join of webs. The entries of T ′ that have been shuffled

into T appear in bold.

T =
1 1 4
2 3 5 −→ T ′ = 1 2 3 −→

T ′
1
7→ T =

1 1 4

2 3 7
5 6 8

−→

Figure 16. Joining two webs.

In the case where T has content s = s1 · · · sℓ1 and T ′ has content t = t1 · · · tℓ2 , the web T ′
i
7→ T will be

semistandard with content s1 · · · sit1 · · · tℓ2si+1 · · · sℓ1 . The following theorem, illustrated in Figure 16, is a

straightforward generalization of Tymoczko’s result [20].

Theorem 3. Shuffling of semistandard tableaux corresponds to the join of webs. Specifically, shuffling T ′

into T at i corresponds to inserting the web wT ′ into the web wT between vertices i and i+ 1 of T .

References

[1] Jonathan Brundan and Victor Ostrik. Cohomology of Spaltenstein varieties. Transform. Groups, 16(3):619–648, 2011.

arXiv:1012.3426.

[2] Bruce Fontaine. Generating basis webs for sln. 2011. arXiv:1108.4616v1.

[3] Bruce Fontaine, Joel Kamnitzer, and Greg Kuperberg. Buildings, spiders, and geometric Satake. 2011. arXiv:1103.3519.

[4] Francis Y. C. Fung. On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory.

Adv. Math., 178(2):244–276, 2003. arXiv:0204224.

[5] Matthew Housley, Heather M. Russell, and Julianna Tymoczko. The Khovanov-Kuperberg bijection and generalized tau

invariants. forthcoming.

[6] Mikhail Khovanov. Crossingless matchings and the cohomology of (n, n) Springer varieties. Commun. Contemp. Math.,

6(4):561–577, 2004. arXiv:0202110.

[7] Mikhail Khovanov. sl(3) link homology. Algebr. Geom. Topol., 4:1045–1081, 2004. arXiv:0304375.

[8] Mikhail Khovanov and Greg Kuperberg. Web bases for sl(3) are not dual canonical. Pacific J. Math., 188(1):129–153, 1999.

arXiv:9712046.

[9] Dongseok Kim. Graphical calculus on representations of quantum Lie algebras. ProQuest LLC, Ann Arbor, MI, 2003.

Thesis (Ph.D.)–University of California, Davis.

[10] Greg Kuperberg. Spiders for rank 2 Lie algebras. Comm. Math. Phys., 180(1):109–151, 1996. arXiv:9712003.

[11] Scott Morrison. A diagrammatic category for the representation theory of Uq(sln). 2007. arXiv:0704.1503.

[12] Hitoshi Murakami, Tomotada Ohtsuki, and Shuji Yamada. Homfly polynomial via an invariant of colored plane graphs.

Enseign. Math. (2), 44(3-4):325–360, 1998.

[13] T. Kyle Petersen, Pavlo Pylyavskyy, and Brendon Rhoades. Promotion and cyclic sieving via webs. J. Algebraic Combin.,

30(1):19–41, 2009. arXiv:0804.3375.

[14] Heather M. Russell. The Bar-Natan skein module of the solid torus and the homology of (n, n) Springer varieties. Geom.

Dedicata, 142:71–89, 2009. arXiv:0805.0286.

10



[15] Heather M. Russell. A topological construction for all two-row Springer varieties. Pacific J. Math, 253(1):221–255, 2012.

arXiv:1007.0611.

[16] Heather M. Russell and Julianna S. Tymoczko. Springer representations on the Khovanov Springer varieties. Math. Proc.

Cambridge Philos. Soc., 151(1):59–81, 2011. arXiv:0811.0650.

[17] Bruce E. Sagan. The symmetric group, volume 203 of Graduate Texts in Mathematics. Springer-Verlag, New York, second

edition, 2001. Representations, combinatorial algorithms, and symmetric functions.
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