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COMBINATION THERMOCHEMOTHERAPY FOR THE TREATMENT OF NON-

MUSCLE INVASIVE BLADDER CANCER. Ramy Goueli, Darryl Martin, Marcia 

Wheeler and Robert Weiss. Department of Urology, Yale University School of Medicine, 

New Haven, CT.  

Bladder cancer is the fourth most commonly diagnosed malignancy and is the eighth 

leading cause of cancer death among men in the United States of America. Furthermore, 

it is the seventh and seventeenth most common cancer among males and females, 

respectively with increasing incidence among Caucasian compared with other ethnicities.  

Thus it is of utmost importance to develop strategies to improve our ability to early 

diagnose as well improve treatments by developing new drugs or develop novel 

treatments. We hypothesized that improving drug potency by enhancing their uptake into 

tumors will improve their clinical efficacy and enhance tumor killing. We investigated 

the efficacy of hypothermia in synergizing the effect of various chemical therapeutic 

agents using different cell bladder types. The combination of hyperthermia and 

chemotherapeutic agents showed promising results. Hyperthermia enhanced the effect of 

drugs in reducing the amount of drug required to decrease the number of cells by 50% 

(LD50). However, the effect was variable depending on cell type and the drug tested. We 

also showed that hyperthermia alone increased the depth of penetration and density at 

which nanoparticles could penetrate the bladder. Thus, combination hyperthermia and 

chemotherapy holds promise for the treatment of superficial bladder cancer both as an 

initial therapy and as a salvage therapy.  

 



 
 

Acknowledgments 

 

 Thank you Dr. Robert Weiss, thank you for continued professional mentorship 

and for allowing me the autonomy to pursue my own academic endeavors and clinical 

interests. Thank you Marcia Wheeler and Darryl Martin, for the scientific guidance 

helping me refine my own scientific question and plan. None of this work could have 

been possible without each one of these people.  

Thank you to Dr. John Forrest, Mae Geter and Donna Carranzo in the Department 

of Study Research at Yale University, School of Medicine for allowing me the 

opportunity to perform and present funded research, and to participate in the Masters of 

Health Science Program at Yale University, School of Medicine.  

 Thank you to Said Goueli, my father, who from a very young age fostered my 

scientific curiosity, never refrained from entertaining my ideas, and was always up late 

helping me develop protocols. Thank you to Goman Sharara, my mother, who nurtured 

my thirst for life, never let me lose focus of my humanity and who always gave me 

purpose in my work. Thank you to my brothers, Basem, Hisam, and Misoor, who are my 

best critics and always gave me something to strive to become.   



 
 

TABLE OF CONTENTS 

I. Introduction .......................................................................................................................................................... 1 

Significance ............................................................................................................................................................... 1 

Staging of Bladder carcinomas .................................................................................................................................. 1 

Risk factors ................................................................................................................................................................ 2 

Diagnosis ................................................................................................................................................................... 2 

Treatments ................................................................................................................................................................. 4 

Barriers to Current Therapies .................................................................................................................................... 6 

Hyperthermia ............................................................................................................................................................. 7 

Model System .......................................................................................................................................................... 10 

II. Hypothesis and Aims .......................................................................................................................................... 11 

III. Materials and Methods ................................................................................................................................... 13 

Cell lines and culture conditions ............................................................................................................................. 13 

Thermo-chemotherapy treatment ............................................................................................................................ 14 

WST-1 (4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 3-benzene Disulfonate) assay ....................... 14 

LD50 and cell viability calculations .......................................................................................................................... 15 

Synergism calculations ............................................................................................................................................ 16 

Mouse bladder hyperthermic model ........................................................................................................................ 16 

Human urothelium penetration studies .................................................................................................................... 17 

Organ culture model [111] ...................................................................................................................................... 18 

IV. Results ............................................................................................................................................................ 20 

Thermo-chemotherapy ............................................................................................................................................ 20 

Mitomycin C ....................................................................................................................................................... 20 

Doxorubicin ......................................................................................................................................................... 21 

Vinblastine .......................................................................................................................................................... 22 

Methotrexate ........................................................................................................................................................ 22 

Cisplatin .............................................................................................................................................................. 23 

Belinostat ............................................................................................................................................................. 23 

Mouse bladder hyperthermic model ........................................................................................................................ 24 

Depth of penetration ................................................................................................................................................ 25 

Organ Culture .......................................................................................................................................................... 26 

V. Discussion ...................................................................................................................................................... 27 

VI. Tables and Figures ......................................................................................................................................... 33 

VII. References ...................................................................................................................................................... 42 

 



1 
 

I. INTRODUCTION 

Significance 

Bladder cancer is the fourth most commonly diagnosed malignancy and is the 

eighth leading cause of cancer death among men in the United States of America. 

Furthermore, it is  the seventh and seventeenth most common cancer among males and 

females, respectively[1] with increasing incidence among  Caucasian  compared with 

other ethnicities [2, 3]. The  probability for developing invasive bladder cancer in the 

United States is  3.81% and 1.15% for men and women, respectively [3].  

Staging of Bladder carcinomas 

Staging of bladder cancer from T0 to T4 is dependent on the depth of tumor 

penetration and the depth of tumor penetration from T0 to T4 is correlated with clinical 

outcome.  Stage T0 denotes no evidence of primary tumor. Ta and carcinoma in situ (Tis) 

do not invade the lamina propria but rather grow along the urothelial surface [4, 5]. Once 

there is invasion to the lamina propria, the tumor is staged as T1, which is further divided 

into T1a and T1b lesions; where T1b lesions have a deeper invasion past the lamina 

propria and into the muscularis mucosa [6, 7]. Stage T2 lesions denote invasion into the 

muscularis propria, and also is subdivided into T2a where there is invasion into the inner 

half of the muscle layer, and T2b where there is deeper invasion into the muscle layer. 

When the tumor invades beyond the bladder wall, it is staged as either a T3 or T4. A T3 

lesion denotes invasion into  the perivesical tissue/fat, either microscopically, T3a, or 

macroscopically T3b[8]. T4 lesions denote that the tumor invasion extends beyond the 

perivesical tissue. These lesions are further stratified as T4a lesions when the tumor 
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invades the uterus, vagina, or prostatic stroma, and T4b lesions whe the tumor invades 

either the pelvic or abdominal walls [9, 10]. 

Approximately 90% of bladder cancers are urothelial cell carcinomas (UCC) 

while a small percentage  are classified as squamous cell carcinomas (SCC) or 

adenocarcinomas [11]. In Egypt, bladder cancer is the most common malignancy among 

males, and is mainly attributed to Shistosomal infections leading to SCC, although the 

trend is transitioning to UCC with the increased use of anti-parasitic treatments [12]. Of 

the urothelial cell carcinomas, about  70-85% are  superficial (Ta, T1, carcinoma in situ) 

at presentation, and are  classified as non-muscle invasive bladder cancer (NMIBC) [13, 

14]. For patients that present with muscle invasive bladder cancer (T2-4), outcomes are 

poor; and nearly half die within five years of their diagnosis [14, 15].  

Risk factors 

Smoking is a major risk factor for urothelial cell carcinoma of the bladder and 

increases the likelihood of developing the disease by four-fold as compared to individuals 

who never smoked. The risk is directly connected to smoking duration, quantity of 

cigarettes, and the age of smoking initiation [16-18].  Additional risk factors include 

occupational hazards such as  carcinogens (aniline dyes, aromatic amines, polyaromatic 

amines and arsenic), pelvic radiation, cyclophosphamides, the oral antibiotic drug 

pioglitazone, and exposure to Aristolochia fangchi (a Chinese herb) [19].  

Diagnosis 

The most common initial presentation of bladder cancer is hematuria, either 

macro- or microscopic. Gross hematuria (macroscopic) has been shown to carry a 19% 

chance of urinary tract malignancy, while microscopic hematuria has a 5% chance of 
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urinary tract malignancy [20, 21]. Additional symptoms that are associated with bladder 

cancer include irritative voiding symptoms (dysuria, urgency, increased frequency), in 

the absence of an infection. Rarely, patients will present with signs of advanced disease 

such as, cachexia and abdominal or bone pain.  

If bladder cancer is suspected, the patient should undergo a urine sample for 

cytology, upper urinary tract imaging, and a diagnostic cystoscopy. Urine cytology has an 

overall sensitivity of 30-50%. It is most sensitive (up to 90%) for patients with high grade 

tumors and CIS as these tumors often shed malignant cells [22]. Upper urinary tract 

imaging can help confirm the presence of upper tract tumors and include intravenous 

urography, retrograde pyelography, CT urography, and MRI studies [1]. Despite the use 

of urine cytology and imaging, cystoscopy continues to remain the gold standard for 

diagnosing bladder cancer, with a sensitivity of 94%, although it has a 60% sensitivity for 

diagnosing CIS [23, 24].  

Transurethral resection of the bladder tumor (TURBT) is the initial diagnostic 

procedure for patients with bladder cancer. TURBT allows for more accurate staging, 

decreases or eliminates tumor burden, and helps dictate further treatment options [25]. If 

the tumor is found to be muscle invasive (T2 or higher) but organ confined the definitive 

treatment is radical cystectomy with a urinary diversion, although it may cure only 50% 

of patients [25, 26]. When systemic chemotherapy is indicated, for metastatic disease, 

there are several neoadjuvant and adjuvant options which include an MVAC regimen 

(Methotrexate, Vinblastine, Adriamycin, and Cisplatin), gemcitabine, or platinum based 

drugs. Although these agents have improved survival rates, they are also known to have 

severe toxic side effects. [27-29].  
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Treatments 

A significant portion of NMIBC tumors will recur after treatment and many will 

display tumor progression. All patients require long-term follow-up with urine cytology 

and cystoscopy. The overall sensitivity of urine cytology is approximately 35% [30, 31] 

and cystoscopy is intrusive, uncomfortable to the patients, and costly. In addition, 

because of the need for monitoring the patients for an extended period of time, the cost 

per case for bladder cancer can be among the highest among all cancer types. Direct 

delivery of drugs into the bladder has proven to be an effective method to ensure 

maximal delivery of therapeutics to the site of the disease and to minimize systemic side 

effects[32]. The effectiveness of the treatment depends on the residence time of the drug 

inside the bladder and its binding to and penetration of the bladder wall. 

The current therapies for bladder cancer, after TURBT, are intravesicular 

instillations of Bacillus Calmette-Guerin (BCG) or Mitomycin C (MMC). BCG is an 

attenuated mycobacterium that was originally developed  as a vaccine for tuberculosis, 

but over the course of the past 20 years has become a standard for  the treatment of 

NMIBC[33] . Although the mechanism of action of BCG is not fully understood, it is 

believed to cause the release of  several cytokines (interferon-γ, interleukin-2, tumor 

necrosis factor) in the bladder, which  ultimately trigger a non-specific immune response 

that results in the release of macrophages, T cells, B cells, and natural killer cells [34]. 

BCG is effective against NMIVC in preventing disease, and is the only drug proven to 

decrease disease progression. In addition, it  is the only agent approved by the US Food 

and Drug Administration for treatment of CIS [35-37]. However, the response to BCG is 

unpredictable; approximately 20% of patients discontinue therapy due to side-effects, 
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30% of patients do not respond to BCG therapy, and more than 25% of patients have 

disease progression despite treatment [38-40]. 

Mitomycin C (MMC) is an anti-tumor antibiotic that inhibits DNA synthesis 

through crosslinking DNA strands [41]. MMC is a relatively large drug, 329g/mol, which 

greatly reduces its transurothelial absorption [42]. In terms of overall survival benefit, 

MMC has similar results to BCG, although, unlike BCG it has not been shown to 

decrease disease progression [43-45]. When MMC and BCG maintenance therapy was 

compared in large meta-analyses for the treatment of patients with Ta and T1 UCC, it 

was shown that BCG was superior at decreasing tumor recurrence in Ta and T1 UCC 

populations compared to MMC [35, 46, 47]. Other classes of chemotherapeutics that 

have been tested for the treatment of bladder cancer with some efficacy include 

antimetabolites (methotrexate, 5- fluorouracil), microtubule inhibitors (docetaxel, 

paclitaxel), and additional anti-tumor antibiotics (epirubicin, doxorubicin) [48-51].  

Histone acetyl transferases (HATs) and histone deacetylases (HDACs) are known 

signaling enzymes that are implicated in several biochemical processes including 

transcription and translation and thus are involved in cellular differentiation, 

proliferation, and cell death. Inhibitors of HDAC (HDACis) induce transformed cell 

cycle arrest, terminal cell differentiation, and cell death through activation of the 

apoptotic pathway. HDACis also block angiogenesis [52, 53]. In fact, one HDACI 

(vorinostat) has been approved by the FDA for treating patients with cutaneous T-cell 

lymphoma, and at least 12 different HDACis have been evaluated in over 100 clinical 

trials involving patients with hematologic and solid tumors including lung, breast, 

pancreas, renal, and bladder cancers, melanoma, glioblastoma, leukemia, lymphoma, and 
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multiple myeloma. These inhibitors are effective in inhibiting the growth of transformed 

cells and are relatively less toxic for normal cells [54]. The histone deacetylase inhibitor, 

Belinostat (PXD101), represents a promising new anticancer therapy, which presently is 

under Phase III clinical trial. 

Barriers to Current Therapies 

The urothelium is the epithelial layer of the bladder and represents the major 

barrier to the permeation of drugs into the bladder wall. Thus, altering the permeability of 

the urothelium by minimizing trans-epithelial resistance may enhance drug delivery and 

efficacy[32]. The two main approaches to increase drug permeability of the urothelium 

include physical methods and chemical permeation enhancers. Due to the limited 

permeability of the bladder wall and the undesired side-effects of chemical enhancers 

such as dimethyl sulfoxide (DMSO) or protamine sulfate (PS), it is of interest to devote 

efforts to either designing carriers to deliver drugs into the bladder wall or to modulate 

therapy by enhancing drug attachment to the bladder wall [55, 56]. Examples of carriers 

under current development include liposomes, cell-penetrating peptides, thermosensitive 

hydrogels and PLGA nanoparticles. These have shown some positive results in the 

treatment of NMIBC, but more research is needed before they become clinically useful 

therapeutic strategies [55, 57-61]. It has been demonstrated  that modulating therapy 

through new techniques such as electromotive drug administration, which modulates the 

intravesicular electric field to enhance drug penetration, is more effective than passive 

diffusion in delivering drugs deeper into the bladder [62-64]. An additional technique that 

recently has been re-visited is the addition of hyperthermia to current intravesicular drug 

instillations.  
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Hyperthermia 

The addition of hyperthermia to drug therapy has been shown to improve patient 

outcomes in several cancers, including melanoma, head and neck cancer, breast cancer, 

pancreatic cancer, peritoneal cancers, ovarian, cervical and rectal cancers [65-70]. 

Hyperthermia has a multifactorial effect on tumor growth and whole body physiology 

including, independent, cytotoxic effects, vascular effects, immune effects, and 

thermosensitization effects[71]. The rationale of introducing hyperthermia is to make use 

of the difference in heat tolerance between normal and neoplastic cells; hyperthermia 

selectively kills the cancerous cells [72].  

Therapeutic hyperthermia has a biphasic direct cytotoxic effect on exposed cells. 

The first phase exists between 41°-43°C, showing a reversible growth arrest on the 

exposed cells, with a reduction in RNA and DNA synthesis. At these temperatures, there 

is a  cell cycle arrest at the DNA synthesis  phase of the cell cycle (S) as well as  at the 

mitosis(M) phases, which have been shown to have the greatest degree of nuclear 

fragility[73]. The second phase of direct cytotoxicity is at temperatures above 43°C 

which cause an irreversible growth arrest , with protein denaturation, impaired DNA 

repair, and ultimately, apoptosis[74, 75].  

The effects of hyperthermia on the vasculature have been well studied. Heating 

the tissue to between 38°-43°C selectively targets tumor-specific vasodilation leading to 

increased drug delivery, direct corpuscular injury, and intravascular thrombosis related to 

local acidosis. Heating the tissue beyond 43°C causes endothelial cell swelling, 

microthrombosis, and increased vascular permeability which ultimately decreases tumor 

blood flow and drug delivery[76-79].  
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The increase in temperature, mimics fever-like conditions and causes several 

effects on the immune system. When the tissue is heated to 38°-43°C there is an 

upregulation of heat shock proteins which act as danger signals to the body to  activate 

dendritic cells and other antigen-producing cells [80, 81]. Subsequently, the dendritic 

cells can recruit CD8+ cytotoxic cells which then induce an anti-tumor immune response. 

In addition, hyperthermia improves lymphocyte trafficking by increasing the expression 

of Inter-Cellular Adhesion Molecule 1(ICAM-1), Interleukin-6 and Interleukin-10, which 

helps increase the density of tumor-recognizing T cells in the area[82, 83]. Lastly, 

hyperthermia leads to a chemokine release from the tumor cells which has an effect on 

the innate immune system by activating natural killer cells to target these tumor cells[84-

86]. At higher than fever-range temperatures, greater than 43°C, there is a down 

regulation of heat shock proteins and local immunosuppression[87].  

  When therapeutic hyperthermia (43°C) was tested on normal bladder cancer cells 

and five different UCC cell lines, it was shown that the effects on bladder cells was 

highly variable and limited [88]. Further studies investigated the effect of supra-

physiological hyperthermia (40°-70°C) on three UCC cell lines and showed that the 

higher the cytologic grade, the lower the tolerance to heat; however, these studies lack 

clinical application as they used supra-therapeutic dosages of heat [89]. The synergistic 

effect of combining chemotherapy and hyperthermia was studied in vitro. In addition, van 

der Heijden and colleagues investigated the effect of combining hyperthermia with 

varying concentrations of mitomycin C, epirubicin, gemcitabine, and a bioreductive 

alkylating indoloquinone (E09) on four bladder cancer cell lines. In these studies, they 

clearly demonstrated a variable synergistic relationship between hyperthermia and drug 
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administration for all drugs tested across all cell lines, with the greatest synergism shown 

with E09 [90, 91]. A small singular animal study was performed on sheep with an hour 

treatment of hyperthermia (41°-43°C) and mitomycin C, and showed that this 

combination was safe, as there was no irreversible damage to adjacent organs nor to the 

bladder itself [92].  An additional preclinical study was performed to investigate the 

effect of temperature on urine viscosity. It was discovered that the viscosity of human 

urine was dependent on temperature, while being independent of specific gravity, age, 

gender, glycosuria, ketonuria and hematuria [93]. 

Several clinical studies have been performed to investigate the effects of 

combined hyperthermia with mitomycin C therapy [87, 94-107]. Hyperthermia was 

proven to increase systemic absorption of Mitomycin C, to a level up to 20ng/mL 

(myelosuppression occurs at 400 ng/mL), indicating that the addition of heat can increase 

the depth at which MMC penetrates the bladder [105]. A systematic review of the 

published literature showed that the combination of MMC and hyperthermia caused a 

59% reduction in NMIBC recurrence when compared to MMC treatment alone [87, 97, 

98]. Moreover, the effect of hyperthermia and chemotherapy may be longer lasting than 

current therapy, with a 3-5 year disease free rate of between 40-50% [103, 104, 108].  In 

addition, there has been evidence that the combination can reduce the risk of disease 

progression when compared to patients receiving MMC, alone [103]. However, it also 

was shown that combination chemotherapy plus hyperthermia increases side effects. 

These effects are not life threatening, they do not prevent patients from completing 

therapy, and resolve spontaneously after completing therapy [90, 100, 108]. 
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Model System 

It is well recognized that whole animal xenograft and orthotopic models are the 

gold standard for testing drug delivery to cancer cells.  However, these models are 

cumbersome, expensive, time consuming and difficult for quantitative assessment of 

tumor size at various time points.  Alternative models available include testing drugs on 

cells grown in monolayers or 3-D cultures.   However, although superficial bladder 

cancer cells grown in monolayer are highly sensitive to cytotoxic agents, they  do not 

simulate the resistance often seen in multilayered cell populations in vivo[109].  The 

benefits of using a system that combines the positive attributes of the whole animal 

model and the ease of manipulation of cells in culture, with minimal toxicity to other 

tissues or organs has been demonstrated. The organ culture model consisting of a co-

cultured explanted rat bladder with bladder cancer cells, as simulation of the in vivo 

animal model was investigated [110]. The strength of this model is that it allows tumor 

cells to interact with transitional epithelium, extracellular matrix, and muscle of bladder 

[111]. 
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II. HYPOTHESIS AND AIMS 

Conflicting reports on the synergistic effect of chemotherapy and hyperthermia 

have been published [90, 91]. Those studies reported variable efficacies of the synergistic 

effect of hyperthermia with several agents such as MMC, gemcitabine, epirubicin and 

E09 in four bladder cancer cell lines. These studies also were limited to three  cell lines 

(RT112, RT4, T24) of  low-grade disease, with only one cell line (253J) representing 

high grade invasive disease. In our study, we sought to expand the bladder cancer cell 

lines to include both low-grade cell lines (RT4, T24) and high-grade (UM-UC-3, 

TCCSUP) cell lines. The UM-UC-3 cell line represents a model of high-grade invasive 

disease whereas the TCCSUP cells represent a model of high-grade, invasive disease 

with metastatic potential. Additionally, by testing the effects of the combination of MMC 

and hyperthermia on cell proliferation, we could compare our study with earlier studies in 

order to clarify the numerous inconsistencies in earlier studies that also combined MMC 

and hyperthermia. 

 Thus, the followings are the overall goals of our studies: 

1. To characterize the effects of hyperthermia on bladder physiology and test if the 

addition of hyperthermia can act synergistically with chemotherapeutic agents. 

We aim to test this system using hyperthermia combined with doxorubicin, 

vinblastine, methotrexate, cisplatin, and belinostat to determine whether the effect 

of combined therapies is bladder cell line specific. Towards this goal, we will use 

various biochemical and molecular techniques to monitor the effects of treatments 

using tissue culture models. We hypothesize that hyperthermia will increase the 

efficacy of all chemotherapeutic agents, and be more effective in the invasive, 

higher grade urothelial carcinoma cell lines.  
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2. To investigate the effect of hyperthermia on mouse bladder urothelium and detail 

the histologic, gross changes since no studies have been published detailing the 

effect of hyperthermia, alone, on normal bladder urothelium. We hypothesize that 

hyperthermia primarily affects the urothelium by, reversibly, affecting the tight 

junctions to allow for deeper penetration of the intravesicular agent. We do not 

believe that the hyperthermia will have any effect on the underlying smooth 

muscle layer. Conversely, supra-therapeutic temperatures will cause necrosis of 

the urothelium with sloughing of tissue. The effect of hyperthermia on penetration 

of drug has been investigated previously in vivo, however, the authors used 

systemic concentration of MMC as a surrogate marker for penetrance [105]. 

3. To establish an ex vivo bladder cancer model that has the ability to mimic cancer 

growth and invasion. This system may improve the testing of combinations of 

hyperthermia and chemotherapy. 
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III. MATERIALS AND METHODS 

Cell lines and culture conditions 

The human urothelial cell carcinoma cell lines used in this study were RT4, T24, 

UM-UC-3 and TCCSUP. The cell lines were purchased from the American Type Culture 

Collection (ATCC), all four cell lines originated from primary bladder tumors. These cell 

lines varied in levels of differentiation, invasiveness and metastatic potential (Table 1) 

[112]. The RT4 cell line was originally isolated from a 63 year old male with transitional 

cell papilloma; it behaves in vitro as a low-grade superficial tumor [113, 114]. The T24 

cell line was isolated from an 81 year old Caucasian female with low-grade invasive 

UCC. It is the most well-differentiated of the invasive UCC cell lines [115-117]. The 

RT4 and T24 were cultured in McCoy’s 5A medium (ATCC) supplemented with 10% 

fetal bovine serum (FBS, Gibco), penicillin G (100 U/mL), streptomycin (100 µg/mL), 

and 1% L-Glutamine.  The UM-UC-3 cell line was derived from a male with invasive 

transitional cell carcinoma. Unlike T24, it is a high-grade lesion. In addition, it is used in 

xenograft models because of its ability to produce tumors in athymic nude mice [118]. 

The TCCSUP cell line was isolated from a 67 year old female with anaplastic UCC that 

had metastasized to the bone. This cell line is the most undifferentiated, invasive cell line 

with metastatic potential [119]. The UM-UC-3 and TCCSUP cells were cultured in 

Dulbecco’s Eagle’s Minimum Essential Medium (DMEM) (ATCC) supplemented with 

10% FBS, penicillin G (100 U/mL), streptomycin (100 µg/mL), and 1% L-glutamine.  

All four cell lines were grown in a monolayer on 100 mm
2
 culture dishes (Corning) at 

37°C in a 5% CO2 humidified atmosphere. The cells were grown to 75-80% confluence 

and detached using a 0.25% trypsin EDTA mixture (Gibco).  
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Thermo-chemotherapy treatment 

The thermo-chemotherapy treatments began by seeding all four cell lines (RT4, 

T24, UM-UC-3, and TCCSUP) onto 96-well microtiter plates (Falcon) at a concentration 

of 1.0 10
4
 cells per well. The plates were placed under normal conditions for a 24 hour 

attachment period to allow the cells to attach to the plate. Following the 24 hours, the 

medium was changed and the plates were treated with increasing concentrations of 

various chemotherapies diluted in cell specific culture media. The chemotherapies tested 

were mitomycin C (Fischer Scientific) 0-1000µg/mL, doxorubicin (Sigma) 0-500µg/mL, 

vinblastine (MP Biomedical) 0-1000µg/mL, cisplatin (Santa Cruz) 0-2.5mM, 

methotrexate (MP Biomedical) (0-500µM) and belinostat (TopoTarget) 0-1mM. 

Subsequently, replicate plates were transported to a 5% CO2 humidified incubator at 

either 37°C or 42.5°C. Following 60 minutes of treatment the chemotherapies were 

aspirated and the cells were washed three times in normothermic (37°C) culture specific 

media. The cells were then left for 24 hours in a 5% CO2 humidified incubator at 37°C.  

WST-1 (4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 3-benzene 

Disulfonate) assay 

Cell viability was tested using a colorimetric assay, WST-1 solution (Clontech) 

which is suitable for an in vitro model.  The assay is based on the enzymatic cleavage of 

the tetrazolium salt WST-1 to formazan by cellular mitochondrial dehyrogenases present 

in viable cells. Twenty-four hours after treatment, the cell media was aspirated and 

100uL of pre-mixed WST-1 (final dilution 1:10) was added to each well. Following the 

addition of WST-1 the cells were placed in a 5%CO2 humidified incubator at 37°C for 

0.5 to 4 hours. The cell viability was determined on a plate reader (Molecular Devices 

SpectraMax 250) by measuring the absorbance at 420-480nm. For chemotherapies where 
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the LD50 was achieved, three independent experiments were performed; all experiments 

were done in quintuplicate. Conversely, for chemotherapies that either showed no activity 

or the LD50 were not achieved, two independent experiments were performed, in 

quintuplicate, to minimize the possibility for systematic errors.  

LD50 and cell viability calculations 

To calculate the LD50 of the chemotherapeutic agents, the data were normalized 

where untreated cells were considered to have 100% cell survival. Previous literature has 

shown that cell killing by hyperthermia alone was minimal [88, 91]. Our own data 

mirrored these results (Table 2) thus we could confidently set untreated cells to have 

100% cell survival for both temperature conditions. An ANOVA was performed for each 

cell line comparing the cell viability data independently at both temperatures for all 

dosages tested using GraphPad Prism Software (Graphpad Software, Inc.). If the 

ANOVA proved statistical significance for the dosages, then the data were modeled to a 

two phase decay equation using GraphPad Prism software (GraphPad Software, Inc.): 

 

                                                                   

 

A correlation coefficient was generated from the model, R
2
, and was used as our measure 

for “goodness of fit.” Using the generated equations, we were able to approximate the 

LD50 and cell viability data. To show that the two conditions showed a significant 

difference, statistics were performed using the GraphPad Prism Software. 
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Synergism calculations 

The equation used to approximate the synergism between chemotherapy and 

hyperthermia after 60 minutes of therapy (ST(60)) was derived and adapted  from van der 

Heijden, Jansen et al. 2004 [90]. The equation is as follows: 

 

       

                                                   

                                              

                                            
      

 

The drug concentrations used in the        calculation is the LD50 for each cell type 

determined under hyperthermic conditions. For each chemotherapeutic agent and cell 

line, synergy was tested using a two-sided unpaired t-test using the Holm-Sidak method 

for multiple comparisons with a confidence level of 95% and α=0.05. 

Mouse bladder hyperthermic model 

All mouse studies were approved by the Institutional Animal Care and Use 

Committee of Yale University (New Haven, CT). To test the effects of hyperthermia 

alone on the bladder, C57BL/6 Mice (Charles River Laboratories) were euthanized using 

20% isoflurate in propylene glycol followed by cervical dislocation when mice no longer 

responded to toe pinch, in a method congruent with the recommendation of the Panel on 

Euthanasia of the American Veterinary Medical Association. Following euthanasia, the 

mice bladders were removed sterilely and transferred to a chemical safety hood, where 

the ureters and urethra were removed, and the bladder was cut into four equal pieces. 

After washing the explants in sterile PBS, the pieces of tissue were suspended in sterile 

PBS and placed into separate eppendorf tubes (GeneMate). The tissue pieces were placed 
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in a humidified incubator at 37 ° C, 42.5°C, or 50°C. The tissue was allowed to 

equilibrate to the temperature for 15 minutes and then was maintained at that temperature 

for either one hour, two hours, or 24 hours. The control was mouse bladder tissue fixed 

immediately after its removal. Following treatment the tissue was fixed in 10% neutral 

buffered formalin (VWR international) for 24 hours and transported in 70% Ethanol 

(Decon). The tissue was sectioned and H&E stained by Yale pathology tissue services 

(Developmental Histology Lab). Imaging was performed using a light microscope 

(Olympus) and images were taken using the AM Scope camera. Three independent 

experiments were performed and independently analyzed by members of the Weiss lab in 

the Department of Urology, under single-blinded conditions.  

Human urothelium penetration studies 

The use of human tissue was approved by the Human Investigation Committee at 

Yale University (protocol: 0710003157). To determine the penetration of drug under 

hyperthermic conditions human ureter, de-identified tissue was obtained from Yale 

urologic surgeons. The ureter was maintained in sterile normal saline and used within 

four hours of collection. The tissue was cleaned and washed in sterile normal saline, 

following washing the tissue, it was bisected, placed in an autoclaved 96-well dot blot 

chamber (Biorad) with the luminal urothelium facing upward. PLGA (poly(lactic-co-

glycolic acid)) nanoparticles fabricated by Christopher Hoimes, in the W. Mark 

Saltzman Laboratory in the Yale Department of Bioengineering were encapsulated with 

Nile Red, a red fluorescent dye. It has been shown that, PLGA is stable up to 

temperatures of greater than 300°C; therefore, it would remain effective at temperatures 

less than 50°C [120]. Functionalized nanoparticles loaded with Nile Red were suspended 
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in sterile PBS and added to the individual wells at either 250µg NP/well or 1mg NP/well. 

The study had two controls, human ureter fixed immediately following its removal, and 

sterile PBS added to individual wells in the dot-blot. The dot-blot chambers were 

incubated in humidified incubators at either 37°C or 42.5°C allowing 15 minutes to 

equilibrate.  Following the one hour incubation, the wells were washed four times with 

sterile PBS to remove non-adherent nanoparticles. The tissue was cored with a biopsy 

punch, weighed, and fixed with 10% neutral buffered formalin (VWR international) for 

24 hours and transported in 70% ethanol (Decon). The tissue was sectioned by Yale 

pathology tissue services (Developmental Histology Lab). Then the tissue were 

deparaffinized in xylene (J.T. Baker) and rehydrated in decreasing concentrations of 

ethanol. A nuclear stain, DAPI 0.1mg/mL (Cell Signaling), was applied at 1:100 in PBS, 

tissue was washed and a coverslip was applied using Prolong Gold (Invitrogen). Bladder 

and ureter tissue naturally fluoresce green, so no additional stains were necessary. 

Penetration of the nanoparticles was monitored through fluorescence microscopy (Zeiss 

Observer. Z1). Images were independently analyzed by members of the Weiss lab, under 

single-blinded conditions.  

Organ culture model [111]  

All rat studies were approved by the Institutional Animal Care and Use 

Committee of Yale University (New Haven CT). Sprague-Dawley rats were anesthetized 

with 90mg/kg ketamine + 10mg/kg xylazine prior to bladder removal. Bladders were 

removed sterilely and immediately transferred to a culture hood. Then, the ureters and 

urethra were removed and the bladder was bisected and cut into 4-5 mm squares.  Four 

dots of cyanoacetate glue (Indermil) were placed equidistant into a well, and the squares 
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of bladder were quickly transfixed, urothelium facing upward. Fifty microliters of 

trypsin-EDTA (Gibco) in HBSS were added to the bladder and incubated for 15 minutes 

at room temperature. The trypsin mixture was gently removed and 100µl of 100% FBS 

(Gibco) was added and quickly removed to inactivate the residual trypsin. The bladder 

cancer cell line, UM-UC-3, had previously been stably transfected a PCMV DsRed-

Express2 Expression vector using the Xfect
TM

 transfection agent (Clontech) resulting in 

cells that constitutively express red fluorescent protein. These red fluorescent UM-UC-3 

cells, UM-UC-3R, were placed (10
5 

 to 10
6
) in 100µl of Waymouth medium (ATCC) 

with 10% FBS containing antibiotic/antimycotic agents were pipetted directly onto the 

bladder surface and allowed to incubate at 37° (5% CO2, 4 hrs.). Following the cell 

attachment, 4 ml of complete media was carefully added to each well, allowing it to 

thinly cover the bladder.  Attachment and growth of cells on the bladder were monitored 

using fluorescence microscopy (Zeiss Observer. Z1).  The media was then changed twice 

a week, and frequently monitored for evaporation.  
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IV. RESULTS 

Thermo-chemotherapy 

We monitored the toxic effects of hyperthermia alone (42.5°C), in bladder cancer 

cells (RT4, T24, UM-UC-3, TCCSUP) for one-hour. Cell survival under conditions of 

hyperthermia alone (42.5°C) was compared with exposure to normothermia alone (37°C). 

The results obtained (Table 2) showed that there was no significant difference in cell 

survival between the two groups in any of the cell lines tested. Since none of these values 

reached statistical significance, we assumed our two populations were non-different; 

therefore we could assume that every cell line exposed to temperature alone could be 

corrected to 100% cell survival.  

Incubation of all five chemotherapeutic agents with all four bladder cancer cell 

lines resulted in a significant decrease in proliferation. We proved statistical significance 

for the decrease in cell proliferation after exposure when various dosages the of 

chemotherapeutic agents (mitomycin C, doxorubicin, vinblastine, methotrexate and 

cisplatin) independent of temperature. Subsequently, we were able to construct a two 

phase decay equation modeled to the data to approximate the LD50 for both 

normothermic and hyperthermic conditions; a correlation coefficient (r
2
) was generated 

as an approximation for “goodness of fit.”  

Mitomycin C (Figure 1, Table 3) 

The combination of hyperthermia and mitomycin C had a positive impact on all 

four cell lines (RT4, T24, UM-UC-3, TCCSUP), as shown (Figure 1). The RT4 cell line 

had a calculated normothermic LD50 of 30.1µg/mL (p<0.05, r
2
=0.98), while the calculated 

hyperthermic LD50 was 12.7µg/mL (p<0.05, r
2
=0.98), which was 42% of the 

normothermic condition. The T24 cell line had a calculated normothermic LD50 of 
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63.7µg/mL (p<0.05, r
2
=0.98) while the calculated hyperthermic LD50 was 51.3µg/mL 

(p<0.05, r
2
=0.97), which was 80.6% of the normothermic dosage. The UM-UC-3 cell line 

had a calculated normothermic LD50 of 120µg/mL (p<0.05, r
2
=0.98), while the calculated 

hyperthermic LD50 was 50.0µg/mL (p<0.05, r
2
=0.99), which was 41.4% of the 

normothermic dosage. The TCCSSUP cell line had a calculated normothermic LD50 of 

124µg/mL (p<0.05, r
2
=0.84), while the calculated hyperthermic LD50 was 58.4µg/mL 

(p<0.05, r
2
=0.92), which was 47.1% of the normothermic dosage. The synergistic effects 

of hyperthermia plus chemotherapy was calculated for all the cell lines treated with 

Mitomycin C (Table 4); they were 44.1%, 3.6%, 13.2%, and 29.2% for RT4 (p<0.001), 

T24 (p=0.20), UM-UC-3  (p=0.003), and TCCSUP (p<0.001) cell lines, respectively.   

Doxorubicin (Figure 2, Table 3) 

The combination of hyperthermia and doxorubicin had a positive effect on all four 

cell lines (RT4, T24, UM-UC-3, TCCSUP), as shown (Figure 2). The RT4 cell line had a 

calculated normothermic LD50 of 6.28µg/mL (p<0.05, r
2
=0.95), while the calculated 

hyperthermic LD50 was 5.52µg/mL (p<0.05, r
2
=0.99), which was 88% of the 

normothermic dosage. The T24 cell line had a calculated normothermic LD50 of 

48.2µg/mL (p<0.05, r
2
=0.94) while the calculated hyperthermic LD50 was 8.51µg/mL 

(p<0.05, r
2
=0.88), which was 17.7% of the normothermic dosage. The UM-UC-3 cell line 

had a calculated normothermic LD50 of 214µg/mL (p<0.05, r
2
=0.92), while the calculated 

hyperthermic LD50 was 57.3µg/mL (p<0.05, r
2
=0.92), which was 26.7% of the 

normothermic dosage. The TCCSSUP cell line had a calculated normothermic LD50 of 

8.62µg/mL (p<0.05, r
2
=0.93), while the calculated hyperthermic LD50 was 6.69µg/mL 

(p<0.05, r
2
=0.98), which was 77.6% of the normothermic dosage. The synergistic effects 
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of hyperthermia plus chemotherapy was calculated for all the cell lines treated with 

Doxorubicin(Table 4); they were 11.6%, 66.2%, 23.2%, and 49.6% for RT4 (p=0.26), 

T24 (p=0.003), UM-UC-3 (p=0.001), and TCCSUP (p=0.002) cell lines, respectively.   

Vinblastine (Figure 3, Table 3) 

The combination of hyperthermia and vinblastine had a positive effect on all four 

cell lines (RT4, T24, UM-UC-3, TCCSUP), as shown (Figure 3). The RT4 cell line had a 

calculated normothermic LD50 of 476µg/mL (p<0.05, r
2
=0.96), while the calculated 

hyperthermic LD50 was 421µg/mL (p<0.05, r
2
=0.92), which was 88.4% of the 

normothermic dosage. The T24 cell line had a calculated normothermic LD50 of 

376µg/mL (p<0.05, r
2
=0.94) while the calculated hyperthermic LD50 was 176µg/mL 

(p<0.05, r
2
=0.97), which was 46.7% of the normothermic dosage. The UM-UC-3 cell line 

had a calculated normothermic LD50 of 915µg/mL (p<0.05, r
2
=0.84), while the calculated 

hyperthermic LD50 was 403µg/mL (p<0.05, r
2
=0.98), which was 44% of the 

normothermic dosage. The TCCSSUP cell line had a calculated normothermic LD50 of 

553µg/mL (p<0.05, r
2
=0.94), while the calculated hyperthermic LD50 was 198µg/mL 

(p<0.05, r
2
=0.98), which was 35.8% of the normothermic dosage. The synergistic effects 

of hyperthermia plus chemotherapy was calculated for all the cell lines treated with 

Doxorubicin(Table 4); they were 21.9%, 19.1%, 86.8%, and 11.4% for RT4 (p<0.001), 

T24 (p=0.003), UM-UC-3 (p<0.001), and TCCSUP (p<0.001) cell lines, respectively.   

Methotrexate (Figure 4, Table 3) 

The combination of hyperthermia and methotrexate was performed for all four 

cell lines (RT4, T24, UM-UC-3, and TCCSUP), but only the UM-UC-3 showed a 

positive effect (Figure 4). The UM-UC-3 cell line had a calculated normothermic LD50 
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of 309µM (p<0.05, r
2
=0.94), while the calculated hyperthermic LD50 was 270µM 

(p<0.05, r
2
=0.93), which was 87.4% of the normothermic dosage. At 0-500 µM of 

methotrexate, there was no effect on the RT4 cell line, independent of temperature (data 

not shown). Although there was a slight decrease in cell proliferation among the T24 and 

TCCSUP cells at hyperthermic conditions compared to normothermic conditions, the 

LD50 was not reached for either of these cell lines (data not shown). The synergistic effect 

of hyperthermia plus chemotherapy was only calculated for UM-UC-3, as this was the 

only cell line to reach the LD50, 30.9% (p=0.04) (Table 4). 

Cisplatin (Figure 5, Table 3) 

The combination of hyperthermia and cisplatin was performed for all four cell 

lines (RT4, T24, UM-UC-3, and TCCSUP), but only the UM-UC-3 showed a positive 

effect (Figure 4). The UM-UC-3 cell line had a calculated normothermic LD50 of 576µM 

(p<0.05, r
2
=0.91), while the calculated hyperthermic LD50 was 80.8µM (p<0.05, 

r
2
=0.94), which was 14.0% of the normothermic dosage. The methotrexate concentration 

used ranged between 0-1000µM; this agent had no effect on the RT4 cell line, 

independent of temperature condition (data not shown). Although there was a substantial 

decrease in cell proliferation among the T24 and TCCSUP cells, the LD50 was not 

reached for either of these cell lines, additionally, there was no statistical difference 

between the two conditions (data not shown). The synergistic effect of hyperthermia plus 

chemotherapy was only calculated for UM-UC-3, as this was the only cell line to reach 

the LD50, it was 14.0% (p<0.001) (Table 4). 

Belinostat 

The combination of hyperthermia and belinostat was performed for all four cell 

lines (RT4, T24, UM-UC-3, and TCC SUP), with none of the cell lines showing 
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statistical difference between hyperthermic and normothermic conditions. At 0-1mM of 

belinostat there was decreased cell proliferation at the highest concentrations in the T24, 

UM-UC-3, and TCCSUP cell lines, the LD50 was never reached. The RT4 cell line had 

no decrease in proliferation, even at the highest concentration (data not shown). 

 

Mouse bladder hyperthermic model 

The effect of temperature alone was investigated using mouse bladders placed at 

various temperatures (37°C-50°C) for various amounts of time (1 hour-24 hours)(Figure 

6). All samples were paired, from the same animal, across the three temperature 

conditions to minimize subject variability. The control (Figure 6-A) was fixed 

immediately after its removal, while the experimental conditions, 37°C (Figure 6-B), 

42.5°C (Figure 6-C), and 50°C (Figure 6-D), were exposed for one hour at these 

temperatures before fixation. The control (Figure 6-A) and 37°C (Figure 6-B) both 

represent normal, healthy urothelium. In both images, the three layers of the bladder are 

clearly differentiated and both have a thick, well organized urothelium, Um. The 

urothelium is the location of the dome cells that maintain the impermeability of the 

epithelium; the cells in this layer are large, ovoid with round, uniform nuclei and evident 

eosinophilic cytoplasm. The normal scalloped appearance of the urothelium is maintained 

in these tissues. The lamina propria, LP, is seen in both the images as loose collagenous 

material with some small blood vessels providing oxygen and nutrients to the urothelium. 

The detrusor muscle, DM, is also clearly visualized in the images; the detrusor is the 

smooth muscle that allows contraction of the bladder. In the images, the detrusor muscle 

contains mononucleated cells. These cells can be seen as elongated and tapering, with 



25 
 

homogenous eosinophilic cytoplasm. When the tissue is exposed to therapeutic levels of 

hyperthermia (42.5°C) (Figure 6-C) there is increased disorganization of the urothelium 

with some evidence of pyknosis of nuclei. There is apparent exudations and vacuolization 

of the lamina propria, with some pyknosis visualized. The detrusor muscle is well 

maintained at this temperature. At supra-therapeutic levels of hyperthermia (50°C) 

(Figure 6-D), there is increased disorganization of urothelium, with apparent 

karyorrhexis, karyolysis, extensive cell membrane rupture and necrosis of the umbrella 

cells. At this temperature, there is increased exudation of the lamina propria with 

sloughing of the urothelium from the underlying detrusor muscle. Similar to the findings 

with therapeutic hyperthermia, the detrusor muscle is well maintained at hyperthermic 

conditions. 

Depth of penetration 

Human ureter was obtained and tested with nanoparticles which contained Nile 

Red dye to test for depth of penetration. The ureter was divided into two pieces and 

placed in the dot blot apparatus. The luminal side of the tissue was exposed to the 

fluorescent nanoparticles. These two pieces of ureter were exposed to either hyperthermic 

(42.5°C) or normothermic (37°C) conditions for one hour before fixation. The slides 

were stained with DAPI, a nuclear marker, and the slides were examined using 

fluorescence microscopy (Figure 7). The superficial images taken from the 

normothermic condition (Figure 7-A) show the Nile red particles concentrated along the 

urothelium, UM, with penetration to the Lamina Propria, LP. The deep images taken 

from the normothermic condition (Figure 7-B) show a slight penetration of the 

nanoparticles into the lamina propria. The superficial images taken from the hyperthermic 
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condition (Figure 7-C) show the nanoparticles along the urothelium with increased 

penetration of the nanoparticles into the lamina propria. The deep images of the tissue 

taken from the hyperthermic condition (Figure 7-D) were examined and showed a deeper 

penetration of the nanoparticles through the lamina propria onto the border of the 

detrusor muscle, DM. In addition to deeper penetration, the nanoparticles were present at 

a higher density when compared to normothermic conditions.  

Organ Culture  

Rat bladders were removed from Sprague-Dawley rats and seeded with UM-UC-

3R cells, which were grown for one month, with frequent examinations using light and 

fluorescence microscopy (Figure 8). On day 21, light microscopy of the rat bladders  

(Figure 8-A) showed cell growth along the luminal side of the tissue. When the tissue 

was examined using fluorescence microscopy (Figure 8-B), these cells showed red 

fluorescence, indicating that these cells were the seeded UM-UC-3R cells. This same 

tissue was re-examined on day 28; light microscopy (Figure 8-C) showed continued cell 

growth along the luminal side of the tissue. Again this tissue was examined using 

fluorescence microscopy (Figure 8-D), again showing the red fluorescence of the 

transfected UM-UC-3R cell line.   
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V. DISCUSSION 

Our data suggest that the effect of therapeutic hyperthermia alone does not have 

deleterious effect on cell viability since there was no significant change in cell 

proliferation among the four cancer cell lines tested (RT4, T24, UM-UC-3, TCCSUP). 

Our studies with combination therapy using hyperthermia and different 

therapeutic agents showed a variable response depending on the cell type and the type of 

agent used. When we used a combination of hyperthermia and mitomycin C, we showed 

synergism for all the cell lines tested with the exception of the T24 cell line. Two 

previous studies have shown synergy with mitomycin C and therapeutic hyperthermia, 

but it was difficult to compare with our data as there are many inconsistencies among the 

two published studies [90, 91]. The authors included three cell lines (RT112, RT4, T24) 

of  low-grade disease and one cell line (253J) representing high-grade invasive disease. 

For example, there was a three order of magnitude difference between the LD50 of 

mitomycin C for all the cell lines despite being tested using similar scientific method and 

cell lines.  Additionally, neither of the published studies performed any statistical 

analyses, thus it was not possible to determine if the reported results were statistically 

significant. As our studies use two cell lines (RT4 and T24) that overlapped with their 

work, we were able to compare the two sets of results. Our data with RT4 cell line 

confirm their conclusions that there was synergy in combination therapy. In our studies 

the RT4 cell line showed the greatest synergy of the four cancer cell lines. Our data 

conflicted with their results for the T24 cell lines since we did not see synergy with 

combination therapy. Furthermore, we showed synergy between MMC and hyperthermia 

with two higher grade invasive cancer cell lines. The largest MMC dose decrease 
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occurred in the UM-UC-3 cell line, with a dosage difference of 59% to achieve the LD50 

for the combination therapy compared to chemotherapy alone. 

Our results with doxorubicin, an anthracycline antibiotic showed synergism for 

three of the four cell lines tested, but did not show synergism for the RT4 cell line. One 

previous study examined epirubicin, another anthracycline antibiotic, and showed 

synergy among all the cell lines tested [91]. In fact, epirubicin showed the greatest levels 

of synergy compared to all the drugs tested, in particular in the T24 cell lines, although 

there are a number of inconsistencies in the paper. Our data showed synergy between the 

T24, UM-UC-3, and TCCSUP cell lines, with the highest synergy occurring with the T24 

cell line at 66.2% compared to their value of 1,823%. Unfortunately, like the MMC data, 

the authors, did not include statistical analyses and thus it was not possible to compare 

with our data [91]. The T24 cell line showed the largest change in doxorubicin dose at 

82% to achieve the LD50 under combined therapy compared to chemotherapy alone. 

Our results with vinblastine, a microtubule inhibitor showed that it is the only 

drug to display a statistically significant synergism for all the cell lines tested. No 

previous studies have been published examining the combination of hyperthermia with 

vinblastine for bladder cancer cell lines. The UM-UC-3 cell line showed the highest 

synergy of all the cell lines tested at 87%. The TCCSUP cell line showed the largest 

change, 64%, in vinblastine dose to achieve the LD50 in combined therapy compared to 

chemotherapy alone.  

Our results with cisplatin and methotrexate only yielded positive effects on the 

UM-UC-3 cells. The UM-UC-3 cells had a modest change in methotrexate dosage 

required to achieve the LD50, while cisplatin had the largest dosage difference to achieve 
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the LD50 when comparing combination therapy to chemotherapy alone. Both 

chemotherapeutic agents have synergy with hyperthermic conditions, methotrexate more 

so than cisplatin. Our study is the only one to address the effect of these two 

chemotherapeutic agents, showing their specificity for one cell line, and thus it is unlikely 

that these would have wide spread application under combination therapy. 

The HDAC inhibitor, belinostat, did not show any statistical difference between 

combination therapy and chemotherapy alone. Prior studies in the Weiss lab showed that 

belinostat had an LD50 of approximately 2.5uM after 72 hours of treatment (Martin et 

al., 2013 submitted). After 24 hour incubation with belinostat, proliferation decreases 

were much smaller than after 72 hours. In the current study, the LD50 was not achieved 

for any of the cell lines, likely due to the fact that we only exposed the cells for one hour. 

The difference in result suggests that either the cells need longer than a one hour 

exposure for belinostat’s effect, or that the cells should be grown for longer than 24 hours 

for belinostat’s effect to be observed.  Alternatively, the lack of effect may be due to the 

instability of the drug at increased temperatures that may alter its chemotherapeutic 

effect.  

In these studies, we looked exclusively at the increased cytotoxic effects with 

hyperthermia. We found that the three most efficacious drugs tested were MMC, 

doxorubicin, and vinblastine. These three agents are well known to be effective inhibitors 

of cell replication machinery. For example, MMC is a potent DNA crosslinker, 

doxorubicin is an inhibitor of topoisomerase II and generates free radicals, and 

vinblastine is a potent inhibitor of microtubule assembly, a necessary step in cellular 

replication. It is unclear why cisplatin would not have the same efficacy as MMC, as they 
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share a similar mechanism of DNA crosslinking, but it is possible that the cells could 

have been resistant. It is unlikely that the difference lies in the size of the molecule since 

cisplatin with a molecular weight of 300.5g/mol is smaller than MMC (g/mol). 

Conversely, the lower effect of methotrexate may be due to its mechanism of action 

where it acts as a folate analog to inhibit DNA and protein synthesis, processes that likely 

take longer than 24 hours to show its complete effect.  

 Of the cancer cell lines tested, UM-UC-3 was the most chemo-sensitive and 

overall showed the greatest synergy between hyperthermia and chemotherapy. The T24 

cell line was the most chemo-resistant of the cell lines tested, although it showed the 

largest synergy when tested with doxorubicin. There was no connection between 

sensitivity to combination therapy and mutations in either tumor protein 53 (TP53) or the 

retinoblastoma (Rb) genes. 

There are many limitations to our studies. Our limited growth time after the 

treatment dose may have altered our ability to notice a statistical difference in the 

chemotherapeutic agents tested. In particular, the HDAC inhibitor, methotrexate and 

cisplatin could have shown an effect if tested after 72 hours of growth. Additionally, 

these studies were limited as they looked exclusively at the modulation of cytotoxic or 

cytostatic effects of the drugs tested under combination therapy, which does not allow us 

to see the effects under physiologic conditions. It is possible that the treatments would 

only be available to the superficial cells of the tumor, with no penetration into the bladder 

thus hindering the efficiency of any drug tested. We also could have tested for the effect 

of these drugs in combination with hyperthermia on parameters including apoptosis, cell 

viability, and cell replication. These could be done using markers for apoptosis such as 
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caspases 3 and 7 (executioner proteases); DNA replication could be measured using 

deoxyuridine incorporation; and cell viability could be measured using ATP levels. These 

markers would further delineate the effect of these various drugs on cells tested.     

We strived to be consistent with current therapeutic protocols, but it would be 

interesting to design a model where we could have our initial induction period, then have 

maintenance therapy to see if these cells become increasingly resistant or sensitive to 

combination therapy. In addition to modulating the experimental design, our current 

tissue culture model system does not allow us to see how the combination therapy would 

affect a tumor grown three-dimensionally. We designed the organ culture model as a 

possible way to test the efficacy of combination therapy; unfortunately, the model did not 

prove to be a resilient model of bladder cancer. Therefore, a xenograft or orthotopic 

mouse model would validate our data, in vivo. Lastly, it would be interesting to see how 

the bladder cancer cell lines would react to combination hyperthermia and BCG. It is 

likely that BCG would have no effect on the cell growth, as the postulated mechanism of 

BCG relies mainly on the immune response induced from the treatment.  

Our organ studies revealed the effects of therapeutic (43°C) and supra-therapeutic 

hyperthermia (50°C) on normal animal tissue. With increasing temperature there was 

increased disorganization, necrosis and apoptosis of the urothelium. Additionally, there 

was increased vacuolization of the lamina propria, with evidence of urothelial sloughing 

at supra-therapeutic hyperthermia. This study allowed us to identify end organ changes. 

The main limitation to this study was that these tissues were removed from the animal, 

thus limiting our ability to observe the vascular or immune responses to hyperthermia. 

Additionally, by conducting this study ex vivo, we were unable to observe if there is 
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reversibility of the reaction following the termination of hyperthermia. In the future, it is 

possible to use fluorescent stains against the cellular junction proteins to identify the 

exact effects of hyperthermia on the urothelium. It is possible that there are changes to 

either the gap junctions, tight junctions, or adherens junctions that create the visualized 

changes and allow for the increased depth of penetration of the nanoparticles. 

There have been numerous published articles detailing the depth of penetration of 

drugs delivered in the bladder [61], but none of these studies showed the effects of 

hyperthermia on this phenomenon. Our studies revealed that hyperthermia alone 

increased the depth of penetration and density at which the nanoparticles could penetrate 

into the bladder. Although the use of nanoparticles represents a good model system it 

does not mimic the chemotherapeutic agents in their size or charge. In studying heated 

intraperitoneal chemotherapy, many investigators used platinum based chemotherapies as 

they can be easily visualized using x-ray fluorescence microscopy [121]. Therefore using 

cisplatin as our chemotherapeutic agent may allow for clearer penetration studies. This 

study would also benefit from the use of cellular stains to determine the possible effects 

of hyperthermia on the bladder urothelium.  

In conclusion, combination hyperthermia and chemotherapy holds a lot of 

promise for the treatment of superficial bladder cancer as an initial therapy and as a 

salvage therapy. The bladder is an excellent model to study the effects of increasing 

temperature on animal physiology, not only in drug delivery, but also to study the 

biochemical and molecular mechanisms of hyperthermia. With the increased usage of 

intravesicular thermochemotherapy there will be an increased need to understand the 

mechanisms resulting in survival benefits, to best optimize this novel therapy.   
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VI. TABLES AND FIGURES 

 

TABLE 1. RELATION OF THE ORIGIN AND SUMMARY OF THE MOLECULAR CHARACTERISTICS OF 

THE BLADDER CANCER CELLS UNDER STUDY. 

  RT4 T24 UM-UC-3 TCCSUP 

Histopathology Papillary 
Low-grade 
TCC 

Invasive 
TCC 

Invasive 
High-grade  
TCC 

Invasive-
metastatic  
High-grade 
TCC 

TP53* mutation Wild type Exon 5 Exon 4 Exon 10 

RB** mutation No No No No 

Total  RB 
Immunohistochemistry 

10-20% 90% 70% Negative 

*TP53 IS TUMOR PROTEIN 53 **RB IS RETINOBLASTOMA GENE  

TABLE ADAPTED FROM SANCHEZ-CARBAYO ET AL., 2002 [112] 

 
 
 
 
 

 

 

TABLE 2: INFLUENCE OF HYPERTHERMIA, ALONE, ON CELL SURVIVAL 

Bladder Cancer Cell Line % Cell Survival at 42.5°C 
(±SD)* 

Significance  
(p-value) 

 

RT4 92.5%±4.3%  0.47  
T24 92.5%±3.9% 0.63  

UM-UC-3 91.2%±5.0% 0.23  
TCC 90.7%±3.6% 0.37  

*CELL SURVIVAL AT 37°C WAS ASSUMED TO BE 100% FOR ALL CELL LINES. PLATE DENSITY WAS DETERMINED USING IMAGE J (NIH) 
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TABLE 3: LD50 OF CHEMOTHERAPEUTIC AGENTS WITH AND WITHOUT HYPERTHERMIA 

Treatment LD50 RT4 LD50 T24 LD50 UM-UC-3 LD50 TCC 

Mitomycin C 
   37°C (ug/mL) 
   42.5°C (ug/mL) 
   % Δ LD50 

 
30.1 
12.7 
58% 

 
63.7 
51.3 
19% 

 
120 
50.0 
59% 

 
124 
58.4 
53% 

Doxorubicin 
   37°C (ug/mL) 
   42.5°C (ug/mL) 
   % Δ LD50* 

 
6.28 
5.52 
12% 

 
48.2 
8.51 
82% 

 
214 
57.3 
73% 

 
8.62 
6.69 
22% 

Vinblastine 
   37°C (ug/mL) 
   42.5°C (ug/mL) 
   % Δ LD50* 

 
476 
421 
12% 

 
376 
176 
53% 

 
915 
403 
56% 

 
553 
198 
64% 

Methotrexate 
   37°C (uM) 
   42.5°C (uM) 
   % Δ LD50* 

   
309 
270 

12.6% 

 

Cisplatin 
   37°C (uM) 
   42.5°C (uM) 
   % Δ LD50* 

   
576 
80.8 

86.0% 

 

*Δ LD50 IS A CALCULATION OF THE DIFFERENCE BETWEEN THE LD50 OF THE CHEMOTHERAPY WITH AND WITHOUT HYPERTHERMIA; IT 

WAS CALCULATED BY THE FOLLOWING EQUATION:             
             

           
     . [91] 

 

TABLE 4: SYNERGISTIC EFFECT (IN PERCENTAGE) OF ONE HOUR HYPERTHERMIA* COMBINED 

WITH CHEMOTHERAPY ON THE CELL KILLING OF FOUR HUMAN BLADDER CANCER CELL LINES, 

COMPARED TO CELLS TREATED FOR ONE HOUR AT NORMOTHERMIA* WITH CHEMOTHERAPY 

Treatment %SLD50 RT4 %SLD50 T24 %SLD50 UM-UC-3 %SLD50 TCCSUP 

Mitomycin C 44.1% 3.6%
+ 

13.2% 29.2% 

Doxorubicin 11.6%
+ 

66.2% 23.2% 49.6% 

Vinblastine 21.9% 19.1% 86.8% 11.4% 

Methotrexate   30.9%  

Cisplatin   14.0%  
*HYPERTHERMIA=42.5°  **NORMOTHERMIA=37°C  +NOT SIGNIFICANT 
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FIGURE 1: Effect of combined 1-hour hyperthermia with mitomycin c (red line) on the growth of four bladder 

cancer cell lines compared with normothermia and mitomycin c (blue line). Dashed line denotes LD50 axis. 
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FIGURE 2: Effect of combined 1-hour hyperthermia with doxorubicin (red line) on the growth of four bladder 

cancer cell lines compared with normothermia and doxorubicin (blue line). Dashed line denotes LD50 axis. 
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FIGURE 3: Effect of combined 1-hour hyperthermia with vinblastine (red line) on the growth of four bladder cancer 

cell lines compared with normothermia and vinblastine (blue line). Dashed line denotes LD50 axis. 
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FIGURE 4: Effect of combined 1-hour hyperthermia with methotrexate (red line) on the growth 

of UM-UC-3 bladder cancer cell line compared with normothermia and methotrexate (blue 

line). Dashed line denotes LD50 axis. 

 

 

FIGURE 5: Effect of combined 1-hour hyperthermia with cisplatin (red line) on the growth of 

UM-UC-3 bladder cancer cell line compared with normothermia and cisplatin (blue line). 

Dashed line denotes LD50 axis.  
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RED LINE). DASHED LINE DENOTES LD50 AXIS. 

 

  

      
A. Control 

B. 37°C 

C. 43°C 

D. 50° C 

Figure 6:  Rat bladders exposed to varying temperatures conditions for one hour. UM is the urothelium; LP is the 
lamina propria; and DM is the detrusor muscle 
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FIGURE 7: Depth of penetration experiments with human ureter exposed either to normothermic or 

hyperthermic conditions with Nile red nanoparticles administered on the urothelial surface for one hour. UM 

is the urothelium; LP is the lamina propria; and DM is the detrusor muscle. The bladder naturally fluoresces 

green; the blue fluorescence is the DAPI nuclear stain; the arrows indicate the location of the Nile red 

nanoparticles.  
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A. 21 Days 

B. 21 Days 

C. 28 Days 

D. 28 Days 

FIGURE 8: Rat bladder organ culture ex-vivo, Sprague-Dawley rats were removed and seeded with UM-UC-3 

cell lines transfected with red fluorescent proteins. The tissue was allowed to grow in a 5% CO2 humidified 

incubator at 37°C. The tissue was frequently examined using light and fluorescence microscopy.  
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